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ABSTRACT

As the adoption of electric vehicles (EVs) grows, understanding charging behavior becomes important due to
increasing charging demand and grid load. Based on a population-based survey with 1,005 Norwegian EV
drivers, we uncover three classes of (revealed) charging behavior: daily convenient chargers, battery-exploiting
seldom chargers, and occasional battery-friendly planners. The first class consists of EV drivers who typically use
every opportunity to keep the battery level of their EV between 40 % and 100 % and charge mainly at home or
work. The second class includes drivers who charge their EV 2-3 times per week or rarely, carry out charging
according to their driving needs, wait until the battery level is low (<30 %), and charge at home or in public. By
planning their charging needs, holding the battery at an optimal level of 30 %-80 %, conducting charging 4-5
times per week, and mostly at home, the third group reflects the most sustainable and battery-friendly behavior.
Our findings revealed that EV drivers who are male, have longer EV driving experience, drive longer distances,
are socially less persuadable, and do not seize the available potential to charge rarely, are more likely to be daily
convenient chargers than battery-friendly chargers. Meanwhile, EV drivers with lower daily mileage, who
perceive guidance from their charging apps as less helpful, find it easy to start charging at a low battery level and
have a higher general risk propensity are more likely to be battery-exploiting seldom chargers than battery-

friendly planners.

1. Introduction

The global shift towards sustainable transport has led to a rapid
adoption of electric vehicles (EVs) in recent years. In 2023, the number
of EV sales worldwide reached 14 million (International Energy Agency,
2024) compared to 2018 in which the number of EVs sold worldwide
was only 2 million (Statista, 2024a). This represents a significant mile-
stone in the transition away from traditional internal combustion engine
vehicles. Nowadays the growth is largely driven by advancements in
battery technology, government incentives, and growing consumer
awareness of the environmental and economic benefits of EVs
(International Energy Agency, 2024).

However, the successful integration of EVs into the transportation
ecosystem hinges not only on their widespread adoption but also on the
efficient management of EV drivers’ charging behavior (Alaee et al.,

2023). EV owners’ decisions regarding when, where, and how to charge
their vehicles can have profound implications for the stability and
resilience of the electric grid (Hardman et al., 2018), as well as the
overall user experience and adoption rates (Biihler et al., 2014). Un-
derstanding the factors that influence EV charging behavior is, there-
fore, important. Studies have shown that a complex interplay of
individual, technological, and contextual factors can shape the charging
habits and preferences of EV owners (e.g., Daina et al., 2017; Hardman
et al., 2018). Factors such as socioeconomic status, environmental
consciousness, range anxiety, charging infrastructure availability, and
workplace policies can all contribute to the unique charging behaviors
observed across different EV user groups (e.g., Khaleghikarahrodi &
Macht, 2023; Liao et al., 2023; Sprei & Kempton, 2024). By examining
these influential factors, researchers, industry and policymakers can
develop targeted strategies and interventions to optimize EV charging
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patterns regarding grid use and battery longevity.

Our study further contributes to this discussion by providing insights
from a nationwide survey with N = 1,005 EV drivers in Norway.
Thereby, we consider Battery Electric Vehicle (BEV) drivers only. As of
2023, Norway had the highest share of new EV registrations in Europe
where EVs (including Plug-In Hybrid Vehicles — PHEVs) account for
almost 95 % of new car sales (International Energy Agency, 2024).
Moreover, with nearly 690,000 registered EVs (including PHEVS), their
share among all registered private vehicles is around 23.87 % (Statistics
Norway, 2024) compared to 4.8 % in Germany (Statista, 2024b). This
renders the Norwegian EV market an intriguing avenue for studying
revealed charging behavior because such a high adoption rate and long
temporal presence of electric mobility allow the formation of different
user profiles and charging patterns. Considering the complexity of the
decision-making process in terms of EV charging, it is of great interest to
understand how these differences in charging behavior can be system-
atically categorized and described. In addition, it is crucial to know the
main influencing factors for charging pattern formation and how these
differ, to target the diverse needs of EV drivers while successfully pro-
moting sustainable charging behavior.

In our exploratory study, we first cluster EV drivers according to
their charging frequency, main charging location, employed charging
strategy, and battery level at the start and end of charging. Then we
examine how the combination of variables describing socio-
demographics (age, gender, settlement size), EV driving- and
charging-related aspects (EV experience, daily mileage, charging guid-
ance, charging process, flexibility in terms of charging frequency and
battery level), and psychological background (technology openness,
general risk propensity, ecological awareness, economic and social
motives) can be associated with these charging patterns. Precisely,
technology openness indicates drivers’ acceptance to embrace new
technologies and risk propensity explains the willingness to take risks in
general life. Ecological awareness evaluates pro-environmental thinking
and purchase motives showing how much cost-saving reasons and own
social environment motivated drivers’ EV purchase. Our findings could
provide important ramifications for sustainable charging behavior with
all its benefits for the environment, energy management, and battery
health.

2. Literature review
2.1. Electric vehicle charging behavior styles

Researchers have explored archetypes or patterns of EV drivers’
charging behavior to understand the variability of needs and their
impact on charging infrastructure. Khaleghikarahrodi and Macht (2023)
conducted a cluster analysis of EV charging behavior based on charged
energy and frequency, identifying four types of EV drivers: convenient,
gradual, anxious, and urgent. Nazari and Musilek (2024) identified four
distinct user groups, each exhibiting unique charging behaviors, such as
connection time and session duration. Afternoon users showed a sig-
nificant demand for energy, with peak charging occurring in early af-
ternoons. Huang et al. (2024) analyzed EV charging patterns, focusing
on station distribution, volume, duration probability, and utilization
efficiency. These studies highlight disparities in infrastructure avail-
ability and emphasize strategic planning to meet growing charging de-
mands and to optimize network operations.

Helmus et al. (2020) and Wolbertus et al. (2018) explored the timing
of charging, defining nine user types and five classes, respectively. Both
studies concluded that showcasing only stereotypical behavior fails to
capture the full range of behaviors. Morrisey et al. (2016) analyzed
charging behavior regarding charging location, charged energy, charge
duration, and charging mode. Authors identified that the majority of
home charging is carried out in the evening, car parks are the most
preferred charging location and fast charging is the most favored
charging mode in public space.
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Liao et al. (2023) conducted a nationwide simulation for future EV
charging infrastructure scenarios in Sweden, categorizing EV drivers
based on charging places, daily activities, and parking time. Aligned
with mental models by Sprei and Kempton (2024), they distinguished
between three charging strategies: liquid-fuel, plan-ahead, and event-
triggered. Inexperienced EV drivers tended to charge when the battery
level approached empty, while experienced ones usually charged when
triggered by an event or opportunity.

Other researchers used a survey approach based on stated preference
to gather data about the perception of charging. Based on drivers’
charging strategies to cope with battery resources and risk propensity
Hajhashemi et al. (2024) identified five distinct charging styles: cost-
sensitive planners, cost-sensitive calculated, range seekers, flexibility
seekers, and indifferent late adopters. Wang et al. (2021) revealed two
classes of charging-decision-making patterns. These were service-
concerned drivers who mainly focus on the service level of the facility,
regardless of the charging costs. Others are pragmatic-concerned drivers
who consider reality factors, such as charging fee and SOC, rather than
satisfaction.

These studies acknowledge the heterogeneity in charging behavior
and suggest the need for flexibility in charging choices, particularly
regarding future developments in battery technology and estimating the
load on the charging infrastructure. However, the mentioned works
often include early EV adopters or potential EV drivers without prior
experience, limiting the empirical inquiry to their stated preferences
rather than revealed behavior. Additionally, the studies predominantly
use a descriptive approach based on a few charging attributes. This
hinders deeper investigation into the socio-demographic, contextual,
and psychological factors that shape these charging patterns. Hence, we
need to explore additional literature to better understand the variety and
significance of these factors for charging behavior in general.

2.2. Factors influencing electric vehicle charging behavior

Current literature on potential precursors of EV charging behavior is
mainly based on findings from field experiments and questionnaire
studies. Several of these studies found that charging frequency can be
positively influenced by higher mileage (Daina et al., 2015; Philipsen
et al., 2018; Yang et al., 2016), more frequent driving (Philipsen et al.,
2018), low charging costs (Yang et al., 2016), higher vehicle energy
consumption (Yang et al., 2016), or smaller EV range (Daina et al., 2015;
Helmus et al., 2020). The charging frequency increases when the EV
driver charges according to habit (Daina et al., 2015; Philipsen et al.,
2018), is a female driver (Thorhauge et al., 2024; Yang et al., 2016;
Wang et al., 2021), has a younger age (Thorhauge et al., 2024; Daina
et al., 2015; Yang et al., 2016), a higher education level (Daina et al.,
2015; Yang et al., 2016), or lives in a bigger settlement (Pevec et al.,
2020). Another essential factor characterizing charging behavior is the
state of charge (SOC) at the charging start. Researchers found that
higher age (Daina et al., 2015), longer distance to work (Daina et al.,
2015), larger battery capacity (Helmus et al., 2020; Khaleghikarahrodi
& Macht, 2024), higher general risk propensity (Hu et al., 2019; Phili-
psen et al., 2018), and need-based charging (Helmus et al., 2020; Phi-
lipsen et al., 2018) made EV drivers start charging at a lower battery
level.

Furthermore, the preferred location of charging stations is also
associated with several individual variables. Home charging has been
highlighted as the most important and convenient charging location
followed by work and public charging (Hardman et al., 2018; Hu et al.,
2019; Neubauer & Wood, 2014). EV drivers favoring charging at home
tend to be female and have a higher age (Guo et al., 2022; Lee et al.,
2020), do not have workplace charging availability (Chakraborty et al.,
2019; Lee et al., 2020), or an inexpensive charging alternative elsewhere
(Chakraborty et al., 2019; Yang et al., 2016). In contrast, EV drivers
charging at work can be described as individuals with higher education,
and with less expensive or even free workplace charging availability
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(Chakraborty et al., 2019; Lee et al., 2020). Typical workplace chargers
avoid low SOC and prefer charging at every opportunity, with short and
medium-duration chargings occurring in the morning until the after-
noon, and longer durations postponed to the end of the day (Fieltsch
et al., 2020). These EV drivers, who use public charging stations the
most, are usually male (Lee et al., 2020), have lower EV range
(Chakraborty et al., 2019), lower starting SOC (Hu et al., 2019), and no
workplace charging availability (Chakraborty et al., 2019; Lee et al.,
2020).

Moreover, rational EV use has been related to more practical driving
experience (Franke et al., 2017; Rauh et al., 2020; Thorhauge et al.,
2024) but also to more range-related knowledge and availability of in-
vehicle information (Rauh et al., 2020; Yang et al., 2016). However,
Liao et al. (2023) found that inexperienced EV drivers tend to charge
only if necessary, and experienced ones according to their habits. Be-
sides, Franke and Krems (2013) found in their study that a higher
willingness to reduce their own cognitive and battery load for charging
more often than necessary is associated with higher confidence in range
estimates and range utilization.

2.3. Current study

The existing literature on EV drivers’ charging behavior contains
valuable insights but has several limitations that our study aims to
address. Previous research has often focused on small-scale samples or
included a mix of EV, PHEV, and ICE drivers (Daina et al., 2015; Franke
et al., 2017; Hajhashemi et al., 2024; Pevec et al., 2020), which may not
fully capture the nuances of charging behavior among a large, diverse
population of EV drivers.

Some studies have relied solely on records of public charging stations
(e.g., Khaleghikarahrodi & Macht, 2023; Morrissey et al., 2016). Others
have used mathematical simulations (Liao et al., 2023; Neubauer &
Wood, 2014), which, although useful, may not reflect the comprehen-
sive and representative factors that shape the heterogeneity of human
behavior. Additionally, many studies have been conducted in countries
with lower EV adoption rates (e.g., Daina et al., 2017; Khaleghikar-
ahrodi & Macht, 2023; Philipsen et al., 2018), limiting the ability to
draw insights on revealed charging habits in more mature electric
mobility markets.

Our study investigates the charging behavior of 1,005 EV drivers in
Norway, a country with one of the highest EV adoption rates worldwide
and a strongly favorable environment for electric mobility. By con-
ducting a nationwide survey with a diverse sample of EV drivers, we aim
to provide a more comprehensive understanding of the variety of
charging behavior patterns and the underlying motivations. We cluster
EV drivers in our sample according to the charging behavior indicators,
such as charging frequency, charging place, charging strategy as well as
SOC at the start and end of charging. The five indicators were chosen
based on previous literature which employed them in different contexts
and separate settings (Daina et al., 2015; Hu et al., 2019; Liao et al.,
2023; Philipsen et al., 2018).

Moreover, past research lacks a unified association of socio-
demographic, charging- and psychology-related factors with charging
behavior. The examination of these variables in one model would not
solely enable identification of the variety of charging behavior but also
to analyze the motives and specific attributes behind different charging
patterns. In our study, we consider EV drivers’ socio-demographic
background, such as gender, age, and settlement size (e.g., Daina
et al., 2015; Pevec et al., 2020). Then, we examine how charging
behavior is associated with drivers’ EV routines, such as driving expe-
rience, daily mileage, and received charging guidance (e.g., Liao et al.,
2023; Philipsen et al., 2018; Rauh et al., 2020). As there is a lack of
insights about perceived daily charging experience as well as individual
charging flexibility, we consider EV drivers’ perceived ease of charging
process in their routine and flexibility in terms of charging frequency
and battery level at charging start.
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Psychological variables have to a large extent been ignored in the
context of charging behavior. Previous studies briefly noted that tech-
nology openness lowers range stress (Philipsen et al., 2019), while
higher general risk propensity promotes charging with low SOC (Guo
etal., 2022; Hu et al., 2019; Philipsen et al., 2018) and is related to more
range stress (Philipsen et al., 2019). We include these characteristics to
study them in a different context and setting, but also to test these to-
wards a new outcome variable describing charging patterns. Thereby,
general risk propensity reflects the willingness to take risks in general
life, and technology openness indicates receptiveness to use new tech-
nologies. Some behavioral studies in the EV context considered
ecological, economic, and social values in decision-making (e.g., Kramer
et al., 2023; Schrills et al., 2020). These values can steer own behavior to
be a pro-environmental, rational, and socially approved one (De Groot &
Steg, 2010; Deci & Ryan, 1987). However, such values have not yet been
examined in terms of revealed charging behavior. As these values could
motivate reasonable charging behavior, we examined them as EV
drivers’ ecological awareness, economic (e.g., lower costs for charging
than for fuel), and social motives (e.g., opinion of others and social
norms) at EV purchase.

To fill the knowledge gap about the combined investigation of po-
tential influencing factors on charging behavior in a nationwide setting
with actual EV drivers and revealed charging behavior, we will address
the following research questions:

(Q1) What are the socio-demographic characteristics of different
charging behavior groups of EV drivers?

(Q2) How are EV driving- and charging-related aspects associated
with different charging behavior patterns among EV drivers?

(Q3) How do psychological characteristics relate to different
charging behavior patterns among EV drivers?

3. Methods
3.1. Survey and participants

This work is based on a survey of EV (exclusively BEV) drivers
conducted from January to February 2024 in Norway. The EV drivers for
our survey were recruited by Norstat which is a market research panel
aggregator company. Being Norway’s largest consumer panel, it consists
of over 120,000 active participants. All respondents received 10 Norstat
coins, which can be spent or donated in the Norstat store. In total 1,054
EV drivers were contacted of which 1,005 respondents completed the
survey. Due to the lack of information on the true distribution of EV
owners in Norway, the sample was randomly obtained based on the
national distribution of gender, age, and geography, yielding a robust
data set. The sample exclusively included individuals who indicated that
they possess an EV. Our sample had an average age of 46.5 years (SD =
16.7, MIN = 18, MAX = 89) of which 47.76 % were female and 64.4 %
had a university degree. In addition, 66.9 % were employed, and 91.34
% drove an EV that they owned by themselves or that was owned by a
family member. In terms of representativity of the Norwegian popula-
tion, we compared the sample characteristics to those of the population:
Approximately 50 % of Norway’s adult population is female (compared
to 47.76 % in our study), whereas 36.9 % of all Norwegian citizens
possess higher education (compared to 64.4 % in our study) which can
be explained by overall higher education level among Norwegian EV
driver population (Bjgrge et al., 2022). The province Akershus has the
highest population in Norway compared to the remaining provinces
which we mirror in our sample being the highest percentage of re-
spondents (15.42 %), whereas Finnmark is the least populous province
in Norway, illustrating the smallest share in our sample (0.5 %)
(Norwegian Government, 2022).

3.2. Questionnaire and measures

The questionnaire is available as a full version in the appendix. In the
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following, we will outline applied measures and scales of our study in
more detail.

3.2.1. EV charging behavior

Charging behavior was measured by asking about five aspects of the
charging routine among our respondents. In order to indicate the main
charging place, participants chose between home, workplace, or public
charging stations. For the usual SOC at the charging start, participants
chose a range between ten different items (< 10 %, 20-10 %, 30-21 %,
40-31 %, 50-41 %, 60-51 %, 70-61 %, 80-71 %, 90-81 %, 100-91 %).
Both scales, for charging location and SOC at charging start, were used
by Hu et al. (2019) as two indicators of charging behavior. To specify the
usual battery level at the charging end, participants chose a range be-
tween eight different items (< 30 %, 40-31 %, 50-41 %, 60-51 %,
70-61 %, 80-71 %, 90-81 %, 100-91 %). SOC at the charging end has
not been studied directly, but rather through more indirect measures,
such as refueling quantity preference (Philipsen et al., 2018) and charge
consumption (Morrissey et al., 2016). In our study, we based the answer
scale on the measurement of the SOC at the charging start. For charging
frequency, the participants chose between the options “daily”, “4-5
times per week”, “2-3 times per week”, or “rarely”. This scale was
adapted from previous studies by Daina et al. (2015) and Philipsen et al.
(2018). Considering the preferred charging strategy, participants could
choose either “I charge only when the battery level is low (less than 30
%)”, “I plan for the next trip and decide if charging is necessary”, “I
charge whenever possible to always have a high battery level”, or “I
charge according to my habits/routine regardless of the current battery
level”. We adapted this scale from the categorization of charging strat-
egy by Liao et al. (2023).

3.2.2. Socio-demographics

EV drivers’ socio-demographics were included in the analysis for
control purposesor. The participants were asked to indicate their age (in
years), gender (male = 1, female = 2), and settlement size (village with
<1,000 people, town with up to 100,000 people, city with up to 300,000
people, large city with > 300,000 people). In the variable measuring
settlement size, every category is coded as a binary variable (0 =no, 1 =
yes), while the category of a large city is the reference base. These items
and scales for socio-demographics have been previously used in other
related studies (e.g., Daina et al., 2015; Pevec et al., 2020).

3.2.3. EV driving- and charging-related aspects

To measure EV driving-related aspects, we asked our participants to
state their EV driving experience (in years), which we used as an indi-
cator for their practical EV-related knowledge. Previously, the EV
experience has been measured based on the existence of any previous
experience with EV (e.g., Pevec et al., 2020) or in the scope of a field trial
(e.g., Franke et al., 2017). As previous research shows, annual mileage
relates to charging frequency and SOC at charging start (e.g., Philipsen
et al., 2018), we included in our study also EV drivers’ daily mileage for
a more granular evaluation. The EV drivers had to choose out of five
different items (<5 km, 5-19 km, 20-59 km, 60-100 km, >100 km).

Items considering the participants’ EV charging experience were
collected using a seven-point Likert scale, ranging from 1 (not at all) to 7
(to a great extent). Thereby, we asked the participants to indicate how
helpful they perceive the guidance (e.g., by their EV or charging app) in
performing charging successfully. With this variable, we aimed to
measure if the support and information for charging the EV drivers
usually receive is sufficient and satisfying. In the relevant research,
providing range- or charging-related information to drivers has been
found to have a positive impact on reducing range stress and charging
behavior (e.g., Rauh et al., 2015; Rauh et al., 2020). To identify EV
drivers’ range tolerance to low battery levels, we asked participants to
evaluate, how easy it is for them to start charging at a low SOC (below
30 %). The item was adapted from the measurement of low-range
aversion by Franke et al. (2017). To measure perceived charging
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flexibility in EV drivers’ daily routine, we asked them to indicate, how
easy it is for them to charge their EV less frequently if they would like to
do that. With this variable, we aimed to evaluate if the EV drivers have
enough charging opportunities in their daily routine (Franke & Krems,
2013) and how much flexibility to change their charging routine they
potentially have.

3.2.4. Psychological characteristics

Measures considering the participants’ psychological background
were collected using a seven-point Likert scale, ranging from 1 (not at
all) to 7 (to a great extent). For measuring the general risk propensity of
EV drivers, we included the 1-item scale of the willingness to take risks
by Harrison and Rutstrom (2008). This scale has been used in several
fields to measure risk-taking behavior (e.g., Dohmen et al., 2011; Jaeger
et al., 2010; Lonnqvist et al., 2015). To evaluate the technology open-
ness of EV drivers, our questionnaire contains a 4-item scale of tech-
nology perception. This scale was derived from the measures of
innovativeness by Parasuraman and Colby (2015) indicating the readi-
ness to adopt new technologies, and of technophilia (Weyer, 1997)
evaluating technology enthusiasm, skepticism, and self-assessment of
competencies regarding technology use. Previously, technology
perception and commitment have been studied in the context of range
stress by Philipsen et al. (2019), which, thus, could be relevant to
charging behavior. By combining these measures, Cronbach’s alpha was
0.70 with an inter-item correlation of 0.36, which shows satisfying
consistency of our scale (Tavakol and Dennick, 2011). Finally, the study
included the 2-item scale of perceived ease of charging which is based on
the scale for perceived ease of use by Davis (1989). Our scale included
items related to whether an EV driver believes that the charging process
in their routine and main charging location is usually free from effort. It
yielded a Cronbach’s alpha of 0.64 and a Pearson’s r of 0.48, which can
be considered satisfactory given the brief nature of the scale (Tavakol
and Dennick, 2011).

We used the 3-item ecological awareness scale of Diekmann and
Preisendorfer (1998) to evaluate the individual values and attitudes
toward factors such as environmental protection, climate change, and
eco-mindedness. This scale and items were used in the study by Kramer
et al. (2023) to evaluate participants’ environmental awareness. We
found that the scale has satisfactory reliability in our sample reflected by
a Cronbach’s alpha of 0.92 and an inter-item correlation of 0.79
(Tavakol and Dennick, 2011). We asked the participants how important
social (e.g., opinion of friends and family, status symbol) and economic
factors (e.g., lower operation costs in comparison to ICE vehicles) were
for them in purchasing their EVs. However, general EV purchase
intention has been considered in the previous research before (e.g.,
Franke et al., 2017), in this study, we also aimed to evaluate purchase
motives. These motives could reflect the psychological characteristics of
an EV driver and hence, also their behavior regarding individual in-
terests and social norms (e.g., De Groot & Steg, 2010; Deci & Ryan,
1987).

3.3. Latent class analysis

After analyzing descriptives about the main characteristics of the
sample and controlling for the reliability of used measurement scales,
we applied latent class analysis (LCA) to identify the charging behavior
latent classes of the EV drivers. LCA is a powerful statistical technique
that can identify distinct subgroups within a population based on
observed variables (Vermunt & Magidson, 2013). As a probabilistic
method, LCA can uncover (in)consistencies among variables related to
charging behavior patterns (Kroesen, 2019). The measurement model
within the LCA determines the optimal number of latent classes based on
the shared heterogeneity among these indicators (Vermunt & Magidson,
2013).

In the LCA model, we used the five indicators of charging preferences
described earlier: (1) charging place, (2) charging frequency, (3)
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charging strategy, (4) SOC at charging start, and (5) SOC at charging
end. These variables were also used to describe the likelihood of having
a specific charging behavior type, i.e., belonging to a specific latent
class. The clustering is entirely determined by the shared variance
among these indicators. Subsequently, the identified classes are profiled
based on different covariates, such as socio-demographics, EV driving-
and charging-related aspects, and psychological characteristics. This
profiling allows for a deeper understanding of the identified charging
patterns (Vermunt, 2010; Kroesen, 2019). To assess the associations of
these covariates, we employed the 3-step procedure outlined by Ver-
munt (2010). This approach ensures that the covariates do not influence
the measurement aspect of the model, and the classification relies solely
on the indicators rather than the covariates. The 3-step procedure in-
volves: 1) estimating the model using only the indicators (measurement
model part), 2) probabilistically assigning subjects to latent classes, and
3) exploring the relationship between the identified latent class mem-
bership and covariates by using multinomial logit (MNL) model
(Vermunt, 2010; Kroesen, 2019).

The primary objective of the LCA is to identify the model that cap-
tures the relationships among the indicators most effectively, with the
fewest latent classes (Kroesen, 2019). To define the appropriate number
of latent classes within the sample, we estimated models from one to five
classes. For comparison of these models, we used goodness-of-fit mea-
sures including the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) (Nylund et al., 2007; Vermunt, 2010), where
the lowest value of AIC and BIC suggests the best model fit. Table 1
presents the goodness-of-fit measures of the five models. The three-class
model had both the lowest BIC and AIC values as well as presented an
even distribution (Ngjass1 = 251, Nclass2 = 368, Nclasss = 386) into
distinct and interpretable types of charging behavior. The LCA was
tested using Jamovi 2.5 (Jamovi, 2024) and Stata 18 (Stata, 2023).

For the MNL model, the third class was used as the reference cate-
gory, as this class contained the most observations and represented the
middle of two more extreme charging behavior types. The independent
variables are factors related to socio-demographic background, EV
driving- and charging-related aspects, and psychological characteristics.
These factors do not directly form the charging behavior but potentially
differ among individuals with different charging patterns.

To address research question Q1, we included socio-demographic
variables, such as age, gender, and settlement size. For research ques-
tion Q2 we examined the following variables: the experience of driving
an EV, daily mileage, perceived helpfulness of guidance for charging,
perceived ease of charging, ease of charging at low SOC (less than 30 %),
and ease of charging less frequently. Finally, to answer research question
Q3, we integrated psychological variables indicating EV drivers’ tech-
nology openness, general risk-propensity, ecological awareness as well
as their social and economic motives in EV purchases.

4. Results
4.1. Charging behavior patterns of electric vehicle drivers
The LCA results suggest that three charging behavior classes fit the

data best. Each class is described based on the summary statistics of the
five indicators presented in Table 2. Here, we examine the profiles of EV

Table 1
Goodness-of-fit measures of the latent class analysis model.

Travel Behaviour and Society 41 (2025) 101094

Table 2
Summary statistics for the indicators by class (measurement model part).
Indicators Class 1 2 3
Class size (%) 24.98 % 36.62 % 38.41 %

Charging At home 88.05 % 86.41 % 89.12 %

place At workplace 11.95 % 1.63 % 8.03 %
At public charging station 0.00 % 11.96 % 2.85 %

Charging Daily 55.78 % 6.79 % 3.11%

frequency 4-5 times per week 27.09 % 6.79%  29.02 %
2-3 times per week 10.36 % 47.01 %  44.56 %
Rarely 6.77 % 39.40 % 23.32%
Charging I charge only when the 0.40%  41.03 % 0.00 %
strategy battery level is low (less than
30 %).
I plan for the next trip and 3.59 % 50.00 %  82.64 %
decide if charging is
necessary.
I charge whenever possible 70.12 % 3.53 % 1.30 %
to always have a high
battery level.
I charge according to my 25.90 % 5.43 % 16.06 %
habits/routine regardless of
the current battery level.

SOC at the > 70 % 13.15 % 4.62 % 5.70 %
charging 70-61 % 17.93 % 0.27 % 4.66 %
start 60-51 % 22.31 % 0.27 % 10.36 %

50-41 % 23.11 % 0.54 % 24.61 %
40-31 % 11.55 % 5.16 % 44.04 %
30-21 % 10.76 % 63.59 % 10.62 %
20 %-10 % 0.80 % 24.73 % 0.00 %
<10 % 0.40 % 0.82 % 0.00 %

SOC at the 100-91 % 51.39 % 38.04 % 29.02 %
charging 90-81 % 15.54 % 23.91 % 28.76 %
end 80-71 % 21.51 % 31.79 % 35.75 %

70-61 % 5.58 % 0.54 % 1.30 %
60-51 % 1.99 % 0.00 % 0.52 %
< 50 % 3.98 % 5.70 % 4.66 %

Note: N = 1,005. SOC = State of Charge. Bold values indicate the highest value
for each row.

drivers based on their charging behavior.

Class 1 “Daily convenient chargers*: This class comprises 24.98 % (n
= 251) of the sample. Individuals in this category typically charge their
EVs daily. Their charging approach primarily involves charging when-
ever possible to always have a high battery level or whenever the op-
portunity arises given their routines. Charging usually commences when
SOC is between 41 % and 50 % or higher and they mostly charge their
EV battery full (SOC =91 % — 100 %). Although, they are mainly home-
based chargers, around 12 % of this group charge their car at the
workplace, which is the highest share of workplace chargers among all
classes.

Class 2 “Battery-exploiting seldom chargers“: This class represents
36.62 % (n = 368) of the sample. Individuals tend to charge their EVs
2-3 times per week or less frequently, charging usually according to
their driving plan and necessity, but also a notable part of 24.73 % tends
to wait until the battery level is low (SOC <30 %). Charging occurs with
a lower SOC (battery level of 21 %—30 %) and usually lasts until the car
is fully charged (SOC = 91 %—100 %). Even though, they are mainly
home-based chargers, about 12 % of this group charge their EV mainly
at the public charging station, which is the highest share of public

Number of classes AIC BIC Log-Likelihood Share of each class (and smallest class)
1 2 3 4 5
1 12,854 12,972 —6403 100 %
2 12,426 12,690 —6164 62.77 % 37.23%
3 12,311 12,667 —6089 24.98 % 36.62 % 38.41 %
4 12,338 12,825 —6070 38.20 % 14.10 % 24.60 % 23.10 %
5 12,314 12,925 —6033 11.41 % 4.08 % 38.55 % 23.39 % 21.85 %
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chargers among all classes.

Class 3 “Occasional battery-friendly planners”: This class accounts
for 38.41 % (n = 386) of the sample. Members of this class charge their
EV 4-5 times per week. Many individuals in this category also plan for
trips and assess the need for charging, but some charge according to
their habits. Charging typically begins at a moderate SOC level of 30 % —
40 % and is interrupted at the level of 80 %, which follows a rule of
thumb for battery-friendly charging (e.g., Semanjski & Gautama, 2016;
Werner et al., 2021). In this class, we find the most home-based EV
chargers compared to the other classes.

4.2. Descriptive statistics among charging behavior patterns

Table 3 shows descriptive statistics for the explanatory variables and
the significance of their independence among the three classes based on
ANOVA or Chi-Square test, for continuous and categorical variables
respectively.

According to Table 3, there are on average no significant difference
between classes regarding age and gender of respondents. Individuals in
class 1 live mostly in settlements with 1,000-20,000 inhabitants,
whereas those in classes 2 and 3 live mostly in a city with a population
between 20,000 and 100,000 people. The average EV driving experience
does not differ significantly across classes. The daily mileage is slightly
lower for classes 1 and 3 than for class 2. Participants in class 3 perceive
on average slightly more helpfulness of charging guidance (e.g., via car
or mobile app) than the other two groups. The means for perceived ease
of charging process at the EV drivers’ main charging location are not
significantly different across classes. Generally, drivers in class 2 report
higher flexibility to postpone charging until SOC is below 30 % than
those in classes 1 and 3. However, individuals in class 2 are less keen on
charging even less frequently than they already do compared to their
peers in the other two classes. Technology openness is on average the
lowest for class 1, moderately higher for class 2, and the highest for class
3. Considering average values for general risk propensity, the three
classes do not have significant differences. The social motive for EV
purchase is on average the lowest in class 1, followed by class 2 and class
3. For the average values in the economic motive of EV purchase, there
are no significant differences between classes. We successfully tested all
our explanatory variables against violations of multicollinearity
(average VIF = 1.14) (Daoud, 2017).

4.3. Analysis of the MNL model

Table 4 shows the estimated parameters of the MNL model. We used
these findings to address the research questions regarding the socio-
demographics (Q1), EV driving- and charging-related aspects (Q2),
and psychological characteristics (Q3). Furthermore, we explore their
importance in forming the charging patterns in combination with other
variables in the model.

The EV drivers who are male are significantly more likely to be in
class 1 compared to class 3. However, we can not find any significant
differences between these classes in terms of age and settlement size, nor
any significant evidence for a difference between classes 2 and 3
regarding all three socio-demographic values. Furthermore, individuals
who have more experience driving an EV and have higher daily mileage
are significantly more likely to be in class 1 compared to class 3. EV
drivers who have lower daily mileage are significantly more likely to be
in class 2 than in class 3. However, we do not find any significant evi-
dence for a difference between classes 2 and 3 regarding the length of EV
experience. The results indicate that EV drivers who receive helpful
guidance for charging are more likely to belong to class 3 than to the
other two classes. Yet, we do not find any statistical evidence that EV
drivers who perceive higher ease of charging are less or more likely to
belong to class 3 than to class 1 and class 2, respectively. We find that EV
drivers who feel comfortable about charging their car less frequently
than they currently do are less likely to belong to class 3 than to class 1,
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Table 3
Descriptive statistics of explanatory variables by charging class.
Variable Min Max Class1 Class 2 Class 3 ANOVA/
(n= (n= (n= Chi®
251) 368) 386)
Age (in years), 18 89 45.56 46.91 46.83 -
M (SD) (15.58) (17.13) (17.00)
Gender, % (n) 1 2 -
Male (1) 57.37 % 50.82 % 50.26 %
(155) (187) (194)
Settlement size, 1 4 e
% (n)
< 1,000 people 11.16 % 5.98 % 10.10 %
(28) (22) (39)
1,000 - 20,000 34.26 % 24.18 % 25.65 %
people (86) (89) 99
20,000 - 100,000 31.08 % 36.68 % 37.82%
people (78) (135) (146)
> 100,000 people 23.51 % 33.15% 26.42 %
(59) (122) (102)
EV experience 0o 15 4.13 3.73 3.80 -
(years), (2.78) (2.75) (2.77)
M (SD)
Daily mileage, % 1 5 ok
()
<5km (<3 10.36 % 16.58 % 13.47 %
miles) (26) (61) (52)
5-19km (3-12 27.89 % 45.11 % 41.45 %
miles) (70) (166) (160)
20 -59 km (12 - 41.43 % 31.79 % 32.90 %
37 miles) (104) 117 (127)
60 — 99 km (37 - 13.55% 5.16 % 7.77 %
62 miles) (34 19) (30)
> 100 km (> 62 6.77 % 1.36 % 4.40 %
miles) a7 (5) an
Perceived helpful 1 7 5.21 5.14 5.52
charging (1.79) (1.57) (1.42)
guidance, M
(SD)
Perceived ease of 1 7 5.80 5.77 5.85 —
charging, (1.28) (1.36) (1.16)
M (SD)
Ease of charging 1 7 3.76 5.47 4.40 el
at low SOC, M (2.08) (1.61) (1.83)
(SD)
Ease of charging 1 7 4.64 4.08 4.52 kel
less frequently, (1.78) (1.69) (1.54)
M (SD)
Technology 1 7 3.86 3.99 4.11
openness, (1.18) (1.14) (1.16)
M (SD)
General risk 1 7 3.71 3.73 3.53 -
propensity, (1.41) (1.33) (1.26)
M (SD)
Ecological 1 7 4.62 4.90 5.00
awareness, (1.67) (1.52) (1.58)
M (SD)
Social EV 1 7 2.13 2.52 2.58 e
purchase, 1.29) (1.46) (1.46)
M (SD)
Economic EV 1 7 4.80 4.77 4.85 -
purchase, (0.68) (0.73) (0.49)
M (SD)

Note: EV = Electric Vehicle, SOC = State of Charge,
***% p < 0.001, ** p < 0.01, * p < 0.05, — not significant, « less than a year.

although more likely to class 3 than to class 2. Our results indicate that
EV drivers who feel comfortable about starting to charge at low SOC are
more likely to be in class 3 than in class 1, but less likely in class 3 than in
class 2.

Our findings on psychological variables indicate that EV drivers who
are more open to new technology are more likely to belong to class 3
than to class 1. However, we can not find any evidence that technology
openness differs between drivers in class 3 and class 2. We find that EV
drivers with lower general risk propensity are more likely to be in class 3
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Table 4
Results of multinomial logit model.
Variable Class  Coefficient ~ Standard z- 95 %
Error score Confidence
Interval
Age 1 —-0.01 0.01 —-1.88 [—0.02; 0.00]
2 0.01 0.01 1.67 [—0.00; 0.02]
Gender 1 —0.43* 0.19 —-2.29 [-0.81;
(2 = Female) —0.06]
2 —-0.02 0.17 -0.14 [—0.36; 0.31]
Settlement 1 —0.08 0.09 —-0.85 [—0.26; 0.10]
size 2 0.15 0.09 1.74 [-0.02; 0.32]
EV experience 1 0.06* 0.03 2.06 [0.00; 0.12]
2 —0.02 0.03 -0.73 [—0.08; 0.04]
Daily mileage 1 0.29%* 0.09 3.18 [0.11; 0.47]
2 —0.22% 0.09 —2.44 [-0.39;
—0.04]
Perceived 1 —0.13* 0.06 -2.05 [-0.25;
helpful —0.01]
charging 2 -0.11* 0.06 —-2.00 [-0.22;
guidance —0.00]
Perceived ease of 1 0.06 0.06 0.80 [-0.09; 0.21]
charging 2 -0.13 0.07 -1.79 [-0.27; 0.01]
Ease of charging 1 0.17** 0.05 3.08 [0.06; 0.28]
less frequently 2 —0.22%%* 0.05 —4.33 [-0.32;
—-0.12]
Ease of charging 1 —0.21%%* 0.05 —4.43 [-0.30;
at low SOC —0.11]
2 0.05 8.33 [0.30; 0.49]
Technology 1 —0.28%* 0.08 -3.29 [—0.44;
openness —0.11]
2 —-0.08 0.08 —1.00 [-0.23; 0.07]
General risk 1 0.14* 0.07 1.98 [0.00; 0.27]
propensity 2 0.14* 0.06 2.20 [0.02; 0.27]
Ecological 1 —0.09 0.06 —1.59 [-0.20; 0.02]
awareness 2 -0.02 0.05 -0.29 [-0.12; 0.09]
Social EV 1 —0.22%%* 0.06 -3.49 [-0.35;
purchase —0.10]
2 —-0.02 0.06 -0.31 [-0.13; 0.09]
Economic EV 1 —0.07 0.14 —0.48 [-0.35; 0.21]
purchase 2 -0.13 0.13 -0.96 [—0.39; 0.13]

Note: N = 1,005. EV = Electric Vehicle, SOC = State of Charge.

%% p < 0.001, ** p < 0.01, * p < 0.05.

Class 1 = Daily convenient charger, Class 2 = Battery-exploiting seldom charger,
Class 3 = Occasional battery-friendly planner (reference base).

than in class 1 and class 2, respectively. Those who have been more
socially driven at the EV purchase are significantly more likely to be in
class 3 compared to class 1. We can not find any significant differences
between the first and third classes in terms of the level of ecological
awareness as well as the economic motive of EV purchase. Also, we do
not find any significant evidence for a difference between classes 2 and 3
regarding ecological awareness and both EV purchase motives.

5. Discussion
5.1. Research implications

One of the important insights of our study is the three identified EV
charging patterns. There are daily convenient chargers who prefer
keeping the battery full at every opportunity and charging mainly at
home or work. This group of EV drivers likely values the convenience of
always having a full battery and the ability to charge whenever it is most
accessible to them. EV drivers in this group probably plug in their EVs
every time they reach home or arrive at work to use each charging op-
portunity and avoid making further thoughts about charging in advance.
Then, there are battery-exploiting seldom chargers who procrastinate
until SOC is very low but then charge full, usually at home or in a public
space. This group of EV drivers may be more focused on maximizing the
usage of their battery before recharging, even if it means letting the
battery reach a very low SOC. Particularly, due to some share of EV
drivers who charge mainly in public spaces, they seem to accept low SOC
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in exchange for less overhead to plan and carry out charging more than
needed. However, most EV drivers are occasional battery-friendly
planners who plan their charging needs, charge mainly at home, and
keep their battery level between 40 % and 80 %. This pattern contributes
not only to a more balanced use of the electricity grid (e.g., Mathur and
Yemula, 2018), but also to battery longevity (e.g., Werner et al., 2021),
and thus follows the most optimal charging pattern. The dominance of
this group could be explained by a particularly high share of home-based
charging in Norway, wide use of cost- and consumption-optimized smart
charging in Norwegian households, but also by their well-established
electric mobility (Bjgrndal et al., 2023). Due to a mixture of employed
charging strategies and measured behavior within the classes, the
charging style is driven by individual circumstances and further char-
acteristics of EV drivers. These aspects could be explained by the vari-
ables we included and tested as covariates in our analysis.

Contrary to previous studies (e.g., Daina et al., 2015; Pevec et al.,
2020), we could not find that age and settlement have a significant effect
on charging patterns. Probably, as compared to other studies, we
investigated a revealed charging behavior with a diverse population-
based sample rather than the stated preferences of a few EV drivers in
a developing EV context. Furthermore, our study showed that instead of
age, rather the EV driving experience plays a significant role in forming
charging behavior. Precisely, drivers with longer EV experience are
more likely to be convenient daily chargers than battery-friendly plan-
ners. According to Liao et al. (2023), inexperienced EV drivers follow a
more need-based than habit- or opportunity-based charging pattern.
This could imply that those who started driving EVs later, have higher
availability to the latest features for optimal charging, require more
effort to carry out charging, or do not have a predefined routine yet. The
insignificance of settlement size on charging behavior could be
explained by a high share of residential charging in Norway (Schulz &
Rode, 2022). The availability of the secure option of home charging
makes EV drivers less influenced by their settlement and the local
charging infrastructure. Thereby, the overall EV-friendly environment
in Norway could be a driver for above-average perceived ease of
charging process among all three classes regardless of their main
charging location.

We found that the male gender and frequent commute increase the
likelihood of being a daily convenient charger rather than an occasional
battery-friendly planner. Possibly, since female drivers often have more
commitments related to family (Sovacool et al., 2019), they prefer plan-
based and safe home charging. Meanwhile, male drivers seem to travel
longer distances and have to count on intermediate charging at work.
This argumentation is supported by a higher general risk propensity
among daily convenient chargers compared to battery-friendly planners.
Interestingly, drivers who are open to charging less frequently than they
currently do, are more likely to belong to daily convenient chargers
despite their opportunity-chasing charging strategy. It seems that they
do not charge frequently because of a higher risk aversion (e.g., Phili-
psen et al., 2019) or less EV experience (e.g., Rauh et al., 2015). Instead,
their charging frequency is due to their commuting EV routine and need
for convenience, which is also reflected by their avoidance of low SOC
and lower openness to deal with new technology. Seldom chargers were
willing to take more risks as well and were as technology open as
battery-friendly planners. Aligned with their lower daily mileage, they
are comfortable with seldom charging despite more reliance on public
charging and dealing with external charging technology. EV drivers in
the seldom battery-exploiting class are less flexible to charge even less
frequently than they currently do, which can be explained by their
overall low SOC at the charging start and low charging frequency.

Moreover, our findings show that there is a positive relationship
between provided charging information (e.g., in an app or the vehicle)
with more sustainable and rational charging behavior, in addition to
previously found lowering effect on range anxiety (e.g., Franke et al.,
2017; Rauh et al., 2020). We could not find any support that ecological
awareness or having been economically motivated in EV purchase
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would indicate more optimal charging behavior. This does not imply
that these individual values are overall unimportant, but rather that
these are less substantial than other factors in explaining charging pat-
terns. However, those who were more socially driven when buying their
EV belonged more likely to occasional battery-friendly chargers than to
daily convenient chargers. Perhaps, their optimal charging behavior is
driven by their stronger responsiveness towards societal norms and
expectations.

5.2. Practical implications

Firstly, it is important to differentiate between flexible, convenient,
and rational EV drivers to consider their specific needs and impact on
the charging infrastructure. As in our findings access to home/work-
place charging is associated with more convenient and habit-based
charging behavior, the availability of Level 2 chargers (up to 22 kW)
in residential and commercial settings could protect the battery despite
its frequent re-charging. As those using more public charging revealed a
low-range-driven behavior, the industry could prioritize the deployment
of public charging stations in strategic locations (e.g., shopping malls,
office areas, and sports centers). This could help to ensure easy access to
charging and combine it with daily time-requiring activities. Due to the
high perceived ease of charging among all charging patterns, it seems
that Norwegian policies for the expansion of charging points and clear
standards for their interoperability (Figenbaum, 2017) have been very
successful. This could serve as a baseline for other countries that are in
the development of their charging infrastructure and electric mobility
environment.

Our most rational charger type keeps the SOC on an optimal level of
40-80 %, plans to charge in advance, and charges mainly at home. This
kind of behavior is typical for smart charging use. A smart charging
system optimizes EV charging based on electricity price and consump-
tion and is increasingly popular in Norwegian households (Bjgrndal
et al., 2023). Piloting and scaling of this and other charging technolo-
gies, such as vehicle-to-grid (V2G) which enables EVs to transfer elec-
tricity back to the power network (Mehdizadeh et al., 2024), could
further contribute to grid balance and the use of renewable energies.
Especially in Norway, where the EV market has been rapidly growing,
policies for ensuring reliable charging infrastructure and efficient en-
ergy management have become crucial. Thereby, uncoordinated
charging of daily convenient chargers increases electricity consumption
during the morning and evening peaks and has impacts on the distri-
bution network (e.g., Wangsness & Halse, 2021). Norwegian policy-
makers sought to counteract this behavior by introducing dynamic grid
tariffs which encourage consumers to adjust their electricity consump-
tion in response to fluctuating prices and thus, reduce peaks loads
(Winther & Sundet, 2023).

Through combination of intelligent charging functions with helpful
charging guidance, automakers could further steer optimal charging
behavior by making it more feasible, comprehensible, and integrable
regardless of their routine, technology interest, and EV experience.
Charging-related information and support could be particularly
enhanced for EV drivers relying on workplace or public charging
infrastructure, as in the classes of daily convenient chargers and battery-
exploiting occasional chargers. Providing EV drivers with real-time in-
formation on the availability and estimated charging times of workplace
or public charging stations could help them better plan their charging
needs. Developing intuitive and user-friendly charging apps and in-
vehicle information could provide real-time suggestions based on indi-
vidual driving needs and charging flexibility. Further, by using nudging
techniques in charging and in-car applications network providers and
automakers could motivate sustainable charging behavior, as in the class
of occasional battery planners, more effectively. For example, they could
suggest default charging settings, provide contingency rewards for
optimal charging behavior and peer-based local community
comparisons.
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5.3. Limitations and future work

Even though we attempted to conduct our study as accurately as
possible, it bears some limitations. Unlike an experimental design with
randomization to an intervention and control group, or a panel with
longitudinal data collected in a series of repeated observations, our
study relies on cross-sectional survey data. This approach only yields
correlational results, rather than establishing causal relationships. Our
non-experimental design may have introduced omitted variable bias,
which could lead to endogeneity issues (e.g., Wilms et al., 2021). As a
result, we are unable to draw causal inferences from the findings of our
study. However, questionnaire study is an acknowledged method to
gather information to explore aspects of a novel topic (Kelley et al.,
2003), which has been used in related to charging behavior as well (e.g.,
Daina et al., 2015; Philipsen et al., 2018). Further, our study was con-
ducted in Norway, where EV adoption and the usage of price-based
smart charging systems are among the highest (Bjgrndal et al., 2023;
Statista, 2023). The use of smart charging technologies was the reason,
why we did not ask participants about the timing of their charging
sessions, as their plug-in time could substantially differ from the actual
charging time. Due to dynamic electricity tariffs in Norway (Winther &
Sundet, 2023), it was difficult to capture charging prices by a ques-
tionnaire study, because electricity prices fluctuate from hour to hour
depending on the current grid power capacity and the electricity de-
mand. Hence, the results can be generalized only to regions with similar
contexts, such as Scandinavian countries and the Netherlands. However,
the findings from Norway serve as indicators for the future development
of the overall EV market. Some variables which we did not consider in
the present study, such as vehicle use and size may have influenced the
charging patterns in ways not fully captured by the study and could have
introduced heterogeneity in the results.

Future research in the field of EV charging holds several opportu-
nities for enhancing the individual charging experience as well as the
academic landscape in this field. One example is to study user design for
mobility products which are specifically tailored to meet the diverse
needs of EV drivers. Understanding the motives behind convenient and
flexible charging behavior among EV drivers is key to helping develop
targeted interventions and incentives to encourage more sustainable
charging practices. Particularly, investigating the psychology behind
range anxiety can provide valuable insights to address concerns
impeding optimal charging behavior. In addition, future research could
focus on identifying strategies to educate and empower EV drivers,
enabling them to make informed decisions that balance their charging
needs with energy sustainability. Gamification approaches rewarding
sustainable charging habits could further motivate EV drivers to opti-
mize their charging routine.

6. Conclusion

The objective of our study was to identify patterns in revealed
charging behavior as well as to examine the influence of socio-
demographics, EV driving- and charging-related aspects, and psycho-
logical background on these patterns. Based on the survey with 1,005
Norwegian EV drivers, we provide valuable insights from a country with
well-developed electric mobility.

Based on charging frequency, location, strategy, and SOC at
charging, we identified three distinct charging classes — daily convenient
chargers, battery-exploiting seldom chargers, and occasional battery-
friendly planners. Considering the effect on charging infrastructure
and battery health, the third group implies the optimal charging pattern.
EV drivers who are male, more experienced, have a higher daily
mileage, and perceive guidance for charging as less helpful, are more
likely to make daily convenient charges compared to the reference group
of occasional battery-friendly planners. In addition, individuals being
potentially comfortable charging less frequently as they currently do,
but are less prone to start charging at a low SOC, illustrate lower
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technology openness, higher general risk propensity, and were less so-
cially influenced at the EV purchase, belong more likely to daily
convenient chargers than to the reference group. Further, those who
have lower daily mileage and perceive charging guidance as less helpful,
are more likely to be battery-exploiting seldom chargers than occasional
battery-friendly planners. Individuals who find it easy to charge at a low
SOC but difficult to charge even less frequently than they currently do,
and illustrate a higher general risk propensity, are more likely to belong
to the group of battery-exploiting seldom chargers than to the reference
group.

Overall, our findings suggest that a combination of individual,
technological, and contextual factors play a significant role in shaping
EV charging patterns. To handle the diverse needs of convenient, flex-
ible, and rational chargers while enabling seamless sustainable
charging, it is crucial to expand workplace and public charging infra-
structure, provide reliable and comprehensive charging information,
and introduce policies encouraging integration of smart charging and
V2G technologies. Particularly, experienced, male, frequently
commuting, and conservative EV drivers could be convinced to enhance
their charging patterns.
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Appendix
Questionnaire

e How many years have you been driving an EV in general (in years)?
[open answer field, maximum value: 15]

e How important were the following factors for you to purchase an EV?
(Please rate every item on a scale from 1 to 7 where 1 means “not at
all” and scale 7 means “to a great extent”)

a. Ecological reasons (e.g., reduced CO2 footprint)

b. Technological reasons (e.g., interest in emerging technologies)

c. Economic reasons (e.g., lower operation costs in comparison to
combustion vehicles)

d. Political reasons (e.g., well-established charging infrastructure)

e. Social reasons (e.g., opinion of friends and family, status symbol)

e Approximately how many kilometers do you usually drive with your
EV daily? (Please choose one option)

a. < 5km
b. 5-9 km

c. 10-19 km

d. 20-39 km

e. 40-59 km

f. 60-79 km

g. 80-100 km

h. > 100 km

e Where do you mainly charge? (Please choose one option)
a. At home
b. At the workplace
c. At a public charging station
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e How often do you charge in everyday life at your main charging

point? (Please choose one option)

a. Daily

b. 4-5 times per week

c. 2-3 times per week

d. Rarely

What is your most common charging strategy? (Please choose one

option)

a. I charge only when the battery level is low (less than 30 %).

b. I plan for the next trip and decide if charging is necessary.

c. I charge whenever possible to always have a high battery level.

d. I charge according to my habits/routine regardless of the current
battery level.

At what State of Charge (SOC) do you usually start to charge your

EV? (Please choose one option)

. 100-91 %

90-81 %

. 80-71 %

. 70-61 %

60-51 %

. 50-41 %

. 40-31 %

. 30-21 %

. 20-10 %

j. <10 %

Until which State of Charge (SOC) do you usually charge your EV?

(Please choose one option)

. 100-91 %

. 90-81 %

80-71 %

. 70-61 %

60-51 %

. 50-41 %

. 40-30 %

. <30 %

o For me to only plug in my car at the State of Charge (SOC) lower than

30 % is very difficult (Please rate every item on a scale from 1 to 7

where 1 means “not at all” and scale 7 means “to a great extent”).

If I wanted to, it would be easy for me to charge my car less

frequently (Please rate every item on a scale from 1 to 7 where 1

means “not at all” and scale 7 means “to a great extent™).

e I Receive enough helpful guidance in performing charging success-

fully (e.g., by my car or charging app). (Please rate every item on a

scale from 1 to 7 where 1 means “not at all” and scale 7 means “to a

great extent”)

Ecology (Please rate every item on a scale from 1 to 7 where 1 means

“not at all” and 7 means “to a great extent™)

a. I Worry about the environmental conditions we will live under in
the future

b. If we continue with business as usual, we are heading for major
environmental problems.

c. In favor of the environment, we should all be prepared to limit our
living standards.

Risk (Please rate on a scale from 1 to 7 where 1 means “not at all” and

7 means “to a great extent”)

a. How much are you willing to take risks in your everyday life?

Technology perception (Please rate every item on a scale from 1 to 7

where 1 means “not at all” and scale 7 means “to a great extent™)

a. Other people come to me for advice on new technologies.

b. In general, I am among the first in my circle of friends to acquire
new technology when it appears.

c. When I acquire a new technological device, I am soon familiar
with its functions.

d. Irather stick to conventional technology which already proved to
be working
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e Perceived ease of use (Please rate every item on a scale from 1 to 7
where 1 means “not at all” and scale 7 means “to a great extent™)
a. Interacting with the charging system at my main charging loca-
tion is often frustrating.
b. Charging my electric car requires a lot of mental effort.
Control beliefs (Please rate every item on a scale from 1 to 7 where 1
means “not at all” and scale 7 means “to a great extent”)
a. Having enough remaining range in my car is entirely up to me.
b. Ifeel in complete control over the State of charge (SOC) of my car
e What is your age? (Please choose one option)
. 18 — 24 years
. 25 — 34 years
. 35 — 44 years
. 45 — 54 years
. 55 — 64 years
. Above 64 years
e What is your gender? (Please choose one option)
a. Male
b. Female
What is your working status? (Please choose one option)
. Student
. Employed
. Unemployed
. Retired
. Disabled/rehabilitation
f. Homewife/husband
e What is your highest level of education? (Please choose one option)
a. Primary or secondary school.
b. High school.
c. University/college.
d. Other.
e How would you describe the place where you live? (Please choose
one option)
a. Village (population less than 1,000).
b. Town (population between 1,000 and 100,000).
c. City (population between 100,000 and 300,000).
d. Large city (population between 300,000 and 1 million).
e Do you own or lease the EV you usually drive? (Please choose one
option)
. I'am the owner of the EV.
. My family member is the owner of the EV.
. I am the leaseholder of the EV.
. My family member is the leaseholder of the EV.
. I drive a company car.
. Other.
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