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Abstract

Existing multivariate versions of the logistic probability distribution
generally lack some of the useful properties of the univariate logis-
tic distribution, such as its bounded score function or the tractability
of its density function, or lack the rotational symmetry necessary for
many applications. This paper clarifies some of the properties of such
distributions, and proposes a multivariate distribution closely related
to the univariate logistic that has a tractable density, including the
necessary normalising constant, bounded score function, and elliptical
symmetry. Some properties of its marginal distributions are explored,
particularly in the bivariate case.

Mathematics subject classification: primary 60E05
Keywords and phrases : multivariate logistic distribution, bivariate dis-
tribution, elliptical symmetry

1. Introduction

The logistic distribution in one dimension has simple forms for its cumulative
distribution function and its probability density function, and has the desir-
able property, for some modelling purposes, that its score function f ′(x)/f(x)
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is bounded. While the Laplace distribution has similar advantages, it lacks
the smoothness of the logistic at the origin, where its PDF is not differen-
tiable. The motivation of the present work is to find a multivariate distribu-
tion with the advantages of the logistic distribution that also has rotational
symmetry.

The motivation comes from applied problems where tractability is im-
portant and where rotational symmetry is necessary for a meaningful model,
for example any application in 2-dimensional ‘geographical’ space where the
choice of co-ordinate system is arbitrary. For a particular case where the tail
behaviour of the distribution is also crucial, see Section 5.

2. Existing multivariate logistic distributions

There are several existing multivariate distributions linked in some way to the
univariate logistic distribution. One class of such distributions has marginal
distributions that are logistic, but lacks rotational symmetry, including the
bivariate case in [4], and more general forms in [8] and [1], plus the special
case of independence.

Circular symmetry of a multivariate distribution, as well as rotational
symmetry of a whole family of distributions, can be achieved by consider-
ing elliptically symmetric distributions [9]. Typically, such distributions are
written in the form

fn(x) = |Σ|1/2gn((x− µ)TΣ−1(x− µ))

where Σ is a positive definite n× n matrix, x, µ ∈ R
n, and gn(·) is known as

the kernel or density generator; often gn depends on the dimension n only
through a normalising constant cn [6]. There are then two existing ways in
which a link has been made with the logistic distribution.

The first, giving what is widely referred to as the elliptically symmetric
logistic distribution, involves taking

gn(u) =
cn exp(−u)

(1 + exp(−u))2

i.e. using a density generator based on the standard logistic distribution
[5, 17]. However, this approach does not have the property that the score
function is bounded—even when n = 1, as this distribution does not reduce
to the usual logistic in that case. See Section 5 for details.
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The second approach is to require that x is elliptically symmetric with
marginal distributions given by the univariate logistic distribution. Volodin
[15] discusses this case—see references therein for its origins—and gives a
general construction for elliptically symmetric distributions with marginals
f(·), taking very different forms in odd and even dimensions. For even di-
mension n = 2m the density involves m-fold differentiation with respect to
r =

√

(x− µ)TΣ−1(x− µ)) of
∫

∞

0
f(
√
z2 + r)dz [15, equation (2)]. In the

logistic case, Volodin [15] shows that the integral can be rewritten as an infi-
nite series. For odd dimension n = 2m+1, the density is somewhat simpler,
but still involves m-fold differentiation of f(·). Though this distribution has
logistic marginals and elliptical symmetry, it lacks the required tractability,
particularly when n = 2.

3. The proposed distribution

Staying with the elliptically symmetric framework, instead of taking the den-
sity generator to be the univariate logistic, we can simply take the square
root first, to give

gn(u) =
cn exp(−

√
u)

(1 + exp(−√
u))2

. (3.1)

Then we have

fn(x|µ,Σ) = |Σ|−1/2cn
exp(−r(x))

(1 + exp(−r(x)))2
, (3.2)

where
r(x) =

√

(x− µ)TΣ−1(x− µ). (3.3)

When n = 1, this reduces to the usual univariate logistic distribution, with
c1 = 1. In two dimensions, it is straightforward to get the normalising
constant c2. Since the Jacobian for transforming to polar co-ordinates (r, θ)
is just r, we need

c−1
2 =

∫ π

θ=−π

∫

∞

r=0

rfn(r, θ) dr dθ

= 2π

∫

∞

r=0

rfn(r) dr

= 2π

∫

∞

r=0

(r exp(−r))/(1 + exp(−r))2 dr

= 2π log(2).
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Explicitly, we have

f2(x|µ,Σ) =
|Σ|−1/2

2π log(2)

exp(−r(x))

(1 + exp(−r(x)))2
.

Normalising constants for n ≥ 3 are given in Section 4.

Clearly this proposed distribution is both simple in form and elliptically
symmetric. It occurs as a particular case of the very general family defined
by Wang and Yin [16]; the next section makes that link explicitly, and builds
on results of [16] to obtain the normalising constant cn in general. In later
sections, I will show that its score function is bounded (Section 5) and explore
its marginal distributions (Section 6).

4. Normalising constants

Wang and Yin [16] define a very general family of multivariate densities
that includes the proposed density of equation (3.2) as a special case. They
consider density generators of the form

gn(u) =
cnu

N−1 exp(−aus1)

(1 + exp(−bus2)2r

(their parameter r is not to be confused with the function r(·) used here for
(scaled) distance from the origin) which includes the proposed distribution
when N = 1, s1 = s2 = 1/2, f = 1, a = b = 1, r = 1. Wang and Yin [16]
do not give much information about the particular distribution proposed
in equation (3.1); this case is not included in any of the eight sub-families
that they explore in more detail. However, their Theorem 2.1 relates the
normalising constants cn to the generalized Hurwitz-Lerch zeta function Φ∗,
as defined there [16, Section 2.2], in cases where s1 = s2. For the case
proposed here, the expression for cn simplifies in one of two ways. For n ≥ 4,
the sufficient conditions to express Φ∗ in summation form are met. For
n = 2, 3 an integral expression for Φ∗ is given, but direct calculation shows
that the summation form still holds even though Wang and Yin’s sufficient
conditions are not met. For all n, the necessary value of Φ∗ simplifies to
η(n− 1), where

η(t) =
∞
∑

i=1

(−1)i−1

it

is the Dirichlet eta function or alternating zeta function, and

cn =
Γ(n/2)

2πn/2Γ(n)η(n− 1)
. (4.1)
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5. Score functions

The linear score function,

∇ log(f(x)) =

(

∂ log f

∂x1

, . . . ,
∂ log f

∂x1

)T

,

is of particular interest because of its rôle in constructing models in movement
ecology that are tailored to specific stationary distributions, which can be
thought of as analogous to the construction of Markov Chain Monte Carlo al-
gorithms for specific target distributions [10–12]. For example, the Langevin
algorithm for a target π(x) has a drift term proportional to −∇ log(π(x)) [see
10], and the Bouncy Particle Sampler [3] involves ‘bounce’ events with a rate
that depends on ∇ log(π(x)). Boundedness of the score function is relevant
to both the realism and the practical implementation of such models.

For a general elliptically symmetric distribution with density generator
g(·), and defining

q(·) : q(x) = (x− µ)TΣ−1(x− µ),

hn(·) : hn(u) =
d log(gn(u))

du
,

we have
∇ log(fn(x)) = 2hn(q(x))Σ

−1(x− µ). (5.1)

For the existing elliptically symmetric multivariate logistic, with gn(·) pro-
portional to the univariate logistic,

hn(u) = −1− exp(−u)

1 + exp(−u)

and so hn(u) → −1 as u → ∞ and hn(u) → 1 as u → −∞. Substituting
into equation (5.1), clearly the score is not bounded.

On the other hand, if we take gn(·) as in equation (3.1), the proposed
‘square root’ version, we have

hn(u) = − 1

2
√
u
· 1− exp(−√

u)

1 + exp(−√
u)

.

To see that the score is bounded in this case, it is simplest to consider the
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case Σ = I, µ = 0. Then

∇ log(fn(x)) =
−x√
xTx

· 1− exp(−
√
xTx)

1 + exp(−
√
xTx)

,

|∇ log(fn(x))| =
1− exp(−

√
xTx)

1 + exp(−
√
xTx)

.

So the score is bounded in this case, and by linear transformation for general
Σ and µ too.

6. Marginal distributions

The marginal distributions for the distribution proposed in Section 3 can
be evaluated by considering first the standard circular case Σ = In, µ =
0. There, the marginal (for any xi) is not exactly a logistic distribution,
except when n = 1; empirically, it is close to one, although not with scale 1.
Before making this relationship more precise, it is useful to assess the scale
by evaluating the marginal at 0, which we can do exactly.

For any standard elliptically symmetric distribution where the density
generator is of the form

gn(u) = cng0(u),

we have

fxn
(x|µ = 0,Σ = In) =

∫

x(n)

gn((x(n), xn)
T (x(n), xn))dx(n)

where with a slight abuse of notation we write fxn
(·) for the univariate

marginal for xn derived from fn(·), and x(n) for (x1, . . . , xn−1). Hence

fxn
(0|µ = 0,Σ = In) =

∫

x(n)

gn(x
T
(n)x(n))dx(n)

=

∫

x(n)

cng0(x
T
(n)x(n))dx(n)

=
cn
cn−1

∫

x(n)

cn−1g0(x
T
(n)x(n))dx(n)

=
cn
cn−1

.
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A univariate logistic with scale σ has a density at zero of 1/4σ; re-arranging
means that the marginal density at zero matches that of a univariate logistic
with scale

τn =
cn−1

4cn
.

In particular, for gn(·) given by equation (3.1) we have c1 = 1, c2 = (2π log(2))−1,
c3 = (3/2)π−3, and so τ2 = π log(2)/2 ≈ 1.088793, τ3 = π2/12 log(2) ≈
1.186569.

In both these cases, calculation of the marginal distribution by numer-
ical integration (using the standard R routine [14]) shows that the main
parts of the marginal densities are well approximated by logistic distribu-
tions with scale parameters τ2 and τ3 respectively. However, in the extreme
tails, there is some divergence in shape, with densities decaying more quickly
than exp(−τnx) but less quickly than exp(−x).

For n = 2 and x2 ∈ [−6.5, 6.5], containing more than the central 99%
of mass, the the marginal density fx2(x|µ = 0,Σ = I2) and the univariate
logistic density with scale parameter τ2 agree to within a factor of 1.01. A
more precise expression for the density in the extreme tails is suggested by
comparison with the standard bivariate Laplace distribution [7], which has
joint density

π−1K0

(

√

2(x2
1 + x2

2)

)

,

where K0(·) is the modified Bessel function of the second kind, and marginal
density

2−1/2 exp(−x
√
2).

The asymptotic form

K0(z) ∼
√

π/(2z) exp(−z)

[e.g. 13] suggests
√

x/π exp(−x)

for the marginal of the proposed logistic with n = 2, and numerical experi-
ments show that it is indeed extremely close for sufficiently large x.

7. Implementation

Calculation of the proposed density is straightforward once the normalising
constants are known. In R [14], the Dirichlet eta function is available in the
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pracma package [2], and so calculation of cn from equation (4.1) is trivial.
Some improvement in speed can be achieved by taking advantage of the
existing function for the univariate logistic, f1(·), writing

fn(x|µ,Σ) = |Σ|−1/2cnf1(r(x)|0, 1)

where r(x) is as defined in equation (3.3).
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