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EQUATIONS INVOLVING THE MODULAR j-FUNCTION AND

ITS DERIVATIVES

VAHAGN ASLANYAN, SEBASTIAN ETEROVIĆ, AND VINCENZO MANTOVA

Abstract. We show that for any polynomial F (X, Y0, Y1, Y2) ∈ C[X, Y0, Y1, Y2],
the equation F (z, j(z), j′(z), j′′(z)) = 0 has a Zariski dense set of solutions in the
hypersurface F (X, Y0, Y1, Y2) = 0, unless F is in C[X] or it is divisible by Y0,
Y0 − 1728, or Y1.

Our methods establish criteria for Ąnding solutions to more general equations
involving periodic functions. Furthermore, they produce a qualitative description of
the distribution of these solutions.

1. Introduction

The problem of determining which (systems of) equations involving certain classical
transcendental functions of a complex variable have solutions is a natural question
at the intersection between complex geometry, model theory, and number theory. In
complex geometry, it is a form of analytic Nullstellensatz for the given functions; in
model theory, it plays an important role in the deĄnability properties of the functions
involved; and in number theory, it is related to SchanuelŠs conjecture and its analogues
(given by special cases of the GrothendieckŰAndré generalised period conjecture).
Often the function under consideration is of arithmetic importance. Examples of such
classical functions are the exponential functions of semi-abelian varieties and Fuchsian
automorphic functions. In this paper we focus on the modular j-function and its
derivatives.

The Ąrst conjecture in this area arose from ZilberŠs work on the model theory of
complex exponentiation [Zil05, Zil02, Zil15]. It is now referred to as the Exponential
(Algebraic) Closedness conjecture or ZilberŠs Nullstellensatz, and predicts when systems
of equations involving addition, multiplication, and complex exponentiation have
solutions in the complex numbers. We refer to the general version of the problem
as Existential Closedness, or EC for short. An EC conjecture for the j-function
was proposed in [AK22, ğ1]; in geometric terms it states that any algebraic variety
V ⊆ C2n satisfying geometric conditions known as freeness and broadness, intersects
the n-fold graph of the j-function. The deĄnition of these geometric conditions is long
and will not be used in the present work, so we refer the interested reader to [AK22,
ğ2.2], but, informally, freeness and broadness ensure that the equations deĄning V do
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2 VAHAGN ASLANYAN, SEBASTIAN ETEROVIĆ, AND VINCENZO MANTOVA

not break any functional properties of j coming from the linear-fractional action of
GL+

2 (Q) (where + denotes positive determinant) on the upper half-plane, as well as
not contradicting a conjecture on transcendental values of the j-function analogous to
SchanuelŠs conjecture for exponentiation (see [AK22, Conj. 1.1] and [AEK23, ğ6.3]
for the statement of this conjecture).

If one somehow knows that an algebraic variety V does intersect the graph of j, a
very natural next question is to determine how these intersection points are distributed
within V . For instance, one may ask whether these points are Zariski dense in V . We
remark that if V ⊆ C2n satisĄes the above-mentioned geometric conditions of freeness
and broadness, then for any Zariski open subset V ′ ⊆ V it is possible to construct an
algebraic variety W ⊆C2(n+1) which is also free and broad and projects onto V ′. Thus,
if we assume EC then, applying it to W , we deduce that V ′ intersects the graph of j.
Since V ′ was an arbitrary Zariski open subset of V , we conclude that the intersection
of V with the graph of j is Zariski dense in V .

In the same work [AK22], the authors also proposed an extension of the conjecture
incorporating the derivatives of j (see [AK22, Conj. 1.6]). This version of EC is
often referred to as Existential Closedness with Derivatives, or ECD for short. This
time the variety V in question is a subset of C4n, and the conjecture states that if V
satisĄes analogous geometric notions of freeness and broadness (again related to a
form of SchanuelŠs conjecture, now involving j and its derivatives), then V intersects
the n-fold graph of the map z 7→ (j(z), j′(z), j′′(z)). For the deĄnitions and precise
statements of these conjectures, see [AK22, AEK21, Asl22]. Note that we do not
consider the third and higher derivatives of j as these are rational over j, j′, j′′ (see
(2.2)). As with EC, ECD implies that if V ⊆ C4n satisĄes the geometric conditions of
freeness and broadness, then V has a Zariski dense set of points of the desired form.

Very few cases of ECD have been proven, in comparison to EC where various families
of varieties in C2n have been shown to satisfy the conjecture. Prior to the present
work, only very special cases of ECD had been solved, proving solvability of some
simple equations involving just j′ (so not combining it with j or j′′), see [EH21, Gal21].
An ECD statement for ŞblurringsŤ (certain multi-valued twists) of j was obtained in
[AK22]. All of these papers mostly focused on, and established stronger results for, the
EC conjecture for the j-function (without derivatives). These results are analogous to
their exponential counterparts, namely, [BM17, DFT18, AKM23, Kir19, Zil02, Gal23].
Although different methods have been used across these works, one common feature
is that they all exploit in some way the periodicity of exp or the SL2(Z)-invariance of
j. Incorporating the derivatives of j into the equations presents then a signiĄcant new
challenge, as j′ and j′′ are no longer SL2(Z)-invariant. It is also worth noting that a
differential version of ECD was obtained in [AEK21], and that it is so far the only
setting where a full Existential Closedness statement is proved for j with derivatives,
and the same method also applies to exp.

In this article we prove the ECD conjecture when n = 1, which precisely states that
any algebraic variety V ⊆ C4 of dimension 3 without constant coordinates contains (a
Zariski dense set of) points of the form (z, j(z), j′(z), j′′(z)). This amounts to checking
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exactly which equations of one complex variable involving only z, j(z), j′(z), j′′(z)
have solutions, and whether these solutions are Zariski dense. Note that for n = 1
broadness of V just means dim V ≥ 3 hence the only non-trivial case is dim V = 3. On
the other hand, freeness for n = 1 means V has no constant coordinates. Nevertheless,
we will even be able to decide what happens when V does have a constant coordinate.

Our Ąrst main result establishes the existence of solutions in all non-trivial cases.

Theorem 1.1. Let F (X, Y0, Y1, Y2) ∈ C[X, Y0, Y1, Y2] \ C[X]. Then the equation
F (z, j(z), j′(z), j′′(z)) = 0 has inĄnitely many solutions.

The proof of Theorem 1.1 is based on a generalisation of the methods of [EH21],
which use RouchéŠs theorem from classical complex analysis to establish some cases
of EC for j (without derivatives). Theorem 1.1 can be seen as an analogue of the
classical fact that every irreducible polynomial p(X, Y ) ∈ C[X, Y ] which depends on
Y has inĄnitely many zeroes of the form (z, exp(z)), unless p = cY for some c ∈ C×.

Throughout the paper, all algebraic subvarieties of C4 will be deĄned by polynomials
in the ring C[X, Y0, Y1, Y2].

Our main goal is to obtain a much stronger version of Theorem 1.1. We show
that for any polynomial F (X, Y0, Y1, Y2) the set ¶(z, j(z), j′(z), j′′(z)) ∈ H×C3 :
F (z, j(z), j′(z), j′′(z)) = 0♢ is Zariski dense in the hypersurface F (X, Y0, Y1, Y2) = 0,
unless F is divisible by an explicit (Ąnite) list of polynomials. In this case we say
that the equation F (z, j(z), j′(z), j′′(z)) = 0 has a Zariski dense set of solutions (see
DeĄnition 2.1), that is, by a solution of such an equation we understand a tuple
(z0, j(z0), j′(z0), j′′(z0)) rather than just z0.

We remind the reader that this is equivalent to establishing certain cases of ECD
for subvarieties of C8: given a hypersurface V ⊆ C4 and a Zariski open dense V ′ ⊆ V ,
there is W ⊆ C8 free and broad which projects onto V ′, such that W intersects
the graph of j and its derivatives if and only if V ′ does. For instance, the system
¶j′′(z) = 0, j(z) ̸= 0♢ has a solution if and only if ¶j′′(z1) = 0, j(z1)z2 = 1♢ does.

The bulk of the paper is focused on proving the Zariski density of the set of solutions,
which the proof of Theorem 1.1 does not provide. For instance, the solutions of the
equation zj′′(z) + (z3 + 1)j′(z)2 + j′(z)j(z)7 = 0 found via the proof Theorem 1.1

are the SL2(Z)-conjugates of ρ = −1
2

+
√

3
2

i. These are obviously not Zariski dense,
for it is well known that j(γρ) = j′(γρ) = j′′(γρ) = 0 for every γ ∈ SL2(Z) (see
[Lan87, p. 40]). Indeed, Zariski density requires at least that the solutions are not
contained in Ąnitely many SL2(Z)-orbits, except for when the equation is of the form∏

i(j(z) − ui) = 0 for some ui ∈ C.
The zeroes of j′ are in fact problematic: observe that

∀z ∈ H [j(z)(j(z) − 1728) = 0 ⇔ j′(z) = 0)] .

This immediately gives that the three equations j(z) = 0, j(z) − 1728 = 0, and
j′(z) = 0 do not have Zariski dense sets of solutions. Our main result shows that
these are essentially the only non-examples.
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Theorem 1.2. For any polynomial F (X, Y0, Y1, Y2) ∈ C[X, Y0, Y1, Y2] \ C[X] which
is coprime to Y0(Y0 − 1728)Y1, the equation F (z, j(z), j′(z), j′′(z)) = 0 has a Zariski
dense set of solutions, i.e. the set

¶(z, j(z), j′(z), j′′(z)) ∈ H×C3 : F (z, j(z), j′(z), j′′(z)) = 0♢
is Zariski dense in the hypersurface F (X, Y0, Y1, Y2) = 0.

Remark 1.3. Theorem 1.2 implies that for every rational function G(X, Y0, Y1, Y2) ∈
C(X, Y0, Y1, Y2), the function G(z, j(z), j′(z), j′′(z)) has a zero unless G is of the form

Y s
0 (Y0 − 1728)tY ℓ

1

H(X, Y0, Y1, Y2)

where H is a polynomial and s, t, ℓ ∈ N.

A special case of Theorem 1.2 is that the equation j′′(z) = 0 has a Zariski dense
set of solutions.1 In this case, even proving that there is a solution outside the
SL2(Z)-orbit of ρ is highly non-trivial, see ğ7.1.

Remark 1.4. In [Ete22], the author studies the problem of Ąnding generic solutions to
equations involving j (and its derivatives) under the assumption that the system has
a Zariski dense set of solutions. In particular, combining Theorem 1.2 with [Ete22,
Theorem 6.5] we get that there is a countable Ąeld Cj ⊆ C such that for any irreducible
hypersurface V ⊂ C4 satisfying the conditions of Theorem 1.2, if V is not deĄnable
over Cj, then for any Ąnitely generated subĄeld K ⊂ C over which V can be deĄned
there is a point of the form (z, j(z), j′(z), j′′(z)) ∈ V such that

tr.deg.KK(z, j(z), j′(z).j′′(z)) = dim V = 3.

To prove Theorem 1.2 we establish general criteria for the solvability of certain
equations involving periodic functions (see ğ4). The following proposition is a special
case of those criteria.

DeĄnition 1.5. A meromorphic function f : H → C is 1-periodic if f(z + 1) = f(z)
for every z ∈ H. Every such function induces a meromorphic function f̃(q) on the
punctured unit disc by performing the change of variable q = exp(2πiz). We say that
f is meromorphic at +i∞ if f̃ is meromorphic at 0.

Proposition 1.6. Let f0, . . . , fn : H → C be 1-periodic functions which are mero-
morphic on H∪¶+i∞♢. Suppose that for some k one of the following conditions is
satisĄed:

• there is τ ∈ H such that fk

fn
(z) → ∞ as z → τ ∈ H, or

• fk

fn
(z) → ∞ as Im(z) → +∞.

Then there is a sequence of points ¶zm♢m∈N ⊆ H with zm ̸= τ and zm → τ in the Ąrst
case, or Im(zm) → +∞ and 0 ≤ Re(zm) ≤ 2 in the second case, such that for all
sufficiently large m the point zm + m is a solution to the equation

fn(z)zn + fn−1(z)zn−1 + . . . + f0(z) = 0.

1In particular, the ramiĄcation points of j′ are not contained in Ąnitely many SL2(Z)-orbits.
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Let us consider an example illustrating how we apply Proposition 1.6 in practice.
It also gives an idea of our approach in the general case.

Example 1.7. Consider the equation

(1.1) j′(z)2 + p(j(z)) = 0

where either p(j(z)) = j(z)(j(z) − 1728) or p(j(z)) = j(z)2(j(z) − 1728). First, we
want to get an equivalent equation which is written as a sum of powers of z with
periodic coefficients. To that end we apply the SL2(Z)-transformation z 7→ −1

z
and,

using the identities j
(
−1

z


= j(z), j′

(
−1

z


= z2j′(z), we get

(1.2) z4j′(z)2 + p(j(z)) = 0.

Thus we obtain an equation in a suitable form for using Proposition 1.6, where
f4 = (j′)2, f3 = f2 = f1 = 0 and f0 = p(j). When p(j) = j(j − 1728), the ratio
f0

f4
= j(j−1728)

(j′)2 has a pole at τ = ρ. When p(j) = j2(j − 1728), the ratio f0

f4
= j2(j−1728)

(j′)2

has no Ąnite poles, but it has limit ∞ as Im(z) → +∞.
Thus, by Proposition 1.6, there is a sequence zm with zm → τ and zm ̸= τ in the

Ąrst case, or Im(zm) → +∞ and 0 ≤ Re(zm) ≤ 1 in the second case, such that for all
sufficiently large m the point zm + m is a solution to the equation (1.2). This already
implies that the solutions of (1.2) intersect inĄnitely many SL2(Z)-orbits.

To deduce Zariski density of these solutions, suppose that all of them are also
solutions of another independent equation G(z, j(z), j′(z), j′′(z)) = 0. Combining this
and (1.2) we can eliminate z and end up with an equation H(j, j′, j′′) = 0. Now, our
assumption means that H(j, j′, j′′) vanishes at zm +m, hence also at zm by periodicity.
This is not possible, for a 1-periodic holomorphic function cannot have inĄnitely many
zeroes with real part bounded from above and below and imaginary part bounded
from below. This then implies the Zariski density of solutions of (1.1).

We also note that our criteria can be applied to more general periodic functions,
beyond polynomials of j, j′, j′′, such as exp or the Weierstrass ℘-function. For instance,
Proposition 1.6 implies that the function j′(z)z + exp(2πiz) has inĄnitely many zeroes
around the points i + m where m is a large integer.

1.1. Structure of the paper.

ğ2: We go over some basic preliminaries about the j-function and its derivatives. We
also give the deĄnition of Zariski density used in Theorem 1.2.

ğ3: Here we prove Theorem 1.1 by extending the methods of [EH21], which are based
on RouchéŠs theorem.

ğ4: We prove criteria for the existence and distribution of solutions of equations
involving periodic functions, which combined imply Proposition 1.6 (but are
signiĄcantly more general). The approach used here involves RouchéŠs theorem,
the Argument Principle, and some elementary methods from valuation theory.
These methods do not appear in later sections of the paper.
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ğ5: We use the results of the previous section to obtain concrete criteria for proving
Zariski density of equations of the form F (z, j(z), j′(z), j′′(z)) = 0. These
criteria are about the presence of poles in quotients of certain polynomials
only in j, j′, j′′.

ğ6: We produce zero estimates for polynomials in z, j, j′, j′′ in order to determine
when the quotients mentioned above have poles.

ğ7: First, in ğ7.1 we prove Zariski density for j-homogeneous equations (DeĄnition 7.1),
which only involve j(z), j′(z) and j′′(z), including the equation j′′(z) = 0.
Finally, in ğ7.2 we prove Theorem 1.2 in full generality.

2. Preliminaries

Let H denote the complex upper-half plane ¶z ∈ C : Im(z) > 0♢. The group
GL+

2 (R) of 2 × 2 real invertible matrices with positive determinant acts on H via
linear fractional transformations:

gz :=
az + b

cz + d
for g =

(
a b
c d


∈ GL+

2 (R).

This action can be seen as a restriction of the action of GL2(C) on the Riemann
sphere C∪¶∞♢. The modular group is deĄned as

SL2(Z) :=

{(
a b
c d


∈ GL+

2 (R) : a, b, c, d ∈ Z and ad − bc = 1

}
.

As a group, SL2(Z) is generated by two elements:

(
1 1
0 1


and

(
0 −1
1 0


, which

correspond to the actions z 7→ z + 1 and z 7→ −1
z
, respectively.

The modular j-function is deĄned as the unique SL2(Z)-automorphic function

j : H → C satisfying j(ρ) = 0 (recall that ρ := exp
(

2πi
3


; this notation will be kept

throughout the paper), j(i) = 1728 and j(∞) = ∞ (this last condition should be
understood as limIm(z)→+∞ j(z) = ∞). In particular, this means that j satisĄes

j(γz) = j(z) for every γ in SL2(Z) and every z in H,

and it is in particular 1-periodic, and by assumption meromorphic at ı∞. Its Fourier
expansion (also known as a q-expansion) is of the form

(2.1) j(z) = q−1 + 744 +
∞∑

k=1

akqk, with q := exp(2πiz) and ak ∈ C .

In fact, ak ∈ Z for every k ∈ N. The j-function induces an analytic isomorphism of
Riemann surfaces SL2(Z)\H ≃ C (see [Lan87, Chapter 3, ğ3]).

Since j is invariant under the action of SL2(Z), we can study the behaviour of
j by looking at fundamental domains of the action of SL2(Z) on H. The standard
fundamental domain is the set

F :=


z ∈ C : −1

2
≤ Re(z) <

1

2
, ♣z♣ ≥ 1,


♣z♣ = 1 =⇒ −1

2
≤ Re(z) ≤ 0


.
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Im(z)

Re(z)
−3 −2 −1 0 1 2 3

i
ρ

Figure 1. The fundamental domains of the action by SL2(Z), where
F is highlighted by the striped background.

We let F denote the Euclidean closure of F (within the Riemann sphere). A diagram
of the standard fundamental domain along with some of its SL2(Z)-translates is given
in Figure 1. When we refer to a fundamental domain, we will always mean a set of
the form γF for some γ ∈ SL2(Z).

It is well known that j satisĄes the following third-order differential equation (and
none of lower order, [Mah69]):2

(2.2) 0 =
j′′′

j′ − 3

2

(
j′′

j′

2

+
j2 − 1968j + 2654208

2j2(j − 1728)2
(j′)

2
.

This shows that the derivatives of j of order at least 3 are rational over j, j′ and j′′.
MahlerŠs result [Mah69] implies that j, j′ and j′′ are algebraically independent over
C.

The functions j, j′ and j′′ are all 1-periodic and meromorphic at ı∞, and by
differentiating (2.1) we can obtain the q-expansions of j′ and j′′:

j′(z) = −2πi

q
+ 2πi

∑

k≥1

akkqk

j′′(z) = −4π2

q
− 4π2

∑

k≥1

akk2qk.

2Observe that the denominators in the equation correspond to the polynomials that must be
omitted in Theorem 1.2.
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Observe that Q∪¶∞♢ forms a single orbit under the action of SL2(Z). We call
these elements the cusps of j. Given a fundamental domain γF, the cusp of γF is
the unique element of Q∪¶∞♢ contained in the Euclidean closure of γF (where the
closure is taken in the Riemann sphere).

Using (2.1) and the q-expansions of j′ and j′′, it is easy to see that for every
x ∈ R we have that each of the expressions j(x + iy), j′(x + iy) and j′′(x + iy) grows
exponentially to ∞ as y → +∞. In this case we sometimes write z → i∞ to emphasise
that z approaches ∞ by increasing its imaginary part, while the real part remains
bounded. A similar behaviour takes place when z approaches a rational number from
within a Ąxed fundamental domain containing that rational number in its euclidean
closure. We will give a precise description of this behaviour in ğ4.

We Ąnish this section with the deĄnition of what we mean by Ąnding a Zariski
dense set of solutions to an equation.

DeĄnition 2.1. Let F (X, Y0, Y1, Y2) be a polynomial over C. We say the equation
F (z, j(z), j′(z), j′′(z)) = 0 has a Zariski dense set of solutions if for any polynomial
G(X, Y0, Y1, Y2) which is not divisible by some irreducible factor of F , there is z0 ∈ H

such that F (z0, j(z0), j′(z0), j′′(z0)) = 0 and G(z0, j(z0), j′(z0), j′′(z0)) ̸= 0.

Clearly, it suffices to prove Zariski density for irreducible polynomials to obtain
Theorem 1.2, so from now on we will reduce to the case where F is irreducible.

3. Existence of Solutions

We start with the Rouché method for proving the existence of solutions, but not
yet their Zariski density. We Ąrst recall the crucial theorem.

Theorem 3.1 (Rouché, see e.g. [Lan99, Chapter VI, ğ1, Theorem 1.6]). Let f, g be
meromorphic functions on a complex domain Ω. Let C denote a simple closed curve
which is homologous to 0 in Ω and such that f has no zeroes or poles on C. If the
inequality

♣g(z)♣ < ♣f(z)♣
holds for all z on C, then the difference between the numbers of zeroes and poles in
the interior of C for the functions f + g and f is the same.

It is well-known that the Euclidean closure of the SL2(Z)-orbit of any point in
H (where the closure is taken within the Riemann sphere) only accumulates at
the boundary of H, that is, at R∪¶∞♢. The following lemma will help us choose
convenient sequences within any given orbit converging to points in R.

Lemma 3.2. Let z ∈ H and u ∈ R.

(i) If u ∈ R \Q and the sequence γk =

(
ak bk

ck dk


∈ SL2(Z) is such that γkz → u

as k → +∞, then ♣ck♣ → +∞ and ak

ck
→ u as k → +∞.

(ii) If u = a
c

∈ Q with gcd(a, c) = 1, then there is a sequence γk =

(
a bk

c dk


∈

SL2(Z) such that ♣bk♣, ♣dk♣ → +∞ and γkz → u as k → +∞.
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Proof.

(i) We Ąrst show that ♣ck♣ → +∞. Since every subsequence of γkz tends to u, it
suffices to show that ck is unbounded. Assume it is bounded, then we can
choose a subsequence where the value of ck is constant. So assume ck = c is a
constant sequence.

Conversely, assume now that γkz → u. Let z = x + iy. If dk is also bounded
then we may assume it is constant. Then akz + bk = (akx + bk) + akyi must
be convergent, hence ak must be convergent, and so constant. Then bk is also
constant, for akdk − bkck = 1, a contradiction.

Thus, we may assume ♣dk♣ → +∞. Then
ak

dk
z + bk

dk

c
dk

z + 1
→ u.

Therefore,
ak

dk

z +
bk

dk

=

(
ak

dk

x +
bk

dk


+

ak

dk

yi → u.

This implies
ak

dk

→ 0,
bk

dk

→ u.

On the other hand, akdk − bkc = 1, hence ak − bk

dk
c = 1

dk
→ 0. Thus, ak → uc

which means ak = a ∈ Z is constant. But then u = a
c

∈ Q.
Since ♣ck♣ → +∞, then using that

akz + bk

ckz + dk

· ck

ak

=
akz + bk

akz + bk + 1
ck

→ 1

we see that γkz and ak

ck
must have the same limit.

(ii) Since u = a
c

with gcd(a, c) = 1, there are integers m, l such that am − cl = 1.
Choose bk = l + ka, dk = m + kc. Then

lim
k→+∞

az + bk

cz + dk

= lim
k→+∞

a
dk

z + bk

dk

c
dk

z + 1
= lim

k→+∞

bk

dk

= lim
k→+∞

l + ak

m + ck
=

a

c
= u. □

In order to ease notation, we will start using bold-faced letters to denote vectors,
so we set Y := (Y0, Y1, Y2) and j := (j, j′, j′′) : H → C3.

We are now ready to prove Theorem 1.1 which we restate below for convenience.

Theorem 1.1. For every F (X, Y) ∈ C[X, Y] \ C[X] the equation F (z, j(z)) = 0 has
inĄnitely many solutions.

Proof. If F does not depend on Y1 and Y2 then we are done by the results of [EH21].
So assume F depends on Y1 or Y2. The argument below is a generalisation of the
method of [EH21].

Let r(X) := −F (X, 0, 0, 0) and G(X, Y) := F (X, Y) + r(X). Further let f(z) :=
G(z, j(z)). Then we want to solve the equation

f(z) = r(z).
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Notice that f(ρ) = 0, for j(ρ) = j′(ρ) = j′′(ρ) = 0. Let B ⊆ C be a closed disc centred
at ρ with sufficiently small radius such that j′(z) ̸= 0 and j′′(z) ̸= 0 for z ∈ B \ ¶ρ♢.

Pick a point u = a
c

∈ Q, and choose a sequence γk ∈ SL2(Z) as in Lemma 3.2((ii))
such that γkz → u as k → +∞ for any z ∈ H. Let Bk := γkB. By compactness of B,
the function r(γkz) tends to r(u) uniformly for z ∈ B.

We have

f(γkz) = G
(
γkz, j(z), (cz + dk)2j′(z), (cz + dk)4j′′(z) + 2c(cz + dk)3j′(z)



= G


γkz, j(z), d2
k

(
c

dk
z + 1

2
j′(z), d4

k

(
c

dk
z + 1

4
j′′(z) + 2 c

dk

(
c

dk
z + 1

3
j′(z)


.

Consider the polynomial G(X, Y0, T 2Y1, T 4Y2) as a polynomial of T . It clearly has
positive degree, for otherwise G (and hence F ) would not depend on Y1 nor Y2. Let
its leading term be H(X, Y) · T m. Since c

dk
→ 0, we see that

f(γkz) = dm
k · H(u, j(z)) + o(dm

k ) as k → +∞.

We can now shrink B to make sure that H(u, j(z)) ̸= 0 on ∂B, so it is uniformly
bounded away from 0 for z ∈ ∂B. In particular, f(γkz) approaches inĄnity as k → +∞
uniformly for z ∈ ∂B. So for sufficiently large k the inequality ♣f(z)♣ > ♣r(z)♣ holds
for all z ∈ ∂Bk = ∂(γkB) = γk∂B, and we can apply RouchéŠs theorem to these
functions. Since f has a zero in Bk, namely γkρ, so does f − r. □

Remark 3.3. The following more general statement can be proven by the same
argument.

Let F (X, Y) ∈ C[X, Y] \ C[X]. Let U ⊆ C be an open set such that U ∩ R ̸= ∅
and f : U → C be a holomorphic function. Then the equation F (z, j(z)) = f(z) has
inĄnitely many solutions.

As mentioned in ğ1, the proof of Theorem 1.1 does not guarantee a Zariski dense set
of solutions. For instance, if F (X, 0, 0, 0) ≡ 0, that is, F has no term depending only
on X, then the only solutions yielded by the method above are the SL2(Z)-conjugates
of ρ. In order to establish Zariski density we will look at a reĄnement of the procedure,
where we transform the equation by convenient elements of SL2(Z). This will be
done starting in ğ6, but Ąrst, in the next section, we will develop some tools to study
equations involving periodic functions.

4. Solvability of Certain Equations Involving Periodic Functions

In this section we establish some general criteria for the solvability of equations
involving periodic functions and, in particular, prove Proposition 1.6. We remark that
this section is independent in many ways from the rest of the paper as the results
we prove make no reference to j or its derivatives, and in particular the methods
developed here will not reappear in the following sections.

We recall that given a meromorphic function f and a point z0, the order of f at z0

is the unique integer n such that (z − z0)
−nf(z) is holomorphic and non-zero at z0.
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Proposition 4.1. Let f0, . . . , fn : H → C be 1-periodic meromorphic functions and
let −ℓ be the minimum order of fk

fn
at a Ąxed z0 ∈ H for k = 0, . . . , n − 1.

If ℓ > 0, then for any sufficiently small disc D centred at z0 and for every sufficiently
large m ∈ Z, the equation

fn(z)zn + fn−1(z)zn−1 + · · · + f0(z) = 0

has ℓ solutions, counted with multiplicity, in m + (D \ ¶z0♢).

Proof. For simplicity, assume that f0

fn
has a pole at z0 ∈ H of order ℓ > 0; the same

proof will work in the general case with trivial modiĄcations.
Under the above assumptions, fn

f0
(z0) = 0, and moreover fk

f0
(z0) ̸= ∞ for all k. Let

F (z) := fn(z)zn + fn−1(z)zn−1 + · · · + f0(z). Consider the functions

G(z) :=
fn(z)

f0(z)
zn and H(z) :=

fn−1(z)

f0(z)
zn−1 + · · · +

f1(z)

f0(z)
z + 1.

Pick a small closed disc D centred at z0 such that the fkŠs have no zeroes nor poles in
D \ ¶z0♢. Since fk(z)

f0(z)
are periodic and bounded on D, for large enough m we have

♣G(z + m)♣ =

∣∣∣∣∣
fn(z)

f0(z)

∣∣∣∣∣ ♣z + m♣n > ♣H(z + m)♣ for z ∈ ∂D.

By RouchéŠs Theorem 3.1, the number of zeroes of the functions G(z + m) and
G(z + m) + H(z + m) = f0(z)−1F (z + m) inside D is the same. Since the former
has a zero at z0 of order ℓ and no other zero, the latter must also have ℓ zeroes in
D, counted with multiplicity. Thus, f0(z)−1F (z + m) has ℓ zeroes in D, and so f−1

0 F
has ℓ zeroes in m + D, counted with multiplicity.

Finally, note that G(z0 + m) + H(z0 + m) = 0 holds for at most n − 1 values
of m, thus for m sufficiently large, the above ℓ solutions in m + D are actually in
m + (D \ ¶z0♢).

This Ąnishes the proof of the proposition when f0

fn
has a pole at z0 of order greater

than or equal to that of fk

fn
for k = 1, . . . , n − 1. For when the maximum order of pole

at z0 is attained by fk

fn
for some k ≠ 0, simply divide by fk(z) rather than f0(z) when

deĄning G and H. □

Following the notation of the proposition, when the fkŠs are polynomials in j, j′,
j′′ and some fk

fn
has a pole in H, the above proposition applies. Instead, when the

functions fk

fn
have no poles in H, we will rely on the asymptotic behaviour of fk

fn

towards the boundary of H. SpeciĄcally, we will prove an analogue of Proposition 4.1
in the case where fk(z)

fn(z)
→ ∞ as z → i∞.

As the following example shows, we may also need to consider non-periodic functions
which are asymptotically periodic. Dealing with those functions requires a considerably
more sophisticated setup than the one in Proposition 1.6, so we Ąrst discuss the
example in detail to clarify the choices made in the rest of this section.
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Example 4.2. Consider the equation

(j′)5 + j2(j − 1728)2(j′′)2 + αj2(j − 1728)(j′)3 = 0

where α is to be determined later. In order to write this equation as a polynomial in
z with periodic coefficients, we apply the z 7→ −1

z
transformation3 and get

z10(j′(z))5 + z8j(z)2(j(z) − 1728)2(j′′(z))2 + z74j(z)2(j(z) − 1728)2j′(z)j′′(z)

+ z6(4j(z)2(j(z) − 1728)2(j′(z))2 + αj(z)2(j(z) − 1728)(j′(z))3) = 0.

In this example the ratio of the coefficients of z8 and z10 actually has a pole at
i. However, checking for poles among such ratios in a general equation requires
sufficiently precise zero estimates at the conjugates of ρ and i, which are hard to
produce for polynomials involving j′′ (see Example 6.7); on the other hand, we can
provide sharp zero estimates for polynomials in j, j′ only (see ğ6). The latter estimates
turn out to be enough: for instance, when the original equation does not contain z,
after the z 7→ −1

z
transformation the coefficient of the lowest power of z does not

depend on j′′. This is exempliĄed here by the coefficient of z6. Hence our strategy
hinges on the fact that the ratio between a particular coefficient not involving j′′,
which we can procure in all cases, and the leading coefficient has a pole or exponential
growth in some fundamental domain.

In this particular example, the ratio in question is between the coefficients of z6

and of z10, thus the function

f(z) :=
4j2(j − 1728)2 + αj2(j − 1728)j′

(j′)3
.

We claim that f(z) has no pole in H. Indeed, easy calculations show that the orders
of the numerator at ρ and i (and their SL2(Z)-orbits) are equal to 6 and 3 respectively.
The denominator has the same orders at these points, so f has no poles. Moreover,
choosing α = 2

πi
ensures the leading terms in the q-expansions of the two terms in

the numerator cancel out. This then means that f(z) tends to a constant as z → i∞.
Therefore, Proposition 1.6 cannot be applied in this situation. However, f(z) has
exponential growth as we approach 0 from within a fundamental domain with a
cusp at 0 (in fact, we shall prove that f(z) must have exponential growth in most
fundamental domains). Indeed, after applying the z 7→ −1

z
transformation we get

g(z) := f


−1

z


=

4j(z)2(j(z) − 1728)2 + αz2j(z)2(j(z) − 1728)j′(z)

z6j′(z)3

and because of the extra factor z2 in the second summand in the numerator, no
cancellation is possible, thus guaranteeing that g(z) grows exponentially as z → i∞.
Note however that this function is not periodic, but only asymptotically periodic in

3The action of the group SL2(Z) is generated by the transformations z 7→ z +1 and z 7→ − 1
z
. Since

our functions are invariant under the former, it is natural to apply the latter; while j is invariant
under it, j′ and j′′ are not, and we take advantage of this fact.
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the sense that limz→i∞
g(z+1)

g(z)
= 1. This fact is responsible for the technicalities in the

rest of this section.
It is worth mentioning that for equations of the form F (j, j′) = 0, where F

is a polynomial, the transformation z 7→ −1
z

always guarantees that the ratio of
the lowest and highest powers of z has a pole in H or exponential growth at i∞.
In general, Proposition 1.6 is sufficient when we deal with equations of the form
F (z, j(z), j′(z)) = 0, although the argument is somewhat more complicated.

The reader may beneĄt from revisiting this example after reading the rest of the
paper, as it will make the above-mentioned phenomena less obscure.

Notation. Let P denote the Ąeld of 1-periodic meromorphic functions on H which are
also meromorphic at i∞ (recall DeĄnition 1.5). We write P [w] and P(w) respectively
for the polynomial ring and its fraction Ąeld generated by the variable w over P . We
remark that the functions in P will also be thought of as meromorphic functions of
the variable w.

Also, given an unbounded region U ⊆ C and two meromorphic functions f, g on U ,
we write f ∼ g for w → ∞ in U to mean that the limit of the ratio f(w)

g(w)
tends to 1 as

w approaches inĄnity from within U .

Lemma 4.3. Let f ∈ P(w). Then there are α ∈ C×, e, d ∈ Z, and a positive C ∈ R

such that

f(w) ∼ αwdqe

for w → ∞ in the region Im(w) ≥ C log ♣w♣, where q = exp(2πiw).

Proof. It suffices to prove the conclusion for f ∈ P[w]. Write f(w) =
∑n

k=0 gk(w)wk,
with gk ∈ P.

Each gk(w) has a meromorphic q-expansion g̃k(q) which converges on some neigh-
bourhood of q = 0. Let e be the minimum order of g̃k(q) at q = 0 for k = 0, . . . , n.
Let αk ∈ C be such that g̃k(q) = qe(αk + O(q)). Let d be the maximum k such that
g̃k(q) has order e at q = 0, namely such that αk ̸= 0. In the region ♣q♣ ≤ ♣w♣−(n+1) we
have O(q) = O(w−(n+1)), in which case

G(w, q) =
n∑

k=0

g̃k(q)wk = qewd
n∑

k=0

(
αk + O

(
w−(n+1)


wk−d = αdqewd

(
1 + O

(
w−1


.

It now suffices to specialise at q = exp(2πiw) and observe that ♣q♣ = e2π Im w ≤
♣w♣−(n+1) if and only if Im(w) ≥ n+1

2π
log ♣w♣. □

It follows at once that all functions in P(w) are Śasymptotically periodicŠ in the
sense that f(w + 1) ∼ f(w) for w → ∞ in the above region. Moreover, the lemma
allows us to make the following deĄnition.

DeĄnition 4.4. Call the order at i∞ of f ∈ P(w), written ordw=i∞(f), the pair
(e, d) ∈ Z2 of integers such that for some α ∈ C and some C ∈ R, we have f(w) ∼
αw−d exp(2πiew) for w → ∞ in the region Im(w) ≥ C log ♣w♣.

We say that f has exponential growth at i∞ if its order is (e, d) with e < 0.
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Here we consider Z2 as an ordered group, ordered lexicographically. This makes
(P(w), ordw=i∞) into a valued Ąeld, and we have for instance that f(w) → ∞ in a
suitable region Im(w) ≥ C log ♣w♣ if and only if ordw=ı∞ f(w) < (0, 0).

We can now set up a generalisation of Proposition 4.1 that will cover our application
to j. Let us Ąx the following data:

• a polynomial F (z, w) =
∑n

k=0 zkfk(w) where each fk is in P(w) and fn ̸= 0;
• a value s which is either 0 or 1.

We look for the zeroes of functions of the form Fr(w) := F (r + sw, w) for r varying
among the real numbers. For each r sufficiently large, we pick a suitable rectangle
Ξr, pictured in Figure 2 and deĄned in Proposition 4.8, and integrate the logarithmic

derivative F ′

r

Fr
along the boundary of Ξr. Provided that Fr does not have zeroes nor

poles on such a boundary, by the Argument Principle (see Theorem 4.7), the value
of the integral counts the difference between the number of zeroes and poles, with
multiplicity, inside Ξr. We will choose Ξr so that the integral has positive value.

We Ąrst parametrise the roots of F (z, w) as a polynomial in z in terms of w varying
in a suitable region. The resulting functions, which by construction are algebraic over
P(w), admit an order at i∞ which may be a pair of rational numbers, rather than
only integers.

Lemma 4.5. There is a positive C ∈ R such that in the region U = ¶w ∈ H :
Im(w) ≥ C log ♣w♣♢, there are holomorphic functions β1, . . . , βn : U → C such that
F (βk(w), w) = 0 for all w ∈ U , and if F (β, w) = 0, then β = βk(w) for some k.

Moreover, there are αk ∈ C×, ek, dk ∈ Q such that βk(w) ∼ αkw−dkqek for w → ∞
in U , where q = exp(2πıw) and w−dk = exp(−2πıdk log(w)) for some holomorphic
branch of log(w) on U .

Proof. It suffices to prove the conclusion for F irreducible as a polynomial over P(w).
Let F (z) = ∂F

∂z
. Then there are G, H ∈ P(w)[z] such that GF + HF (z) = 1. We

take C large enough that by Lemma 4.3, the coefficients of G and H are holomorphic
in region U = ¶w ∈ H : Im(w) ≥ C log ♣w♣♢. In particular, F (z, w0) and F (z)(z, w0)
have no common roots for any w0 ∈ U , and so by the implicit function theorem, and
because U is simply connected, there are m holomorphic functions β1, . . . , βm : U → C

such that F (βi(w), w) = 0 for every i and w ∈ U , and moreover taking distinct values
at all w ∈ U , thus if F (β, w) = 0, then β = βk(w) for some k.

Now Ąx some k. For every w ∈ U , there is some i such that ♣βk(w)ifi(w)♣ ≥
♣βk(w)ℓfℓ(w)♣ for every ℓ, and since F (βk(w), w) = 0, there is also j ≠ i such that
♣βk(w)jfj(w)♣ ≥ 1

n
♣βk(w)ifi(w)♣. Let Ui,j be the region where those inequalities hold.

We have in particular

1 ≥ ♣βk(w)♣ j−i

√√√√
∣∣∣∣∣
fj(w)

fi(w)

∣∣∣∣∣ ≥ j−i

√
1

n

Let (ek, dk) = ordw=ı∞(fi/fj)

j−i
. By Lemma 4.3 combined with the above inequalities, there

is N > 1 such that whenever w is sufficiently large in Ui,j we have N ≥ ♣βk(w)♣
♣w−dk qek ♣ ≥ 1

N

for some Ąxed determination of w−dk on U . Choose N so that it works simultaneously
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for any possible pair i, j. By continuity of βk, the numbers dk, ek do not depend on i,
j.

Let S be the set of indices i such that ordw=ı∞(fi) + (iek, idk) reaches a minimum
value (e, d). By construction, S contains at least two elements. Write

F (w−dkqekz′, w) = qewd(G0(z
′) + G1(z

′, w))

where now G0 is a non-trivial polynomial in z′ with ♣S♣ ≥ 2 terms and constant

coefficients, and G1 has coefficients that tend to 0 for w → ∞ in Ui,j. Since βk(w)

w−dk qek

is bounded and continuous, it must converge to a non-zero root αk of G0(z
′), thus

βk(w) ∼ αkw−dkqek , as desired. □

We now provide an estimate on the size of Fr(w) that we can use on the boundary
of Ξr.

Lemma 4.6. There exist 0 ≤ x0 < 1, C, y0 ≥ 4, D, E0, E1 ≥ 0 (with E0 possibly
+∞), δ > 0 such that

♣Fr(w)♣ = ♣F (r + sw, w)♣ > δ
n−1∑

k=0

♣fk(w)♣♣r + sw♣k

for all w ∈ H, r ∈ R such that Im(w) ≥ y0, ♣r♣ ≥ Im(w)D, and one of the following
holds:

• 0 ≤ Re(w) ≤ 2, Im(w) ≤ E0 log ♣r♣, or
• 0 ≤ Re(w) ≤ 2, E1 log ♣r♣ ≤ Im(w), or
• Re(w) ∈ ¶x0, x0 + 1♢.

Proof. We work in a region U = ¶w ∈ H : 0 ≤ Re(w) ≤ 2 ∧ Im(w) ≥ y0♢ for some y0

sufficiently large as determined by this proof. We start by taking y0 large enough
that by Lemma 4.3, fn has no zeroes nor poles at w. We also require that ♣r♣ ≥ C for
some C sufficiently large, again as determined by this proof.

By Lemma 4.5, provided y0 is sufficiently large, there are holomorphic functions
β1, . . . , βn : U → C parametrising the roots of F (z, w) = 0 as functions of w, and for
w → ∞ in U we have

βk ∼ αkw−dkqek

for some αk ∈ C× and dk, ek ∈ Q.
Since we are assuming 0 ≤ Re(w) ≤ 2, we also have Im(w) ≤ ♣w♣ ≤ Im(w) + 2. We

require that C ≥ 4, y0 ≥ 4, so that we have the following simple inequalities:

♣r + sw♣ ≥ max¶♣r♣ − 2, s Im(w)♢ ≥ max

{
♣r♣
2

, s
♣w♣
2

}
≥ ♣r + sw♣

4
.

It follows, for instance, that ♣w♣ ∼ Im(w) → +∞ for w → ∞ in U . We shall omit the
speciĄcation Śin U Š in the rest of this proof.

We shall now bound ♣r + sw − βk(w)♣, distinguishing multiple cases depending on
(ek, dk).
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• If (ek, dk) ≥ (0, 0), then βk(w) converges to a Ąnite value γk for w → ∞. In
this case, we require C (if s = 0) and y0 to be large enough that

♣r + sw♣ ≥ 4♣γk♣ ≥ 2♣βk(w)♣.
This ensures that

♣r + sw − βk(w)♣ ≥ ♣r + sw♣
2

≥ ♣r + sw♣ + ♣βk(w)♣
4

.

• Suppose that ek = 0 and dk < 0. For ♣r♣ ≥ Im(w)2 max¶1,−dk♢, we have both
♣r♣ ≥ 4♣sw♣ and ♣r♣ ≥ 4♣βk(w)♣ for w sufficiently large, and so for y0 large we
get

♣r + sw − βk(w)♣ ≥ ♣r♣
2

≥ ♣r + sw♣ + ♣βk(w)♣
8

.

• If ek < 0, then sw − βk(w) ∼ −βk(w) for w → ∞. Since Re(w) is bounded,
we get

Re(log(sw − βk(w))) = log ♣sw − βk(w)♣ ∼ log ♣βk(w)♣ ∼ −2πek Im(w).

We Ąrst give bounds when ♣r♣ is roughly at least ♣βk♣2, and when ♣βk♣ is roughly
at least ♣r♣2. More precisely, for y0 sufficiently large, we have

♣r + sw − βk(w)♣ >
♣r♣
2

≥ ♣r + sw♣ + ♣βk(w)♣
8

for ♣r♣ ≥ e−4πek Im(w),

♣r + sw − βk(w)♣ >
♣βk(w)♣

2
≥ ♣r + sw♣ + ♣βk(w)♣

8
for ♣r♣ ≤ e−πek Im(w).

For w → ∞ we also have

Im(log(sw − βk(w))) ∼ arg(αk) + π + 2πekRe(w) mod 2π.

Now choose x0 so that arg(αk) + 2πekx0 and arg(αk) + 2πek(x0 + 1) are
not in π Z, and so are different from arg(r) ∈ π Z. Note that we can do this
simultaneously for all k such that ek < 0. In particular, there is δk > 0 such
that, after taking y0 sufficiently large, we have

♣r + sw − βk(w)♣ > δk(♣r + sw♣ + ♣βk(w)♣) for Re(w) ∈ ¶x0, x0 + 1♢.

Now, if ek = 0 for some k, let D be the maximum between the values −2dk and 2 for
such kŠs, otherwise we can take D = 0. If ek < 0 for some k, let E0 be the maximum
of −4πek and E1 be the minimum of −πek for such kŠs, otherwise let E0 = +∞ and
E1 = 0. Under the above choices, there is δ > 0 such that

♣Fr(w)♣ > δ♣fn(w)♣
∏

k

(♣r + sw♣ + ♣βk(w)♣) ≥ δ
n∑

k=0

♣fk(w)♣♣r + sw♣k

for any w ∈ H, r ∈ R satisfying the requirements in the conclusion. □

We now recall the Argument Principle, which plays a key role in the proof of
Proposition 4.8.
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Theorem 4.7 (Argument Principle, see e.g. [Lan99, Chapter VI, ğ1, Theorem 1.5]).
Let f be a meromorphic function on a complex domain Ω. Let C be a simple closed
curve (positively oriented) which is homologous to 0 in Ω and such that f has no
zeroes or poles on C. Let Z and P respectively denote the number of zeroes and poles
(counted with multiplicity) of f in the interior of C. Then

2πi(Z − P ) =
∮

C

f ′(z)

f(z)
dz =

∮

f◦C

dz

z
.

In the proof of the following proposition, we will integrate F ′

r

Fr
along the boundary

of Ξr and use the above estimates to Ąnd a positive lower bound, thus proving the

existence of zeroes of Fr within Ξr. For a more geometric description, integrating F ′

r

Fr

computes how many times the image Fr(z) winds around 0 while z moves along ∂Ξr.
The bounds below will determine a rough picture of Fr(∂Ξr), as in Figure 3, and in
turn determine the number of zeroes, counted with multiplicity.

Proposition 4.8. Let (e, d) be the minimum order of fk

fn
at i∞ for k = 0, . . . , n − 1

and suppose that e < 0. We work under the notation of Lemma 4.6.
Then for all r ∈ R sufficiently large the function F (r + sw, w) has −e zeroes,

counted with multiplicity, within the region (see Figure 2)

Ξr = ¶w ∈ H : x0 < Re(w) < x0 + 1, E0 log ♣r♣ < Im(w) < ♣r♣ 1
M ♢,

where M = ⌈D⌉ if D > 0 and M = 1 otherwise. Moreover, for w ∈ ∂Ξr we have

♣F (r + sw, w)♣ ≥ δ
n∑

k=0

♣fk(w)♣♣r + sw♣k.

Proof. Recall that Fr(w) = F (r + sw, w). First, we apply Lemma 4.6 to Fr(w) and
Ąnd relevant constants x0, y0, δ, C, D, E0, E1. Let M = ⌈D⌉ if D > 0 and M = 1

otherwise. Let r be large enough so that ♣r♣ ≥ C, E0 log ♣r♣ ≥ y0, and E1 log ♣r♣ ≤ ♣r♣ 1
M ,

hence

♣Fr(w)♣ ≥ δ
n∑

k=0

♣fk(w)♣♣r + sw♣k

for w ∈ ∂Ξr. It follows, for instance, that Fr(w) has order (e, d) at ı∞. We also take
r sufficiently large so that each fk(w) does not have poles in Ξr, so in particular Fr(w)
is holomorphic on Ξr.

Note that Fr(w) is never zero on the boundary of Ξr, thus its logarithmic derivative
F ′

r

Fr
is holomorphic there. We shall now compute the integral of F ′

r

Fr
of Fr along such a

boundary.

Vertical sides. We show that the images of the vertical sides of Ξr under Fr must
be close to each other, and so their contributions cancel out as they are taken with
opposite orientations. For instance, if Fr happens to be 1-periodic (as a function of w;
for instance, when s = 0 and the coefficients of F are 1-periodic) then the images of
these vertical sides are identical.
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Im(z)

Re(z)
0 1 2 3

i

x0 x0+1

E0 log ♣r♣

E1 log ♣r♣

♣r♣
1

M

Figure 2. The region Ξr highlighted by the striped background.

Im(z)

Re(z)

Fr

Im(z)

Re(z)
0

Figure 3. Visual representation of the action of Fr on the boundary of
a typical rectangle Ξr for F of the form Az2 + Bz + Cj(z)2 + Dj(z) + E.
The term j2 has lowest order (−2, 0), hence Fr winds around 0 twice
while following the top side of the rectangle.
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First, we observe that

Fr(w + 1) − Fr(w) =
n∑

k=0

fk(w)(r + sw)k

(
fk(w + 1)

fk(w)


r + sw + 1

r + sw

k

− 1


.

Since fk ∈ P(w), we have that fk(w + 1) ∼ fk(w) as Im(w) → +∞. Likewise,
r + sw + 1 ∼ r + sw for r + sw → ∞. Therefore, we can choose r large enough so
that the last factor on the right hand side has modulus less than δ

2
for all k and for

any w on the boundary of Ξ. We then have
(4.1)∣∣∣∣∣

Fr(w + 1)

Fr(w)
− 1

∣∣∣∣∣ =

∣∣∣∣∣
Fr(w + 1) − Fr(w)

Fr(w)

∣∣∣∣∣ ≤ δ

2♣Fr(w)♣

(
n∑

k=0

♣fk(w)♣♣r + sw♣k


<
1

2

for w ∈ ∂Ξ. We may now choose a branch of log in the disc around 1 of radius 1
2

and
estimate the integral along the vertical sides as4

∣∣∣∣∣∣

∫ ♣r♣
1

M

E0 log ♣r♣

(
F ′

r(x0 + 1 + iy)

Fr(x0 + 1 + iy)
− F ′

r(x0 + iy)

Fr(x0 + iy)


dy

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣
log

(
Fr(w + 1)

Fr(w)

∣∣∣∣∣

w=x0+i♣r♣
1

M

w=x0+iE0 log ♣r♣

∣∣∣∣∣∣∣
< log


3

2


− log


1

2


≤ log(3) < 2.

Bottom side. We now show that the image of the bottom side is away from 0 and
cannot wind much. Using (4.1), for r sufficiently large,

∣∣∣∣∣

∫ x0+1

x0

F ′
r(x + iE0 log ♣r♣)

Fr(x + iE0 log ♣r♣)dx

∣∣∣∣∣ =

∣∣∣∣∣log

(
Fr(x + iE0 log ♣r♣ + 1)

Fr(x + iE0 log ♣r♣)

∣∣∣∣∣ < log


3

2


< 1.

Top side. We show that Fr behaves like exp(2πiew) on the top side of Ξr, and so the
image under Fr is roughly a circle traversed approximately e times.

We now constraint w to the region Im(w) = ♣r♣ 1
M , x0 ≤ Re(w) ≤ x0 + 1. We have

δ max
k

♣fk(w)♣♣r + sw♣k ≤ ♣Fr(w)♣ ≤ n max
k

♣fk(w)♣♣r + sw♣k.

By construction, r ∼ ζwM for some power ζ of i depending on M and the sign of r.
For simplicity, Ąx the sign of r, and assume that ζ = 1, so that r ∼ wM . Then

F (wM + sw, w) − Fr(w) =
n∑

k=0

fk(w)(r + sw)k



(

wM + sw

r + sw

k

− 1


 .

In particular, by Lemma 4.6, we Ąnd that F (wM + sw, w) − Fr(w) = o(Fr(w)) for
r → +∞. Since F (wM + sw, w) is in P(w), it has an order (e′, d′) at ı∞, and in fact
e′ = e because the term wM can not alter the exponential growth.

4Recall that (fg)′

fg
= f ′

f
+ g′

g
, and that

∫
γ

f ′

f
= log(f(γ(1))) − log(f(γ(0))) whenever γ : [0, 1] → C

is a path and f ◦ γ takes values in a simply connected region on which we have Ąxed a continuous
branch of log.
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Therefore, we Ąnd that there is α ∈ C× such that for r large enough
∣∣∣∣∣

Fr(w)

αw−d′ exp(2πiew)
− 1

∣∣∣∣∣ <
1

4
.

Observe that for r large enough we have
∣∣∣∣∣∣

∫ x0+1

x0

((x + i♣r♣ 1
M )−d′

exp(2πie(x + i♣r♣ 1
M )))′

(x + i♣r♣ 1
M )−d′ exp(2πie(x + i♣r♣ 1

M ))
dx − 2πie

∣∣∣∣∣∣
=

∣∣∣∣∣

∫ x0+1

x0

d′

x + i♣r♣ 1
M

dx

∣∣∣∣∣ < 1.

Thus, for sufficiently large r we have
∣∣∣∣∣∣

∫ x0+1

x0

F ′
r(x + i♣r♣ 1

N )

Fr(x + i♣r♣ 1
N )

dx − 2πie

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
log

(
Fr(w)

αw−d′ exp(2πiew)

∣∣∣∣∣

w=x0+1+i♣r♣
1
N

w=x0+i♣r♣
1
N

∣∣∣∣∣∣∣
+ 1 < 2.

Conclusion. Using the above estimates we can now Ąnd the winding number of Fr(∂Ξr)
at 0.

Summing up the contributions from all sides, with the appropriate orientations, we
obtain ∣∣∣∣∣

1

2πi

∮

∂Ξr

Fr(w)′

Fr(w)
dw + e

∣∣∣∣∣ <
1

2π
(2 + 1 + 2) < 1.

By the Argument Principle, the integral on the left hand side must be the difference
between the number of zeroes and poles of Fr(w) inside Ξ (in particular an integer)
multiplied by 2πi. Since Fr(w) is holomorphic on Ξr, it must have −e zeroes in Ξr,
counted with multiplicity. □

Proof of Proposition 1.6. This follows from combining Propositions 4.1 and 4.8, where
we use r = m a large integer and s = 1. Note that if fk

fn
(z) → ∞ as z → i∞ then fk

fn
(z)

must have exponential growth at i∞ for it is periodic and so has a q-expansion. □

5. Some Criteria for Zariski Density

Recall that Y := (Y0, Y1, Y2) and j := (j, j′, j′′) : H → C3.

5.1. Generic transforms. Given p ∈ C[X, Y], or more generally p ∈ K[X, Y] for
some Ąeld K, we deĄne the generic SL2(Z)-transform of p to be the polynomial
Γ(p) ∈ K[Z, W, C, Y] given by

Γ(p)(Z, W, C, Y) := p
(
Z, Y0, W 2Y1, W 4Y2 + 2CW 3Y1


.

In particular degX(p) = degZ(Γ(p)). By construction, for any γ =

(
a b
c d


∈ SL2(Z),

if n = degX(p) we have

p(γz, j(γz)) =
pγ(z, j(z))

(cz + d)n
, where pγ(X, Y) := (cX+d)nΓ(p)

(
aX + b

cX + d
, cX + d, c, Y


.

Note that pγ ∈ K[X, Y].
We make the following observations.
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O1. The map Γ : K[X, Y] → K[Z, W, C, Y] deĄned above is a K-algebra homo-
morphism with left inverse p(X, Y) = Γ(p)(X, 1, 0, Y).

O2. For each γ ∈ SL2(Z), the map p 7→ pγ is multiplicative, that is (p1p2)γ = pγ
1pγ

2

for any p1, p2 ∈ K[X, Y]
Indeed, this follows at once from the fact that Γ is a homomorphism (O1)

and degX(p1p2) = degX(p1) + degX(p2).
O3. For any p ∈ K[X, Y] and any γ1, γ2 ∈ SL2(Z) there is r ∈ Z[X] such that

(pγ1)γ2 = r(X)pγ1γ2 .
Indeed, let n = degX(p) and m = degX(pγ1). By construction, we have

m = n + degY0
(p) ≥ n. Now write γi =

(
ai bi

ci di


, for i ∈ ¶1, 2♢, and write

γ1γ2 =

(
ã b̃

c̃ d̃


. Thus

pγ1γ2(z, j(z))(
c̃z + d̃

n = p(γ1γ2z, j(γ1γ2z)) =
pγ1(γ2z, j(γ2z))

(c1γ2z + d1)n
=

(pγ1)γ2 (z, j(z))

(c1γ2z + d1)n(c2z + d2)m
,

where m = degX(pγ1). Since m ≥ n and (c1γ2z + d1)(c2z + d2) = c̃z + d̃, we
get

r(X) :=
(c2X + d2)

m

(
c̃X + d̃

n

(
c1

a2X + b2

c2X + d2

+ d2

n

= (c2X + d2)
m−n ∈ Z[X].

O4. For any p ∈ K[X, Y] and any γ ∈ SL2(Z), if we consider p and pγ as poly-
nomials in the variables Y with coefficients in K(X), then p is irreducible in
K(X)[Y] if and only if so is pγ.

Indeed, note that if p is not a unit (meaning it contains one of the variables
Y0, Y1, Y2), then pγ is also not a unit. It follows by (O2) that if p is reducible
in K(X)[Y], thus it is a product of two non-units, then so is pγ. Likewise, if

pγ is reducible, then (pγ)γ−1
is reducible too, and (pγ)γ−1

= r(X)p for some
r(X) ∈ C[X] by (O3); since r(X) is a unit, it follows that p is reducible.

Proposition 5.1. Let p be an irreducible polynomial in C[X, Y]\C[X] and γ ∈ SL2(Z).
Let h be the irreducible factor of pγ that is not in C[X]. Then the equation p(z, j(z)) = 0
has a Zariski dense set of solutions if and only if the equation h(z, j(z)) = 0 has a
Zariski dense set of solutions.

Proof. By (O3) and (O4), pγ = r(X)h and hγ−1
= s(X)p for some r, s ∈ C[X]. It

follows that p(z, j(z)) = 0 and h(z, j(z)) = 0 have the same solutions except possibly
for the zeroes of r(z) and s(z). Since those are only Ąnitely many, the solutions of the
former equation are Zariski dense if and only if so are the solutions of the latter. □

5.2. Density criteria. We now apply the results of ğ4 to establish some useful
criteria for Zariski density of solutions of equations involving z, j(z), j′(z), j′′(z).

DeĄnition 5.2. Given a function g ∈ C(z, j(z)) and γ ∈ SL2(Z), we say that g(z)
has exponential growth in γF, if g (γ−1z) has exponential growth at i∞. Furthermore,
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if r is the cusp of γF (that is, r ∈ Q∪¶∞♢ is in the Euclidean closure of γF), then
we deĄne the order of g(z) in γF at r as ordz=i∞ (g (γ−1z)).

Proposition 5.3. Let F (X, Y) =
∑n

k=0 Xkpk(Y) be a polynomial. Assume that for
some k and some γ ∈ SL2(Z), the function pk

pn
(j(z)) has exponential growth in γF.

Then there are ℓ > 0, 0 ≤ x0 < 1, M > 0, E0 > 0 such that for all m ∈ Z

sufficiently large the function F (z, j(z)) has ℓ zeroes, counted with multiplicity, within
the region m + γΞm, where

Ξm = ¶z ∈ H : x0 < Re(z) < x0 + 1, E0 log ♣m♣ < Im(z) < ♣m♣ 1
M ♢.

Proof. Fix some s ∈ ¶0, 1♢, t ∈ R to be determined later. For m ∈ Z, let

Fm(z) := F (m + t + sz, j(γz)).

Likewise, set G(z) := F (z, j(z)). By Proposition 4.8 applied to F (z, j(γz)), Fm(z) has
ℓ > 0 many zeroes in a certain region Ξm and is suitably bounded from below for
z ∈ ∂Ξm, as long as m is sufficiently large.

If γ is upper triangular, namely γz = z + k for some k, we choose s = 1, t = 0, and
observe that since the functions of j are 1-periodic

G(z + m) = F (z + m, j(γz)) = Fm(z),

thus G(z) has ℓ zeroes in each region m + Ξm.
Otherwise, let s = 0 and let t be the limit of γz as z → ∞ (where in fact t ∈ Q).

In particular,

G(m + γz) − Fm(z) = F (m + γz, j(γz)) − F (m + t, j(γz))

=
n∑

k=0

pk(j(γz))(m + t)k

(
m + γz

m + t

k

− 1


.

Thus, as soon as z is sufficiently large, the last factor on the right hand side has
modulus less than 1

2
independently of m. Then pick m large enough so that this

happens whenever Im(z) > E0 log ♣m♣, and so

♣G(m + γz) − Fm(z)♣ <
1

2
♣Fm(z)♣.

Therefore, by RouchéŠs theorem 3.1, G(m + γz) and Fm(z) have the same number
of zeroes in Ξm, counted with multiplicity. It follows that G(z) has ℓ zeroes in the
region m + γΞm. □

Proposition 5.4. Let F (X, Y) =
∑n

k=0 Xkpk(Y) be irreducible. Suppose that for

some k, the function P (z) = pk(j(z))
pn(j(z))

satisĄes one of the following:

(i) P (z) has a pole in H, or
(ii) P (z) has exponential growth in some fundamental domain.

Then the equation F (z, j(z)) = 0 has a Zariski dense set of solutions.



EQUATIONS INVOLVING j, j′, j′′ 23

Proof. Suppose by contradiction that all the solutions of F (z, j(z)) = 0 lie on a
further hypersurface G = 0, where G ∈ C[X, Y] is a non-constant polynomial not
divisible by F . In particular, the algebraic subset of C4 deĄned by ¶F = G = 0♢ has
dimension two, so its projection onto the variables Y0, Y1, Y2 has dimension at most
two, meaning that the solutions satisfy an equation H(j(z)) = 0 for some non-constant
polynomial H ∈ C[Y]. The assumption on F implies that F depends on the variable
X (i.e. n ≥ 1), thus F and H are coprime.

By Propositions 4.1 and 5.3, for m ∈ Z large, there are regions Ξm such that the
original equation has solutions in m + Ξm, and moreover the real part of each Ξm

is bounded from above and below and the imaginary part is bounded from below
uniformly in m. Each solution can be in m + Ξm for at most Ąnitely many m ∈ Z.
This implies that for some m sufficiently large, the function H(j(z)) has inĄnitely
many zeroes in the region

⋃
♣k♣>♣m♣ Ek. If this union is bounded, then we conclude

that H is constantly zero by the identity theorem from complex analysis, but this
contradicts the algebraic independence of j, j′, j′′. So we assume that the union is
unbounded, but by Lemma 4.3 there exist α ∈ C×, d, e ∈ Z and C > 0 such that
H(z) ∼ αzd exp(e2πiz) in the region U := ¶z ∈ H : Im(z) ≥ C log ♣z♣♢. Then the only
way H can have inĄnitely many zeros in

⋃
♣k♣>♣m♣ Ek is if H is constantly zero, again

contradicting the algebraic independence of j, j′, j′′. This completes the proof. □

Corollary 5.5. Let F (X, Y) =
∑n

k=0 Xkpk(Y) be irreducible. Suppose that pn has a
factor h such that the equation h(j(z)) = 0 has a Zariski dense set of solutions. Then
the equation F (z, j(z)) = 0 has a Zariski dense set of solutions.

Proof. If n = 0, then by irreducibility F = p0 = h, and so the result is immediate. If
instead n > 0, then by irreducibility of F for some k ∈ ¶0, . . . , n−1♢, pk is non-zero and

not divisible by h. Then pk(j(z))
pn(j(z))

will have poles in H at those solutions of h(j(z)) = 0

which satisfy pk(j(z)) ̸= 0 (which exist since we are assuming Zariski density of the
solutions of h(j(z)) = 0). So now the corollary follows from Proposition 5.4. □

6. Zero Estimates

In view of the results in the previous section, we will now look at the poles of
quotients of the form pk(j)

pn(j)
, with pk, pn ∈ C[Y]. We keep using the notation introduced

in ğ5.1.
Given p ∈ C[X, Y], we will prove a few estimates on the order of p(z, j(z)) at

different points, distinguishing three cases. Before that, we note that specialising
the variables Y1 and Y2 of Γ(p) at some complex values will almost always return an
ŚobfuscatedŠ copy of the original polynomial, which for instance cannot be constant
unless p itself was. More precisely, we note the following trivial identity.

Lemma 6.1. For every α, β ∈ C with α ̸= 0 we have

Γ(p)

(
X, α−1U1, α

U2 − α−4βU4
1

2U3
1

, Y0, α2, β


= p(X, Y0, U2

1 , U2).

Proof. Immediate. □
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First, we consider unramiĄed points of j, that is, points τ ∈ H such that j′(τ) ̸= 0.
If (Y0 − j(τ))s divides p, then p(z, j(z)) has obviously order at least s at all conjugates
of τ . We show that the order is exactly s for most conjugates.

Proposition 6.2. Let p ∈ C[X, Y] be non-zero, τ ∈ H. Suppose that j′(τ) ̸= 0 and
let s be the maximum integer such that (Y0 − j(τ))s divides p. Then for all γ in a
Zariski open dense subset of SL2(Z), the function p(z, j(z)) has order s at z = γτ .

Proof. Let f ∈ C[X, Y] be such that p = (Y0 −j(τ))sf ; we need to show that f(z, j(z))
has order 0 at z = γτ , for all γ in a Zariski open dense subset of SL2(Z). In other
words, it suffices to prove the proposition for the case when p is not divisible by
Y0 − j(τ) (and hence s = 0).

From now on we assume s = 0. By Lemma 6.1 at α2 = j′(τ) ̸= 0, β = j′′(τ),
U2

1 = Y1, U2 = Y2, there are V1, V2 ∈ C(U1, U2) such that

Γ(p) (X, V1, V2, j(τ)) = p(X, j(τ), Y1, Y2).

Since p is not divisible by Y0 − j(τ), p(X, j(τ), Y1, Y2) is a non-zero polynomial, hence
in particular r(Z, W, C) := Γ(p)(Z, W, C, j(τ)) is also non-zero.

Now take γ =

(
a b
c d


∈ SL2(Z) and write

pγ(τ, j(τ)) = (cτ + d)nr(γτ, cτ + d, c) = (cτ + d)np(γτ, j(γτ),

where n = degX(p). In particular, p(γτ, j(γτ)) = 0 if and only if r(γτ, cτ + d, c) = 0.
The map υ : SL2(C) → C3 given by γ 7→ (γτ, cτ + d, c) is injective, and since

dim SL2(C) = 3 = dimC3, by the Ąbre-dimension theorem υ is also dominant. As r
is a non-zero polynomial, there is a non-empty Zariski open subset U1 of C3 such that
r never vanishes on U . This then gives a Zariski open subset U0 of SL2(C) such that
for every γ ∈ U0, υ(γ) ∈ U1. This implies that for γ ∈ U0, p(z, j(z)) does not vanish
at z = γτ , and hence p(z, j(z)) has order s = 0 at z = γτ . □

With this proposition we obtain the following special case of Theorem 1.2.

Corollary 6.3. The equation j(z) − u = 0 has a Zariski dense set of solutions if and
only if u /∈ ¶0, 1728♢.

Proof. If u /∈ ¶0, 1728♢, then for any τ ∈ H satisfying j(τ) = u we have that j′(τ) ̸= 0.
We need to show that the solutions of j(z) = u are Zariski dense. So suppose that
p(X, Y) ∈ C[X, Y] is such that its zero locus contains all the solutions of j(z) = u.
The solutions of j(z) = u are precisely SL2(Z)τ , where j(τ) = u, so p(γτ, j(γτ)) = 0
for all γ ∈ SL2(Z). Therefore p(z, j(z)) has positive order at γτ for all γ ∈ SL2(Z), so
by Proposition 6.2, Y0 − u divides p, thus proving Zariski density.

On the other hand, if u ∈ ¶0, 1728♢, then for any τ ∈ H satisfying j(τ) = u we
have that j′(τ) = 0, so the solutions of j(z) = u lie in the proper Zariski closed subset
given by Y1 = 0. □

Now we consider the behaviour of p(z, j(z)) towards the cusps of the fundamental
domains. We write TY := (TY0, TY1, TY2). One can easily see that the order at
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the cusp of any given fundamental domain is at least (−e, −N) for some N , where
e = degT (p(X, TY)). This is not far from the actual behaviour at most cusps.

Proposition 6.4. Let p ∈ C[X, Y]. Then there is 0 ≤ M ≤ degW (Γ(p)) such that
for all γ in a Zariski open dense subset of SL2(Z), the function p(z, j(z)) has order
(−e, −M) at the cusp of γF, where e is the degree of p(X, TY) in T .

Proof. Let n = degX(p), e = degT (p(X, TY)), and write

p(X, TY) =
e∑

k=0

T kpk(X, Y)

where each pk is homogeneous of degree k in the variables Y, namely

pk(X, TY) = T kpk(X, Y).

Since Γ(p)(Z, W, C, TY) = Γ(p(X, TY)), we have

Γ(p)(Z, W, C, TY) =
e∑

k=0

T kΓ(pk)(Z, W, C, Y),

and so each Γ(pk) is still homogeneous of degree k in Y.
Recall that for Im(z) → +∞, letting q = exp(2πiz) we have

j(z) = q−1 + O(1), j′(z) = −2πiq−1 + O(1), j′′(z) = −4π2q−1 + O(1).

Now Ąx some arbitrary γ =

(
a b
c d


∈ SL2(Z). We have

pγ(z, j(z)) = q−e(cz + d)nr(γz, cz + d, c) + O(q−e+1zn+N)

for Im(z) → +∞ in the standard fundamental domain, where N is the degree of Γ(p)
in the variable W , and

r(Z, W, C) := Γ(pe)(Z, W, C, 1, −2πi, −4π2).

More precisely, when c ̸= 0, letting M = degW (r), we can also say

pγ(z, j(z)) = q−e(cz)nr(a/c, cz, c) + O(q−ezn+M−1).

Therefore, the order of pγ(z, j(z)) at i∞ is (−e, −(n + M)), and so the order of
p(γz, j(γz)) is (−e, −M), unless the leading coefficient of r(a/c, W, c) vanishes or
c = 0.

To conclude, since the map γ 7→ (a, c) from SL2(C) to C2 is dominant, it suffices to
prove that r is non-trivial (like we did in the proof of Proposition 6.2). By Lemma 6.1
at α2 = −2πi, β = −4π, U2

1 = Y1Y
−1

0 , U2 = Y2Y
−1

0 , there are V1, V2 ∈ C(U1, U2) such
that

r(X, V1, V2) = Γ(pe)
(
X, V1, V2, 1, −2πi, −4π2


= pe


X,

Y0

Y0

,
Y1

Y0

,
Y2

Y0



= Y −e
0 pe(X, Y)

where the last equality follows from the homogeneity of pe. Since by assumption
pe ̸= 0, this shows that r is non-trivial, as desired. □
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Example 6.5. It is easy to construct examples where a function has no exponential
growth at some cusp. For instance, if p(Y) = 4π2Y0 + Y2, then

p(j(z)) = 4π2j(z) + j′′(z)

is bounded for z → i∞ in the standard fundamental domain. However, after the
transformation z 7→ −1

z
one gets

4π2j(z) + z4j′′(z) + 2z3j′(z)

which has order (−1, −4) at i∞, since z4j′′(z) is the dominant term. Note that here
4 = degW (Γ(p)).

There are also simple examples where the dominant terms cancel out at all cusps.
Take h(Y) = Y 2

1 − Y0Y2. Then

h(j(γz)) = (cz + d)4j′(z)2 − (cz + d)4j(z)j′′(z) − 2c(cz + d)3j(z)j′(z)

has order (−2, −3) for c ̸= 0, because j(z)j′′(z) ∼ (j′(z))2 ∼ −4π2q−2, and it has order
(−2, 0) for c = 0. On the other hand, degW (Γ(h)) = 4. Proposition 6.4 guarantees
that even though these cancellations may occur at all cusps, some term of maximal
exponential growth is not cancelled, at least generically.

Finally we compute the order of p(z, j(z)) at the points τ for which j′(τ) = 0,
namely the orbits of ρ and i. Here, the order is at least the maximum ν such
that T ν divides respectively p(X, T 3Y0, T 2Y1, TY2) (for the conjugates of ρ) and
p(X, T 2Y0 + 1728, TY1, Y2) (for the conjugates of i). This estimate is not sharp when
p depends on Y2, as we show in an example below, so we restrict to p ∈ C[X, Y0, Y1].

Proposition 6.6. Let p ∈ C[X, Y0, Y1], τ ∈ H, u = j(τ), and µ be the order of
j(z) − u at z = τ . Suppose that µ > 1. Then for all γ in a Zariski open dense
subset of SL2(Z), the order of p(z, j(z)) at z = γτ is the highest power of T dividing
p(X, T µY0 + u, T µ−1Y1).

Proof. The proof is very similar to that of Proposition 6.4. Write

p(X, T µY0 + u, T µ−1Y1) =
m∑

k=ν

T kpk(X, Y)

where each pk satisĄes the homogeneity condition

pk(X, T µY0, T µ−1Y1) = T kpk(X, Y0, Y1).

By assumption, pν ̸= 0. Since

Γ(p)(X, T µY0 + u, T µ−1Y1) = Γ(p(X, T µY0 + u, T µ−1Y1)),

we have

Γ(p)(T µY0 + u, T µ−1Y1) =
m∑

k=ν

T kΓ(pk)(X, Y)

and each Γ(pk) satisĄes the above homogeneity condition.
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Fix α0 ∈ C such that j(z) − u ∼ α0(z − τ)µ, and so also j′(z) ∼ µα0(z − τ)µ−1, for

z → τ , where by assumption µα0 ̸= 0. For γ =

(
a b
c d


∈ SL2(Z) we have

pγ(z, j(z)) = (cτ + d)nr(γτ, cτ + d, c)(z − τ)ν + O((z − τ)ν−1)

as z → τ , where
r(Z, W, C) := Γ(pν)(Z, W, C, α0, µα0).

It follows that the order of pγ(z, j(z)) at z = τ is ν as long as r does not vanish. Since
z 7→ γz is a diffeomorphism, this coincides with the order of p(z, j(z)) at z = γτ .

To conclude, since the map γ 7→ (γτ, cτ +d, c) is injective on SL2(C), hence dominant
on C3, we only need to show that r is non-trivial. Pick β0 such that β2µ

0 = α−1
0 and

U0 such that U2µ
0 = Y0. By Lemma 6.1 at α2 = µα0, β = 0, U2

1 = (β0U0)
−2(µ−1)Y1,

there are V1, V2 ∈ C(U1, U2) such that

r(X, V1, V2) = Γ(pν)(X, V1, V2, α0, µα0) = pk

(
X, α0,

Y1

(β0U0)2(µ−1)



= pν

(
X,

U2µ
0

(β0U0)2µ
,

Y1

(β0U0)2(µ−1)



= (β0U0)
−2kpν(X, Y0, Y1)

where the last equality is implied by the homogeneity condition. It follows that r is
non-trivial, as desired. □

Example 6.7. The above method fails when p depends on Y2. Indeed, to compute
say the order of p(j(γz)) at ρ, we would look at the maximum power of T dividing
pγ(X, T 3Y0, T 2Y1, TY2). However, if p contains Y2, then

Γ(p)(X, T 3Y0, T 2Y1, TY2) ̸= Γ(p(X, T 3Y0, T 2Y1, TY2)),

breaking the very Ąrst steps of the argument.
The order can indeed be higher than expected at all the conjugates of ρ or i. For

instance, for the polynomial

p(Y) = Y0Y2 − 2

3
Y 2

1 ,

the maximum power of T dividing p(T 3Y0, T 2Y1, TY2) is 4, however the function
p(j(z)) has order at least 5 at all conjugates of ρ: if j(z) ∼ α(z − γρ)3 for z → γρ,
then

p(j(z)) = α2(z − γρ)4


6 − 2

3
32 + O(z − γρ)


= O((z − γρ)5).

Corollary 6.8. For all p ∈ C[Y0, Y1], h ∈ C[Y0], and ℓ ≥ degY1
(p), if the function

P (z) :=
p(j(z), j′(z))

h(j(z))j′(z)ℓ

is non-constant, then it has a pole in H or it has exponential growth in some funda-
mental domains.
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Proof. Suppose that P (z) has no poles in H and has no exponential growth in any
fundamental domain. Without loss of generality, we may assume that p and h are
coprime.

Let β be a root of h(Y0) such that β /∈ ¶0, 1728♢, and let τ be such that j(τ) = β.
In particular, Y0 − β does not divide p. By Proposition 6.2, p(γτ, j(γτ)) ̸= 0 for all
γ ∈ SL2(Z) except for some proper Zariski closed set, and so P has a pole at γτ , a
contradiction. Therefore, h(Y0) is of the form αY s

0 (Y0 − 1728)t for some α ∈ C.
Now h(j(z))j′(z)ℓ has order 3s + 2ℓ at all the conjugates of ρ and 2t + ℓ at all the

conjugates of i, thus p(j(z), j′(z)) must have at least the same order at those points.
On writing p =

∑
ℓ′ Y ℓ′

1 pℓ′(Y0), Proposition 6.6 implies that each pℓ′(Y0) is divisible by

Y
s+⌈ 2(ℓ−ℓ′)

3
⌉

0 and by (Y0 − 1728)t+⌈ ℓ−ℓ′

2
⌉. In particular, whenever pℓ′ ̸= 0 we have

deg(p) ≥ deg(pℓ′) ≥ s + t +

⌈
2(ℓ − ℓ′)

3

⌉
+

⌈
ℓ − ℓ′

2

⌉
+ ℓ′ ≥ s + t + ℓ′ +

7

6
(ℓ − ℓ′),

with strict inequality if pℓ′ is not a constant multiple of Y
s+⌈ 2(ℓ−ℓ′)

3
⌉

0 (Y0 − 1728)t+⌈ ℓ−ℓ′

2
⌉.

On the other hand, by Proposition 6.4, on a Zariski open dense set of fundamental
domains, the denominator has order at most (−(s + t + ℓ), 0) at the cusp, while the
numerator has order at most (− deg(p), 0), thus whenever hℓ′ ̸= 0 we also have

s + t + ℓ′ +
7

6
(ℓ − ℓ′) ≤ deg(p) ≤ s + t + ℓ.

Since ℓ′ ≤ degY1
(p) ≤ ℓ and 7

6
> 1, it follows at once that ℓ = ℓ′ and that p = pℓ is a

constant multiple of Y s
0 (Y0 − 1728)tY ℓ

1 , and so that P (z) is constant. □

7. The Main Result

7.1. j-Homogeneous equations. Before tackling the general case of Theorem 1.2,
we look at equations of the form F (j(z)) = 0 where F ∈ C[Y] satisĄes the homogeneity
condition below.

DeĄnition 7.1. The j-degree of F ∈ C[X, Y] is the degree of F (X, Y0, T 2Y1, T 4Y2) in
T , which we denote degj(F ). We say that F is j-homogeneous if F (X, Y0, T 2Y1, T 4Y2)
is homogeneous in the variable T .

One of the easiest examples of a j-homogeneous polynomial is F = Y2, which has
j-degree 4. For the sake of exposition, we Ąrst sketch the proof of Zariski density for
this F , namely for the equation j′′(z) = 0.

First, we observe that for γ =

(
a b
c d


∈ SL2(Z),

(7.1) j′′(γz) = j′′(z)c4



(

z +
d

c

4

+ 2

(
z +

d

c

3
j′(z)

j′′(z)


 = j′′(z)c4h(z + d/c, z)

where h(X, W ) = X4+2 j′(W )
j′′(W )

X3. If we can Ąnd τ ∈ H such that j′′(τ) = 0 ̸= j′(τ), we

are done by Proposition 5.4, so suppose by contradiction that this does not happen. In
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this case, j′(z)/j′′(z) is bounded on the standard fundamental domain F: by construction,
it cannot have poles in H, and by looking at the q-expansions, it is also bounded for
Im(z) → +∞. This also implies that h(τ + d/c, τ) ̸= 0 for any d/c ∈ Q, τ ∈ H except
possibly when j′(τ) = 0.

Second, under the above assumptions, we shall verify that h(τ + r, τ) ̸= 0 for all
r ∈ R, τ ∈ H (Claim 7.3.1), and in turn deduce that

∣∣∣∣∣h
(

z +
d

c
, z

∣∣∣∣∣ ≥ ε

∣∣∣∣∣z +
d

c

∣∣∣∣∣

4

for all z ∈ F, for some ε > 0 (Claim 7.3.2).
In particular, for all z ∈ F we have

∣∣∣∣∣
j′(γz)

j′′(γz)

∣∣∣∣∣ ≤
∣∣∣∣∣

j′(z)

εj′′(z)

∣∣∣∣∣ ♣cz + d♣−2 =

∣∣∣∣∣
j′(z)

εj′′(z)

∣∣∣∣∣
Im(γz)

Im(z)
≤ 2M Im(γz)√

3ε

where M is a bound for
∣∣∣ j′(z)

j′′(z)

∣∣∣ on F, and so j′(z)
j′′(z)

→ 0 as Im(z) → 0. By the Schwarz

Reflection Principle, j′(z)
j′′(z)

extends to a holomorphic function on C that vanishes for

all z ∈ R, and is thus constantly 0, a contradiction.
For a general j-homogeneous F , we just need to Ąnd an appropriate generalisation

of Equation (7.1) and Ąll the details in the above sketch.

Lemma 7.2. Let F ∈ C[Y] be j-homogeneous. Then there are polynomials pk ∈ C[Y]

and h ∈ C[X, Y] such that for all γ =

(
a b
c d


∈ SL2(Z) with c ̸= 0 we have

F (j(γz)) = F (j(z))cN




N∑

k=k0

pk(j(z))

F (j(z))

(
z +

d

c

k

 = F (j(z))cNh(z + d/c, j(z)),

where N = degj(F ), pN = F , and 0 ̸= pk0 ∈ Y ℓ
1 · C[Y0] with 2ℓ ≤ k0.

Proof. Let F be as in the hypothesis. By j-homogeneity, we have that

Γ(F )(Z, W, C, Y) = F (Z, Y0, W 2Y1, W 4Y2 + 2CW 3Y1)

= CNF

(
Z, Y0,

W 2

C2
Y1,

W 4

C4
Y2 + 2

W 3

C3
Y1


.

Therefore, we can write Γ(F ) as

Γ(F ) = CN
N∑

k=0

pk(Y)
W k

Ck

where N = degj(F ). Let k0 be the least integer such that pk0 ̸= 0.
By a further application of j-homogeneity, we also have

Γ(F ) = W NY
N
2

1 F

(
Z, Y0, 1,

Y2

Y 2
1

+
2C

WY1


.
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It follows at once that the terms of maximum degree in W , which make up W N

CN pN , are

found by discarding 2C
W Y1

, and in particular we discover that pN (Y) = F (Y). Similarly,

the terms of lowest degree in W
C

are obtained by specialising at Y2 = 0 and taking the

least power of Y1, and so pk0 ∈ Y ℓ
1 · C[Y0]. Moreover, if t is the degree of F in Y2, we

have that k0 = N − t, ℓ = N
2

− t, thus 2ℓ ≤ k0. □

Theorem 7.3. For any irreducible j-homogeneous polynomial F (Y) /∈ C[X, Y0, Y1],
the equation F (j(z)) = 0 has a Zariski dense set of solutions.

Proof. Let F be as in the hypothesis and Ąx the polynomials pk, h as in the conclusion
of Lemma 7.2.

If some pk(j(z))
F (j(z))

has a pole in H or exponential growth in some fundamental domain,

we are done by Proposition 5.4. Therefore, we shall assume that this is not the case.
In particular, we assume that h(z + d/c, j(z)) has no pole in H for any d/c.

With this additional assumption, if F (j(τ)) = 0, then F (j(γτ)) = 0 for all γ ∈
SL2(Z). Since F is not divisible by Y0 − j(τ), Proposition 6.2 implies that j′(τ) = 0.
In particular, for any d/c, h(τ + d/c, j(τ)) = 0 implies that j′(τ) = 0.

Claim 7.3.1. For every u ∈ R, the function h(z + u, j(z)) has no zero in H.

Proof. Suppose h(τ +u, j(τ)) = 0 for some (τ, u) ∈ H×R. Since h(Z, Y) is monic in Z,
the analytic map (z, u) 7→ (h(z +u, j(z)), u) has Ąnite Ąbres, in particular of dimension
zero. Then the Open Mapping Theorem implies that the image of any ball around
(τ, u) contains an open neighbourhood of (0, u). In particular, for every rational
number r arbitrarily close to u, there is τr close to τ such that h(τr + r, j(τr)) = 0.

Since h is monic in Z, the polynomial h(τ + Z, j(τ)) is not identically zero, thus for
r sufficiently close to u we have h(τ + r, j(τ)) ̸= 0, and so τr ≠ τ . Therefore, the τrŠs
can be chosen to accumulate at τ for r → u. However, our assumptions imply that
j′(τr) = 0, so the τrŠs lie in a closed discrete subset of H (namely, the orbits of ρ and
i), a contradiction. ■

Claim 7.3.2. There is ε > 0 such that

♣h(z + u, j(z))♣ ≥ ε♣z + u♣N

for all z ∈ F and u ∈ R.

Proof. Our current assumptions imply that each pk(j(z))
F (j(z))

has no pole in F nor exponential

growth in F. Since these functions are in P rather than P(w), their order at ı∞ is
of the form (e, 0), thus at least (0, 0), and so they are bounded in F, say by M > 0.
In particular, since h is monic in Z, we have ♣h(z + u, j(z))♣ > 1

2
♣z + u♣N as soon as

♣z + u♣ > 2NM . On the other hand, ♣z + u♣ ≤ 2NM deĄnes a compact subset K of
F × R, and so the function ∣∣∣∣∣

h(z + u, j(z))

(z + u)N

∣∣∣∣∣

attains some minimum ε′ > 0 on K, since it does not vanish by Claim 7.3.1. The
conclusion follows on taking ε = min¶ε′, 1

2
♢. ■
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Therefore, for z ∈ F, we Ąnd that

♣F (j(γz))♣ ≥ ε♣F (j(z))♣cN

∣∣∣∣∣z +
d

c

∣∣∣∣∣

N

= ε♣F (j(z))♣♣cz + d♣N ,

and in particular for some M > 0 independent of z we have
∣∣∣∣∣
pk0(j(γz))

F (j(γz))

∣∣∣∣∣ =
♣pk0(j(z))♣♣cz + d♣2ℓ

♣F (j(γz))♣ ≤ ♣pk0(j(z))♣
ε♣F (j(z))♣ ♣cz + d♣2ℓ−N ≤ M Im(γz)ℓ− N

2 ,

where we have used that 2ℓ < N , and that for z ∈ F,
pk0

(j(z))

F (j(z))
is bounded while also

♣cz + d♣2 =
Im(z)

Im(γz)
≥

√
3

2 Im(γz)
> 0.

Therefore,
pk0

(j(z))

F (j(z))
→ 0 as Im(z) → 0, thus by SchwarzŠs reflection principle,

pk0
(j(z))

F (j(z))

has a holomorphic extension to C that is constantly zero on R, thus constantly zero
on C, hence pk0 = 0, a contradiction. □

Remark 7.4. Let S = ¶z ∈ H : F (j(z)) = 0♢ for some F as in Theorem 7.3. As
observed in the proof, every τ ∈ S that is not in the SL2(Z)-orbit of ρ or i must

also be a pole of some coefficient pk(j(z))
F (j(z))

appearing in Lemma 7.2. Combining this

information with Proposition 4.1, it follows that j(S) is inĄnite and every point of
j(S) \ ¶0, 1728♢ is an accumulation point of j(S).

7.2. Proof of Theorem 1.2. For the rest of the section, Ąx some F ∈ C[X, Y] and
let pk ∈ C[Z, C, Y] be polynomials such that

Γ(F )(Z, W, C, Y) =
N∑

k=0

pk(Z, C, Y)W k,

where N = degW (Γ(F )). Given a polynomial α ∈ C[X, Y], we will use the notation5

αN := ¶αs : s ∈ N♢.

Given different polynomials α1, . . . , αℓ ∈ C[X, Y], we use αN
1 · · · αN

ℓ to denote the set
of all products between elements of different αN

i .

Proposition 7.5. The polynomial pN is the sum of the terms of maximum j-degree
in F (Z, Y0, W 2Y1, W 4Y2). In particular, N = degj(F ), pN is j-homogeneous, and pN

does not depend on C.

Proof. Let XαY β0
0 Y β1

1 Y β2
2 denote a monomial, so α, β0, β1, β2 ∈ N. Observe that

Γ(XαY β0
0 Y β1

1 Y β2
2 ) = ZαY β0

0 Y β1
1 W 2β1+3β2(WY2 + 2CY1)

β2 .

Hence
degW (Γ(XαY β0

0 Y β1
1 Y β2

2 )) = 2β1 + 4β2

and the term accompanying W 2β1+4β2 is ZαY β0
0 Y β1

1 Y β2
2 .

5We remark that for us 0 ∈ N.
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Now write β = (β0, β1, β2) and

F (X, Y) =
∑

(α,β)∈N4

cα,βXαYβ,

where Yβ = Y β0
0 Y β1

1 Y β2
2 and cα,β ∈ C. Then, since Γ is a homomorphism by (O1),

Γ(F ) =
∑

(α,β)∈N4

cα,βΓ
(
XαYβ


.

Since N = degW (Γ(F )), then

pN =
∑

(α,β)∈N4:2β1+4β2=N

cα,βZαY β0
0 Y β1

1 Y β2
2 .

From this we see that pN does not depend on C and that pN is j-homogeneous. This
expression also gives us that pN is the coefficient of W N in F (Z, Y0, W 2Y1, W 4Y2),
and so N = degW (F (Z, Y0, W 2Y1, W 4Y2)) = degj(F ). □

DeĄnition 7.6. The j-order of F , denoted by ordj(F ), is the maximum power of T
dividing F (X, Y0, T 2Y1, T 3Y2).

Proposition 7.7. Let k0 be minimum such that pk0 ̸= 0. Then pk0 is the sum
of the terms of minimum degree in W of F (Z, Y0, W 2Y1, 2CW 3Y1). In particular,
k0 = ordj(F ) ≥ 2 degY1

(pk0) and pk0 does not depend on Y2.

Proof. We proceed as in the proof of Proposition 7.5. From

Γ(XαY β0
0 Y β1

1 Y β2
2 ) = ZαY β0

0 Y β1
1 W 2β1+3β2(WY2 + 2CY1)

β2

we see that the smallest power of W appearing in this expression is 2β1 + 3β2, and it
is accompanied by

2β2Cβ2ZαY β0
0 Y β1+β2

1 ,

which does not depend on Y2. Hence

pk0 =
∑

(α,β)∈N4:2β1+3β2=k0

cα,β2β2Cβ2ZαY β0
0 Y β1+β2

1 ,

which also shows that pk0 is the coefficient of W k0 in F (Z, Y0, W 2Y1, 2CW 3Y1). Using
the change of variables C = Y2

2Y1
, we conclude that k0 = degj(F ), and since k0 =

2β1 + 3β2 ≥ 2(β1 + β2) we have k0 ≥ 2 degY1
(pk0), concluding the proof. □

Corollary 7.8. If F /∈ Y N
1 C[X, Y0], then degj(F ) > 2 degY1

(pordj(F )).

Proof. One can immediately verify that

degj(F ) = degT (F (X, Y0, T 2Y1, T 4Y2))

≥ degT (F (X, Y0, T 2Y1, T 3Y2))

≥ ordT =0(F (X, Y0, T 2Y1, T 3Y2))

= ordj(F )

≥ 2 degY1
(pordj(F )),
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where ordT =0(P ) is the maximum power of T dividing P .
If the second inequality is an equality, then F (X, Y0, T 2Y1, T 3Y2) = T mF (X, Y0, Y1, Y2)

where m = ordj(F ). In particular,

degT (F (X, Y0, T 2Y1, T 4Y2)) = degT (T mF (X, Y0, Y1, TY2)) = m + degY2
(F ).

If the Ąrst inequality is also an equality, then degY2
(F ) = 0, and moreover F is

homogeneous in Y1 of degree m
2

, thus F ∈ Y N
1 C[X, Y0]. □

We can now prove the main result of this paper, Theorem 1.2, the statement of
which is recalled below for the convenience of the reader.

Theorem 1.2. For any polynomial F (X, Y) ∈ C[X, Y] \ C[X] which is coprime to
Y0(Y0 − 1728)Y1, the equation F (z, j(z)) = 0 has a Zariski dense set of solutions.

Proof. It suffices to prove the conclusion for F irreducible, not in C[X], and not a
constant multiple of Y0, Y0 − 1728, or Y1. Let n = degX(F ) and write

F Γ = (CX + D)nΓ(F )


AX + B

CX + D
, CX + D, C, Y



= (CX + D)n
N∑

k=0

pk


AX + B

CX + D
, C, Y


(CX + D)k

=
n+N∑

k=0

hk(A, B, C, D, Y)Xk.

We recall that F γ = F Γ(a, b, c, d, X, Y) for any γ =

(
a b
c d


∈ SL2(Z). If F ∈ C[Y0],

the conclusion follows by Corollary 6.3, so we may assume that this is not the case,
and in particular that n + N > 0.

We observe immediately that hn+N = CnpN(A/C, Y) using Proposition 7.5. More-
over, by Proposition 7.7,

h0 = Dn
N∑

k=0

pk(B/D, C, Y)Dk = Dn
N∑

k=ordj(F )

pk(B/D, C, Y)Dk.

We claim that for γ =

(
a b
c d


in some Zariski open dense subset of SL2(Z), we have

that hn+N (a, b, c, d, Y) has a factor r ∈ C[Y] such that the equation r(j(z)) = 0 has a
Zariski dense set of solutions, or that h0

hn+N
(a, b, c, d, j(z)) has a pole or exponential

growth in some fundamental domain. In particular, for any one of those γŠs we Ąnd
that

F γ(z, j(z)) =
n+N∑

k=0

hk(a, b, c, d, j(z))zk = 0

has a Zariski dense set of solutions (by Corollary 5.5 in the Ąrst case, and Propo-
sition 5.4 in the second one), hence so does F (z, j(z)) = 0 (by Proposition 5.1), as
desired.
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To prove the claim, we distinguish three cases.

Suppose that pN is not in Y N
0 (Y0−1728)NY N

1 C[Z]. Recall that pN is j-homogeneous
by Proposition 7.5. Since hn+N = CnpN(A/C, Y), if pN depends on Y2, so does
hn+N(a/c, Y) for all but Ąnitely many values of a/c.

If pN does not depend on Y2, then pN = Y N
1 h(A/C, Y0) for some polynomial h ∈

C[Z, Y0], and by assumption h(A/C, Y0) has at least one root distinct from 0 and 1728,
seen as a polynomial in Y0 (in an algebraic closure of C(A/C)), in which case so does
h(a/c, Y0) except for Ąnitely many values of a/c.

In either case, since the map γ 7→ a/c from SL2(C) to C is dominant, we get
that for all γ except on some proper Zariski closed subset of SL2(Z), the polyno-
mial hn+N(a, b, c, d, Y) = cnpN(a/c, Y) has an irreducible factor r ∈ C[Y] such that
r(j(z)) = 0 has a Zariski dense set of solutions (by respectively Theorem 7.3, after
noticing that the factors of a j-homogeneous polynomial are j-homogeneous, and
Corollary 6.3).

Suppose that F is in C[X, Y0]. By irreducibility of F , we have that F = F (X, Y0)
is not divisible by Y0 nor Y0 − 1728. In particular, pN = Γ(F ) = F (Z, Y0) is also not
divisible by Y0 nor Y0 − 1728, which puts us back in the previous case.

Suppose that pN is in Y N
0 (Y0 − 1728)NY N

1 C[Z] and F is not in C[X, Y0]. Write
pN = r(Z)Y s

0 (Y0 − 1728)tY ℓ
1 . Since F is irreducible, F is also not in Y N

1 C[X, Y0], thus
by Corollary 7.8,

2ℓ = 2 degY1
(pN) = degj(pN) = degj(F ) > 2 degY1

(pordj(F )).

Since the map γ 7→ (a/c, b/d, c) from SL2(C) to C3 is dominant, for γ in some Zariski
open dense subset of SL2(Z) we have

degY1
(pN(a/c, c)) = degY1

(pN) > degY1
(pordj(F )) = degY1

(pordj(F )(b/d, c, Y)),

in which case the function
pordj(F )(b/d,c,j(z))

pN (a/c,j(z))
has a pole at some τ ∈ SL2(Z)ρ ∪ SL2(Z)i

or exponential growth in some fundamental domain by Corollary 6.8 (recall that by
Proposition 7.7 we know that pordj(F ) does not depend on Y2). If we Ąx some b/d, c
as above, and a corresponding pole τ or a fundamental domain ηF with exponential
growth, then the function

h0(b/d, c, j(z))

hn+N(a/c, j(z))
=

dn

cnr(a/c)

N∑

k=ordj(F )

pk(b/d, c, j(z))

j(z)s(j(z) − 1728)tj′(z)ℓ
dk,

has no pole at τ nor exponential growth in ηF only when d satisĄes a non-trivial
polynomial equation over b/d, c. Since γ 7→ (b/d, c, d) is also a dominant map, for γ in a
Zariski open dense subset of SL2(Z) the above function has a pole at τ or exponential
growth in ηF, as claimed. □

7.3. Two more examples.
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Example 7.9. Let us apply Theorem 1.2 to get some information on the zeroes of
the function j′′′. From the differential equation of the j-function (2.2) we see that

j′′′ =
3

2
· (j′′)2

j′ − j2 − 1968j + 2654208

2j2(j − 1728)2
(j′)

3
.

By Theorem 1.2, the equation

(7.2) 3j2(j − 1728)2(j′′)2 −
(
j2 − 1968j + 2654208


(j′)4 = 0

has a Zariski dense set of solutions outside SL2(Z)ρ ∪ SL2(Z)i (this actually follows
directly from Theorem 7.3, because the equation is j-homogeneous). Then these are
also solutions of j′′′(z) = 0.

Upon applying the transformation z 7→ −1
z

we get

(7.3) z8
(
3j(z)2(j(z) − 1728)2j′′(z)2 −

(
j(z)2 − 1968j(z) + 2654208


j′(z)4



+ z712j(z)2(j(z) − 1728)2j′(z)j′′(z) + z612j(z)2(j(z) − 1728)2j′(z)2 = 0.

We can see that the ratios

12j2(j − 1728)2j′j′′

3j2(j − 1728)2(j′′)2 − (j2 − 1968j + 2654208) (j′)4

and
12j2(j − 1728)2(j′)2

3j2(j − 1728)2(j′′)2 − (j2 − 1968j + 2654208) (j′)4

are equal to 0 at i and ρ and do not have exponential growth in any fundamental
domain. However, we know that (7.2) has a zero τ /∈ SL2(Z)ρ ∪ SL2(Z)i. Therefore,
the second ratio above has a pole at τ , and so for all large enough m the equation
(7.3) has a zero near τ + m. This means that (7.2), and hence j′′′ = 0, has solutions
near − 1

τ+m
which accumulate at 0.

Example 7.10. Given an equation F (z, j(z)) = 0, our strategy of the proof of
Theorem 1.2 is to apply a generic SL2(Z)-transformation and show that in the
function F (γz, j(γz)) the ratio of the coefficients of the lowest and highest powers of
z has a pole at some point in τ or has exponential growth at a cusp. In some cases,
e.g. when F (X, Y) does not depend on X, we can keep things simple and just use the
good old transformation z 7→ −1

z
. Indeed, in this case it turns out that the coefficient

of the lowest power of z does not depend on j′′ and so we can apply Corollary 6.8.
For instance,

j′′


−1

z

2

= z8j′′(z)2 + 4z7j′(z)j′′(z) + 4z6j′(z)2.

We give an example to show that the transformation −1
z

and even a − 1
z

for any
integer a does not suffice in general (when F depends on X), as the aforementioned
coefficient may depend on j′′. Consider the function f(z) = 2j′(z) + zj′′(z). After a
z 7→ a − 1

z
transformation we get

f


a − 1

z


= 2z2j′(z)+


a − 1

z


(z4j′′(z)+2z3j′(z)) = az4j′′(z)+z3(2aj′(z)− j′′(z)).
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We see that the coefficient of z3 depends on j′′ regardless of the value of a.

Acknowledgement. We thank the referee for a thorough reading of the paper and
for numerous suggestions that helped us improve the presentation.
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