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Abstract: 12 

Oncomicrobes are estimated to cause 15% of cancers worldwide. When cancer whole genome 13 

DNA sequencing data (WGS) is collected, microbes present are also sequenced, allowing 14 

investigation of potential aetiological and clinical associations. Interrogating the microbial 15 

community for 8,908 patients encompassing 22 cancer types from the Genomics England WGS 16 

dataset revealed that only colorectal tumours exhibited unmistakably distinct microbial 17 

communities that can reliably be used to distinguish anatomical site (PPV=0.95). This pattern 18 

was validated in two other datasets. Potential clinical uses uncovered included accurate 19 

detection of alphapapillomaviruses (HPV) in oral cancers when compared to current clinical 20 

standards, and the detection of rare, highly pathogenic viruses (Human T-Lymphotropic Virus-21 

1). Biomarker investigations demonstrated statistically significant associations (P<0.05) 22 

between a subset of anaerobic bacteria and survival in certain subtypes of sarcoma. Our results 23 

contradict previous claims that each cancer type has a distinct microbiological signature, but 24 

highlight the potential value of microbial analysis for certain cancers as WGS of tumour 25 

samples becomes common in the clinic. 26 

 27 

Introduction 28 

Well characterised oncomicrobes (1) are attributed with causing 15% of cancers globally (2). 29 

These include Helicobacter pylori (gastric carcinoma), human papillomavirus (oral, cervical 30 



 

 2 

cancer, and others), hepatitis B & C viruses (hepatocellular carcinoma), Epstein-Barr virus 31 

(Hodgkin’s lymphoma, Burkitt’s lymphoma and nasopharyngeal carcinoma) (2), and HTLV 32 

viruses (Kaposi sarcoma and leukaemias) (3). Specific bacteria such Fusobacterium 33 

nucleatum, genotoxin-producing Escherichia coli, and sets of anaerobic bacteria have been 34 

implicated in colorectal and prostate cancer development, with proposed mechanisms 35 

including DNA damage and immune modulation (4-10). 36 

 37 

Large-scale national sequencing initiatives are leading to the establishment of genomic national 38 

medicine services (11-14). Whole genome sequencing (WGS) of tumour biopsies is likely to 39 

become routine, and its integration into standard clinical care is being considered (15). We 40 

previously used WGS data to survey the landscape of viral associations in human cancer (16) 41 

and have developed SEPATH (17) - a benchmarked approach to identifying microbes in human 42 

tissue WGS data. This approach removes human reads and classifies the remaining reads using 43 

Kraken (17, 18), which has demonstrated applications in clinical diagnostics and surveillance 44 

(19-22). WGS cancer data are considered low-biomass and are challenging to analyse, 45 

particularly distinguishing between biologically relevant and contaminant taxonomic 46 

classifications (23). The latter can arise through various forms of sample contamination as well 47 

as contaminated reference genomes. 48 

 49 

The Cancer Genome Atlas (TCGA) dataset has been investigated for microbial content several 50 

times (23-25). Poore et al. (25) investigated microbial classifications in the TCGA dataset 51 

(whole genome and RNA sequencing of blood and cancer samples) and reported that 32 cancer 52 

types exhibited distinct populations of microorganisms with machine learning predictors 53 

giving near-perfect accuracy at distinguishing between cancer types. There were several 54 

surprising findings in this manuscript. Notably, a high total number of sequencing reads were 55 

found in many tumours from sites with no established microbiome, for example glioblastoma.. 56 

Classifications of cancer types were also obtained using bacterial sequences in blood, even 57 

though the presence of microbial nucleic acids remains controversial (26-29) 58 

 59 

When re-examining this work, we found two fundamental methodological flaws(30, 31). 60 

First, errors in the processing methods and databases used resulted in millions of DNA 61 

sequence reads being misclassified as microbial across all cancer types. Second, errors in the 62 

methods used to correct batch effects created artificial signatures even when taxa (often 63 

extremophile and nonsensical) were absent in the raw data (30, 31). These observations led 64 

us to conclude that the microbiome classifiers of cancer presented by Poore et al. are 65 

incorrect and the article has since been retracted in light of our findings. Nevertheless, the 66 

authors still claim that the cancer microbiome signal is robust over a range of methodological 67 

variation(32), Also a, predominantly theoretical argument has emerged proposing that 68 

sparse/non-existent features becoming associated with disease type may not be evidence of 69 

information leakage (33). Underlying this controversy is that the machine learning models 70 

lack biologically plausible associations and confirmation in independent datasets.  71 

 72 

Here, we investigate the microbial content found within 8,908 patients from 22 different 73 

cancer types within Genomics England’s 100,000 Genomes Project sequencing data. This 74 

dataset demonstrates minimal batch effect, circumventing the need for batch correction 75 

approaches. We show that colorectal cancers demonstrate distinctive microbial features and 76 

validate this on two additional datasets (improved classifications of TCGA produced by Ge et 77 

al. (34) and PCAWG), utilising a total of n=21,327 whole genome sequencing samples to 78 

identify patterns in pancancer microbial structure and potential opportunities for translational 79 
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benefit. We additionally identify avenues for translational benefit in terms of infectious 80 

disease diagnosis and potential prognostic markers in sarcoma. 81 

 82 

 83 

 84 

Results 85 

Multiple steps were used to remove potential contamination including human sequence 86 

depletion, confidence thresholding and taxa exclusion. Homo sapiens sequences were still 87 

detected in 99.9% of samples despite the use of two methods of depletion (2 to 2,251,317 reads, 88 

median=368, Q1=225, Q3=578). These human counts were excluded as were known common 89 

bacterial contaminants (35) (full list of the genera identified and the taxa removed from 90 

community matrices are provided in table S1 and S2 respectively. All supplementary tables 91 

can be found in data file S1).  92 

 93 

Colorectal and oral cancers are dominated by genera with a high number of sequencing reads 94 

compared to other cancer types. Bacteroides, Parabacteroides, Blautia, Alistipes and 95 

Clostridium were the most common genera in colorectal cancer, whereas Prevotella, 96 

Fusobacterium, Veillonella, Actinomyces and Gemella were the most common genera in oral 97 

cancers (figure S1). Clustering of microbial detections revealed limited discernible structure 98 

by tumour site (figure 1). The strongest batch effect involved FFPE status, with weak batch 99 

effects observed for clinical sample geographical location and laboratory sample genomic 100 

medicine centre (figure S2). Biological sex demonstrated a strong split by the number of 101 

unclassified sequencing reads (figure S2G), likely reflecting additional low-complexity regions 102 

within the Y-chromosome. Within FFPE samples, colorectal cancer samples showed a small 103 

grouping, suggesting that there may be some use for identifying microbes in FFPE tissues from 104 

tumours with a higher microbial load. Recognising these variations, we filtered the dataset to 105 

limit these batch effects (for example by removing FFPE and PCR amplified samples) and 106 

curated a list of 495 genera that had potential to be informative of tumour site (table S3). 107 

Clustering the community matrix demonstrated that oral and colorectal microbial communities 108 

contain distinguishing features when compared to other cancer types (Figure 1). 201 genera 109 

were enriched (q<0.05, Fisher’s exact test with Benjamini-Hochberg Correction) in colorectal 110 

cancer and 114 in oral cancer (Tables S4 and S5, respectively). 111 

 112 

 113 

 114 

Elucidating Pan-Cancer Microbial Structure 115 

 116 

Our finding that only colorectal and oral tumours contain immediately distinctive microbial 117 

communities contrasts previous publications suggesting that the intra-tumoral microbial 118 

community is highly predictive of tumour site (25, 32, 36) including an updated analysis 119 

conducted on partitions of the TCGA data (32). We found that batch effects still exist even 120 

after this partitioning. The metadata features used in batch correction predicted disease type 121 

with high performance (median AUC: 0.975, Q1=0.94, Q3=0.99, 15 models contained PPV 122 

values between 0.99-1, figure S3). Additionally, when partitioning the data by the submitting 123 

centre, a single metadata feature ‘tissue source site label’ was highly predictive of disease 124 

type (median AUC: 0.92, Q1=0.89, Q3=0.96, figure S4). It is therefore unclear whether high 125 

performance in the updated models(32) is  really due to biological signal. We therefore 126 

constructed models in a similar fashion on the Genomics England dataset, with less 127 

observable batch effects (figure 2, S5, S6, S7). 128 

 129 
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Generally, our models achieved high AUC values (median: 0.85, Q1=0.79, Q3=0.89), high 130 

specificity (median=0.85, Q2=0.81, Q3=0.96), and reasonable sensitivity (median=0.67, 131 

Q1=0.56, Q3=0.73), but produced comparatively low positive predictive values (PPV; the 132 

probability of disease for a positive test result) (median=0.18, Q1=0.1, Q3=0.34) (figure 2). 133 

The model to predict colorectal cancer samples from all other tumour sites was the only 134 

model to perform significantly better than the negative predictor, with a high PPV of 0.95. It 135 

is noteworthy that the tumour sites with highest positive predictive values are those from 136 

bodily sites with more prominent and widely studied microbial biomass (colorectal, oral, 137 

upper gastrointestinal; PPV=0.95, 0.45, 0.39, respectively). Similar results were observed 138 

with models that were trained on data after applying a read threshold (figure S6) and after 139 

removing the majority of common sequencing contaminants (figure S7). Model feature 140 

importance can be found in table S6.  141 

 142 

Recently, the microbial composition of tumour samples from the TCGA dataset were profiled 143 

using updated methods revealing a much more sparse community than originally reported 144 

(34). We reanalysed this updated data and found that although there is still a strong batch 145 

effect, the results replicated our finding from the Genomics England cohort: that colorectal 146 

and head and neck tumours (including oral cancer) demonstrate distinctive microbial 147 

communities (figure S8). We identified 85 genera as significantly differentially present in the 148 

TCGA colorectal cohort (Benjamini-Hochberg adjusted Fisher’s exact tests, q<0.05, table 149 

S7). 69 of these (81%) were also significantly different in the Genomics England cohort 150 

(table S8). Of note, the overlapping genera contained known colorectal constituents as well as 151 

established taxa associated with cancer (for example Helicobacter and Fusobacterim). The 152 

colorectal cancer result was confirmed in a third cohort, Pan-Cancer Analysis of Whole 153 

Genomes (PCAWG) (n=5,041), containing n=2,462 tumour samples. 52 taxa exhibited 154 

differential abundance across all three cohorts (table S9, figure S9-S10). From these 155 

investigations, we conclude that microbial data would only be useful for predicting disease 156 

classification for a restricted set of human cancer types, with only colorectal cancer 157 

exhibiting statistical significance. 158 

 159 

 160 

 161 

 162 

Fungal Genera in Genomics England Dataset 163 

 164 

Fungal genera were sparse in the dataset. There was evidence for 113 distinct fungal genera in 165 

the dataset across 6,429 samples. After applying a read threshold of 10, filtering samples to be 166 

PCR-free, non-FFPE primary tumours, only 886 samples remained. 173 samples and 27 fungal 167 

genera had over 100 sequencing reads classified across all samples: Saccharomyces, 168 

Penicillium, Enterocytozoon, Clavispora, Sordaria, Fusarium, Cyberlindnera, Debaryomyces, 169 

Nakaseomyces, Aspergillus, Malassezia, Exophiala, Botrytis, Trichosporon, Alternaria, 170 

Moesziomyces, Meyerozyma, Fomitiporia, Pseudogymnoascus, Rhodotorula, Agaricus, 171 

Verruconis, Purpureocillium, Pyrenophora, Chaetomium, Beauveria, and Wickerhamomyces. 172 

100 of these samples were from colorectal tumours, 17 from lung, 16 from breast, 13 from 173 

sarcoma, 7 ovarian, and 6 renal. The remainder tumour types had fewer than five counts. 174 

Some of these genera may represent environmental or pathobiont species (such as Aspergillus 175 

(37) or Malassezia (38)) and some may originate from dietary sources (Saccharomyces (39) 176 

and Agaricus (40)).  177 

 178 

 179 
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 180 

Translational Opportunities for Intratumoural Microbial DNA 181 

 182 

We identified several potential clinical uses for identifying the microbial profile from tumour 183 

WGS data: Alphapapillomavirus detection that overlaps with somatic tumour features, 184 

identification of infectious disease (HTLV-1), and the use of anaerobic bacteria in 185 

prognostics.  186 

 187 

Head and neck cancer HPV-positive cases represent a distinct disease typically lacking 188 

somatic TP53 mutations and are associated with a favourable prognosis (41). We compared 189 

48 cases of Alphapapillomavirus detection in WGS data against the current gold standard test 190 

of mRNA PCR high-risk/tumourigenic subtypes of HPV. The performance using WGS data 191 

was excellent, with only one sample not matching the gold standard (n=48; sensitivity=100%, 192 

specificity=97.3%; Figure 3A). This sample had high HPV burden as detected by WGS and 193 

was likely a false negative result for the PCR-based test. As expected, all HPV-positive cases 194 

detected as positive (by Kraken or clinical diagnostics) lacked TP53 mutations (Figure 3). 195 

This highlights the use of applying a minimum read threshold for microbial classification 196 

using this pipeline, although a threshold of ten may not be optimal for other pipelines.  197 

 198 

One participant with invasive breast ductal carcinoma had a total of 172 reads with a 199 

Deltaretrovirus classification that were found in tumour and in matching blood samples. We 200 

described an ethical framework for reporting highly pathogenic sequences in WGS data and 201 

HLTV-1 was identified as a reportable actionable finding (42). All reads in our current 202 

analysis uniquely hit HTLV-1 sequences (E-values < 1x10-70 and percent identities of 100% 203 

in all BLAST alignments) with reads across the length of the HTLV-1 reference genome 204 

(Figure 3B). These results suggest strong evidence for the computational detection of HTLV-205 

1 in this participant. 206 

 207 

In previous work, we identified a set of five bacterial genera associated with aggressive 208 

prostate cancer (Anaerobic Bacterial Biomarker Set, ABBS: Fenollaria, Peptoniphilus, 209 

Anaerococcus, Porphyromonas, Fusobacterium) (4). The prostate cohort in Genomics 210 

England has limited survival events (n=3, figure S11). However, within the sarcoma cohort 211 

there was a significant association between the presence of at least one ABBS bacteria and 212 

survival (log-rank P=0.0093, figure 3C). This significant association was confirmed in 3/12 213 

sarcoma subtypes and within both genders (figure S12). 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

Colorectal Cancer-Specific Microbial DNA in Blood Samples 222 

 223 

We investigated our list of recurrent genera specific to colorectal tumours (n=52) in blood 224 

samples from the PCAWG cohort. Fishers’ exact tests for taxa showed that 34/52 (65.4%) 225 

were significantly differentially present in blood samples from colorectal patients with cancer 226 

compared to blood samples from patients with all other cancer types (q<0.05, table S10). 227 

These genera included Butyricimonas, Parabacteroides, Odoribacter, Shigella, Hungatella, 228 

Roseburia, Porphyromonas, Faecalibacterium, Blautia, Phocaeicola, Akkermansia, 229 
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Ruminococcus, Barnesiella, Anaerotignum, Gordonibacter, Bacteroides, Dialister, 230 

Clostridioides, Intestinimonas, Flavonifractor, Eubacterium, Parvimonas, Alistipes, 231 

Lachnoclostridium, Collinsella, Eggerthella, Anaerostipes, Anaerocolumna, Adlercreutzia, 232 

Christensenella, Phascolarctobacterium, Paraprevotella, Megasphaera, and Butyrivibrio . 233 

These observations indicate that bacterial DNA in the blood may have utility in the diagnosis 234 

of colorectal cancer.  235 

 236 

 237 

Discussion 238 

 239 

In this study we have demonstrated the landscape of microbes that can be identified in 240 

tumour whole genome sequencing data and identified potential translational opportunities 241 

including Alphapapillomavirus assessment, HTLV-1 identification and the potential use of 242 

ABBS genera in sarcoma prognosis. 243 

 244 

We show that oral and colorectal tumours contain distinctive microbial communities. To do 245 

this, we used dimensionality reduction (t-SNE), conventional statistics (Fisher’s exact tests) 246 

and reconstruction of machine learning models on cleaner datasets than originally published 247 

(tumour types included in different analyses is summarised in table S11) (25). This 248 

observation is replicated in three datasets (Genomics England, TCGA and PCAWG). 249 

Importantly and in contrast to previous analyses (31), the taxa that emerged as differentially 250 

present in colorectal and oral samples generally made biological sense. The results, although 251 

potentially of use in classification, may not have general relevance to cancer development, 252 

with the exception that a small number of known oncomicrobes (e.g. Helicobacter, 253 

Alphapapillomavirus and Fusobacterium) were identified.  254 

 255 

Microbial data in cancer whole-genome sequencing data as completed in our study presents 256 

distinct challenges when compared to conventional microbial analysis. These investigations 257 

are often considered “low biomass” and typically experimental protocols used to generate the 258 

datasets are not specifically designed for microbial investigations (i.e. adequate controls, 259 

extraction and sequencing protocols, large proportion of human sequencing reads). There is 260 

also a comparatively high amount of contamination, which can arise from multiple sources 261 

including exogenous (including sequencing reagents, ‘kitome’ and from sites distinct to the 262 

sampling site, i.e. patient skin), well-to-well contamination ‘splashome’ (43). These 263 

disproportionately impact low biomass studies, particularly when working with relative 264 

abundance data. 265 

 266 

We have minimised the impact of contamination on our results through various strategies 267 

such as the removal of ubiquitous taxa, the focus on biologically relevant results and the 268 

removal of microbes with low levels of evidence. We provide additional discourse on how 269 

we have mitigated the impact of contamination in our study (supplementary materials and 270 

methods). False positive classifications can arise through contaminated reference genomes. 271 

We would advise the use of curated Kraken databases that have screened genomes for 272 

contamination (such as EuPathDB(44) or GTDB(45)). To mitigate the misclassification of 273 

human reads we include a human reference genome which substantially limits, but does not 274 

entirely remove the misclassification entirely (further discussed in supplementary materials 275 

and methods) (30). As an additional filter, we would expect results from the analyses to make 276 

biological sense, which has not been the case in some studies (31). 277 

 278 
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With these improvements only the microbiome present in colorectal cancer can be reliably 279 

used to distinguish between tumour sites. Other cancer types including oral cancer and upper 280 

GI cancers had some distinct microbial features but these did not produce models 281 

significantly better than a negative predictor. While we present robust findings across three 282 

datasets, we for novel observations we advocate the validation of these results using an 283 

orthogonal technology (16S ribosomal sequencing for example). It is important to note that 284 

the TCGA and Genomics England datasets are not always directly comparable. For example, 285 

within TCGA, data is split into colon and rectal, whereas in Genomics England it is grouped 286 

as colorectal. Additionally, in Genomics England, “Upper Gastrointestinal” includes 287 

oesophageal and gastric tumours. Classification performance might have been improved by 288 

separating these subtypes. Cervical cancer is not available in the Genomics England dataset. 289 

Some cancer types were omitted from analyses due to low sample numbers. and despite this, 290 

the key finding that the use of microbiome in the classification of colorectal cancer was 291 

validated in both the PCAWG and TCGA datasets. 292 

 293 

Our results align with the expectation that there is a higher microbial biomass in 294 

oral/colorectal tissue sites compared to other sites that do not hold a known microbial 295 

community (e.g. brain), and do not support the existence of a specific ‘cancer microbiome’. 296 

On the application of a minimal read threshold, most taxonomic classifications are removed 297 

from non-oral non-colorectal tumours (figure S13). This is a necessary step to remove many 298 

false positive classifications and we provide an additional description of (this supplementary 299 

materials and methods). 300 

 301 

Some tumour types are well known to have causal associations with the presence of viruses 302 

and bacteria (2). Although they are often causal for a single cancer site, such sequences are 303 

frequently found in multiple locations limiting their use as classifiers for individual cancer 304 

types. This was demonstrated in our previous studies where we examined the landscape of 305 

viruses in human cancer (16). Despite the limited use of microbial composition in 306 

distinguishing cancer types, our results support the clinical utility of using microbial data in a 307 

number of additional specific contexts: in detecting specific viruses such as HPV and HTLV-308 

1, and in the use of anaerobic bacteria in predicting prognosis. 309 

 310 

Detecting HPV in oral/oropharyngeal carcinoma indicates a distinct biology and is already 311 

used in clinical staging (46). We show here that HPV can be identified at high performance 312 

alongside tumour somatic features with no additional cost. HTLV-1 is a pathogen most 313 

commonly known for causing adult T-cell leukaemia and lymphoma (2). It is a retrovirus that 314 

causes lifelong infections and is predominantly transmitted through breast feeding, sexual 315 

contact, needle sharing and blood transfusions. This highlights how identifying evidence of 316 

infectious disease should be considered as whole genome sequencing increasingly becomes 317 

adopted into clinical practice. Thirdly we identified anaerobic bacteria as a potential 318 

prognostic marker in subtypes of sarcoma. This association is supported by mechanistic 319 

considerations and further research could be done to uncover the exact nature of the 320 

association (4, 47). We also demonstrate that identifying DNA from colorectal-specific 321 

genera in blood samples from colorectal cancer patients could be useful for diagnosing 322 

patients. However, the presence of microbial nucleic acids in blood is controversial (27), and 323 

these results should be validated using an independent cohort. Further research could 324 

establish whether the detected microbial DNA originates from viable microbes or degraded 325 

fragments.  326 

 327 
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Overall, our results show that as whole genome sequencing of tumour samples becomes 328 

increasingly used in hospitals, there is potential for the examination of microbial composition 329 

to aid in clinical decisions with no additional financial burden. 330 

 331 

 332 

 333 

Materials and Methods 334 

 335 

Study design 336 

 337 

In this study, the microbial content of N=11,735 human cancer samples from Genomics 338 

England’s 100,000 Genomes Project was analysed (48). The aims were to investigate 339 

microbial structure between tumour types and to search for potentially clinically useful 340 

associations. This was carried out with conventional statistics (Fisher’s exact tests), 341 

dimensionality reduction approaches and machine learning approaches. Findings were 342 

validated in the PCAWG dataset (N=5,041, including n=2,462 tumour samples) (16, 49) and 343 

the TCGA dataset (N=4,551) (34). 344 

 345 

 346 

Data 347 

Community matrices, analysis scripts and the reads unmapped to the human genome are 348 

available within the Genomics England research environment for researchers to access. The 349 

community matrix used can be located at the file path: 350 

/re_gecip/shared_all_GeCIPs/Abe/all_kraken_community.tsv. Community matrices for the 351 

PCAWG cohort can be found in tables S12-S14 which depict the number of reads, the 352 

number of k-mers and the coverage of the clade in the database, respectively. The TCGA 353 

reclassifications of Ge et al. (34) as used in this manuscript are included as table S15. Users 354 

of these community matrices are strongly advised that they likely contain contamination and 355 

false positive microbial classifications and should be interpreted with caution (31). These 356 

datasets should be used within the context of hypothesis generation and ideally any claims 357 

supported with additional experimental evidence. 358 

 359 

 360 

Statistical analysis 361 

 362 

Unless otherwise specified, all statistical analysis was carried out in R (version 4.2.1). 363 

Fisher’s exact test was conducted using the fisher.test function. Statistical significance was 364 

concluded at P<0.05 (or Q<0.05 for adjusted P-values). False discovery correction was 365 

carried out using the p.adjust function in R using the Benjamini-Hochberg correction 366 

(method=’BH’). Gradient boosted machine learning models were constructed using scripts 367 

adapted from Poore et al. (25). Training-test splits of the data (70% and 30% respectively) 368 

were constructed using the splitstackshape R package and stratified by 369 

‘tissue_source_site_label’ for TCGA data partitioned by ‘data_submitting_center_label’. 370 

 371 

For survival analysis, metadata and clinical data was accessed via Rlabkey API within 372 

Genomics England’s research environment using release version “main-373 

programme_v12_2021_05_06”. Date of death was found in either “mortality” or 374 

“death_details” datasets, which are provided to Genomics England from the Office of 375 

National Statistics and NHS Digital, respectively. For non-deceased participants, date when 376 

they were last seen was inferred from the most recent event from “hes_ae” “hes_apc” 377 
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“hes_cc” “hes_op” which detail hospital episode statistics from accident and emergency, 378 

admitted patient care, critical care and outpatients respectively. Date of tumour collection 379 

was obtained from the cancer_analysis dataset. Days to event was calculated as time from 380 

sample collection until date of death or the date the participant was last seen and was divided 381 

by 365 to convert to years. Survival objects were created using the Surv function (survival R 382 

package, version 3.2.3). Survival models were fit with the survfit function (survival R 383 

package) and differences examined using log-rank test. Figures were produced with 384 

ggsurvplot function (survminer R package, version 0.4.7). Sarcoma disease subtype was 385 

inferred from disease_sub_type of the cancer_analysis data. 386 

 387 

 388 

 389 

Taxonomic Classification of Tumour Whole Genome Sequences 390 

 391 

Samples were collected and processed as per the 100,000 Genomes Project Trial Protocol 392 

(50) and sequenced with the Illumina HiSeq X platform. Sequencing reads were aligned to a 393 

human reference genome (GRCh38) with Illumina iSAAC aligner to produce BAM files. 394 

These BAM files were processed using the SEPATH pipeline (17). In brief, paired-end reads 395 

were extracted if either the forward or the reverse read was unaligned to the human reference 396 

using the PySAM package. These sequencing reads were quality trimmed with Trimmomatic 397 

with parameters: “SLIDINGWINDOW:4:20 MINLEN:35”. The remaining reads were 398 

subject to additional human read depletion using BBDuK (51) using GRCh38, all CDS 399 

sequences in the COSMIC database and additional African human genome variation, with 400 

parameters k=30, mcf=0.5 such that at least 50% of the bases in a sequencing read must be 401 

covered by k-mers present in the reference database for removal. The remaining reads were 402 

subject to taxonomic classification with Kraken (version 1) (18) using a database containing 403 

the human genome (GRCh38) and all bacteria, viral (which includes bacteriophages), fungal 404 

and protozoal genomes at the scaffold level and above (constituent genomes can be found at 405 

https://zenodo.org/records/15739381). A confidence threshold of 0.2 was applied to Kraken 406 

reports such that a minimum of 20% of the k-mers in a sequencing read must be assigned to a 407 

clade for taxonomic classification or the read will remain unclassified. 408 

 409 

 410 

Feature Selection and Dimensionality Reduction 411 

 412 

The sample-taxa Kraken community matrix had a minimum number of 10 reads required for 413 

classification, which appeared  to remove a high proportion of classifications with low-level 414 

of evidence (see figure 3A and figure S13). Samples were filtered to represent non-FFPE, 415 

PCR-free, primary tumour samples from cancer types: adult glioma, colorectal, lung, 416 

prostate, bladder, endometrial, malignant melanoma, renal, breast, haematological, oral, 417 

sarcoma, hepatopancreatobiliary, and ovarian. Taxa with total counts across all samples 418 

below 100 were removed from further analysis. Although they may contain biologically 419 

relevant taxa, we removed human classifications and suspected sequencing contaminants 420 

from the community matrices (table S2). This list was informed by investigations into 421 

contamination (35, 52) and ubiquitous presence in the dataset (Toxoplasma, Mycobacterium, 422 

Candidatus Pelagibacter). Although this list may contain biologically relevant taxa, it was 423 

expected that removing these genera would increase biological signal relative to noise 424 

introduced by contamination. Achromobacter was also highly prevalent in the dataset but as 425 

ubiquitous as the former three bacteria. It was therefore left in but may resemble 426 

contamination, an opportunistic pathogen or a mixture of both (53).  Gradient-boosted 427 

https://zenodo.org/records/15739381
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machine learning models were constructed to predict the tumour site of a sample compared to 428 

all others for each tumour site individually using scripts provided by Poore et al. (25) 429 

(without supervised normalisation). The top 1,500 genera ranked by their feature importance 430 

scores of each model were extracted. The community matrix was further filtered to include 431 

any of the taxa that arose as informative in this feature selection. 495 microbial genera 432 

remained after this filtering (table S3). Of the remaining samples and remaining taxa, a 433 

distance matrix was constructed using the distanceMatrix function (ClassDiscovery R 434 

package). The distance matrix was subject to t-SNE (Rtsne R package) with parameters: 435 

dims=2, perplexity=80, max_iter=2000, check_duplicates=TRUE. 436 

 437 

 438 

Mutation Calling and Analysis 439 

 440 

All Genomics England somatic genomic samples have a matched germline, sequenced at 441 

100x and 30x respectively. Samples were sequenced with 150bp paired-end reads in a single 442 

lane of Illumina HiSeq X and processed by the illumina North Star Version 4 Whole Genome 443 

Sequencing Workflow (NSV4, version 2.6.53.23). The workflow uses iSAAC Aligner 444 

(version 03.16.02.19)(54) against the Homo Sapiens NCBI GRCh38 assembly with decoys 445 

and the small variant caller Strelka2 (version 2.4.7) (55), which performs a probabilistic 446 

subtraction of tumour-normal for the somatic calls. SNVs and indels were then annotated 447 

using CellBase, an in-house tool with more than 99% agreement with the Ensembl VEP 448 

Consequence type. Non-synonymous variants of moderate or high impact, according to the 449 

Ensembl variant consequence list, were investigated in oral/oropharyngeal cohort. These 450 

were identified by using functions provided by Genomics England (01.functions.R) available 451 

within Genomics England’s research environment. These functions compile the variants for a 452 

given gene across the cohort. Small gene variants of moderate or high impact were 453 

determined by the following consequence types: transcript ablation, splice acceptor variant, 454 

splice donor variant, stop gained, frameshift variant, stop lost, start lost, transcript 455 

amplification, inframe insertion, inframe deletion, inframe variant, missense variant, splice 456 

region variant. Samples with no identified small variants were considered wild-type. 457 

 458 

 459 

Clinical HPV Diagnostics 460 

 461 

The diagnostic pathway for oropharyngeal cases involved routine testing for p16 by 462 

immunohistochemistry. Samples were labelled HPV-positive if p16+ only (as this has 463 

been accepted as a robust proxy measure for HPV status). 464 

 465 

 466 

 467 

HTLV-1 Investigation 468 

 469 

Participants demonstrating fewer than 20 genus level reads for each of the infectious agents 470 

described in Magiorkinis et al. 2019 (42) (HIV, HBV, HCV, HTLV-1) were considered false 471 

positive classifications. Only one participant in the cohort was identified as positive for 472 

HTLV-1. In total, 172 sequencing reads from the tumour and germline sample with any 473 

Deltaretrovirus classification as reported by Kraken were extracted and subject to a BLASTn 474 

(56) via the online suite with standard databases (nr/nt nucleotide collection) optimised for 475 

highly similar sequences (megablast). The query reads from both samples were aligned to 476 
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HTLV-1 reference genome (NC_001436.1) using BWA-MEM (57) with standard parameters 477 

which was subsequently visualised with IGV version 2.9.4 (58). 478 

 479 

 480 

 481 

Supplementary Materials: 482 

 483 

Figures S1-13 484 

Tables S1-15 (in data file S1) 485 

MDAR checklist 486 

Supplementary Materials and Methods 487 
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 750 
Figure 1 –Pan Cancer Microbial Structure in Genomics England cohort. A) Microbial load shown as total 751 
bacterial reads per million human reads across tumour types. B) t-SNE plot of Kraken results of 8,103 non-FFPE, 752 
PCR-free, primary tumour samples within Genomics England’s 100,000 Genomes Project that have been reduced 753 
to include 495 genera (table S3. Each point represents a sample coloured by tumour site. t-SNE was carried out 754 
on a matrix of Spearman’s correlation values between samples. This analysis shows on only the predominant 755 
tumour types in the cohort. Tumour types with smaller sample sizes were omitted: carcinoma of unknown 756 
primary, childhood, endocrine, nasopharyngeal, other, sinonasal, testicular, and upper gastrointestinal. Please 757 
note that tumour types such as hepatopancreatobiliary cancer also contain multiple cancer types. 758 

 759 
Figure 2 –Performance of machine learning classifiers to predict one tumour type from all others based on 760 
microbial content in Genomics England. Data used is the raw community matrices data (Voom transformed). 761 
Tumours included are only primary tumours, PCR free from fresh frozen tissue. Carcinoma of unknown primary, 762 
nasopharyngeal, 'other’, endocrine and sinonasal tumours have been excluded due to small sample sizes.  763 

https://archive.jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-user-guide/
https://archive.jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-user-guide/
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 766 
Figure 3 –Translational opportunities for identifying microbial DNA in human cancer sequencing data. A) 767 
Alphapapillomavirus classification in oral/oropharyngeal primary (triangle) and metastatic (circle) tumour 768 
samples. The y-axis denotes the number of genus-level Alphapapillomavirus reads and the x-axis denotes clinical 769 
diagnostic test results for HPV. Point color indicates the consequence of small gene variants of the TP53 gene. 770 
Samples with no consequence detected were presumed to be wild type (WT). 38 samples were HPV-negative by 771 
clinical diagnostics, and 10 HPV-positive. B) Alignment of HTLV-1-classified reads (Kraken) from breast tumour 772 
and germline samples from one participant. The image shows the alignment viewed with IGV. The top track 773 
denotes coverage for particular regions (maximum coverage = 13). Coloured regions indicate single nucleotide 774 
differences present in the reads and not the reference genomes (orange=G, blue=C, red=T, green=A). In total 172 775 
quality-trimmed, human-depleted reads were subject to alignment (66 and 106 reads from the tumour and 776 
germline sample, respectively). C) Kaplan-Meier plot investigating survival in the sarcoma cohort for samples 777 
positive for at least one ABBS genus (Anaerobic Bacterial Biomarker Set). This includes Fenollaria, Ezakiella, 778 
Peptoniphilus, Porphyromonas, Anaerococcus and Fusobacterium. P=0.0093 was obtained using the log-rank 779 
test. Time was measured by years from sample collection. 780 
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