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 A B S T R A C T

In the era of big data, data-driven methods have emerged as strong competitors to traditional 
econometric models for analysing choice behaviour. In particular, data-driven models offer 
flexible classification methods that are well-suited to capturing the heterogeneity among 
decision makers and improving model fit. A key limitation of the purely data-driven models, 
however, is the difficulty in the calculation of welfare measures, such as the value of travel 
time estimates (VTT) that are essential for cost–benefit analyses. This motivates the current 
study which focuses on combining data mining based segmentation approaches used in ML with 
traditional discrete choice models (DCM) to get the best of both - a clustering-based component 
to capture the heterogeneity among the travellers and a utility-based choice component that 
is suitable for quantifying policy-relevant measures, such as VTT estimates. In the proposed 
hybrid framework, travellers are probabilistically allocated into clusters based on their degree 
of similarity from each cluster and cluster-specific random-utility-based mode choice models 
are estimated simultaneously. The proposed hybrid framework is tested on 2 RP datasets (a 
GPS diary and a traditional household survey) and on 3 different choice contexts, providing a 
range of different sample sizes and data complexity. The performance of the proposed hybrid 
model (H-LCCM) is compared with that of the traditional latent class choice models (LCCM), 
where both the class membership and mode choice components are based on utility-based 
frameworks and two other state-of-the-art ML-assisted LCCM frameworks. Results indicate that 
H-LCCM outperforms the remaining specifications in the majority of the contexts examined, 
while offering a more scalable approach for contexts with a large number of observations (which 
is the case for big data sources) and/or with large choice sets (which is typical in spatial choice 
contexts). The proposed framework is practically applicable for policy-making as it allows the 
calculation of VTT estimates, therefore not sacrificing the microeconomic interpretability of 
traditional DCMs. The results are promising, especially in the current era of big data and are 
expected to contribute to the emerging literature looking at cross-synergies between traditional 
econometric approaches and new data-driven methods.

1. Introduction

During the last decade, the abundance of passively generated location data has provided interesting insights into human mobility 
behaviour. For instance, GPS traces, mobile phone call detail records, and public transport smart card data, to name but a few, not 
only provide digital footprints of a very large sample of travellers, but often also have repeated observations of the same person 
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over a long period of time. The panel nature of the data provides rich insights into the similarity/dissimilarity of the travellers, 
which can be used to better capture the heterogeneity in their travel decisions.

Deriving ‘value’ out of these new forms of data, however, typically requires significant pre-processing and the use of methods 
from distinct fields of research (e.g. Computer Science) (Antoniou et al., 2019). In addition to that, the massive size of the data 
has started to highlight the limitations of well-established tools and methods for their analysis and the scope for improvements 
(Milne and Watling, 2019). This has led to an increase in the popularity of Machine Learning (ML) techniques. In particular, data 
mining techniques have been widely used in capturing patterns in the data (Crawford, 2017; Hasan and Ukkusuri, 2018) and hold 
the promise to better capture the behavioural heterogeneity among individuals.

Originating from the field of Computer Science, ML algorithms are generally characterised as non-parametric methods (with some 
exceptions) aiming to minimise the errors between actual and predicted outcomes without relying on any behavioural assumptions 
about the underlying model. ML encompasses a large array of algorithms, which can be broadly categorised into supervised and 
unsupervised learning. A wide range of studies have implemented clustering algorithms (unsupervised learning) to analyse individual 
behaviour and uncover mobility patterns (Joh et al., 2001; Hasan and Ukkusuri, 2014, 2015; Anda et al., 2017; Crawford, 2017; 
Hasan and Ukkusuri, 2018; Song et al., 2021). Though such studies provide good insights into the state of the network, they have 
limited applications in the context of predictions and/or valuation (e.g. calculation of the value of time estimates to feed into the 
cost–benefit analyses).

Travel behaviour researchers have arguably shown a larger interest in the use of supervised ML algorithms, such as Artificial 
Neural Networks and Random Forests, and on their comparison with traditional econometric Discrete Choice Modelling (DCM) 
frameworks, such as Multinomial logit (MNL) and Nested Logit (NL) models, usually in the context of mode choice (Hensher and 
Ton, 2000; Xie et al., 2003; Cantarella and de Luca, 2005; Zhang and Xie, 2008; Sekhar et al., 2016; Hagenauer and Helbich, 
2017). Their findings at large suggest that ML algorithms have the potential to be used as an alternative method for behavioural 
modelling due to their superior predictive performance, although even early work by Hensher and Ton (2000) already highlighted 
the limitations associated with the lack of interpretable results compared to a DCM framework.

The majority of studies from that initial stream of literature is subject to three key limitations. Firstly, they relied on data collected 
using traditional methods (e.g. single RP choice scenarios, short trip diaries, etc.) where the advantages of using ML are likely to 
be limited. Secondly, these studies did not compare the model performance to that of more advanced discrete choice models that 
account for heterogeneity among groups of decision-makers. Thirdly, those earlier studies focused on comparing the goodness of fit 
and/or prediction capabilities of ML and DCM as opposed to a more in-depth effort of formulating models that combine the best 
of both worlds – the computational advantages of data mining that can more efficiently uncover associations within complex data 
and the behavioural interpretation of DCM that can produce outputs suitable for valuation and cost–benefit analysis. It is therefore 
worth investigating the performance on passively collected large samples (with repeated observations), to extend the work to more 
advanced discrete choice models, and to go beyond model fit in comparisons.

Wang et al. (2021a) aimed to generalise the empirical results of the studies so far by comparing a vast range of ML algorithms and 
choice models on a range of different datasets concluding that it would be advantageous to use ML algorithms for predicting travel 
behaviour, while also highlighting the need for DCM to improve their computational efficiency to be more suitable for estimating 
models on large datasets. These initial studies have also motivated researchers to investigate methodologies to combine the ML 
and DCM paradigms. More specifically, data mining techniques can provide a more flexible and scalable approach for identifying 
patterns in recent datasets of increasing complexity, both in terms of size (larger samples) and type (text and images). DCM, with 
their econometrics grounding and strong theoretical underpinnings of human behaviour (McFadden, 1973, 1978; Ben-Akiva and 
Lerman, 1985; McFadden, 2000; Train, 2009), can provide behavioural insights that can be used for policy making (e.g. Values 
of Travel Time), while also providing clear interpretations on the impact of the utilised independent variables and their statistical 
significance. Hence, cross-fertilisation of ML approaches with DCM is very appealing for policy analyses to get the best out of 
both worlds (van Cranenburgh et al., 2022). Prominent examples of combining DCM and ML include the studies of Sifringer et al. 
(2020), Wang et al. (2021b) and Wong and Farooq (2021) in all of which Deep Learning architectures have been integrated with 
DCM specifications in the context of mode choice, risk and time preference.

In a similar notion, there have been attempts to harness the power of unsupervised learning for uncovering latent segments of 
the population to aid the estimation of advanced choice models, namely Latent Class Choice Models (LCCM) (Kamakura and Russell, 
1989). An LCCM framework is typically used to simultaneously identify latent classes of individuals in the sample (class allocation 
component) and to understand their observed behaviour (behavioural model) in a joint estimation process. LCCMs can provide rich 
behavioural insights that can help the analyst to link types of individuals to unique styles of mobility behaviour -originally latent-, 
which can help to design policy measures more suitable to the needs of the underlying population (Vij et al., 2013). In a recent 
series of studies, Sfeir et al. (2021) and Sfeir et al. (2022) provided significant research advancements towards that direction by 
integrating probabilistic ML algorithms, namely Gaussian mixture models and Gaussian processes respectively, into a Latent Class 
Choice Model (LCCM) framework effectively replacing the random utility-based class allocation component with ML algorithms. 
In both cases, their proposed specifications were tested on models of mode choice behaviour using traditional Revealed (RP) and 
Stated Preference (SP) datasets. Overall, the non-parametric Gaussian processes outperformed the Gaussian mixture variants of 
LCCM and the traditional LCCM in terms of model fit and estimation stability, while also resulting in estimates with behaviourally 
consistent signs. Nonetheless, the models in those studies were estimated only on traditional RP and SP data and it is not clear if 
that ML-DCM integration can provide additional benefits when used for modelling travel behaviour in the context of passively 
generated big data sources where the increased number of observations per traveller could offer a more detailed depiction of 
the underlying heterogeneity. Furthermore, the Gaussian process LCCM models would require an additional specification test to 
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find the best-performing kernel function out of a range of available functions and additional time to calibrate it, which according 
to the authors will ‘‘add further burden to the modeller’’ (Sfeir et al., 2022). Finally, both models, Gaussian mixture and Gaussian 
process LCCMs, would require more estimated parameters than the traditional LCCM specification leading to generally more difficult 
estimation processes. That could also result in limitations in terms of the sample sizes used in estimation and therefore in the potential 
heterogeneity to be captured and in terms of use cases, such as choice contexts with large choice sets. This highlights the need of a 
simpler approach based on similar principles that can highlight the benefits of incorporating data mining techniques with DCM in 
large-scale datasets, while not sacrificing the interpretability of DCM so that they can be used for policymaking.

The present research aims to contribute to the above stream of literature by proposing an approach that integrates a probabilistic 
clustering algorithm, namely K-means clustering, in LCCM analysis. Several studies have used clustering techniques for market/sam-
ple segmentation (Salomon and Ben-Akiva, 1983; Lanzendorf, 2002; Krizek and Waddell, 2003) reporting that different lifestyle 
clusters (empirically identified) could have different choice elasticities. Nonetheless, the clustering algorithms in those studies were 
used to deterministically allocate individuals into clusters, while the clustering process was independent from the choice behaviour 
itself. More recently, Hafezi et al. (2019) utilised a probabilistic clustering approach, Fuzzy C-Means, to allocate individuals to 
homogeneous clusters of activity schedules by a probability that is relative to the distance of each data point (person-day activities) 
from all the cluster centroids. Despite taking advantage of a probabilistic approach leading to richer behavioural outcomes, the 
clustering framework of Hafezi et al. (2019) was not linked to any behavioural model that would aim to understand the observed 
activity behaviours.

The goal of the present paper is twofold. The main goal is to propose a probabilistic variant of K-means that will be properly 
integrated with a behavioural model in a joint fashion, mimicking the properties of an LCCM. The second goal is to illustrate that an 
integration of a clustering algorithm can provide model fit improvements to a LCCM specification, while the lower computational 
cost of K-means makes it possible to increase the range of potential case studies and estimate models with large sample sizes and 
large choice sets, resulting in a step change from the previous research combining DCM and ML. The novelty of the proposed 
framework is to illustrate how a deterministic clustering algorithm can be transformed effectively into a probabilistic one, enabling 
a simultaneous estimation of parameters of class membership and choice components, with the former receiving feedback from the 
latter. Therefore, the aim of the current study is to combine a clustering technique from the data mining literature and a DCM 
specification (MNL model at the lower level) in a combined LCCM framework, while still being able to produce outputs that can be 
used for valuation, thus making ML relevant for policy making.

The proposed methodology is tested empirically on 2 RP datasets, a GPS diary and a traditional household survey, and on 3 
different choice contexts providing a range of different sample sizes and data complexity. The three case studies utilised for the 
empirical application of the proposed approach focus on:

1. a mode choice model estimated using a GPS trip diary
2. a shopping destination choice model estimated using a GPS trip diary
3. a mode choice model estimated using a traditional trip diary

The remainder of this paper is structured as follows. In Sections 2 and 3, the methodological framework and the different datasets 
used for the study’s practical applications are described, respectively. Section 4 focuses on the results and the comparison among 
the different approaches. The main conclusions and a potential direction for future research are summarised in the final section.

2. Methodology

2.1. Latent class choice model

DCM and the MNL model in particular have been the main behavioural framework for analysing individual preferences since 
the seminal study of McFadden (1973). According to that framework, an individual 𝑛 facing a specific choice task 𝑡 will choose the 
alternative 𝑖 that provides the largest utility 𝑈𝑖𝑛𝑡 among a set of 𝐽 alternatives. The utility 𝑈𝑖𝑛𝑡 is a latent construct consisting of two 
parts, a deterministic utility 𝑉𝑖𝑛𝑡 and a disturbance term 𝜀𝑖𝑛𝑡. The deterministic part of the utility is a function of individual- and 
alternative-specific attributes 𝑥𝑖𝑛𝑡 and parameters 𝛽 to be estimated, as shown in Eq.  (1). 

𝑈𝑖𝑛𝑡 = 𝑉𝑖𝑛𝑡 + 𝜀𝑖𝑛𝑡 = 𝑓 (𝛽, 𝑥𝑖𝑛𝑡) + 𝜀𝑖𝑛𝑡 (1)

Different distributional assumptions about the disturbance term will lead to different specifications, with independent and identically 
distributed (iid) extreme value error terms leading to an MNL model. With MNL, the probability of choosing alternative 𝑖 can then 
be calculated using Eq.  (2). 

𝑃𝑖𝑛𝑡(𝛽) =
𝑒𝑉𝑖𝑛𝑡

∑𝐽
𝑗=1 𝑒

𝑉𝑗𝑛𝑡
(2)

Heterogeneity in an MNL model can be captured by specifying interactions with socio-demographic characteristics, usually specified 
as shifts of taste parameters away from their base level. Despite those interactions, however, a significant portion of unobserved 
heterogeneity can remain uncaptured with an MNL model. LCCMs together with mixed logit models (McFadden and Train, 2000) 
have established themselves as important behavioural modelling specifications capable of accommodating unobserved individual 
choice heterogeneity. The former achieves this by probabilistically segmenting the sample into a finite number of latent classes 
3 
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Fig. 1. Schematic diagram of the LCCM framework and its constituent components.

based on individuals’ socio-demographic characteristics and their observed choice behaviour. It uses two model components that 
are jointly estimated, a class allocation model and a choice model conditional on the allocated class. Mixed logit models, on the 
other hand, require the specification of continuous distributions over the individual taste parameters, thus resulting in non-closed 
form solutions for the choice probabilities that require numerical approaches, usually simulated estimation procedures (Train, 2009). 
Besides its closed form solution, the LCCM provides the additional benefit of a more straightforward interpretation of the context 
of each estimated class, since they can be directly linked with socio-demographic characteristics for each class (when covariates are 
included in the class allocation component) that could be important for the segmentation of the population during policy formulation.

In a LCCM, it is assumed that the sample can be segmented into a finite number of 𝑆 heterogeneous classes. The class allocation 
component of the LCCM, commonly specified as an MNL model, is responsible for probabilistically allocating individuals into the 
latent classes. Socio-demographic characteristics 𝑧𝑛 (𝑧 ∈ 𝑍) are included in the class allocation model as covariates, while additional 
parameters 𝛾𝑠𝑧 are estimated per class 𝑠 and demographic attribute 𝑧 together with 𝑆 − 1 constants, 𝛿𝑠. The probability 𝜋𝑠 of an 
individual belonging into class 𝑠 is thus calculated using Eq.  (3), with 0 ≤ 𝜋𝑠 ≤ 1 and ∑𝑆

𝑠=1 𝜋𝑠 = 1 for each individual 𝑛. 

𝜋𝑠 =
𝑒𝛿𝑠+𝑔(𝜉𝑠 ,𝑧𝑛)

∑𝑆
𝑟=1 𝑒

𝛿𝑟+𝑔(𝜉𝑟 ,𝑧𝑛)
(3)

For each class in the model, a separate utility function is specified for each alternative, say 𝑉𝑠𝑖𝑛𝑡 in class 𝑠, where the parameters 
(and hence utilities) vary across classes. Homogeneity of preferences is usually assumed to hold within each class, although there 
is also the possibility to capture additional within-class heterogeneity by including covariates in the within class utilities, or by 
specifying continuous distributions over covariates (Hess, 2014). A choice model at the lower level is then estimated conditional 
on the class, as depicted in Fig.  1. The choice probabilities for the class-specific model are calculated from Eq.  (4). Finally, the 
unconditional likelihood of observing a sequence of choices for individual 𝑛 is calculated as Eq.  (5) in which class probabilities are 
used to weight the respective class-specific conditional probabilities for each alternative 𝑗. The coefficients of both levels are jointly 
determined by maximising the logarithm of the likelihood function. 

𝑃𝑠𝑖𝑛𝑡 =
𝑒𝑉𝑠𝑖𝑛𝑡

∑𝐽
𝑗=1 𝑒

𝑉𝑠𝑗𝑛𝑡
(4)

𝐿𝐿𝐶𝐶𝑀
𝑛 (𝛽, 𝜋) =

𝑆
∑

𝑠=1
𝜋𝑠

𝑇
∏

𝑡=1
𝑃𝑠𝑖𝑛𝑡 (5)

2.2. Clustering - latent class choice model

Focusing now on our proposed modelling framework, the main idea is to incorporate a clustering algorithm into an LCCM 
modelling framework to take the role of the class allocation model. In the current study, we use the K-means clustering algorithm to 
take that role, mainly for its simplicity, but the same principles can be applied to more advanced algorithms as well. The K-means 
clustering algorithm (Lloyd, 1982) based on the data mining literature is an unsupervised learning algorithm, which actually predates 
the popularity of the more recent Machine Learning methods. The traditional K-means is a partition-based clustering algorithm 
allocating individuals deterministically into a finite 𝐾 number of clusters based on specific 𝑍 socio-demographic characteristics, 
which are found after a specification search similar to the covariates in a class allocation model. The clustering process itself is 
an iterative algorithm that tries to minimise a measure of distance among the data points (i.e. individuals) and their respective 
allocated cluster centroid (within cluster sum of square distance), while at the same time maximising their distance to the centroids 
4 
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Fig. 2. Schematic diagram of the H-LCCM framework and its constituent components.

of the remaining cluster centroids (between cluster sum of square distance) (Ripley, 2009). Different measures of distance can be 
used for that purpose, such as the Euclidean, the Manhattan distance (Bishop, 2006; Singh et al., 2013; Bora and Gupta, 2014) or 
the Mahalanobis distance (Ghorbani, 2019), with the former (cf. Eq.  (6)) being implemented in the current paper.1 In order to avoid 
the calculated Euclidean distance measure being influenced by the potential scale discrepancies among the different variables used 
for clustering, it is important to scale the variables prior to the initialisation of the clustering algorithm, either by normalising or 
by standardising the variables, with the latter approach being utilised here. 

𝑑𝑛𝑘 =

√

√

√

√

𝑍
∑

𝑧=1

(

𝑚∗
𝑛𝑧 − 𝑚∗

𝑘𝑧
)2 (6)

where 𝑑𝑛𝑘 is the distance of individual 𝑛 from cluster centroid 𝑘 for the socio-demographic attribute 𝑧 out of a set of 𝑍 attributes.
The proposed hybrid methodological framework, H-LCCM, developed for this study involves the implementation of a probabilistic 

transformation of the traditional deterministic K-means clustering algorithm and its efficient integration into an LCCM specification. 
The probabilistic K-means algorithm is designed to handle the identification of latent segments of travellers based on specific socio-
demographic characteristics, while it gets adjusted with the information provided by the choice model with a feedback loop as 
depicted in Fig.  2.

The class allocation model in a traditional LCCM framework is used to probabilistically allocate individuals into latent classes 
based on their sociodemographics and their observed behaviour with regard to a specific choice situation. The two important things 
to note here is first that each individual is allocated with a non-zero probability to every class and second that the class allocation 
model is getting feedback from the choice model at the lower level. In order to mimic that specification with a K-means algorithm, 
the first step is to transform it from a deterministic algorithm into a probabilistic one. This is achieved by taking advantage of the 
fact that each data point (or individual) 𝑛 is allocated to its closest centroid 𝑘, but there still is a non-zero distance 𝑑𝑛𝑘 > 0 with 
𝑑𝑛𝑘 < 𝑑𝑛𝑙 and 𝑘, 𝑙 ∈ 𝐾. Therefore, instead of assuming that an individual 𝑛 would be allocated entirely into the closest centroid, 
we re-define her allocation by taking into account her distance from all centroids. Bishop (2006) has highlighted in his book the 
benefits from moving from a deterministic to a probabilistic K-means algorithm, also known as soft K-means or fuzzy C-means. In 
our framework the class allocation probability is thus defined as: 

𝜋𝑛𝑘 = 𝑒𝛾
𝑘
𝑑𝑖𝑠𝑡𝑑𝑛𝑘

∑𝐾
𝑙=1 𝑒

𝛾𝑘𝑑𝑖𝑠𝑡𝑑𝑛𝑙
(7)

1 Following the suggestion by a referee, we also tried using the Mahalanobis distance as an alternative distance measure for our experiments and to account 
for potential non-isotropic clusters, but for the case studies examined the Euclidean distance measure resulted in a better model fit.
5 
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where 𝜋𝑛𝑘 is the allocation probability of individual 𝑛 to her closest centroid 𝑘, 𝑑𝑛𝑙 is the distance of individual 𝑛 from centroid 𝑙
and finally 𝛾𝑘𝑑𝑖𝑠𝑡 is a parameter to be estimated controlling the allocation to the closest centroid 𝑘 relative to the remaining ones. If 
𝛾𝑘𝑑𝑖𝑠𝑡 < 0, it means that the individual is allocated with a higher probability to the closest centroid 𝑘 relative to the rest, while the 
opposite would be true in the case of 𝛾𝑘𝑑𝑖𝑠𝑡 > 0, signifying the need for readjusting the allocation of individuals into the clusters. 
Finally, the use of 𝛾𝑘𝑑𝑖𝑠𝑡 = 0 would result into an equal allocation to every cluster. The role of 𝛾𝑘𝑑𝑖𝑠𝑡 is two-fold. First, it helps to transfer 
information from the choice model back to the clustering algorithm (class allocation) by adjusting the allocation probabilities and 
hence the cluster centroids. Second, by specifying a 𝛾𝑘𝑑𝑖𝑠𝑡 that varies across clusters, it allows us to capture the heterogeneity among 
clusters on how the points of each cluster are allocated to their own cluster relative to the remaining ones.

The joint model is estimated by maximising the joint likelihood of the class allocation model (Eq.  (7)) and the class-specific 
choice models at the second stage (Eq.  (4)) using Eq.  (8) with Maximum Likelihood Estimation. It may be noted that the only 
difference between Eq.  (5) and Eq.  (8) is the definition of the class allocation models and the way we calculate 𝜋. In the case of 
the traditional LCCM that is estimated from an econometric model (usually an MNL model), while for the proposed H-LCCM that 
is calculated with probabilistic clustering. That also makes the estimation process between the two approaches fairly similar with 
the only difference being the iterative calibration of the centroids in H-LCCM. 

𝐿𝐻−𝐿𝐶𝐶𝑀
𝑛 (𝛽, 𝜋) =

𝐾
∑

𝑘=1
𝜋𝑘

𝑇
∏

𝑡=1
𝑃𝑠𝑖𝑛𝑡 (8)

Regarding cluster initialisation, three approaches were used to define initial centroids, namely i) random initialisation, ii) 
initialisation based on a pre-calibrated deterministic K-means and iii) initialisation based on K-means++ algorithm (Arthur and 
Vassilvitskii, 2007). According to the K-means++ algorithm, an initial data point (i.e. an individual) is randomly selected and 
assigned as the centroid of the first cluster 𝑘1. The distance 𝑑𝑛𝑘1  of all data points 𝑛 from that initial centroid 𝑘1 are calculated and 
the second centroid is sampled with a probability equal to 

𝑑2𝑛𝑘1
𝛴𝑑2𝑚𝑘1

. This implies that data points further away from the initial centroid 
will have a higher probability of being selected as the second centroid from that process. For the third centroid, the distances of all 
data points from the two selected centroids are calculated and the next centroid is sampled with a probability based on the square of 
the minimum distance from the other two centroids. In a similar way, the remaining centroids are sampled until the predetermined 
number of centroids is reached. Following that, the K-means algorithm can initialise using the previously sampled centroids during 
the first iteration. In the current study, both the pre-calibrated K-means and the K-means++ approach resulted in superior and more 
stable results compared to having a random initialisation of centroids. A fourth approach was also implemented that involved the 
analyst having to define specific centroids manually by trying different sign combinations for the clustering covariates (i.e. same 
or different sign per cluster etc.), which can be more straightforward in the case of two classes compared to models with multiple 
classes.

The developed algorithm behind H-LCCM is presented in the flow chart of Fig.  3, which consists of the following steps:

1. Define minimum difference threshold for reaching convergence, 𝑑𝑡ℎ𝑟𝑒𝑠𝑘,𝑘′  between the centroids of the previous step, 𝑘, and the 
respective ones in the current step 𝑘′.

2. Scaling of variables used as covariates in the clustering process.
3. Define starting values for parameters used in the choice model.2
4. Initialisation of centroids 𝑚𝑘 using the K-means++ algorithm as described above.
5. Calculate distances of data points (individuals) from the initial centroids (Eq.  (6)) to define initial cluster allocation 
probabilities (Eq.  (7)).

6. Estimation of choice model for the first iteration using Maximum Likelihood. From that step we get an estimated value for 
the 𝛾𝑘′𝑑𝑖𝑠𝑡.

7. Update cluster allocation 𝜋′
𝑛𝑘 based on the new estimated 𝛾𝑘′𝑑𝑖𝑠𝑡 from the choice model of the previous step and the previously 

defined centroids using Eq.  (7).
8. Definition of new centroids 𝑚𝑘′  for following iteration as the mean of the covariates of the individuals that are being attracted 
with a higher probability to the same cluster, 𝑚𝑘′ = 𝑚𝑒𝑎𝑛(𝑧𝑛𝑘′ ), where 𝑘′ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝜋𝑛𝑘′ ).

9. Compute the distance between previous and new centroids 𝑑𝑘,𝑘′  and compare that with the threshold 𝑑𝑡ℎ𝑟𝑒𝑠𝑘,𝑘′  defined in step 1.
10. If the difference is larger than the threshold, 𝑑𝑘,𝑘′ > 𝑑𝑡ℎ𝑟𝑒𝑠𝑘,𝑘′ , then estimate a new choice model for next iteration and repeat 

steps 6–8. If the difference is equal or smaller than the threshold, 𝑑𝑘,𝑘′ ≤ 𝑑𝑡ℎ𝑟𝑒𝑠𝑘,𝑘′ , then convergence is reached.

According to Bishop (2006), the iterative process of K-means can also be described as the Expectation–Maximisation (EM) 
algorithm (Dempster et al., 1977), where the update of the cluster membership probabilities refers to the expectation step and 
the adjustment of the cluster centroids refers to the maximisation step.

After reaching a stable point and terminating the iterative estimation process, an additional Fractional Multinomial Logit (FMNL) 
model (Papke and Wooldridge, 1996) is estimated using the cluster probabilities 𝜋𝑛𝑘 of cluster 𝑘 out of a total 𝐾 clusters for individual 

2 For the initialisation of 𝛾𝑘𝑑𝑖𝑠𝑡, an initial value of 1.0 is assigned in the current study assuming a higher allocation probability of each individual to their 
initially defined closest centroid, but the impact of this should be negligible since the initial centroids are randomly assigned without having any behavioural 
connection with the decision making process under examination.
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Fig. 3. Flow chart of the H-LCCM algorithm.

𝑛, with 0 ≤ 𝜋𝑛𝑘 ≤ 1 and ∑𝐾
𝑘=1 𝜋𝑛𝑘 = 1, as the dependent variable. The covariates used for clustering 𝑧𝑛𝑑 for individual 𝑛 and 

demographic attribute 𝑑 take the role of the independent explanatory variables with the estimable parameters 𝜉𝑑 capturing their 
impact.

According to the FMNL model, the probability for individual 𝑛 to choose a share of 𝜋𝑛𝑘 from alternative 𝑘 (meaning here the 
cluster 𝑘) is defined as per Eq.  (9). It has to be mentioned that the FMNL model is not part of the main estimation process depicted 
in Fig.  3 and its purpose is solely for post processing and for providing some further interpretability of the clustering process, such 
as the cluster composition, the relative impact of the covariates used for clustering and their statistical significance . 

𝑃𝑘𝑛(𝜉) =
𝑒
∑𝐾

𝑘=1 𝜋𝑛𝑘𝑉𝑘𝑛
∑𝐾

𝑙=1 𝑒
𝑉𝑙𝑛

(9)

2.3. Machine learning-based model variants

For the sake of benchmarking, the proposed models are compared against two state-of-the-art models developed by Sfeir et al. 
(2021) and Sfeir et al. (2022).

2.3.1. Gaussian/Bernoulli mixture - latent class choice model
Sfeir et al. (2021) developed a model structure that involves an integration of Gaussian Mixture models (GMM) and LCCM, 

where GMM-based components were used to replace the class allocation model of the traditional LCCM. More specifically, Gaussian 
mixtures are used for continuous covariates and Bernoulli mixtures for discrete/binary ones (Bishop, 2006) to determine the 
allocation of individuals to a finite number of class, while a class-specific MNL model is estimated at the next level. The gaussian 
mixtures for the continuous covariates also allow the analysts to estimate the mean and the covariance structure, thus capturing 
additional correlation among the covariates and the classes. The means 𝜇  and covariance 𝑠  for continuous mixtures and the 
𝑐𝑘 𝑐𝑘
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means for the discrete ones 𝜇𝑑𝑘 are estimated together with the parameters of the choice model at the second stage by using the 
EM algorithm as detailed in Sfeir et al. (2021). Gaussian mixtures can be considered as a more generalised approach compared to 
soft K-means, since they can capture non-spherical clusters. On the other hand, K-means is a much faster approach requiring less 
parameters for the estimation of the centroids.

2.3.2. Gaussian process - latent class choice model
In this non-parametric variant proposed in Sfeir et al. (2022), Gaussian Processes (GP) were used to replace the gaussian/bernoulli 

mixtures and perform the probabilistic class allocation to the latent classes. Initially, GP approaches were mostly used in geostatistics, 
a process known as kriging (MacKay, 1998), but in recent decades, they have become more popular for other ML tasks, as well, due 
to the recent computational improvements.

According to GP, a set of gaussian distributions equal to the number of observations in the sample can be estimated in order to 
uncover the data generating process. A GP is characterised by the mean of the gaussian distributions and their covariance defined by 
a kernel function 𝑘(𝑆𝑛, 𝑆𝑚) measuring the variance between any pair of observations/individuals 𝑚, 𝑛. It is typical to assume a zero 
mean function, thus leading to 𝐺𝑃 (𝑚,𝑆) = 𝐺𝑃 (0, 𝑘(𝑆𝑛, 𝑆𝑚)). Some of the most commonly used kernel functions are the radial basis 
function and its generalisation the matérn kernel. Many other options exist, such as the dot product, the exponential, the constant, 
and the radial quadratic, while combinations of those can also be used by adding or multiplying them together. This provides a 
high level of flexibility to the analyst to use a wide range of approaches for a given sample (see Sfeir et al. (2022) for more details). 
The parameters of the GP depend on the number of observations, thus making it increasingly more difficult to estimate GPs with 
larger sample sizes.

3. Data

Our empirical work makes use of three case studies, with data from two separate datasets, which are described in the following. 
Case studies 1 and 2 use a GPS trip diary (‘‘DECISIONS’’), while Case study 3 uses a traditional pen and paper trip diary for London.

3.1. DECISIONS dataset

Our first dataset was collected between October 2016–March 2017 as part of the research project ‘‘DECISIONS’’ conducted at the 
University of Leeds. The dataset includes several submodules aiming to capture different aspects of everyday individual behaviour, 
such as indoor/outdoor activity behaviour, energy consumption, and social network formation. More information on the range 
of the different submodules of the dataset can be found in Calastri et al. (2020). In the current study, we focus on two specific 
submodules, namely a 2-week GPS-based trip diary captured through a smart-phone application and a household survey capturing 
important sociodemographic information of the participants. While the survey captured trips across all of the UK, the vast majority 
of them are in the Yorkshire region and more specifically the city of Leeds.

Two different subsets of the DECISIONS dataset were used, namely one for the mode choice (Case study 1) and one for the 
shopping destination choice model (Case study 2). For both of them, only the trips in Yorkshire were selected. Data enriching steps 
followed the initial data cleaning stages, during which the dataset was augmented with travel time and travel cost information for 
all the alternatives. More specifically, travel times and distances were estimated for both chosen and unchosen alternatives (for 
consistency reasons) using a combination of the ‘‘Directions’’ Google API and Bing maps API. Both APIs allow for a detailed routing 
plan between an Origin and a Destination for different transport modes and times of day, while also accounting for traffic for car 
trips and for service timetable for public transport (PT) trips. Travel costs for car trips were calculated using WEBTag’s official 
specifications for fuel and operating costs, while bus and rail travel costs were calculated based on average distance-based costs of 
PT services operating in the region. A discount was applied for season ticket holders. The final mode choice dataset used for model 
estimation included 12,524 trips by 540 individuals, with a choice set of six alternative modes of transport, namely car, bus, rail, 
taxi, cycling and walking. Out of those trips, 47.6% were by car, 14.6% by bus, 5.2% by rail, 3.2% by taxi, 3.3% by cycling and 
finally 26.1% by walking.

A further subset of the mode choice dataset was selected for the shopping destination choice model (Case study 2), which included 
only shopping trips (for groceries, clothes and durables) from an initial origin 𝑂 to a shopping location 𝑗 and the trips to the 
following destination 𝐷. In total, 1,541 trip pairs (by 270 individuals) were included in this dataset, with 82% of them being for 
groceries, 12.7% for clothing and 5.3% for durables. The purpose of including the subsequent trip was to study the impact of 
the next destination 𝐷 (considered fixed in this study) on the choice of the intermediate shopping location. The choice set in the 
destination model was defined by clustering the observed elemental locations utilising the Hierarchical Agglomerative Clustering 
(HAC) algorithm with a 800 m distance threshold. HAC was chosen since it does not require the analyst to make a priori assumptions 
regarding the number of clusters. The aforementioned procedure resulted in the creation of a choice set of 176 shopping destinations, 
most of them within the administrative boundaries of the local authority of Leeds. The main shopping mall of Leeds city centre 
attracted the majority of shopping trips, namely 11.3%. The remaining 5 shopping locations in the city centre attracted 9.7% of 
trips followed by a further 103 locations spread around the city of Leeds (62.6%) and finally 67 locations in the remaining region 
of Yorkshire (16.7%). More details regarding the data cleaning/enriching steps and the approach followed to define the availability 
of mode and destination alternatives in both subsets can be found in the studies of Tsoleridis et al. (2021, 2022a,b), respectively.
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3.2. London travel demand survey

The dataset used for Case study 3 is the openly available London Passenger Mode Choice (LPMC), collected as part of the London 
travel demand survey, in which travellers’ choice of mode of transport among walking, cycling, transit and car was recorded. The 
dataset was augmented at a later stage by Hillel et al. (2018) with travel cost and travel time information for chosen and unchosen 
alternatives using the ‘‘Directions’’ Google API, in a similar to the DECISIONS dataset. An additional interesting variable was defined 
during that data enriching stage measuring the traffic variability for car trips as captured by the different routing procedures of the 
Google API. More details about the specific dataset can be found in Hillel et al. (2018). For the current application, a subset of only 
home-based trips by individuals of at least 12 years of age was selected, similarly to the study of Krueger et al. (2020) and Hancock 
et al. (2021). The resulting dataset contains a total of 58,584 trip observations performed by 26,904 individuals.

In terms of the observed mode choices, 42.8% of trips were made by car, followed by 37.6% of PT trips, 16.6% walking and 
finally 3.2% cycling trips. With regard to socio-demographic, 53.5% of individuals are female, the mean age is 42 years old, and 
69.8% of participants have at least one car in their household. Notwithstanding the richness of individual mobility information, an 
important limitation of the London dataset is the absence of income information, either personal or household.

4. Results

The proposed hybrid specification, H-LCCM, which is an integration of a clustering algorithm used in data mining, K-means, 
with an econometric MNL model, is compared against the following structures:

MNL-base: a traditional MNL model, where heterogeneity is captured with demographic interactions with the ASCs.

C-MNL: a two-stage clustering model, where K-means is used at the first stage to allocate individuals into latent clusters based 
solely on sociodemographic characteristics, and then a choice model is estimated per cluster at the second stage, with no 
feedback loop from the choice model to the clustering algorithm. The final log-likelihood of that model is calculated by 
adding the log-likelihoods of the 𝐾 cluster-specific models and the remaining fit statistics are computed relative to that. 
It should be noted that the same specification can be defined with different clustering algorithms for the first stage and/or 
different distance measures. For the purposes of the current study, we have tried using K-harmonic means (Zhang et al., 1999), 
DBSCAN (Ester et al., 1996), as well as K-means with Mahalanobis distance (Ghorbani, 2019) instead of Euclidean distance. 
The analysis, which also includes a train/test set validation assessment (80%/20% split) is presented in the Appendix (Tables 
20–22). Here for the sake of brevity we only report the results of the K-means based C-MNL model.

LCCM : a traditional latent class model with a class allocation model determining the probability that an individual falls within 
each class and a class-specific MNL model aiming to explain the observed choices.

GBM-LCCM and GP-LCCM : the models from Sfeir et al. (2021) and Sfeir et al. (2022). A full covariance matrix was favoured 
in all cases for GBM-LCCM, which resulted in better model fit than the remaining options (Sfeir et al., 2021). For the 
hyperparameters of GP-LCCM, due to the vast range of possible kernel combinations, a non-exhaustive search was performed 
focussed around the dot product, the radial basis function and the matérn kernel, with the latter leading to a better model 
fit and more stable results (Sfeir et al., 2022).

In all cases, the same specification was used in terms of covariates in the clustering/class allocation model and explanatory 
variables in the utility functions to ensure consistency in our evaluation comparison. The number of classes and the specified 
covariates in the final specification reported in the following for each case refer to the one which resulted in the best model fit 
for the traditional LCCM model. For the clustering methods examined, a common way to determine the optimal number of classes 
is to use the ‘‘elbow’’ method by assessing the Silhouette score across an increasing number of clusters. In the case examined, 
however, even increasing the number of clusters by one in each case resulted in dissolving clusters for Case study 1 and issues with 
the covariance matrix in Case study 3. We have not attempted to increase the number of clusters in Case study 2 due to the already 
high computational cost of estimating that model.

For the fit statistics reported in the following Case studies, the centroids of the H-LCCM models are not included as additional 
parameters because they are only indirectly estimated through the estimation of the 𝛾 parameters. We instead include the estimated 
𝛾 parameters as such. We did not opt to include both the centroids and the 𝛾 as parameters in the model as that would result in 
double counting of the relevant parameters. Furthermore, for the GP-LCCM models only the models’ parameters and the kernel 
hyperparameters (smoothness 𝑣 and length-scale 𝑙 for the matérn kernel) were considered in the fit statistics – and not the total 
number of observations – following the approach in Sfeir et al. (2022).

In terms of using AIC and BIC, there are limitations of course — but in absence of better measures, these have been widely 
used in the literature. Among the two, the key difference lies in how heavily they penalise model complexity, with AIC generally 
favouring slightly more complex models compared to BIC, especially when dealing with large datasets where BIC becomes more 
stringent in selecting simpler models; essentially, AIC prioritises prediction accuracy while BIC aims to identify the ‘‘true’’ model 
generating the data if it is within the candidate models. According to Chakraborty and Ghosh (2011), BIC is more useful in selecting 
a correct model, while the AIC is more appropriate in finding the best model for predicting future observations. Besides the fit 
statistics, the model assessment also focused on analysing the quality of the estimated classes/clusters. A common metric being 
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used for that is the Silhouette score that measures how well separated and homogeneous the clusters are. In this study, we mainly 
focused instead on the behavioural examination of the estimated classes/clusters and what they mean in terms of the sensitivities 
of the underlying population. Nonetheless, we do mention the Silhouette scores, as well, and specifically how they improve across 
the H-LCCM iterations from the very first randomly selected centroids to the final calibrated ones.

Model instability was a common denominator in all models examined that were able to jointly capture latent segments and taste 
heterogeneity, namely LCCM, GBM-LCCM, GP-LCCM and H-LCCM. To counter that, several attempts were performed for each model 
and case study and the best performing (either in terms of model fit and/or parameter explainability) was kept and reported in the 
following.

4.1. Case study 1: Yorkshire mode choice

4.1.1. Model specification
The specification of the Yorkshire mode choice model presented in the following contains 5 alternative specific constants (ASCs) 

with the ASC for car being kept fixed as the base. Mode-specific linear travel time sensitivities were specified in addition to a 
logarithmic generic specification for travel cost for the purpose of capturing cost damping effects (Daly, 2010).

4.1.2. Model outputs
For Case study 1, we were able to estimate all six specifications, namely MNL-base, C-MNL, LCCM, GBM-LCCM, GP-LCCM and

H-LCCM, with their respective fit statistics being presented in Table  1. All models that capture unobserved heterogeneity among 
individuals are able to outperform the MNL-base model, even the C-MNL, in which the sample is segmented into clusters solely 
based on socio-demographic characteristics. As expected, however, more significant heterogeneity can be captured by including 
the observed choice behaviour in the process of calibrating the class allocation, as illustrated by the remaining four LCCM-based 
models. Out of those four specifications, the proposed H-LCCM is able to outperform the rest in terms of model fit. More specifically, 
it provided a better model fit compared to the traditional LCCM by 6.05 LL units with 19 parameters less. It also outperformed the 
two ML-based variants of GBM-LCCM with a full covariance matrix and GP-LCCM with a matérn kernel by 6.55 and 63.46 LL units 
with 54 less and 3 more parameters, respectively. Those improvements in model fit are more evident by looking at the adjusted 
𝑟ℎ𝑜2, the AIC and BIC statistics in Table  1.

A closer comparison between the estimated parameters of LCCM and H-LCCM is shown in Table  2. For the sake of brevity, the 
parameters of MNL-base, C-base, GBM-LCCM and GP-LCCM have been omitted from that table, but are included in the Appendix 
(Table  14). Furthermore, the estimated covariances for the continuous elements of the class allocation in GBM-LCCM are shown in 
Table  17. The specification search resulted in a model with 5 classes and with gender, age, number of cars, season ticket ownership, 
and household income in the class allocation model. An equivalent specification was estimated for H-LCCM (and for the remaining
C-MNL, GBM-LCCM and GP-LCCM). An increase to 6 classes resulted in numerical issues in the covariance matrix for LCCM, GBM-
LCCM, GP-LCCM and in dissolving classes for H-LCCM, hence no attempt was made to estimate a model with 6 clusters for the 
remaining models under examination.

Overall, the H-LCCM results in more balanced cluster membership probabilities compared to LCCM, with cluster 5 representing 
the largest segment of the sample (23.0%) followed by cluster 2 (21.0%). The Silhouette score for H-LCCM increased by 8.5% 
from 0.2360 to 0.256 between the first randomly selected centroids and the final calibrated ones. Furthermore, by examining the 
estimated distance multipliers 𝛾 of H-LCCM, it is evident that individuals of cluster 5 are allocated to their class with a higher 
probability relative to others (48.2% to cluster 5 on average), while there is a higher degree of uncertainty in the allocation of 
individuals of cluster 4 (26.0% to cluster 4 on average). On the other hand, LCCM leads to more imbalanced class allocation with 
the majority of the sample (42%) being allocated to class 1. All level-of-service parameters have the expected negative sign in 
both models. A cost-insensitive class is identified in LCCM, class 5, representing the smallest segment of the sample (9%). Contrary 
to that, all clusters of H-LCCM show significant cost sensitivities, which illustrates the discrepancies of the two approaches in the 
heterogeneity they are able to capture. The estimated parameters of the covariates used in the class allocation of LCCM are presented 
in the same Table  2. The respective parameters for H-LCCM are obtained from an FMNL model on the cluster-specific probabilities 
for each individual as described in Section 2.2 and are reported in Table  3. In both cases, class/cluster 5 was used as the base and 
the remaining parameters were estimated relative to that.

A closer look at the average probabilities per sociodemographic group and their respective average values allows us to get a 
better understanding of the profile of each class/cluster (Fig.  4). Regarding the classes resulting from the LCCM, class 1 is more likely 
to contain car dependent (average number of cars=1.1/average season ticket ownership=0.16), middle-aged individuals (average 
age=42.8) of higher household income (average income=£55,731). Class 2 is more likely to contain individuals who are frequent 
public transport users (average season ticket ownership=0.6) have a lower than average number of cars in their household (average 
number of cars=0.76) and a lower household income (average income=£40,760). Class 3 is more likely to have younger (average 
age=29.2) female (average value for female=0.63) individuals with both a low number of season ticket ownership (average season 
ticket ownership=0.12) and number of cars (average number of cars=0.66). Class 4 has a higher share of younger (average age=34.5) 
male (average value for female=0.5) individuals, and finally class 5 has the highest share of female individuals (average value for 
female=0.72) with the lowest number of cars (average number of cars=0.4) and a high season ticket ownership (average season 
ticket ownership=0.46).

Moving on to the behavioural profiling of the clusters estimated from H-LCCM, cluster 1 can be characterised by mostly higher 
income individuals (average income=£59,650) with a high number of cars in their household (average number of cars=1.15). Cluster 
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Table 1
Fit statistics of the Yorkshire mode choice models.
 Fit statistics MNL-base C-MNL LCCM GBM-LCCM GP-LCCM H-LCCM  
 Log-likelihood (0) −14,974.45
 Log-likelihood (model) −5,275.42 −4,928.32 −3,946.96 −3,946.55 −4,003.46 −3,940.00 
 Adjusted 𝜌2 0.6469 0.6669 0.7308 0.7285 0.7286 0.7325  
 AIC 10,574.83 9,976.64 8,061.91 8,131.10 8,130.92 8,010.00  
 BIC 10,664.05 10,422.76 8,686.48 9,015.91 8,591.91 8,493.31  
 Number of parameters 12 60 84 119 62 65  
 Number of individuals 540
 Number of observations 12,524

2 contains a high share of female individuals (average value for female=0.60) together with the highest share of season ticket holders 
(average season ticket ownership=0.56), a low number of cars (average number of cars=0.64) and low household income (average 
income=£43,970). Cluster 3 has a high share of younger individuals (average age=32.1) with a low number of cars (average number 
of cars=0.64) and of low income (average income=£44,140). They are also the most cost sensitive according to their estimated travel 
cost parameter. Cluster 4 can be characterised by younger (average age=36.86) female (average value for female=0.60) with the 
lowest share of season ticket ownership (average season ticket ownership=0.11). Finally, cluster 5 contains the highest share of 
older (average age=44.91) male (average value for female=0.53) individuals with a higher than average number of cars (average 
number of cars=0.97) and with a quite low season ticket ownership (average season ticket ownership=0.18).

As a further measure of validation, the estimated Values of Travel Time (VTT) estimates for each class and the weighted ones 
are presented in Table  4. The VTT estimates from all models are close to the latest official values suggested by the Department 
for Transport (no official VTT estimates for taxi) (Batley et al., 2019) with the exception of GP-LCCM resulting in significantly 
higher VTTs. The reason for the higher VTTs of GP-LCCM is the low and non-statistically significant travel cost parameter for 
class 2 (see Table  14), which increases the weighted average VTT, as well. Furthermore, in the same model there is a positive and 
non-significant cost parameter for the travel time parameter for taxi in cluster 5. A similar problem, but to a lesser extent, occurs 
in the econometric LCCM with a small and non-significant cost sensitivity for class 5. That finding can act as a further supporting 
argument for considering the H-LCCM framework for real-world policy making, since it has the ability to lead to more behaviourally 
accurate valuation measures, at least in the current study.

Mode shares, both class-specific and weighted, were also calculated across models and presented in Table  5. Using the MNL-base 
mode shares as a guide, since they are guaranteed to match the observed ones in the sample, we can observe that the proposed
H-LCCM leads to weighted VTTs that are very close to them. On the contrary, the GP-LCCM shows the most significant discrepancies 
with almost a double bus share and lower car and walking shares. The higher bus shares are mostly driven by the high bus share 
in class 2, namely 82%. On the other hand, the GBM-LCCM performs leads to almost equal shares with the proposed H-LCCM.

4.2. Case study 2: Yorkshire shopping destination choice

4.2.1. Model specification
The specification of the models presented in the following is based on the size variable specification of Daly (1982) and more 

specifically of Kristoffersson et al. (2018). According to that, the attraction of a destination 𝑗 is captured with the addition in the 
utility function of a composite term 𝐴𝑗 inside a logarithmic function, i.e. 𝑙𝑜𝑔(𝐴𝑗 ). The composite term 𝐴𝑗 includes various variables 
aiming at capturing the attraction of the target destination 𝑗 and their respective parameters, as 𝐴𝑗 = 𝑎1𝑗 +

∑

𝑟>1 𝑒𝑥𝑝(𝛾𝑟)𝑎𝑟𝑗 , where 
one attraction variable, 𝑎1𝑗 , is defined as the base and its parameter is kept fixed to 1.0. For simplification purposes, in the current 
case study we have used only one attraction variable inside the logarithm pertaining to total retail area per type of shopping activity 
(clothes shopping, grocery, durables) in a 400 m buffer around the shopping destination.

The final specification was able to uncover 2 latent classes/clusters of heterogeneous decision-makers using annual personal 
income and the areal measure of Index of Multiple Deprivation (IMD) calculated for a 400 m buffer around home locations. The 
IMD is a composite measure developed by the Office for National Statistics (ONS) aimed to capture deprivation among a range 
of different domains, such as crime, environment and housing among others and at a high spatial resolution (Lower Super Output 
Areas). The IMD is calculated as a weighted measurement of the constituent deprivation domains with a higher number signifying 
a more deprived area. More details can be found at the IMD technical report in Smith et al. (2015). The IMD indices for the year 
2015 were used in the current study.

4.2.2. Model outputs
The entire range of models was estimated for this case study, although we had to simplify the specifications to be able to 

estimate the GBM-LCCM and GP-LCCM models due to the increased computational requirements as a result of the large choice set 
(176 destination alternatives). Because both our class allocation covariates are continuous variables, only the Gaussian Mixture 
Modelling part of the GBM-LCCM was required.3 The fit statistics for Case study 2 are presented in Table  6. Capturing latent 

3 The model is still described as GBM-LCCM to avoid any confusion for the reader.
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Table 2
Modelling estimates and t-ratios of LCCM and H-LCCM models for the Yorkshire mode choice context.
 Parameter LCCM H-LCCM

 Alternative-specific constants  
 Constant Car (base) – –  
 Constant Bus - class 1 −5.2074 (−11.22) −3.5083 (−4.09) 
 Constant Bus - class 2 −1.3102 (−3.73) −1.5507 (−3.26) 
 Constant Bus - class 3 0.3470 (0.33) 1.1644 (1.02)  
 Constant Bus - class 4 −3.7784 (−5.22) −5.0562 (−4.64) 
 Constant Bus - class 5 −2.4179 (−3.81) −3.6437 (−5.16) 
 Constant Rail - class 1 −2.7486 (−2.95) −0.1604 (0.21)  
 Constant Rail - class 2 −0.4778 (−0.49) −0.8823 (−1.06) 
 Constant Rail - class 3 −4.7155 (−3.03) −3.4326 (−2.25) 
 Constant Rail - class 4 −1.6476 (−1.35) −3.9105 (−5.95) 
 Constant Rail - class 5 −8.1766 (−5.02) −3.7222 (−2.71) 
 Constant Taxi - class 1 −4.7217 (−6.57) −3.9144 (−5.59) 
 Constant Taxi - class 2 −6.5988 (−3.28) −2.1399 (−3.47) 
 Constant Taxi - class 3 3.4928 (3.06) 4.8633 (3.75)  
 Constant Taxi - class 4 −0.6965 (−1.18) −2.8189 (−3.58) 
 Constant Taxi - class 5 −3.9916 (−4.02) −4.6772 (−6.55) 
 Constant Cycling - class 1 39.8735 (3.84) −5.0748 (−5.10) 
 Constant Cycling - class 2 −1.6347 (−1.85) −4.2522 (−3.45) 
 Constant Cycling - class 3 −2.0753 (−1.74) −3.6530 (−2.96) 
 Constant Cycling - class 4 −2.5533 (−4.09) −2.0757 (−2.92) 
 Constant Cycling - class 5 −1.5036 (−1.04) −2.9096 (−1.81) 
 Constant Walking - class 1 0.2920 (0.46) 2.4618 (2.16)  
 Constant Walking - class 2 1.4847 (2.61) 0.8567 (1.30)  
 Constant Walking - class 3 4.4302 (4.81) 4.1692 (4.72)  
 Constant Walking - class 4 2.1666 (2.80) 0.8978 (1.02)  
 Constant Walking - class 5 −0.4120 (−0.54) 0.2404 (0.41)  
 LOS parameters  
 Car travel time (mins) - class 1 −0.1712 (−8.78) −0.0809 (−3.12) 
 Car travel time (mins) - class 2 −0.0794 (−1.19) −0.2629 (−7.09) 
 Car travel time (mins) - class 3 −0.1312 (−3.08) −0.1692 (−2.04) 
 Car travel time (mins) - class 4 −0.1040 (−3.23) −0.1383 (−3.93) 
 Car travel time (mins) - class 5 −0.2688 (−4.74) −0.0259 (−0.78) 
 Bus travel time (mins) - class 1 −0.0795 (−8.48) −0.0626 (−4.81) 
 Bus travel time (mins) - class 2 −0.0323 (−1.16) −0.1047 (−7.54) 
 Bus travel time (mins) - class 3 −0.1113 (−2.94) −0.1556 (−5.13) 
 Bus travel time (mins) - class 4 −0.0645 (−4.30) −0.0527 (−3.87) 
 Bus travel time (mins) - class 5 −0.0937 (−4.93) −0.0088 (−2.87) 
 Rail travel time (mins) - class 1 −0.1017 (−8.28) −0.0575 (−4.44) 
 Rail travel time (mins) - class 2 −0.0727 (−2.78) −0.1583 (−8.65) 
 Rail travel time (mins) - class 3 −0.0230 (−0.71) −0.0287 (−1.44) 
 Rail travel time (mins) - class 4 −0.0380 (−2.20) −0.0641 (−1.81) 
 Rail travel time (mins) - class 5 −0.0619 (−2.15) −0.1505 (−4.52) 
 Taxi travel time (mins) - class 1 −0.2324 (−5.56) −0.0748 (−1.55) 
 Taxi travel time (mins) - class 2 0.0058 (−0.06) −0.2888 (−6.03) 
 Taxi travel time (mins) - class 3 −0.3930 (−5.04) −0.4942 (−5.81) 
 Taxi travel time (mins) - class 4 −0.1285 (−2.20) −0.1200 (−3.34) 
 Taxi travel time (mins) - class 5 −0.1891 (−2.96) −0.1022 (−1.77) 
 Cycling travel time (mins) - class 1 −8.8323 (−4.29) −0.0700 (−2.06) 
 Cycling travel time (mins) - class 2 −0.3935 (−4.87) −0.2064 (−2.73) 
 Cycling travel time (mins) - class 3 −0.1425 (−3.92) −0.0796 (−2.54) 
 Cycling travel time (mins) - class 4 −0.0621 (−4.14) −0.0688 (−5.25) 
 Cycling travel time (mins) - class 5 −0.1287 (−3.05) −1.9995 (−6.35) 
 Walking travel time (mins) - class 1 −0.2024 (−10.31) −0.2226 (−7.56) 
 Walking travel time (mins) - class 2 −0.1535 (−5.48) −0.2126 (−8.78) 
 Walking travel time (mins) - class 3 −0.1178 (−4.13) −0.1404 (−5.40) 
 Walking travel time (mins) - class 4 −0.2245 (−8.75) −0.1948 (−6.58) 
 Walking travel time (mins) - class 5 −0.1780 (−5.38) −0.1394 (−6.82) 
 Natural logarithm of travel cost (£) - class 1 −0.3611 (−1.75) −0.9863 (−3.70) 
 Natural logarithm of travel cost (£) - class 2 −0.5080 (−3.00) −0.4647 (−2.36) 
 Natural logarithm of travel cost (£) - class 3 −1.2605 (−3.87) −1.7901 (−5.83) 
 Natural logarithm of travel cost (£) - class 4 −1.7146 (−10.47) −0.7184 (−2.61) 
 Natural logarithm of travel cost (£) - class 5 −0.2245 (−0.81) −0.9709 (−4.51) 
 (continued on next page)
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Table 2 (continued).
 Parameter LCCM H-LCCM

 Class allocation parameters  
 Constant - class 1 1.4520 (1.42) –  
 Season ticket ownership - class 1 −1.2008 (−2.33) –  
 Number of cars in household - class 1 2.2219 (4.19) –  
 Age - class 1 −0.0078 (−0.42) –  
 Female - class 1 −0.7680 (−1.39) –  
 Annual household income (£1,000) - class 1 −0.0068 (−0.69) –  
 Constant - class 2 1.3730 (1.28) –  
 Season ticket ownership - class 2 0.7042 (1.25) –  
 Number of cars in household - class 2 1.8080 (3.15) –  
 Age - class 2 −0.0054 (−0.28) –  
 Female - class 2 −0.9572 (−1.60) –  
 Annual household income (£1,000) - class 2 −0.0287 (−2.44) –  
 Constant - class 3 4.2390 (3.68) –  
 Season ticket ownership - class 3 −2.2309 (−2.38) –  
 Number of cars in household - class 3 1.7204 (2.69) –  
 Age - class 3 −0.1023 (−3.40) –  
 Female - class 3 −0.6773 (−0.95) –  
 Annual household income (£1,000) - class 3 −0.0143 (−1.29) –  
 Constant - class 4 3.7335 (3.45) –  
 Season ticket ownership - class 4 −1.0282 (−1.62) –  
 Number of cars in household - class 4 2.2784 (4.34) –  
 Age - class 4 −0.0640 (−3.00) –  
 Female - class 4 −1.3283 (−2.15) –  
 Annual household income (£1,000) - class 4 −0.0180 (−1.58) –  
 Clustering distance parameters  
 Distance multiplier 𝛾 - cluster 1 – −0.9110 (3.35) 
 Distance multiplier 𝛾 - cluster 2 – −0.7202 (3.60) 
 Distance multiplier 𝛾 - cluster 3 – −0.3428 (1.50) 
 Distance multiplier 𝛾 - cluster 4 – −0.1812 (1.08) 
 Distance multiplier 𝛾 - cluster 5 – −1.0880 (5.05) 
 Class/cluster membership probabilities  
 Class/cluster 1 0.42 0.20  
 Class/cluster 2 0.18 0.21  
 Class/cluster 3 0.10 0.17  
 Class/cluster 4 0.21 0.19  
 Class/cluster 5 0.09 0.23  

Table 3
Estimated parameters of clustering covariates for the Yorkshire mode choice model.
 Parameters Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
 Constant −0.1794 (−3.00) 0.9519 (21.70) 1.8562 (42.92) 0.9197 (19.95) –  
 Season ticket ownership 0.1162 (4.03) 1.6027 (57.54) 0.2742 (11.60) 0.3584 (16.20) –  
 Number of cars 0.3962 (16.11) −0.1814 (−8.87) −0.2455 (−11.88) −0.0987 (−4.70) –  
 Age −0.0342 (−26.28) −0.0418 (−37.90) −0.0490 (−42.28) −0.0405 (−38.49) –  
 Female 0.2148 (6.45) 0.2221 (7.82) −0.2797 (−10.18) 0.6297 (24.00) –  
 Annual household income 0.0172 (24.39) 0.0032 (5.36) 0.0027 (5.49) 0.0034 (7.04) –  

heterogeneity resulted again in model fit improvements compared to MNL-base, even with the simpler C-MNL specification. The
GBM-LCCM model achieved a fit of −3585.41, while LCCM managed to achieve a better one at −3578.01. Finally, the two remaining 
models achieved the best results with H-LCCM achieving an LL of −3573.32 and GP-LCCM a slightly better LL of −3573.03 with the 
same number of parameters. The above are also evident from the adjusted 𝑟2, AIC and BIC statistics presented in Table  6. Finally, 
it is worth mentioning that during the H-LCCM cluster calibration, the Silhouette score increased by 57.3% from 0.2432 (for the 
initial randomly sampled centroids) to 0.3825 (for the final calibrated centroids) suggesting that the quality of the clusters improves 
during calibration.

The estimated parameters of LCCM and H-LCCM are presented in Table  7. A more detailed version of that Table is included in 
the Appendix (Table  15) showing also the estimated parameters of MNL-base, C-MNL, GBM-LCCM and GP-LCCM, while the lower 
triangular matrix of the covariates for the GBM-LCCM is presented in Table  18. Focusing on LCCM and H-LCCM, the estimates 
of the two specifications are almost identical with only negligible discrepancies. All of the variables were allowed to vary across 
classes capturing significant taste differences. The shopping destinations at the centre of Leeds were selected as the base alternatives. 
The specified ASCs were grouped separately for the remaining destinations of Leeds outside of the city centre and the destinations 
located in the remaining region of Yorkshire. Additional interactions were also specified for season ticket holders and individuals 
with no car in their household for the destinations outside the city centre and outside Leeds. The purpose of those interactions was 
to capture the additional disutility of travelling to those places, which are located further away from the city centre with worse 
13 
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Table 4
Class-specific and weighted Values of Travel Time estimates (£/hr) for the Yorkshire mode choice dataset.
 VTT estimate MNL-base C-MNL LCCM GBM-LCCM GP-LCCM H-LCCM 
 Car - class 1 – 19.11 39.98 25.59 21.25 7.21  
 Car - class 2 – 22.00 15.75 9.92 489.68 49.74  
 Car - class 3 – 14.42 15.30 6.27 3.25 8.31  
 Car - class 4 – 7.64 4.75 20.21 42.55 16.92  
 Car - class 5 – 13.19 161.63 8.96 3.30 2.33  
 Car - weighted 12.01 15.87 34.80 17.33 110.74 17.56  
 Bus - class 1 – 11.66 18.33 11.79 10.21 5.54  
 Bus - class 2 – 5.24 5.88 6.33 181.41 12.71  
 Bus - class 3 – 7.11 9.89 3.63 1.30 7.58  
 Bus - class 4 – 10.03 3.27 5.70 23.81 19.64  
 Bus - class 5 – 15.44 53.23 6.11 2.03 0.79  
 Bus - weighted 6.14 7.52 16.93 7.89 43.69 12.71  
 Rail - class 1 – 64.26 93.82 50.85 38.80 20.84  
 Rail - class 2 – 32.37 54.05 21.95 959.1 121.76  
 Rail - class 3 – 53.13 28.82 21.16 18.53 5.73  
 Rail - class 4 – 34.36 7.60 35.71 126.17 31.91  
 Rail - class 5 – 55.46 137.87 1.76 16.91 55.38  
 Rail - weighted 28.20 35.84 68.74 33.55 227.20 49.45  
 Taxi - class 1 – 215.4 283.60 186.78 161.09 33.58  
 Taxi - class 2 – 132.10 18.42 96.03 2412 275.20  
 Taxi - class 3 – 93.38 126.55 14.56 54.57 122.25  
 Taxi - class 4 – 79.71 32.04 111.29 204.6 73.98  
 Taxi - class 5 – 125.13 558.70 134.27 −2.23 46.60  
 Taxi - weighted 82.11 122.81 198.33 127.62 568.24 118.38  

Table 5
Class-specific and weighted mode shares for the Yorkshire mode choice dataset.
 VTT estimate MNL-base C-MNL LCCM GBM-LCCM GP-LCCM H-LCCM 
 Car - class 1 – 0.39 0.52 0.52 0.51 0.49  
 Car - class 2 – 0.26 0.43 0.47 0.12 0.42  
 Car - class 3 – 0.76 0.41 0.41 0.45 0.37  
 Car - class 4 – 0.41 0.47 0.45 0.31 0.46  
 Car - class 5 – 0.70 0.37 0.37 0.44 0.52  
 Car - weighted 0.48 0.50 0.47 0.46 0.38 0.46  
 Bus - class 1 – 0.10 0.09 0.09 0.07 0.09  
 Bus - class 2 – 0.35 0.30 0.04 0.82 0.29  
 Bus - class 3 – 0.03 0.12 0.14 0.26 0.12  
 Bus - class 4 – 0.09 0.05 0.31 0.36 0.03  
 Bus - class 5 – 0.01 0.24 0.19 0.07 0.21  
 Bus - weighted 0.15 0.13 0.14 0.14 0.29 0.15  
 Rail - class 1 – 0.03 0.08 0.06 0.08 0.11  
 Rail - class 2 – 0.13 0.04 0.12 0.01 0.05  
 Rail - class 3 – 0.02 0.00 0.06 0.02 0.07  
 Rail - class 4 – 0.03 0.08 0.01 0.01 0.03  
 Rail - class 5 – 0.03 0.02 0.03 0.10 0.01  
 Rail - weighted 0.05 0.05 0.06 0.06 0.05 0.05  
 Taxi - class 1 – 0.02 0.04 0.07 0.06 0.03  
 Taxi - class 2 – 0.03 0.01 0.03 0.01 0.05  
 Taxi - class 3 – 0.01 0.07 0.04 0.01 0.06  
 Taxi - class 4 – 0.06 0.05 0.01 0.06 0.08  
 Taxi - class 5 – 0.02 0.05 0.07 0.02 0.01  
 Taxi - weighted 0.03 0.03 0.04 0.05 0.05 0.04  
 Cycling - class 1 – 0.04 0.00 0.01 0.01 0.00  
 Cycling - class 2 – 0.02 0.00 0.05 0.00 0.00  
 Cycling - class 3 – 0.05 0.02 0.15 0.00 0.02  
 Cycling - class 4 – 0.01 0.09 0.00 0.04 0.17  
 Cycling - class 5 – 0.03 0.16 0.00 0.13 0.00  
 Cycling - weighted 0.03 0.03 0.04 0.03 0.02 0.04  
 Walking - class 1 – 0.42 0.27 0.26 0.27 0.28  
 Walking - class 2 – 0.21 0.22 0.29 0.05 0.20  
 Walking - class 3 – 0.12 0.36 0.22 0.26 0.35  
 Walking - class 4 – 0.41 0.26 0.21 0.22 0.23  
 Walking - class 5 – 0.15 0.17 0.35 0.25 0.26  
 Walking - weighted 0.26 0.26 0.26 0.26 0.21 0.26  
14 
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Fig. 4. Class-specific average values of covariates across LCCM and H-LCCM for Yorkshire mode choice model.

provision of PT infrastructure and without the convenience of a private vehicle. Significant non-linearities were captured travel cost 
and parking areas for car trips using a logarithmic transformation alongside a linear one.

The class allocation of LCCM resulted in a sample segmentation with 37% of the sample allocated in class 1 and 63% in class 
2. Similarly, the clustering procedure of H-LCCM allocated individuals by 42% to class 1 and 58% to class 2. According to the 
estimated distance multipliers 𝛾 of H-LCCM, the individuals of cluster 2 are allocated with a higher probability to their class (68.8% 
to class 2 on average) compared to individuals of class 1 (54.3% to class 1 on average).

The small number of identified classes allows us to perform an easier behavioural profiling compared to the five classes of Case 
study 1. Overall, the insights derived from the covariates of the class allocation, presented in Table  7, and the FMNL model on the 
cluster-specific probabilities for H-LCCM, shown in Table  8, are in agreement with the sensitivities between the two classes/clusters. 
Individuals allocated into class/cluster 1 have a lower personal income (average personal income=£23,258 from LCCM and £16,960 
from H-LCCM) and are living in more deprived areas (average home IMD=25.7 from LCCM and 33.3 from H-LCCM), while also 
showing higher cost sensitivities. Furthermore, they show significantly lower car and public transport time sensitivities for the trip 
to the shopping location compared to the following, while the opposite is true for the walking sensitivities.

Individuals in class/cluster 2 are more likely to have a higher personal income (average personal income=£27,244 from LCCM
and £32,900 from H-LCCM) and reside in less deprived areas (average home IMD=21.3 from LCCM and 14.51 from H-LCCM). They 
are characterised by lower and non significant cost sensitivities and almost equal car time sensitivities for the first and following trips 
15 
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Table 6
Fit statistics of the Yorkshire shopping destination choice models.
 Fit statistics MNL-base C-MNL LCCM GBM-LCCM GP-LCCM H-LCCM  
 Log-likelihood (0) −7,961.332
 Log-likelihood (model) −3,671.03 −3,640.98 −3,578.01 −3,585.41 −3,573.03 −3,573.32 
 Adjusted 𝜌2 0.5369 0.5386 0.5462 0.5442 0.5469 0.5469  
 AIC 7,374.05 7,345.96 7,226.02 7,256.82 7,214.06 7,214.64  
 BIC 7,459.49 7,516.85 7,412.93 7,486.45 7,395.63 7,396.21  
 Number of parameters 16 32 35 43 34 34  
 Number of individuals 270
 Number of observations 1,541

Fig. 5. Class-specific average values of covariates across LCCM and H-LCCM for Yorkshire shopping destination choice model.

to a shopping destination. That does not hold, however, for public transport time and walking distance sensitivities with individuals 
in class 2 having higher sensitivities for the second trip to the shopping destination meaning that they are more likely to choose 
to shop closer to their following activity location when they choose to travel by public transport or walking. The aforementioned 
comparison of the behavioural profiling of the estimated classes/clusters is also depicted in Fig.  5.

Regarding the remaining parameters, the presence of parking areas is a significant factor for car trips. That marginal utility is 
decreasing with the increase of parking spaces for LCCM, as captured by the estimated logarithmic parameter, while only linear 
significant sensitivities were captured with the H-LCCM. The directionality of travel is also an important factor with intermediate 
shopping destinations that require a significant deviation (above 90◦) from the straight path between the previous origin and the 
following destination are less likely to be chosen compared to others. Both models were able to capture significant marginal utilities 
of the direction of travel for class 2, but not for class 1. Finally, the multiplier of the composite logarithmic term for the size variables 
is significantly less than 1.0. According to Kristoffersson et al. (2018) that implies the existence of correlation among the elemental 
alternatives inside the aggregated destination alternatives, thus providing a behavioural meaning behind the alternative aggregation, 
in that case the implementation of HAC.

4.3. Case study 3: London mode choice

4.3.1. Model specification
For the mode choice model for the London dataset, the MNL-base model follows the specification presented in Krueger et al. 

(2020) and Hancock et al. (2021). In addition to ASCs and interactions with socio-demographic (e.g. gender, number of cars, age 
etc.) and trip characteristics (e.g. month of the year), the utility function also includes generic in-vehicle travel time parameters 
for motorised modes (car, transit) and out-of-vehicle time for the access-egress segments of transit, cycling and walking. Moreover, 
there are parameters capturing the impact of traffic variability for car trips and the number of necessary transfers for transit trips. 
The specification of LCCM was able to identify two latent classes of individuals, while failing to identify a third class. The number 
of cars owned per household and the age of the individuals were used as covariates in the class allocation model in the absence of 
any measure of personal or household income. The same socio-demographics were also included in the class-specific mode choice 
models at the lower level with different parameters specified for each case, similar to the study of Calastri et al. (2018). The estimated 
parameters of each component will inform the analyst whether a specific socio-demographic attribute might be better at explaining 
16 
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Table 7
Modelling estimates and t-ratios of LCCM and H-LCCM models for the Yorkshire shopping destination choice context.
 Parameter LCCM H-LCCM

 Alternative-specific constants  
 Constant Leeds city centre (base) – –  
 Constant Remaining Leeds - class 1 −0.5628 (−0.55) −0.8985 (−0.87) 
 Constant Remaining Leeds - class 2 −0.5195 (−1.34) −0.5190 (−1.59) 
 Constant Remaining Leeds shift for −1.9416 (−2.74) −1.6475 (−1.15) 
  season ticket owners/no car ownership - class 1  
 Constant Remaining Leeds shift for −0.4993 (−0.61) −0.3828 (−0.77) 
  season ticket owners/no car ownership - class 2  
 Constant Remaining Yorkshire - class 1 0.3734 (0.31) −0.1418 (−0.12) 
 Constant Remaining Yorkshire - class 2 0.1881 (0.52) 0.2503 (0.75)  
 Constant Remaining Yorkshire shift for −0.4916 (−0.31) −0.8747 (−0.74) 
 season ticket owners/no car ownership - class 1  
 Constant Remaining Yorkshire shift for −0.7664 (−0.91) −0.6232 (−1.23) 
 season ticket owners/no car ownership - class 2  
 LOS parameters  
 Travel time car previous trip (mins) - class 1 −0.0523 (−0.76) −0.0114 (−0.10) 
 Travel time car previous trip (mins) - class 2 −0.1379 (−3.96) −0.1319 (−5.48) 
 Travel time car next trip (mins) - class 1 −0.2350 (−2.29) −0.1178 (−1.13) 
 Travel time car next trip (mins) - class 2 −0.1217 (−3.77) −0.1351 (−3.66) 
 Travel time PT previous trip (mins) - class 1 −0.0852 (−2.14) −0.0289 (−0.61) 
 Travel time PT previous trip (mins) - class 2 −0.0201 (−0.74) −0.0283 (−0.99) 
 Travel time PT next trip (mins) - class 1 −0.2748 (−2.15) −0.1904 (−2.90) 
 Travel time PT next trip (mins) - class 2 −0.0631 (−1.67) −0.0708 (−2.69) 
 Walking distance previous trip (km) - class 1 −2.8828 (−1.17) −2.4770 (−3.31) 
 Walking distance previous trip (km) - class 2 −1.1975 (−3.32) −1.2556 (−4.36) 
 Walking distance next trip (km) - class 1 −1.8370 (−0.51) −1.3240 (−1.59) 
 Walking distance next trip (km) - class 2 −1.8779 (−1.15) −2.1864 (−3.57) 
 Travel cost linear (£) - class 1 −2.4312 (−2.56) −3.7554 (−4.20) 
 Travel cost linear (£) - class 2 −0.1222 (0.49) −0.0847 (−1.10) 
 Travel cost log (£) - class 1 0.2629 (0.52) 0.2961 (0.69)  
 Travel cost log (£) - class 2 −0.1244 (−1.67) −0.1078 (−0.76) 
 Direction of travel  
 Presence of angle> 90𝑜 between O-S and O-D - class 1 −0.0242 (−0.04) −0.0624 (−0.26) 
 Presence of angle> 90𝑜 between O-S and O-D - class 2 −0.4832 (−2.98) −0.4562 (−2.80) 
 Locational variables  
 Parking areas linear (400 m buffer) - class 1 0.0052 (0.58) 0.0087 (2.14)  
 Parking areas linear (400 m buffer) - class 2 0.0198 (4.93) 0.0195 (8.16)  
 Parking areas log (400 m buffer) - class 1 0.0663 (2.03) 0.0433 (0.68)  
 Parking areas log (400 m buffer) - class 2 0.0395 (2.21) 0.0521 (1.17)  
 Size variables  
 Natural logarithm multiplier 𝜙 - class 1 0.2950 (0.71) 0.3295 (1.21)  
 Natural logarithm multiplier 𝜙 - class 2 0.5823 (2.92) 0.5640 (3.62)  
 Class allocation parameters  
 Constant - class 1 −0.6320 (−0.86) –  
 Annual personal income (£1,000) - class 1 −0.0150 (−1.18) –  
 Home IMD - class 1 0.0211 (0.99) –  
 Clustering distance parameters  
 Distance multiplier 𝛾 - cluster 1 – −0.1507 (0.27)  
 Distance multiplier 𝛾 - cluster 2 – −0.7640 (2.06)  
 Class/cluster membership probabilities  
 Class/cluster 1 0.37 0.42  
 Class/cluster 2 0.63 0.58  

Table 8
Estimated parameters of clustering covariates for the Yorkshire shopping destination choice model.
 Parameters Cluster 1 Cluster 2 
 Constant −0.3841 (−7.93) –  
 Annual personal income (£1,000) −0.0223 (−12.69) –  
 Home IMD 0.0275 (19.76) –  

the allocation of the individuals into the classes/clusters or their observed choices. Increasing the number of clusters in GBM-LCCM,
GP-LCCM and H-LCCM resulted in numeric issues in the covariance matrix, hence it was decided to use an equivalent specification 
for C-MNL for evaluation purposes, similar to the previous case studies already discussed.
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Table 9
Fit statistics of the London mode choice models.
 Fit statistics MNL-base C-MNL LCCM GBM-LCCM GP-LCCM H-LCCM  
 Log-likelihood (0) −81,214.67
 Log-likelihood (model) −44,309.01 −43,854.73 −37,597.26 −37,219.81 −37,527.57 −37,137.11 
 Adjusted 𝜌2 0.4542 0.4596 0.5366 0.5411 0.5375 0.5423  
 AIC 88,654.03 87,773.46 75,272.52 74,533.62 75,131.14 74,350.23  
 BIC 88,815.63 88,060.76 75,622.67 74,955.60 75,472.31 74,691.40  
 Number of parameters 18 32 39 47 38 38  
 Number of individuals 26,904
 Number of observations 58,584

4.3.2. Model outputs
For this case study, we have estimated six models in total, namely MNL-base, C-MNL, LCCM, GBM-LCCM, GP-LCCM and the 

proposed H-LCCM. The GBM-LCCM was estimated using a full covariance matrix and a matérn kernel was used for GP-LCCM. Due 
to the large number of observations in the dataset, a much higher estimation time was observed for GP-LCCM by a factor of more 
than 10, compared to the remaining specifications examined. The fit statistics of the six specifications are shown in Table  9. The 
estimated parameters of LCCM and H-LCCM, along with their robust t-ratios, are reported in Table  10. A more detailed version of 
that Table including also the estimates and robust t-ratios of MNL-base, C-MNL, GBM-LCCM and GP-LCCM is presented in Table 
16 in the Appendix. The lower triangular matrix of the estimated covariances of the continuous covariates of the GBM-LCCM are 
presented in Table  19. Overall, the proposed specification is able to provide significant model fit improvements compared to LCCM
with 460.15 LL units of improvement, while also having 1 parameter less. The remaining fit statistics of H-LCCM are also improved 
compared to LCCM.

Besides the improvements in model fit, however, the advantages of our proposed methodology are more evident in the 
behavioural interpretation of the estimated classes/clusters (Fig.  6). According to LCCM, class 1 is characterised by mostly older 
individuals (average age=44.6) with a lower than average number of cars in their households (average number of cars=0.89), while 
the opposite is true for class 2 including younger individuals (average age=39.1) with a higher than average number of cars in 
their possession (average number of cars=0.98). It is fair to say that the behavioural interpretation of the covariates of LCCM is not 
intuitive enough, since age and the number of cars were used as proxy measures of income. As such, our prior assumption was that 
older individuals would likely also be in the possession of more cars, relative to younger individuals, acting as a manifestation of 
an increased income accumulation over their lifetime.

Contrary to this, the clusters of H-LCCM represent a more intuitive behavioural profiling. First of all, based on the estimated 
distance multipliers 𝛾, there is high certainty for allocating individuals into cluster 1 with a probability of 81.5% on average to 
belong to that cluster, while individuals of cluster 2 have an average probability of 61.4% to be allocated into cluster 2. Secondly, 
based on the estimated parameters of the FMNL model on the cluster-specific allocation probabilities per individual reported in 
Table  11, cluster 1 is more likely to include younger individuals (average age=38.9) with a lower than average number of cars 
(average number of cars=0.88), while older individuals (average age=44.7) with a higher than average number of cars (average 
number of cars=0.99) are more likely to be allocated into cluster 2. Individuals in cluster 1 are also more cost sensitive and less 
sensitive for in-vehicle car and transit time compared to individuals in cluster 2. Finally, it should be mentioned that for H-LCCM
the Silhouette score increased by 37.8% between the first iteration with the randomly selected centroids (Silhouette score = 0.2860) 
and the final calibrated ones (Silhouette score = 0.3940).

A range of willingness-to-pay (WTP) estimates across models, both class-specific and weighted, are also presented in Table  12, 
specifically for in-vehicle travel times for car and transit, for out-of-vehicle times for transit, for traffic variability for car and for 
transit transfers. The values are similar across all models, but an interesting thing to note here is that the ML-assisted LCCMs, namely
GBM-LCCM, GP-LCCM and H-LCCM, result in higher WTP for IVTT relative to the rest and specifically compared to LCCM by around 
5£/hr. Taking into account the VTTs for the Yorkshire mode choice model (see Table  4) and the inherently increased average income 
of London residents, which is subset by the increased cost of living, the higher VTT for IVTT of H-LCCM presented in Table  12 could 
be considered as a more accurate behavioural representation of the trade-offs that individuals in London are willing to make.

Finally, the class-specific and weighted mode shares are presented in Table  13 with the LCCM and H-LCCM models achieving 
weighted shares closer to the ones obtained from the MNL model, which can perfectly match the observed shares in the sample. On 
the hand, the GBM-LCCM and GP-LCCM specifications lead to significantly lower car shares and higher walking, cycling and transit 
shares than the rest.

5. Conclusions

The present paper showcased the integration of a probabilistic clustering algorithm based on data mining techniques into a state-
of-the-art econometric framework for the purpose of capturing individual heterogeneity in the sample. The novelty of our approach 
compared to existing studies in the literature is the transformation of a deterministic clustering algorithm into a probabilistic one 
in order to effectively take the role of a class allocation model without compromising the computational feasibility. That effectively 
allows for a simultaneous calibration of the clustering component and the estimation of a choice model at the second stage, which 
also provides feedback and helps the clustering component to re-adjust the centroids until convergence. It may be noted that there 
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Table 10
Modelling estimates and t-ratios of LCCM and H-LCCM for the London mode choice context.
 Parameter LCCM H-LCCM

 Alternative-specific constants  
 Constant Walking (base) – –  
 Constant Cycling - class 1 −7.6354 (−7.05) −7.7086 (−9.42)  
 Shift Cycling for females - class 1 −0.8494 (−0.75) −7.1144 (−11.08) 
 Shift Cycling for winter (November–March) - class 1 1.1809 (0.91) −1.5958 (−1.06)  
 Shift Cycling for age below 18 or above 64 - class 1 −9.5609 (−12.94) −0.1846 (−0.14)  
 Constant Cycling - class 2 −3.2261 (−32.62) −1.6507 (−11.51) 
 Shift Cycling for females - class 2 −1.1075 (−11.09) −1.0203 (−6.50)  
 Shift Cycling for winter (November–March) - class 2 −0.3090 (−3.47) −0.3227 (−3.80)  
 Shift Cycling for age below 18 or above 64 - class 2 −0.6358 (−4.16) −1.3231 (−5.18)  
 Constant Transit - class 1 −1.7203 (−13.24) −2.0758 (−11.47) 
 Shift Transit for females - class 1 0.3339 (2.50) 0.3186 (4.58)  
 Shift Transit for age below 18 - class 1 −0.7387 (−0.81) 0.2925 (1.56)  
 Shift Transit for age above 64 - class 1 0.9919 (5.27) 0.6414 (5.96)  
 Constant Transit - class 2 −2.2070 (−26.06) −1.9745 (−11.05) 
 Shift Transit for females - class 2 0.2583 (3.68) 0.3881 (2.35)  
 Shift Transit for age below 18 - class 2 0.7975 (3.13) 0.1651 (0.49)  
 Shift Transit for age above 64 - class 2 0.4306 (4.18) −0.0379 (−0.15)  
 Constant Car - class 1 −4.7424 (−18.60) −6.3640 (−9.91)  
 Shift Car for females - class 1 0.4735 (3.19) 0.4468 (2.58)  
 Shift Car for age below 18 - class 1 −1.5875 (−2.57) −1.7334 (−4.46)  
 Shift Car for age above 64 - class 1 1.5389 (6.49) 0.6141 (2.29)  
 Shift Car for car ownership - class 1 4.3621 (29.95) 1.6926 (13.46)  
 Constant Car - class 2 −5.8963 (−27.31) −0.6286 (−2.28)  
 Shift Car for females - class 2 0.3270 (3.42) 0.0701 (0.51)  
 Shift Car for age below 18 - class 2 −0.7333 (−3.10) −1.6307 (−6.19)  
 Shift Car for age above 64 - class 2 −0.1673 (−1.18) 0.1112 (0.58)  
 Shift Car for car ownership - class 2 2.1917 (23.02) 1.2616 (16.38)  
 LOS parameters  
 Travel cost (£) - class 1 −0.2757 (−13.36) −0.5484 (−7.07)  
 Travel cost (£) - class 2 −0.3607 (−11.30) −0.1891 (−16.67) 
 Out-of-vehicle travel time for walking, cycling −13.3327 (−30.10) −10.1507 (−7.57) 
 and transit (hrs) - class 1  
 Out-of-vehicle travel time for walking, cycling −7.1890 (−37.46) −7.5145 (−5.02)  
 and transit (hrs) - class 2  
 In-vehicle travel time for transit and car (hrs) - class 1 −6.0404 (−15.92) −3.6914 (−5.90)  
 In-vehicle travel time for transit and car (hrs) - class 2 −2.6818 (−13.46) −6.6554 (−4.90)  
 Traffic variability for car - class 1 −3.3284 (−13.21) −7.5255 (−11.31) 
 Traffic variability for car - class 2 −5.5894 (−20.00) −2.8760 (−13.69) 
 Number of transfers for transit - class 1 −0.4640 (−5.79) −0.3665 (−2.97)  
 Number of transfers for transit - class 2 −0.0620 (−1.02) −0.0267 (−0.24)  
 Class allocation parameters  
 Constant - class 1 −0.4306 (−4.53) –  
 Number of cars - class 1 −0.1861 (−3.36) –  
 Age - class 1 0.0173 (14.71) –  
 Clustering distance parameters  
 Distance multiplier 𝛾 - class 1 – −1.2584 (21.65)  
 Distance multiplier 𝛾 - class 2 – −0.4785 (9.80)  
 Class/cluster membership probabilities  
 Class/cluster 1 0.53 0.52  
 Class/cluster 2 0.47 0.48  

Table 11
Estimated parameters of clustering covariates for the London mode choice model.
 Parameters Cluster 1 Cluster 2 
 Constant 0.8106 (595.0) –  
 Number of cars −0.1945 (−411.3) –  
 Age −0.0133 (−419.1) –  

are more advanced clustering algorithms than the K-means inspired approach utilised in the current study. Nonetheless, we focused 
on probabilistic clustering techniques because we wanted to mimic the traditional econometric LCCM, where the class allocation 
component, which probabilistically allocates individuals into classes, takes feedback from the choice model and both are jointly 
estimated. The same methodology developed can also be applied to other similar centroid-based clustering algorithms, such as K-
medoids or to more advanced approaches, such as K-harmonic means, and also with different distance measures (e.g. Mahalanobis 
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Table 12
Class-specific and weighted Willingness-to-pay estimates (£/hr) for the London dataset.
 WTP estimate MNL-base C-MNL LCCM GBM-LCCM GP-LCCM H-LCCM 
 IVTT for Car, Transit - class 1 – 12.94 21.90 6.21 7.52 6.73  
 IVTT for Car, Transit - class 2 – 21.37 7.44 36.93 31.99 35.19  
 IVTT for Car, Transit - weighted 17.28 16.93 15.10 20.65 19.02 20.54  
 OVTT Transit - class 1 – 30.99 48.35 17.81 21.63 18.51  
 OVTT Transit - class 2 – 38.16 19.93 41.46 37.72 39.74  
 OVTT Transit - weighted 36.08 34.38 34.98 28.92 29.19 28.80  
 Car traffic variability - class 1 – 17.42 12.07 13.88 12.44 13.72  
 Car traffic variability - class 2 – 17.68 15.50 15.18 15.80 15.21  
 Car traffic variability - weighted 19.00 17.54 13.68 14.49 14.02 14.44  
 Transit transfers - class 1 – −0.05 1.68 0.64 1.01 0.67  
 Transit transfers - class 2 – 0.72 0.17 0.26 0.38 0.14  
 Transit transfers - weighted 0.28 0.31 0.97 0.46 0.72 0.41  

Table 13
Class-specific and weighted mode shares for the London dataset.
 Mode MNL-base C-MNL LCCM GBM-LCCM GP-LCCM H-LCCM 
 Walking - class 1 – 0.20 0.07 0.27 0.26 0.26  
 Walking - class 2 – 0.13 0.28 0.11 0.12 0.09  
 Walking - weighted 0.17 0.17 0.17 0.20 0.19 0.18  
 Cycling - class 1 – 0.04 0.00 0.00 0.00 0.00  
 Cycling - class 2 – 0.02 0.07 0.12 0.13 0.09  
 Cycling - weighted 0.03 0.03 0.03 0.06 0.06 0.04  
 Transit - class 1 – 0.48 0.27 0.66 0.62 0.62  
 Transit - class 2 – 0.26 0.48 0.17 0.21 0.13  
 Transit - weighted 0.37 0.38 0.37 0.43 0.43 0.39  
 Car - class 1 – 0.29 0.66 0.07 0.12 0.12  
 Car - class 2 – 0.59 0.16 0.60 0.54 0.69  
 Car - weighted 0.43 0.43 0.43 0.32 0.32 0.39  

Fig. 6. Class-specific average values of covariates across LCCM and H-LCCM for the London mode choice model.

distance), however requiring significant effort to integrate them into a modelling framework similar to LCCM. The simplicity of the 
K-Means algorithm made it possible to apply the proposed approach to large sample sizes (case study 3) and to choice problems 
with large choice sets (case study 2). The same framework and its fundamental principles can also be used to accommodate 
unconventional data, such as text, in the clustering/class allocation part of the model, as long as those types of data can be decoded 
in a lower dimensionality representation as numeric vectors, which can be the subject of future research.

Based on all case studies analysed, the proposed methodology is able to achieve at worse comparable results with the traditional 
econometric specification and with the current state-of-the-art ML-inspired approaches, namely GBM-LCCM and GP-LCCM, in terms 
of model fit. Specifically, although the proposed H-LCCM shares many similarities with the GBM-LCCM, it manages to mimick the 
properties of LCCM while requiring less parameters and it is also able to outperform the GBM-LCCM in all of the case studies 
examined. That in turn leads to less biased estimated parameters, which are more appropriate to be used as guidance for policy 
making. Among the three case studies, it was evident that more benefits can be achieved with larger samples including more 
individuals and trips (Case studies 1, 3) indicating that a data mining algorithm (soft K-means) might excel at identifying more 
complex patterns with more available data. Furthermore, it was possible to achieve a more intuitive behavioural interpretation and 
WTP estimates compared to the traditional econometric model in all of the case studies examined. WTP estimates and especially 
Values of Travel Time are important from a policy perspective and a more accurate estimation can provide significant benefits for 
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Table 14
Modelling estimates and t-ratios for MNL-base, C-MNL, LCCM, GBM-LCCM, GP-LCCM and H-LCCM models for the Yorkshire mode choice context..
 Parameter MNL-base C-MNL LCCM GBM-LCCM GP-LCCM H-LCCM

 Alternative-specific constants  
 Constant Car (base) – – – – – –  
 Constant Bus −2.2038 (−10.72) – – – – –  
 Constant Bus - class 1 – −2.9972 (−4.36) −5.2074 (−11.22) −5.5633 (−25.31) −5.2188 (−23.52) −3.5083 (−4.09) 
 Constant Bus - class 2 – −1.5995 (−4.95) −1.3102 (−3.73) −3.8408 (−7.66) −2.6213 (−19.75) −1.5507 (−3.26) 
 Constant Bus - class 3 – −4.0623 (−9.46) 0.3470 (0.33) −1.3922 (−9.30) −1.3125 (−12.78) 1.1644 (1.02)  
 Constant Bus - class 4 – −1.4891 (−3.82) −3.7784 (−5.22) −1.9836 (−25.75) −1.4529 (−4.28) −5.0562 (−4.64) 
 Constant Bus - class 5 – −2.0604 (−4.73) −2.4179 (−3.81) 0.4970 (1.67) −2.9656 (−10.99) −3.6437 (−5.16) 
 Constant Rail −1.6482 (−4.67) – – – – –  
 Constant Rail - class 1 – −2.5314 (−2.23) −2.7486 (−2.95) −4.7580 (−11.25) −3.6310 (−14.27) −0.1604 (0.21)  
 Constant Rail - class 2 – −1.0855 (−1.97) −0.4778 (−0.49) 0.4789 (1.25) −3.8510 (−5.49) −0.8823 (−1.06) 
 Constant Rail - class 3 – −2.3867 (−3.15) −4.7155 (−3.03) 0.8209 (2.39) −1.1265 (−2.67) −3.4326 (−2.25) 
 Constant Rail - class 4 – −1.8864 (−1.89) −1.6476 (−1.35) −4.2621 (−9.00) −3.1995 (−1.25) −3.9105 (−5.95) 
 Constant Rail - class 5 – −1.8752 (−2.59) −8.1766 (−5.02) −6.8548 (−2.54) 2.1404 (5.70) −3.7222 (−2.71) 
 Constant Taxi −1.9297 (−5.43) – – – – –  
 Constant Taxi - class 1 – −2.5727 (−2.17) −4.7217 (−6.57) −3.8495 (−17.76) −3.3651 (−17.04) −3.9144 (−5.59) 
 Constant Taxi - class 2 – −2.8653 (−4.53) −6.5988 (−3.28) −1.1912 (−1.31) −4.2626 (−13.92) −2.1399 (−3.47) 
 Constant Taxi - class 3 – −3.1056 (−6.39) 3.4928 (3.06) −1.9211 (−7.45) −3.0849 (−3.48) 4.8633 (3.75)  
 Constant Taxi - class 4 – 0.0466 (0.06) −0.6965 (−1.18) −4.2304 (−11.65) −1.2447 (−4.78) −2.8189 (−3.58) 
 Constant Taxi - class 5 – −2.1538 (−3.44) −3.9916 (−4.02) 4.2082 (9.32) −3.5682 (−7.67) −4.6772 (−6.55) 
 Constant Cycling −3.4370 (−8.84) – – – – –  
 Constant Cycling - class 1 – −2.2870 (−2.63) 39.8735 (3.84) −9.0325 (−17.96) −8.3003 (−18.27) −5.0748 (−5.10) 
 Constant Cycling - class 2 – −4.8653 (−8.22) −1.6347 (−1.85) −2.0919 (−8.92) −5.3019 (−6.73) −4.2522 (−3.45) 
 Constant Cycling - class 3 – −3.6812 (−4.19) −2.0753 (−1.74) −0.4867 (−2.38) −16.3865 (−0.01) −3.6530 (−2.96) 
 Constant Cycling - class 4 – −4.6335 (−4.78) −2.5533 (−4.09) −5.2292 (−5.88) −2.9465 (−9.49) −2.0757 (−2.92) 
 Constant Cycling - class 5 – −3.2443 (−2.40) −1.5036 (−1.04) 1.5004 (−0.01) −0.5059 (−2.69) −2.9096 (−1.81) 
 Constant Walking 1.3025 (5.30) – – – – –  
 Constant Walking - class 1 – 0.3273 (0.45) 0.2920 (0.46) 0.3779 (1.20) 0.6149 (2.22) 2.4618 (2.16)  
 Constant Walking - class 2 – 1.8671 (4.22) 1.4847 (2.61) 2.2356 (4.36) −0.4179 (−1.45) 0.8567 (1.30)  
 Constant Walking - class 3 – −0.0134 (−0.03) 4.4302 (4.81) 1.5118 (4.62) 2.0694 (7.45) 4.1692 (4.72)  
 Constant Walking - class 4 – 2.5581 (5.42) 2.1666 (2.80) 0.6317 (3.08) 0.9783 (2.48) 0.8978 (1.02)  
 Constant Walking - class 5 – 1.1943 (2.09) −0.4120 (−0.54) 4.4258 (10.39) 2.8548 (5.09) 0.2404 (0.41)  
 LOS parameters  
 Car travel time (mins) −0.1287 (−9.40) – – – – –  
 Car travel time (mins) - class 1 – −0.0883 (−1.05) −0.1712 (−8.78) −0.1610 (−21.84) −0.1503 (−30.05) −0.0809 (−3.12) 
 Car travel time (mins) - class 2 – −0.1556 (−7.59) −0.0794 (−1.19) −0.1482 (−20.04) −0.3894 (−44.01) −0.2629 (−7.09) 
 Car travel time (mins) - class 3 – −0.1420 (−4.09) −0.1312 (−3.08) −0.0946 (−18.71) −0.0349 (−5.17) −0.1692 (−2.04) 
 Car travel time (mins) - class 4 – −0.1162 (−4.59) −0.1040 (−3.23) −0.0826 (−14.98) −0.3184 (−46.71) −0.1383 (−3.93) 
 Car travel time (mins) - class 5 – −0.1190 (−4.59) −0.2688 (−4.74) −0.1509 (−14.49) −0.0492 (−7.98) −0.0259 (−0.78) 
 Bus travel time (mins) −0.0663 (−8.12) – – – – –  
 Bus travel time (mins) - class 1 – −0.0284 (−0.72) −0.0795 (−8.48) −0.0748 (−11.08) −0.0728 (−10.60) −0.0626 (−4.81) 
 Bus travel time (mins) - class 2 – −0.0720 (−9.26) −0.0323 (−1.16) −0.0953 (−7.22) −0.1454 (−38.19) −0.1047 (−7.54) 
 Bus travel time (mins) - class 3 – −0.0535 (−2.37) −0.1113 (−2.94) −0.0552 (−17.87) −0.0141 (−6.90) −0.1556 (−5.13) 
 Bus travel time (mins) - class 4 – −0.0804 (−4.81) −0.0645 (−4.30) −0.0235 (−16.77) −0.1796 (−14.96) −0.0527 (−3.87) 
 Bus travel time (mins) - class 5 – −0.0804 (−6.56) −0.0937 (−4.93) −0.1037 (−11.52) −0.0305 (−7.23) −0.0088 (−2.87) 
 Rail travel time (mins) −0.0743 (−8.56) – – – – –  
 Rail travel time (mins) - class 1 – −0.0411 (−1.11) −0.1017 (−8.28) −0.0787 (−8.41) −0.0675 (−14.23) −0.0575 (−4.44) 
 Rail travel time (mins) - class 2 – −0.0883 (−7.56) −0.0727 (−2.78) −0.0807 (−11.28) −0.1876 (−12.60) −0.1583 (−8.65) 
 Rail travel time (mins) - class 3 – −0.0828 (−4.06) −0.0230 (−0.71) −0.0785 (−13.45) −0.0489 (−5.22) −0.0287 (−1.44) 
 Rail travel time (mins) - class 4 – −0.0723 (−3.61) −0.0380 (−2.20) −0.0359 (−4.34) −0.2322 (−4.25) −0.0641 (−1.81) 
 Rail travel time (mins) - class 5 – −0.0658 (−3.83) −0.0619 (−2.15) −0.0074 (−0.21) −0.0620 (−10.52) −0.1505 (−4.52) 
 Taxi travel time (mins) −0.1747 (−6.35) – – – – –  
 Taxi travel time (mins) - class 1 – −0.1973 (−2.43) −0.2324 (−5.56) −0.2333 (−18.57) −0.2262 (−18.46) −0.0748 (−1.55) 
 Taxi travel time (mins) - class 2 – −0.1405 (−3.64) 0.0058 (−0.06) −0.2849 (−3.82) −0.3808 (−19.37) −0.2888 (−6.03) 
 Taxi travel time (mins) - class 3 – −0.1648 (−3.35) −0.3930 (−5.04) −0.0436 (−4.54) −0.1162 (−2.16) −0.4942 (−5.81) 
 Taxi travel time (mins) - class 4 – −0.2402 (−4.88) −0.1285 (−2.20) −0.0903 (−4.16) −0.3039 (−26.29) −0.1200 (−3.34) 
 Taxi travel time (mins) - class 5 – −0.2627 (−4.89) −0.1891 (−2.96) −0.4490 (−11.09) 0.0066 (0.44) −0.1022 (−1.77) 
 Cycling travel time (mins) −0.0846 (−6.58) – – – – –  
 Cycling travel time (mins) - class 1 – −0.0676 (−2.21) −8.8323 (−4.29) −0.0363 (−2.65) −0.0477 (−3.73) −0.0700 (−2.06) 
 Cycling travel time (mins) - class 2 – −0.0596 (−4.51) −0.3935 (−4.87) −0.1526 (−12.14) −0.2455 (−5.65) −0.2064 (−2.73) 
 Cycling travel time (mins) - class 3 – −0.0829 (−3.36) −0.1425 (−3.92) −0.0695 (−8.16) −1.0650 (−0.01) −0.0796 (−2.54) 
 Cycling travel time (mins) - class 4 – −0.0782 (−1.78) −0.0621 (−4.14) −0.0802 (−1.60) −0.1416 (−9.27) −0.0688 (−5.25) 
 Cycling travel time (mins) - class 5 – −0.1071 (−2.47) −0.1287 (−3.05) −1.5004 (−0.01) −0.0619 (−7.40) −1.9995 (−6.35) 
 Walking travel time (mins) −0.1519 (−15.05) – – – – –  
 Walking travel time (mins) - class 1 – −0.0804 (−2.82) −0.2024 (−10.31) −0.2380 (−17.37) −0.2080 (−18.33) −0.2226 (−7.56) 
 Walking travel time (mins) - class 2 – −0.1895 (−11.35) −0.1535 (−5.48) −0.1748 (−7.72) −0.2393 (−13.22) −0.2126 (−8.78) 
 Walking travel time (mins) - class 3 – −0.1375 (−7.57) −0.1178 (−4.13) −0.1510 (−10.57) −0.1350 (−11.36) −0.1404 (−5.40) 
 Walking travel time (mins) - class 4 – −0.1726 (−9.29) −0.2245 (−8.75) −0.1437 (−13.98) −0.1052 (−6.84) −0.1948 (−6.58) 
 Walking travel time (mins) - class 5 – −0.1716 (−8.75) −0.1780 (−5.38) −0.1266 (−7.66) −0.2050 (−8.41) −0.1394 (−6.82) 
 Natural logarithm of travel cost (£) −0.9421 (−11.89) – – – – –  
 Natural logarithm of travel cost (£) – −0.3561 (−1.03) −0.3611 (−1.75) −0.5531 (−5.56) −0.6218 (−7.60) −0.9863 (−3.70) 
 class 1  
 Natural logarithm of travel cost (£) – −0.5825 (−4.43) −0.5080 (−3.00) −1.3137 (−11.36) −0.0699 (−0.76) −0.4647 (−2.36) 
 class 2  
 Natural logarithm of travel cost (£) – −0.9448 (−4.77) −1.2605 (−3.87) −1.3256 (−16.75) −0.9430 (−12.28) −1.7901 (−5.83) 
 (continued on next page)
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Table 14 (continued).
 Parameter MNL-base C-MNL LCCM GBM-LCCM GP-LCCM H-LCCM

 class 3  
 Natural logarithm of travel cost (£) – −1.1721 (−6.79) −1.7146 (−10.47) −0.3593 (−5.40) −0.6577 (−5.82) −0.7184 (−2.61) 
 class 4  
 Natural logarithm of travel cost (£) – −0.7953 (−4.44) −0.2245 (−0.81) −1.4808 (−10.56) −1.3103 (−12.27) −0.9709 (−4.51) 
 class 5  
 Class allocation parameters  
 Constant - class 1 – – 1.4520 (1.42) 0.3839 – –  
 Season ticket ownership - class 1 – – −1.2008 (−2.33) 0.1284 – –  
 Number of cars in household - class 1 – – 2.2219 (4.19) 0.3489 – –  
 Age - class 1 – – −0.0078 (−0.42) 0.0978 – –  
 Female - class 1 – – −0.7680 (−1.39) 0.6667 – –  
 Annual household income (£1,000) – – −0.0068 (−0.69) 0.1889 – –  
 class 1  
 Constant - class 2 – – 1.3730 (1.28) 0.1883 – –  
 Season ticket ownership - class 2 – – 0.7042 (1.25) 0.2984 – –  
 Number of cars in household - class 2 – – 1.8080 (3.15) 0.0494 – –  
 Age - class 2 – – −0.0054 (−0.28) −0.0657 – –  
 Female - class 2 – – −0.9572 (−1.60) 0.4238 – –  
 Annual household income (£1,000) – – −0.0287 (−2.44) −0.1123 – –  
 class 2  
 Constant - class 3 – – 4.2390 (3.68) 0.1142 – –  
 Season ticket ownership - class 3 – – −2.2309 (−2.38) 0.3460 – –  
 Number of cars in household - class 3 – – 1.7204 (2.69) −0.1372 – –  
 Age - class 3 – – −0.1023 (−3.40) 0.0206 – –  
 Female - class 3 – – −0.6773 (−0.95) 0.5138 – –  
 Annual household income (£1,000) – – −0.0143 (−1.29) 0.4473 – –  
 class 3  
 Constant - class 4 – – 3.7335 (3.45) 0.2144 – –  
 Season ticket ownership - class 4 – – −1.0282 (−1.62) 0.5013 – –  
 Number of cars in household - class 4 – – 2.2784 (4.34) −0.4100 – –  
 Age - class 4 – – −0.0640 (−3.00) 0.2394 – –  
 Female - class 4 – – −1.3283 (−2.15) 0.5155 – –  
 Annual household income (£1,000) – – −0.0180 (−1.58) −0.3480 – –  
 class 4  
 Constant - class 5 – – – 0.0992 – –  
 Season ticket ownership - class 5 – – – 0.1430 – –  
 Number of cars in household - class 5 – – – −0.3997 – –  
 Age - class 5 – – – −0.7950 – –  
 Female - class 5 – – – 0.6967 – –  
 Annual household income (£1,000) – – – −0.2806 – –  
 class 5  
 Clustering distance parameters  
 Distance multiplier 𝛾 - cluster 1 – – – – – −0.9110 (3.35)  
 Distance multiplier 𝛾 - cluster 2 – – – – – −0.7202 (3.60)  
 Distance multiplier 𝛾 - cluster 3 – – – – – −0.3428 (1.50)  
 Distance multiplier 𝛾 - cluster 4 – – – – – −0.1812 (1.08)  
 Distance multiplier 𝛾 - cluster 5 – – – – – −1.0880 (5.05)  
 Class/cluster membership probabilities  
 Class/cluster 1 – 0.14 0.42 0.38 0.56 0.20  
 Class/cluster 2 – 0.24 0.18 0.19 0.13 0.21  
 Class/cluster 3 – 0.22 0.10 0.11 0.13 0.17  
 Class/cluster 4 – 0.24 0.21 0.21 0.10 0.19  
 Class/cluster 5 – 0.16 0.09 0.10 0.08 0.23  

policy makers. Finally, the models based on the proposed approach were able to offer a more intuitive behavioural profiling for 
the estimated clusters (e.g. case study 3), which could further lead to policy measures targeting more accurately the underlying 
population and their needs and constraints.

The proposed methodology is of course subject to certain limitations, the most important being the centroid initialisation process. 
The estimation is highly dependent on the initial centroid that is randomly selected, and under the K-means++ initialisation process, 
that initial centroid forms the basis for the selection of the remaining centroids, as well. Prior assumptions regarding the signs of the 
scaled clustering variables can help to reach a better final LL, but it is difficult to have any meaningful a priori sign directionality 
assumptions in the presence of a large number of classes/clusters, such as in Case study 1. That limitation was addressed by 
performing multiple estimation runs from different starting points (initial centroids) in order to add confidence to our results. The 
models presented in the current study are the ones resulting in the most behaviourally intuitive estimates and not solely on the ones 
with the better model fit. Furthermore, in order to present a fair comparison among the models, the covariates used in the class 
allocation components are those that resulted in the best performing traditional LCCM in each case study. Therefore, the full range 
of benefits to be gained from the proposed approach was not examined, i.e. in terms of including more sociodemographic attributes 
in the clustering stage (class allocation). Finally, it may be noted that K-means assumes well-defined spherical and distinct clusters 
while more advanced ML techniques based on DNN architectures (that can also handle probabilistic clustering), such as Variational 
Auto-encoders and Self-Organising Maps, can provide more flexibility and offer an interesting avenue for future research.

The current study aims to build on the increasing literature focusing on the integration of ML and DCM. As illustrated in the 
case studies presented, there are additional benefits to be achieved by incorporating an ML algorithm into a DCM framework. That 
approach is able to take the best of both worlds by using a probabilistic data mining approach for identifying patterns in the data 
more effectively, while also allowing the choice process to be modelled by a DCM, thus providing valuation measures, which are 
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Table 15
Modelling estimates and t-ratios for MNL-base, C-MNL, LCCM GBM-LCCM, GP-LCCM and H-LCCM models for the Yorkshire shopping destination choice context.
 Parameter MNL-base C-MNL LCCM GBM-LCCM GP-LCCM H-LCCM

 Alternative-specific constants  
 textitConstant Leeds city centre (base) – –  
 Constant Remaining Leeds −0.4088 (−2.60) – – – – –  
 Constant Remaining Leeds - class 1 – −0.4293 (−1.59) −0.5628 (−0.55) −1.0208 (−6.07) −0.0480 (−0.22) −0.8985 (−0.87) 
 Constant Remaining Leeds - class 2 – −0.4141 (−2.13) −0.5195 (−1.34) −0.3783 (−3.62) −0.6447 (−6.63) −0.5190 (−1.59) 
 Constant Remaining Leeds shift for −0.9086 (−4.02) – – – – –  
  season ticket owners/no car ownership – – – – – –  
 Constant Remaining Leeds shift for – −0.8214 (−2.27) −1.9416 (−2.74) −1.3989 (−9.29) −2.2954 (−13.78) −1.6475 (−1.15) 
  season ticket owners/no car ownership - class 1 –  
 Constant Remaining Leeds shift for – −1.0692 (−4.00) −0.4993 (−0.61) −0.4949 (−4.50) −0.6363 (−6.05) −0.3828 (−0.77) 
  season ticket owners/no car ownership - class 2 –  
 Constant Remaining Yorkshire 0.3228 (1.66) – – – – –  
 Constant Remaining Yorkshire - class 1 – 0.2560 (0.72) 0.3734 (0.31) −0.4146 (−1.38) 0.7643 (2.41) −0.1418 (−0.12) 
 Constant Remaining Yorkshire - class 2 – 0.3273 (1.38) 0.1881 (0.52) 0.4258 (3.06) 0.1019 (0.74) 0.2503 (0.75)  
 Constant Remaining Yorkshire shift for −0.9322 (−2.42) – – – – –  
 season ticket owners/no car ownership –  
 Constant Remaining Yorkshire shift for – −0.4602 (−0.65) −0.4916 (−0.31) −2.5158 (−4.19) −1.3764 (−3.19) −0.8747 (−0.74) 
 season ticket owners/no car ownership - class 1 –  
 Constant Remaining Yorkshire shift for – −1.2005 (−2.64) −0.7664 (−0.91) −0.4528 (−2.54) −0.8167 (−4.32) −0.6232 (−1.23) 
 season ticket owners/no car ownership - class 2 –  
 LOS parameters  
 Travel time car previous trip (mins) −0.1217 (−9.08) – – – – –  
 Travel time car previous trip (mins) - class 1 – −0.1330 (−4.58) −0.0523 (−0.76) −0.0363 (−2.53) −0.0975 (−6.91) −0.0114 (−0.10) 
 Travel time car previous trip (mins) - class 2 – −0.1218 (−8.26) −0.1379 (−3.96) −0.1382 (−19.93) −0.1311 (−18.51) −0.1319 (−5.48) 
 Travel time car next trip (mins) −0.1456 (−10.66) – – – – –  
 Travel time car next trip (mins) - class 1 – −0.1391 (−4.62) −0.2350 (−2.29) −0.1031 (−7.50) −0.1178 (−1.13) 
 Travel time car next trip (mins) - class 2 – −0.1526 (−9.75) −0.1217 (−3.77) −0.1563 (−22.21) −0.1241 (−18.23) −0.1351 (−3.66) 
 Travel time PT previous trip (mins) −0.0356 (−1.75) – – – – –  
 Travel time PT previous trip (mins) - class 1 – −0.0176 (−0.76) −0.0852 (−2.14) 0.0674 (8.41) −0.0289 (−0.61) 
 Travel time PT previous trip (mins) - class 2 – −0.0495 (−1.46) −0.0201 (−0.74) −0.0744 (−11.21) −0.0205 (−3.66) −0.0283 (−0.99) 
 Travel time PT next trip (mins) −0.0834 (−4.13) – – – – –  
 Travel time PT next trip (mins) - class 1 – −0.0849 (−3.78) −0.2748 (−2.15) −0.1065 (−10.58) −0.1904 (−2.90) 
 Travel time PT next trip (mins) - class 2 – −0.0893 (−2.70) −0.0631 (−1.67) −0.0983 (−14.81) −0.0678 (−11.52) −0.0708 (−2.69) 
 Walking distance previous trip (km) −1.5821 (−12.47) – – – – –  
 Walking distance previous trip (km) - class 1 – −1.5599 (−8.95) −2.8828 (−1.17) −1.9456 (−20.15) −2.4770 (−3.31) 
 Walking distance previous trip (km) - class 2 – −1.6033 (−8.39) −1.1975 (−3.32) −1.3952 (−23.52) −1.1761 (−22.72) −1.2556 (−4.36) 
 Walking distance next trip (km) −1.7995 (−12.12) – – – – –  
 Walking distance next trip (km) - class 1 – −1.7365 (−8.76) −1.8370 (−0.51) −1.3156 (−15.79) −1.3240 (−1.59) 
 Walking distance next trip (km) - class 2 – −1.9083 (−7.90) −1.8779 (−1.15) −2.3969 (−21.71) −1.7775 (−23.03) −2.1864 (−3.57) 
 Travel cost linear (£) −0.1921 (−2.26) – – – – –  
 Travel cost linear (£) - class 1 – −0.6076 (−2.05) −2.4312 (−2.56) −4.2631 (−32.17) −3.7554 (−4.20) 
 Travel cost linear (£) - class 2 – −0.1417 (−1.64) −0.1222 (0.49) −0.0469 (−1.17) −0.1271 (−3.01) −0.0847 (−1.10) 
 Travel cost log (£) −0.2026 (−3.13) – – – – –  
 Travel cost log (£) - class 1 – −0.1760 (−1.24) 0.2629 (0.52) 1.3494 (8.72) 0.2961 (0.69)  
 Travel cost log (£) - class 2 – −0.1412 (−1.91) −0.1244 (−1.67) −0.1008 (−1.00) −0.2420 (−2.48) −0.1078 (−0.76) 
 Direction of travel  
 Presence of angle> 90𝑜 between O-S and O-D −0.3823 (−3.39) – – – – –  
 Presence of angle> 90𝑜 between O-S and O-D - class 1 – −0.3069 (−1.54) −0.0242 (−0.04) −0.1161 (−0.68) −0.0624 (−0.26) 
 Presence of angle> 90𝑜 between O-S and O-D - class 2 – −0.4096 (−3.06) −0.4832 (−2.98) −0.3845 (−3.18) −0.4628 (−4.04) −0.4562 (−2.80) 
 Locational variables  
 Parking areas linear (400 m buffer) 0.0161 (9.59) – – – – –  
 Parking areas linear (400 m buffer) - class 1 – 0.0167 (5.72) 0.0052 (0.58) 0.0080 (2.39) 0.0087 (2.14)  
 Parking areas linear (400 m buffer) - class 2 – 0.0160 (7.77) 0.0198 (4.93) 0.0200 (10.62) 0.0207 (11.11) 0.0195 (8.16)  
 Parking areas log (400 m buffer) 0.0462 (3.34) – – – – –  
 Parking areas log (400 m buffer) - class 1 – 0.0120 (0.71) 0.0663 (2.03) 0.0369 (2.78) 0.0433 (0.68)  
 Parking areas log (400 m buffer) - class 2 – 0.0718 (4.64) 0.0395 (2.21) 0.0561 (4.26) 0.0550 (4.28) 0.0521 (1.17)  
 Size variables  
 Natural logarithm multiplier 𝜙 0.4829 (12.43) – – – – –  
 Natural logarithm multiplier 𝜙 - class 1 – 0.4004 (6.61) 0.2950 (0.71) 0.3890 (11.22) 0.3295 (1.21)  
 Natural logarithm multiplier 𝜙 - class 2 – 0.5382 (10.74) 0.5823 (2.92) 0.5353 (19.84) 0.4858 (19.72) 0.5640 (3.62)  
 Class allocation parameters  
 Constant - class 1 – – −0.6320 (−0.86) – – –  
 Annual personal income (£1,000) - class 1 – – −0.0150 (−1.18) – – –  
 Home IMD - class 1 – – 0.0211 (0.99) – – –  
 Clustering distance parameters  
 Distance multiplier 𝛾 - cluster 1 – – – – – −0.1507 (0.27)  
 Distance multiplier 𝛾 - cluster 2 – – – – – −0.7640 (2.06)  
 Class/cluster membership probabilities  
 Class/cluster 1 – 0.41 0.37 0.39 0.34 0.42  
 Class/cluster 2 – 0.59 0.63 0.61 0.66 0.58  
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Table 16
Modelling estimates and t-ratios for MNL-base, C-MNL, LCCM, GBM-LCCM, GP-LCCM and H-LCCM for the London mode choice context.
 Parameter MNL-base C-MNL LCCM GBM-LCCM GP-LCCM H-LCCM

 Alternative-specific constants  
 Constant Walking (base) – – – – – –  
 Constant Cycling −3.1143 (−52.04) – – – – –  
 Constant Cycling - class 1 – −3.0798 (−41.19) −7.6354 (−7.05) −7.6834 (−26.43) −7.3312 (−29.96) −7.7086 (−9.42)  
 Constant Cycling - class 2 – −3.1119 (−31.05) −3.2261 (−32.62) −1.6516 (−38.83) −1.5820 (−36.47) −1.6507 (−11.51) 
 Shift Cycling for females −1.0892 (−13.26) – – – – –  
 Shift Cycling for females - class 1 – −1.1500 (−11.18) −0.8494 (−0.75) −18.2637 (−0.01) −21.4619 (−0.01) −7.1144 (−11.08) 
 Shift Cycling for females - class 2 – −0.9907 (7.29) −1.1075 (−11.09) −1.0266 (−18.24) −0.9438 (−16.41) −1.0203 (−6.50)  
 Shift Cycling for −0.2767 (−3.66) – – – – –  
 winter (November–March)  
 Shift Cycling for – −0.2372 (−2.57) 1.1809 (0.91) −1.5562 (−1.44) −0.3659 (−1.48) −1.5958 (−1.06)  
 winter (November–March) - class 1  
 Shift Cycling for – −0.3377 (−2.56) −0.3090 (−3.47) −0.3258 (−5.76) −0.3430 (−5.83) −0.3227 (−3.80)  
 winter (November–March) - class 2  
 Shift Cycling for age below 18 −0.8067 (−6.92) – – – – –  
 or above 64  
 Shift Cycling for age below 18 – −0.8982 (−5.37) −9.5609 (−12.94) −1.0760 (−1.05) 2.5345 (9.36) −0.1846 (−0.14)  
 or above 64 - class 1  
 Shift Cycling for age below 18 – −0.7876 (−4.80) −0.6358 (−4.16) −1.2155 (−15.22) −1.7820 (−16.59) −1.3231 (−5.18)  
 or above 64 - class 2  
 Constant Transit −1.5191 (−37.56) – – – – –  
 Constant Transit - class 1 – −1.4128 (−26.64) −1.7203 (−13.24) −2.0240 (−42.45) −2.0316 (−47.61) −2.0758 (−11.47) 
 Constant Transit - class 2 – −1.6906 (−26.08) −2.2070 (−26.06) −2.0390 (−31.32) −1.9905 (−30.98) −1.9745 (−11.05) 
 Shift Transit for females 0.1898 (4.94) – – – – –  
 Shift Transit for females - class 1 – 0.1378 (2.82) 0.3339 (2.50) 0.3138 (8.00) 0.3027 (8.38) 0.3186 (4.58)  
 Shift Transit for females - class 2 – 0.2862 (4.64) 0.2583 (3.68) 0.3900 (6.00) 0.2552 (4.16) 0.3881 (2.35)  
 Shift Transit for age below 18 0.3379 (5.66) – – – – –  
 Shift Transit for age below 18 - class 1 – 0.2267 (3.50) −0.7387 (−0.81) 0.1767 (2.42) 0.3069 (5.29) 0.2925 (1.56)  
 Shift Transit for age below 18 - class 2 – – 0.7975 (3.13) 0.2516 (2.76) 0.8854 (12.52) 0.1651 (0.49)  
 Shift Transit for age above 64 0.5704 (10.43) – – – – –  
 Shift Transit for age above 64 - class 1 – – 0.9919 (5.27) 0.6417 (10.14) 0.6653 (11.70) 0.6414 (5.96)  
 Shift Transit for age above 64 - class 2 – 0.7249 (11.26) 0.4306 (4.18) 0.0688 (0.75) −0.0985 (−0.87) −0.0379 (−0.15)  
 Constant Car −2.6890 (43.83) – – – – –  
 Constant Car - class 1 – −2.9646 (−35.11) −4.7424 (−18.60) −5.8323 (−53.67) −6.3941 (−68.94) −6.3640 (−9.91)  
 Constant Car - class 2 – −2.0763 (−22.32) −5.8963 (−27.31) −0.5142 (−9.26) −0.5488 (−9.39) −0.6286 (−2.28)  
 Shift Car for females 0.1040 (2.37) – – – – –  
 Shift Car for females - class 1 – 0.1047 (1.72) 0.4735 (3.19) 0.4173 (5.60) 0.4930 (8.64) 0.4468 (2.58)  
 Shift Car for females - class 2 – 0.1281 (2.04) 0.3270 (3.42) 0.0643 (1.64) 0.0643 (1.61) 0.0701 (0.51)  
 Shift Car for age below 18 −1.0723 (−14.17) – – – – –  
 Shift Car for age below 18 - class 1 – −1.1846 (−13.14) −1.5875 (−2.57) −1.4609 (−8.68) 2.4311 (38.29) −1.7334 (−4.46)  
 Shift Car for age below 18 - class 2 – – −0.7333 (−3.10) −1.4118 (−22.51) −3.4111 (−51.40) −1.6307 (−6.19)  
 Shift Car for age above 64 0.5649 (9.10) – – – – –  
 Shift Car for age above 64 - class 1 – – 1.5389 (6.49) 0.1827 (1.36) 0.9181 (9.58) 0.6141 (2.29)  
 Shift Car for age above 64 - class 2 – 0.2998 (4.42) −0.1673 (−1.18) 0.0229 (0.38) 0.3991 (5.27) 0.1112 (0.58)  
 Shift Car for car ownership 1.5191 (67.12) – – – – –  
 Shift Car for car ownership - class 1 – 1.8517 (43.34) 4.3621 (29.95) 1.4156 (26.90) 1.5012 (32.67) 1.6926 (13.46)  
 Shift Car for car ownership - class 2 – 1.0510 (32.64) 2.1917 (23.02) 1.1139 (37.19) 1.2873 (37.60) 1.2616 (16.38)  
 LOS parameters  
 Travel cost (£) −0.1863 (−22.77) – – – – –  
 Travel cost (£) - class 1 – −0.2088 (−14.66) −0.2757 (−13.36) −0.5532 (−21.63) −0.4279 (−20.53) −0.5484 (−7.07)  
 Travel cost (£) - class 2 – −0.1864 (−16.72) −0.3607 (−11.30) −0.1877 (−25.55) −0.1968 (−26.57) −0.1891 (−16.67) 
 Out-of-vehicle travel time for −6.7220 (−63.76) – – – – –  
 walking, cycling and transit (hrs)  
 Out-of-vehicle travel time for – −6.4701 (−47.55) −13.3327 (−30.10) −9.8516 (−231.26) −9.2565 (−233.46) −10.1507 (−7.57) 
 walking, cycling and transit (hrs) - class 1  
 Out-of-vehicle travel time for – −7.1115 (−42.15) −7.1890 (−37.46) −7.7818 (−135.12) −7.4236 (−126.48) −7.5145 (−5.02)  
 walking, cycling and transit (hrs) - class 2  
 In-vehicle travel time for −3.2195 (−30.48) – – – – –  
 transit and car (hrs)  
 In-vehicle travel time for – −2.7022 (−19.21) −6.0404 (−15.92) −3.4366 (−24.87) −3.2187 (−28.43) −3.6914 (−5.90)  
 transit and car (hrs) - class 1  
 In-vehicle travel time for – −3.9825 (−22.98) −2.6818 (−13.46) −6.9322 (−74.97) −6.2960 (−69.19) −6.6554 (−4.90)  
 transit and car (hrs) - class 2  
 Traffic variability for car −3.5401 (−37.41) – – – – –  
 Traffic variability for car - class 1 – −3.6361 (−26.16) −3.3284 (−13.21) −7.6756 (−26.24) −5.3219 (−26.64) −7.5255 (−11.31) 
 Traffic variability for car - class 2 – −3.2943 (−25.09) −5.5894 (−20.00) −2.8498 (−23.89) −3.1088 (−25.40) −2.8760 (−13.69) 
 Number of transfers for transit −0.0523 (−2.05) – – – – –  
 Number of transfers for transit - class 1 – 0.0111 (0.31) −0.4640 (−5.79) −0.3524 (−5.79) −0.4309 (−9.02) −0.3665 (−2.97)  
 Number of transfers for transit - class 2 – −0.1348 (−3.44) −0.0620 (−1.02) −0.0481 (−1.00) 0.0747 (1.59) −0.0267 (−0.24)  
 (continued on next page)
24 



P. Tsoleridis et al. Transportation Research Part C 179 (2025) 105289 
Table 16 (continued).
 Parameter MNL-base C-MNL LCCM GBM-LCCM GP-LCCM H-LCCM

 Class allocation parameters  
 Constant - class 1 – – −0.4306 (−4.53) 0.5283 – –  
 Number of cars - class 1 – – −0.1861 (−3.36) −0.3909 – –  
 Age - class 1 – – 0.0173 (14.71) −0.1190 – –  
 Constant - class 2 – – – 0.4717 – –  
 Number of cars - class 2 – – – 0.4379 – –  
 Age - class 2 – – – 0.1333 – –  
 Clustering distance parameters  
 Distance multiplier 𝛾 - class 1 – – – – – −1.2584 (21.65) 
 Distance multiplier 𝛾 - class 2 – – – – – −0.4785 (9.80)  
 Class/cluster membership probabilities  
 Class/cluster 1 – 0.53 0.53 0.53 0.53 0.52  
 Class/cluster 2 – 0.47 0.47 0.47 0.47 0.48  

Table 17
Estimated covariances for the continuous covariates of GBM-LCCM for the Yorkshire mode choice study. .
 Covariate Number of cars Age Annual household income 
 Class 1
 Number of cars 1.1506  
 Age 0.4973 1.0154  
 Annual household income 0.3557 0.1293 1.2077  
 Class 2
 Number of cars 0.7448  
 Age 0.2560 0.8357  
 Annual household income 0.3046 0.1337 0.4924  
 Class 3
 Number of cars 0.6492  
 Age 0.2124 0.9152  
 Annual household income 0.3425 −0.1187 2.0533  
 Class 4
 Number of cars 0.8410  
 Age 0.2167 1.1076  
 Annual household income 0.1590 −0.1822 0.4044  
 Class 5
 Number of cars 0.6288  
 Age 0.1457 0.3159  
 Annual household income 0.2206 0.1457 0.5017  

Table 18
Estimated covariances for the continuous covariates of GBM-LCCM for the Yorkshire destination choice study. .
 Covariate Annual household income Home IMD 
 Class 1
 Annual household income 0.5727  
 Home IMD 0.0271 1.3313  
 Class 2
 Annual household income 1.1929  
 Home IMD −0.2477 0.5139  

Table 19
Estimated covariances for the continuous covariates of GBM-LCCM for the London mode choice study. 
 Covariate Number of cars Age  
 Class 1
 Number of cars 0.9128  
 Age 0.0199 1.0107 
 Class 2
 Number of cars 0.7347  
 Age 0.0490 0.9544 
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Table 20
Train/Test validation for the C-MNL based models and the H-LCCM for the Yorkshire mode choice study. .
 Model type LL (full sample) LL (80% train set) LL (20% test set) 
 C-MNL (K-means Euclidean) −4,928.32 −4,011.62 −910.50  
 C-MNL (K-means Mahalanobis) −4,999.54 −4,119.24 −995.08  
 C-MNL (K-Harmonic means) −4,958.71 −4,248.38 −1,137.60  
 C-MNL (DBSCAN) −4,895.39 −4,068.07 −847.66  
 H-LCCM (with Euclidean distance) −3,940.00 −3,235.24 −742.39  

Table 21
Train/Test validation for the C-MNL based models and the H-LCCM for the Yorkshire destination choice study. .
 Model typea LL (full sample) LL (80% train set) LL (20% test set) 
 C-MNL (K-means Euclidean) −3,640.98 −2,922.72 −726,20  
 C-MNL (K-means Mahalanobis) −3,640.74 −2,921.59 −726.34  
 C-MNL (K-Harmonic means) −3,641.88 −2,922.72 −726.03  
 H-LCCM (with Euclidean distance) −3,573.32 −2,880.22 −711.13  
a DBSCAN was not evaluated in that study because one of the clusters had only 10 trips and it was decided not to estimate 
a model on such a small sample.

Table 22
Train/Test validation for the C-MNL based models and the H-LCCM for the London mode choice study. .
 Model type LL (full sample) LL (80% train set) LL (20% test set) 
 C-MNL (K-means Euclidean) −43,854.73 −34,109.46 −8,956.70  
 C-MNL (K-means Mahalanobis) −43,053.58 −34,109.45 −8,956.69  
 C-MNL (K-Harmonic means) −43,865.30 −33,971.49 −8,945.23  
 C-MNL (DBSCAN) −42,948.96 −34,013.65 −8,955.67  
 H-LCCM (with Euclidean distance) −37,137.11 −29,614.85 −7,327.07  

important for policy making. The proposed approach thus aims to make ML relevant for policy in transport by highlighting the 
benefits to be gained from its use. More studies are expected to take these approaches even further as the ML-DCM literature keeps 
developing.
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