
This is a repository copy of A specification framework for mixed-criticality scheduling
protocols.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/231377/

Version: Accepted Version

Article:

Burns, Alan orcid.org/0000-0001-5621-8816 and Jones, Cliff (Accepted: 2025) A
specification framework for mixed-criticality scheduling protocols. ACM Transactions on
Embedded Computing Systems. ISSN: 1558-3465 (In Press)

https://doi.org/10.1145/3765522

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1145/3765522
https://eprints.whiterose.ac.uk/id/eprint/231377/
https://eprints.whiterose.ac.uk/

A specification framework for mixed-criticality scheduling protocols

ALAN BURNS, University of York, UK

CLIFF B JONES, Newcastle University, UK

This paper presents a general formal framework for describing the relationship between a criticality-aware scheduler, a set of application

jobs that are assigned different criticality levels, and an environment that generates both work and faults that the run-time system

must control. The proposed formalism extends the rely-guarantee approach, which facilitates formal reasoning about the functional

behaviour of concurrent systems, to address real-time properties. The exposition of the general framework is supplemented by a

seven step approach that enables it to be instantiated to deliver the formal specification of any proposed mixed-criticality scheduling

protocol. The expressive power of the approach is explored via a non-trivial instantiation.

ACM Reference Format:

Alan Burns and Cliff B Jones. 2025. A specification framework for mixed-criticality scheduling protocols. ACM Trans. Embedd. Comput.

Syst. 1, 1 (August 2025), 25 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

There is extensive literature on scheduling approaches and more recent proposals have tackled tolerance to some

degree of excess run-time demand beyond the normal load. To enhance the robustness of schedulers, in 2007 Vestal

proposed [46] that jobs should be distinguished by allocating them different ‘criticality’ levels. If a fault such as overly

frequent job triggering occurs during execution, computation effort can then be allocated to the most critical jobs at the

expense of those of lesser criticality. Since 2007, over 1000 papers on the theme of Mixed Criticality Systems (MCS)

have been published with a wide range of scheduling protocols being proposed [11, 12]. It should be noted that not

all standards and papers on MCS assign the same meaning to ‘criticality’; this is an issue explored by Graydon and

Bate [24], Esper et al. [23], Paulitsch et al. [44], Ernst and Di Natale [22], Wilhelm [47], Jiang [29ś31], Lee and Kim [39]

and Reghenzani and Fornaciari [45]. In this paper we do not rely on any particular notion of criticality, rather we

facilitate consistent and coherent usage however the term is defined.

Two previous papers developed formal specifications for particular scheduling approaches, [36] addresses ‘Earliest

Deadline First’ scheduling with execution time overruns and [16] tackles ‘Fixed Priority’ scheduling with early arrival

faults. The aim of developing these formal specifications was threefold:

(1) It provides an unambiguous definition of the scheduling protocol and the assumptions implied on the hardware

platform and the environment in which the system will execute.

(2) It allows a schedulability test to be developed ś this enables the task set of the application to be checked for

compliance with the requirements of the scheduling approach.

(3) It gives rise to a specification that provides a basis for the development of actual code of a run-time scheduler.

Authors’ Contact Information: Alan Burns, University of York, Department of Computer Science, York, UK, alan.burns@york.ac.uk; Cliff B Jones,

Newcastle University, School of Computing, UK, cliff.jones@ncl.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0001-5621-8816
HTTPS://ORCID.ORG/0000-0002-0038-6623
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0001-5621-8816
https://orcid.org/0000-0002-0038-6623

2 Alan Burns and Cliff B Jones

pre
︷︸︸︷

𝜎0 · · ·

rely
︷ ︸︸ ︷

𝜎i 𝜎i+1 · · · 𝜎j 𝜎j+1
︸ ︷︷ ︸

guar

· · · 𝜎f

︸ ︷︷ ︸

post

Fig. 1. Relating pre/rely/guarantee/post conditions over a sequence of states 𝜎i

These earlier papers illustrate that considerable effort is needed to develop a bespoke specification. Hence, in this paper,

ğ2 and 3 offer a general framework for mixed-criticality scheduling approaches that can then form the starting point

for the specification of any relevant scheduling discipline; ğ4 demonstrates how this framework can be instantiated to a

specification for a combination of the two previously published schedulers and ğ5 addresses schedulability tests.

The remainder of this introductory section outlines background material.

1.1 Background material

Any formal description has to employ notation; that which is used in this paper should present few difficulties to any

reader familiar with set notation and logic. To make this paper self-contained, notes are provided in Appendix A. Most of

the notation concerns objects used in the formal models. Of particular importance are ‘states’ of the formal description:

rather than build a definition in terms of functions, many modelling techniques describe systems as state transitions.

Here, states are changed by ‘operations’ which are specified rather than given as programs. Pre/post conditions suffice

for the specification of sequential operations because the relation of the starting and finishing states defines what users

need to know.

Interference is a key issue with concurrency: with shared variable concurrency, the values of variables can be changed

whilst a specified piece of code is executing. The intention behind rely/guarantee conditions [32ś34] was to record

information about interference and offer rules that supported top-down decomposition of specified components into

concurrent sub-components. (See [26] for a more tutorial description and [20] for a thorough discussion of compositional

development of concurrent programs.) Fig. 1 relates the components of an extended specification:

• the pre condition defines the set of initial states 𝜎0; this can be assumed by the developer;

• a developer must accept that the state can change during execution but such changes (e.g. 𝜎i/𝜎i+1) can be assumed

to be bounded by the rely condition;

• execution of the created code must satisfy the post condition which is a relation between the initial state 𝜎0 and

final state 𝜎f ;

• any state changes during execution of the created code must also be bounded; for example, the transition by the

code of the specified component from 𝜎j to 𝜎j+1 must satisfy the guarantee condition.

Common examples or interference assertions involve orderings such as an operation relying on the value of a variable

monotonically decreasing (x′ ≤ x or s′ ⊆ s); trivial examples are equalities but rely or guarantee conditions that include

a boolean flag are more useful (e.g. flag ⇒ y′ = y). The use of rely-guarantee conditions in the scheduling application

is more interesting: the overall objective is that jobs should complete by their deadlines; in order to achieve this the

scheduler must be designed on the assumption that jobs do not exceed their load estimates whereas jobs work under

the assumption that they are allocated resources in a timely manner.

Manuscript submitted to ACM

A specification framework for mixed-criticality scheduling protocols 3

In, for example [15], rely-guarantee thinking was shown to offer a way to describe (and/or develop) fault-tolerant

systems. Of more relevance to the material below is the research that has shown rely conditions being used to record

assumptions about components that are, in fact, not under the control of the developer (see for example [15]). As has

been shown in [16, 36], rely/guarantee conditions can be used to express the assumptions between a run-time scheduler

and the jobs that it has to control (see matching of rely-Scheduler/guar-Job in ğ3.3 below). Detailed proof rules for

rely/guarantee specifications are not required in the current paper; only the matching of the corresponding clauses is

needed.

The role of predicate restrictions on objects is described in Appendix A; one important application of this idea is

the concept of data-type invariants on state-like objects (e.g. inv-State in ğ3.1). Because all instances of such states are

required to satisfy their invariant, they play the role of general rely-guarantee conditions. The contribution of this to

progress arguments is covered in ğ3.6.

One characteristic of Cyber-Physical Systems (CPS) is that their behaviour is best understood (and specified) at

different time scales (from microseconds or less to hours or more). Time is clearly a crucial notion in the specification

of real-time systems, but it is usually represented, in modelling schemes for example, on a single indexed axis. Such an

approach fails to separate the structural properties of the system, forces different temporal notions onto the same flat

description, and fails to support the separation of concerns that the different time scales of the system exhibit. Just as

the functional properties of a system can be modelled at different levels of abstraction or detail, so too can its temporal

properties be representable in different, but provably related, time scales.

To make clearer use of ‘time’, with the aim of producing more dependable computer-based systems, Burns and

Hayes [14] proposed a framework that explicitly identifies a number of distinct ‘time bands’ in which a system under

study is situated. Within this framework, each band is defined by a granularity G (e.g. a second) and a precision 𝜌

(e.g. 10ms); and actions within the band either have duration (e.g. an integer number of seconds) or are considered to be

instantaneous events. Events, although deemed to be instantaneous at one band, are projected onto finer bands where

they have duration Ð with this duration being constrained to be no greater than the precision of the original band. This

notion of an instantaneous event is used in ğ3.3 below to represent a context switch that moves a newly released job to

the set of active jobs: from the point of view of the application, this takes no time, although, of course, at a time band

below that of the application some bounded duration (denoted as 𝜏) is allowed.

Precision is also used to define equality: two events, e1 at time t1 and e2 at time t2 occur at the same time (t1 =𝜌 t2)

if they are contained within 𝜌 when mapped to a sufficiently detailed finer time band. This notion of equality is used in

ğ3.2.

These two uses of precision, taken together, define a three time band model for a typical embedded system. The

application may have its temporal properties (deadlines, periods etc.) defined in a millisecond band, the implementation

of the Scheduler and related support functions is perhaps best placed within a microsecond band. In this band, equality

between internal and external notions of time can be assumed; but in a nanosecond band their differences can be

expressed and potentially measured. The precision in the top band (as used in ğ3.3) is perhaps 10 𝜇s; the precision of the

middle band (as used to define temporal equality in ğ3.2) is perhaps 10 ns.1 The finest band does not have a precision

since there is no lower band on which it is projected.

1Although this three band temporal structuring is assumed by the proposed framework, the actual values of the defining parameters are not fixed and
will vary between hardware platforms and will certainly alter in the future.

Manuscript submitted to ACM

4 Alan Burns and Cliff B Jones

2 Scheduling

The purpose of scheduling is to plan and control the execution of Jobs to meet deadlines; this can only be achieved

with assumptions about the load that jobs can impose. Almost inevitably, this gives rise to a static ‘planning’ phase in

which a scheduling ‘discipline’ is selected followed by use of a run-time system that implements the chosen discipline.

The current paper distinguishes the off-line planning process and how it feeds into the requirements on the run-time

scheduler whose detailed specification provides a precise reference point for developing implementations.

Because multiple Jobs can overlap, each requiring resources at run-time, it is necessary to have a run-time Scheduler

that selects which Job is to run. These choices are governed by the planning discipline from the static planning phase.

The overall combination of Planning/Scheduler can be viewed as:

Time ∥ {Framing ;Confirming ; {Scheduler ∥ Job1 ∥ Job2 ∥ · · · ∥ Jobk}}

During the Framing part of Planning the hardware platform will be chosen, the load parameters determined and the

scheduling discipline identified. As part of this process, a schedulability test will be obtained (either from first principles

or from existing practice). Ideally this test will be formally derived from the scheduling approach (see ğ3.8). During

Confirming, the schedulability test is applied to the actual load data of the application. If the test fails, Confirming is

aborted; if it passes, then at some future time the system is cleared to begin execution. Fault-Tolerant behaviour must

also be checked for feasibility (e.g. relaxed worst-case execution times can be accommodated) see ğ2.2.

Mixed-criticality makes it possible to assign different levels of criticality to the jobs: in the best case, all jobs meet

their deadlines but levels of fault-tolerant behaviour can allocate extra resources to jobs of higher Criticality so that

they meet (possibly more generous) deadlines at the expense of jobs that are less critical.

It was noted in the Introduction that there has been an extensive collection of scheduling papers published since the

notion of Mixed-Criticality was introduced by Vestal in 2007. While many interesting scheduling ideas are contained

in these papers, in general, they often lack the detail that is needed if these schemes are to be implemented and then

employed in critical embedded systems. For example, the assumptions made about how the environment can behave are

often missing or at best provided in an incomplete manner. In the following a formal framework is provided that allows

a complete and unambiguous description of the run-time behaviour of the scheduler, the actions of the application’s

jobs and the system’s state to be defined.

The following framework specification is an extended and generalised version of the two specific specifications

previously published [16, 36]. It has been derived from a detailed examination of the Mixed-Criticality literature to

ensure that it has the necessary expressive power and ease of use to be generally applicable. The specification addresses

the following entities: Tasks, Jobs,Modes, rely and guarantee conditions, Invariants, State, Time,Clocks, and the Scheduler

with its Release, ModeUp and Overrun methods.

2.1 Tasks define types of jobs

It is standard to employ a notion of ‘task’ to define type information of ‘jobs’; each task gives rise to a sequence of

jobs: any particular application has a defined set of TaskIds and TaskInfo objects provide static information about jobs

relating to their task. The sequence of jobs is either periodic (sometimes called regular or ‘time-triggered’) or sporadic

(also called aperiodic or ‘event-triggered’). In addition each task has a k field that defines the criticality of the task

(Criticality is a partially ordered set of values). TaskInfo also contains information about the load its jobs impose on the

run-time system. This leads, (using the record and mapping notation described in Appendix A), to the following object

descriptions (which are completed in ğ2.2):

Manuscript submitted to ACM

A specification framework for mixed-criticality scheduling protocols 5

TaskMap = TaskId
m
−→ TaskInfo

TaskInfo :: periodic : B

k : Criticality

loadm : · · · Load · · ·

The ‘load’ that the jobs of a task can impose on the runtime system are captured in objects of type Load. These records

contain a D field that is a relative deadline: these deadlines are expressed as Durations; a job is required to terminate

before that duration from when it is released. Two other aspects of Load are of the same type: an estimate of worst-case

execution time (WCET) is in the C field and the expected arrival gap between successive jobs from the same task is in

the T field.

Fault tolerance and mixed-criticality give rise to a notion of firmness of deadlines. Published schemes often fail to

clearly distinguish between jobs that only have soft deadlines, jobs that should meet their deadlines (it is a fault if they

do not) and those that are provided with extra resources to ensure that they indeed do so (unless the overload condition

become too severe):

Firmness = {Soft, Brittle,Hard}

The three values of the Firmness parameter are as follows: Soft ś not forced to meet the deadline; Brittle ś must

meet the deadline if no job overruns its Worst-Case Execution Time (WCET denoted by the symbol C) or is released

for execution before the time determined by T ; and Hard ś must meet the deadline even when it overruns C or is

released too early. The D parameters define the temporal requirement which must be satisfied if the deadline is defined

to be Brittle or Hard. The R value represents the longest response time that any job of that task can experience, it is

computed as part of the Confirming process in many forms of schedulability analysis Ð see ğ5.

Load :: D : Duration

fness : Firmness

C : Duration

T : Duration

R : Duration

2.2 Fault-tolerance: modes

If a job exceeds its estimated worst-case execution time (C), or if an event-triggered job is released before its expected

release gap (T), it is considered to be a fault and a fault-tolerant scheduler must be able to avoid critical jobs with Hard

deadlines being starved of resource. Both of these forms of fault arise from invalid assumptions made during Planning

concerning resource usage. They can, for example, be caused by failures in analysis (e.g. WCET estimates being in error

ś too low), or as a consequence of other forms of error and recovery such as the need to re-execute a job after a failed

validity check or the execution of an exception handler.

Handling fault-tolerance requires a notion of system Mode. Each mode defines a level of performance and jobs of

tasks with a higher criticality rating are protected, while tasks of a lower criticality have their level of service reduced

(perhaps to zero). The deadline of a job may be Hard in one mode, Brittle in another and Soft in a third. To capture

these properties the Load parameters are made mode specific, leading to the following completed definition of TaskInfo:

Manuscript submitted to ACM

6 Alan Burns and Cliff B Jones

TaskInfo :: periodic : B

k : Criticality

loadm : Mode
m
−→ Load

The set of modes always includes a normal mode (Norm ∈ Mode) in which the system is initialised. In this Norm

mode there are no Soft jobs; in response to a fault, the system may transition to a mode in which jobs of a certain

Criticality become Soft, but initially all jobs have deadlines that should be satisfied.2

A specific application of the framework (such as that illustrated in ğ4) will have one or more operational modes to

represent different levels of degraded performance. A fault model for the system will define those faults that must be

tolerated in some way. If the behaviour of the system moves beyond that specified by the fault model, then all that

can be achieved at run-time is for the system to switch to a fail-stop strategy where even the most critical tasks are

prevented from releasing new jobs. It is a criticism of many ‘mixed-criticality’ papers that they fail to make it clear

what level of faults can be tolerated and what the behaviour of the system should be if this level is exceeded.

In our proposed framework any mode that does not have a further degraded mode to which it can transition is called

a terminal mode. In the MC literature there is usually only one implied terminal mode and it is often referred to as

‘HI -crit’ as it only protects the behaviour of the highest criticality tasks. As the general model can have more than one

terminal mode we do not fix a specific name, rather we use a predicate:

terminal:Mode → B

to identify the terminal modes. As there is no further degradation from a ‘terminal’ mode all deadlines within that

mode must be either Soft or Brittle (i.e. not Hard). Despite offering different fault-tolerance modes, a job stream that

imposes more than the specified load will not necessarily achieve the stated deadlines; which therefore cannot be Hard.

The two properties outlined above lead to the definition of a type invariant for TaskInfo:

inv-TaskInfo : TaskInfo → B

inv-TaskInfo(info) △

info.loadm(Norm) .fness ≠ Soft ∧

∀mode ∈ Mode · terminal(mode) ⇒ info.loadm(mode) .fness ≠ Hard

· · ·

As mentioned above, only objects that satisfy this predicate are considered to be instances of TaskInfo. In a specific

instantiation, there will be further clauses of this invariant that link the load parameters from one mode to those of

another; for example a highly critical job may have a larger worst-case execution time estimate in a terminal mode than

in the initial Norm mode (this is the case in the instantiation given in ğ4).

It is important to emphasise that the framework does not impose any specific meaning to the notion of criticality or

how it is used to tolerate faults. For example, in the instantiation noted above, there are two fault tolerance modes.

For one form of fault, in the corresponding mode low criticality jobs run less often but still have non-soft deadlines;

however, in the mode defined for more extreme faults, the lower criticality deadlines become soft. This is a choice made

during Planning, not one required by the framework.

2The Mixed-Criticality (MC) literature often refers to the Normal mode as ‘LO-crit’ as even LO-criticality jobs are required to meet their deadlines in this
mode; hence no Soft deadlines.

Manuscript submitted to ACM

A specification framework for mixed-criticality scheduling protocols 7

A fault-tolerance strategy not only has to deal with the consequences of a fault, such as a task overrunning its expected

worst-case execution time, it also has to resume normal behaviour when it is safe to do so. This is accommodated by

allowing transitions from any mode (including terminal modes) back to the Norm mode. For example, it is always safe

to move back to the normal mode when there are no active jobs in the system.

3 Specifying a general Scheduler

The body of the formal specification of the (general) run-time scheduler defines a state transition system. In ğ3.1 the

objects of type State are fixed; the state transitions are specified in ğ3.3/3.5. Scheduling needs to connect between Time

in the external world and its approximations stored in internal states; this link is defined in ğ3.2. The issue of ensuring

adequate progress is covered in ğ3.6.

3.1 Runtime State

The Scheduler requires access to an internal clock but its values (t:ClockValue) can only be approximations to Time

in the external world (this relation is defined in ğ3.2 below). In addition to t, the run-time State of the system has a

number of fields. First, it has an indication of the current mode. Next, it includes the TaskMap Ð but the operations of

the Scheduler will only have read access. Also in the State is a mapping from JobIds to their JobInfo for the jobs that

are active ś i.e. executable (these objects contain a link to the task type and a record of the clock value at which this

job instance was released). The next two fields, run and used record which job (if any) is actually executing3 and the

currently used execution time of each job. The penultimate field (PA) of State objects holds the time of the previous

activation of the jobs from the designated task; this will be used to determine if a job is being released too early. Finally,

shared denotes the objects that will be updated by the operations of the jobs. As this is inevitably application specific,

no details are given in this general framework. Taken together this leads to the following definitions of JobInfo, State

and the important invariant for this state (inv-State):

JobInfo :: type : TaskId

release : ClockValue

State :: t : ClockValue

mode : Mode

tkm : TaskMap

active : JobId
m
−→ JobInfo

run :
[

JobId
]

used : JobId
m
−→ Duration

PA : TaskId
m
−→ ClockValue

shared : Id
m
−→ Value

where

3In this framework description we assume, for ease of presentation, that the hardware platform has only a single processor; extending its use to
multiprocessor and multicore platforms is straightforward. If tasks are statically allocated to processors then a processor Id can be added to TaskInfo. If
jobs can migrate following an overrun then a processor Id can be added to Load so that a mode change can sanction and control these migrations. Cores
can share a local clock or processors have their own local time source ś both can be accommodated by the relationship between Time and ClockValues
discussed in ğ3.2. For multiprocessor platforms, run would need to contain a set of JobId and additional changes would need to be made to capture the
static, and possible dynamic, allocation of jobs to cores. Extensions to cope with more heterogeneous platforms (for example ones that allows a job to
migrate between processors of different or variable speeds) will be addressed as part of further work.

Manuscript submitted to ACM

8 Alan Burns and Cliff B Jones

inv-State(st) △

dom st .used = dom st .active ∧

(∀j ∈ dom st .active ·

let mk-JobInfo(type, rel) = st .active(j) in

let mk-TaskInfo(per, k, ldm) = st .tkm(type) in

ldm(mode) .fness = Soft ∨ st .t ≤ rel + ldm(mode) .D) ∧

select (st .active, st .tkm, st .mode, st .run)

The first conjunct of inv-State simply requires that used time information is available for all active jobs. The second

(quantified) conjunct requires that jobs (other than those with Soft deadlines) must not have passed their deadlines (as

defined in the current mode). The select relation is specific to the chosen planning discipline which defines how the run

job is chosen from among active jobs;4 if there are no active jobs run = nil.

select : (JobId
m
−→ JobInfo) × TaskMap ×Mode ×

[

JobId
]

→ B

select (active, tkm,mode, r) △

(active = { } ∧ r = nil ∨ r ∈ dom active) ∧ · · ·

To prevent jobs with Soft deadlines from interfering with jobs with Hard or Brittle deadlines, further rules need to

be added to select. These conjuncts typically depend on the chosen scheduling approach.5

All of the parameters introduced in the last two sections inform the off-line planning process which must be

completed, documented and if necessary certified, before the on-line (run-time) phase can begin. Both planning and

execution are subject to timing constraints, and hence take place within the context of the external passage of time

(i.e. Time in the external world). However, as noted in ğ1.1, Time is a granulated phenomenon; planning actions and job

executions must both satisfy deadlines Ð but they are not on the same scale and should be modelled within different

time bands.

3.2 Specification grounded in Time

As pointed out above, internal ClockValues can only approximate Time in the external world; Σ captures the dynamic

properties of the system as it progresses through (external) time.

Σ = Time → State

where

inv-Σ : Σ → B

inv-Σ(𝜎) △ T (𝜎) ∧ E(𝜎)

4Which JobId is in run depends on the chosen scheduling discipline but there are some consistency conditions such as the property that any subset of
active including run would choose the same job to run.

act′ ⊆ act ∧ select (act, tm,mode, run) ⇒ select (act′, tm,mode, run)

5The definition of the predicaste select is therefore completed in ğ4.

Manuscript submitted to ACM

A specification framework for mixed-criticality scheduling protocols 9

Notice that values of Σ are mathematical functions and, unlike maps, not required to be finite.

The t:ClockValue field, in any State, is related to Time using the time bands [14] notion of precision =𝜌 (see discussion

in ğ1.1).

T (𝜎) △

(∀𝛼 ∈ Time · 𝜎 (𝛼) .t =𝜌 𝛼) ∧

(∀𝛼1, 𝛼2 ∈ Time · 𝛼1 < 𝛼2 ⇒ 𝜎 (𝛼1).t ≤ 𝜎 (𝛼2) .t)

The second conjunct of T ensures that the computer clock cannot go backwards; this is necessary because of the level

of imprecision over the definition of equality.

When a job is running, its used field increases in real-time; if it is not the run job then used does not change:

E(𝜎) △

∀𝛼1, 𝛼2 ∈ Time ·

∀j ∈ (dom𝜎 (𝛼1) .used ∩ dom𝜎 (𝛼2) .used) ·

((∀𝛼 | 𝛼1 ≤ 𝛼 ≤ 𝛼2 · 𝜎 (𝛼) .run = j) ⇒ 𝜎 (𝛼2).used (j) − 𝜎 (𝛼1) .used (j) =𝜌 𝛼2 − 𝛼1) ∧

((∀𝛼 | 𝛼1 ≤ 𝛼 ≤ 𝛼2 · 𝜎 (𝛼) .run ≠ j) ⇒ 𝜎 (𝛼2) .used (j) = 𝜎 (𝛼1).used (j))

3.3 Scheduler class and methods

A class description of Scheduler factors out rely and guarantee conditions that apply to all of its methods (Release,

Overrun, ModeUp), it also defines the pre condition for the run-time behaviour of the system which includes setting all

PA fields far enough back so that initial Releases can occur.

The Scheduler has access to fields of the State with rd/wr access noted (e.g. it only has read access to t whose progress

is dictated by T). In order to store the actual application data a-tkm, the Scheduler class has write access to tkm but each

of its methods only has read access to tkm. The Scheduler can only update the membership of used when a Start method

creates a new JobId (and sets its used entry to zero); guar-Scheduler requires that existing used entries are not updated

by the scheduler since they are governed by E. The key WCET assumption in rely-Scheduler is matched by guar-Job.

Scheduler (a-tkm: TaskMap)

ext rd t : ClockValue

wr mode : Mode

wr tkm : TaskMap

wr active : JobId
m
−→ JobInfo

wr run :
[

JobId
]

wr used : JobId
m
−→ Duration

wr PA : TaskId
m
−→ ClockValue

pre tkm = a-tkm ∧

active = { } ∧

mode = Norm ∧

∀tid ∈ dom tkm · PA(tid) ≤ (t − tkm(tid) .loadm(Norm) .T)

Manuscript submitted to ACM

10 Alan Burns and Cliff B Jones

rely (∀j ∈ dom used′ · used′ (j) ≤ tkm(active′ (j).type).loadm(mode′) .C) ∧

(∀j ∈ (dom active′ − dom active) · t − PA(active′ (j) .type) ≥ tkm(active′ (j).type) .loadm(mode′) .T)

guar (dom used) ◁ used′ = used

Notice that there is no post condition for Scheduler because it is not intended that it should terminate. The constraint

in guar-Scheduler indicates that none of its methods can affect entries that are already in used; Release can add new

entries; values in used (j) advance in accordance with E; and only Job operations can remove entries from used. The

rely condition requires all active jobs to conform to the mode-specific constraints on used execution time and inter-job

release times.

The main method of the Scheduler (Release) is responsible for creating the new JobInfo and, where appropriate,

adding it to the set of active jobs. However, if the triggering event occurs too early for the current mode, then a mode

change will also be necessary if the associated task is classified as Hard in the current mode. The other possibility is

that the event is too early and the firmness of the task is Brittle; in this situation the job is not released for execution

and the event is ignored.6 If the task is periodic then its jobs are, in effect, released by the scheduler at the appropriate

time, i.e. never early (or late).

Release (tid: TaskId)

ext rd t : ClockValue

wr mode : Mode

rd tkm : TaskMap

wr active : JobId
m
−→ JobInfo

wr run :
[

JobId
]

wr used : JobId
m
−→ Duration

wr PA : TaskId
m
−→ ClockValue

pre tkm(tid).periodic ⇒ t =𝜌 PA(tid) + tkm(tid) .loadm(mode) .T

rely t ≤ t′

guar (dom active) ◁ active′ = active

post PA′
= PA † {tid ↦→ t} ∧

let mk-TaskInfo(per, k, ldm) = tkm(tid) in

(t − PA(tid) ≥ ldm(mode) .T ⇒

let j ∈ (JobId − dom active) in

active′ = active ∪ {j ↦→ mk-JobInfo(tid, t)} ∧

mode′ = mode ∧ used′ (j) = 0) ∧

(t − PA(tid) < ldm(mode).T ⇒

(ldm(mode) .fness = Hard ⇒

let j ∈ (JobId − dom active) in

active′ = active ∪ {j ↦→ mk-JobInfo(tid, t)} ∧

mode′ ≠ mode ∧ used′ (j) = 0) ∧

(ldm(mode) .fness = Brittle ⇒

mode′ = mode ∧ active′ = active))

6Several specific map operators are used here and the reader is reminded that they are defined in Appendix A.

Manuscript submitted to ACM

A specification framework for mixed-criticality scheduling protocols 11

The specification also needs to dictate the maximum delay from a triggering interrupt until a Release operation

executes. In the time band of the application, the Release operation should be executed immediately. Let 𝜏 represent

the precision of this band (see discussion in ğ1.1). This implies that the Release operation must execute within 𝜏 of the

trigger (as measured at an appropriate finer band). In this case, the predicate that defines the maximum delay needs

an argument that is not in Σ: any specific execution experiences a sequence of Times at which Jobs of each task are

triggered by external events:7

Events: TaskId
m
−→ Time∗

Each such sequence is, of course, strictly monotonically increasing. Notice that Time relates to time in the external

world.

To write this predicate as an assertion (rather than as an operation) the post condition of Release is quoted Ð see

Appendix A. Hence, in the following, inv-Release-timing requires the relation represented by post-Release to be true at

the end of an interval of duration 𝛿 (with 𝛿 ≤ 𝜏):

inv-Release-timing : Events × Σ → B

inv-Release-timing(evm, 𝜎) △

∀tid ∈ dom evm ·

let evs = evm(tid) in

∀i ∈ {1..len evs} ·

∃𝛿 ≤ 𝜏 · post-Release(𝜎 (evs(i)), tid, 𝜎 (evs(i) + 𝛿))

Technically, the load assumptions define a set of potential time traces (Events). Since the assumptions about load

are used as rely conditions for the specific Scheduler , an implementation that is shown to satisfy the specification will

achieve the deadlines of any job stream that the planning phase was asked to Confirm.

3.4 Reestablishing normal mode

The change to fault-tolerant modes is covered in ğ3.5 (see Overrun). Reestablishing normal operation is of course

desirable. Reversion to normal mode can be made safely when there are no active jobs.

ModeUp

ext rd active : JobId
m
−→ JobInfo

wr mode : Mode

pre active = { } ∧mode ≠ Norm

post mode′ = Norm

Alternative schemes that enable an earlier return to the Norm mode are also available [7, 8, 27, 38, 43].

3.5 Assumptions about Jobs

To complete the definition of the framework, we need to define the behaviour of each Job including their completions.

Notice that rely-Job matches inv-State, guar-Job expresses that the job will not exceed its mode specific WCET and

post-Job expresses the changes that work must make to shared variables etc.

7This is a slight simplification in that jobs for time triggered tasks are triggered internally and are assumed never to arrive too early.

Manuscript submitted to ACM

12 Alan Burns and Cliff B Jones

Job (j: JobId)

ext rd t : ClockValue

rd mode : Mode

rd tkm : TaskMap

wr active : JobId
m
−→ JobInfo

wr used : JobId
m
−→ Duration

wr shared : Id
m
−→ Value

rely t ≤ t′ ∧

let mk-JobInfo(type, rel) = active(j) in

let mk-TaskInfo(per, k, ldm) = tkm(type) in

ldm(mode).fness ≠ Soft ⇒ t′ ≤ (rel + ldm(mode′) .D)

guar used′ (j) ≤ tkm(active(j) .type).loadm(mode′) .C ∧

{j} −◁ active′ = {j} −◁ active ∧

{j} −◁ used′ = {j} −◁ used ∧

post work(shared, shared′) ∧ j ∉ dom active′

Overrun constrains the required behaviour when a job executes for more than its current C value. In this situation

either the job is aborted or there must be a mode change. The subset of modes that can experience the need for a mode

change is identified in the pre condition; the modes that are transitioned to are identified in the post condition. The

post condition also specifies necessary changes to the set of active tasks and other parameters that define the run-time

behaviour of the system (this post condition is completed in the instantiation in ğ4).

Overrun (j: JobId)

ext wr mode : Mode

rd tkm : TaskMap

wr active : JobId
m
−→ JobInfo

wr used : JobId
m
−→ Duration

pre j ∈ dom active ∧

mode ∈ {Norm, · · · } ∧

used (j) > tkm(active(j).type) .loadm(mode).C

guar active′ = {j} −◁ active

post (tkm(active(j) .type).loadm(mode) .fness ≠ Hard ⇒ mode′ = mode) ∧

(tkm(active(j) .type).loadm(mode) .fness = Hard ⇒ mode′ ≠ mode ∧ active′ = ...)

3.6 Forcing progress

In order to argue termination or progress, it is standard to show that some aspect of the state changes monotonically

towards a limit; in other words, the operations that can change the state define a well-founded relation over states.

This applies in the case of the operations of Scheduler but the argument is indirect and involves the links between

Σ and State. In essence, what decreases is the gap between t:ClockValue in State and the deadlines of any job whose

JobId ∈ dom active. The fact that t increases follows directly from T which is a conjunct of inv-Σ. The effective deadline

Manuscript submitted to ACM

A specification framework for mixed-criticality scheduling protocols 13

for any job is the sum of its release time and the relative deadline in the D field of Load; it is true that the Load varies

by Mode but there are a (small) finite number of such D entries. The other crucial part of the argument is to establish

that t − (rel + D) cannot evaluate to less than zero: this follows from the fact that jobs are assumed not to consume

more than their estimated worst case execution time (C in Load) or arrive earlier than determined by T (also in Load).8

In a sense, the aim of the Scheduler is to get rid of jobs. The combined effects of inv-Σ and inv-State require that the

Scheduler progresses execution of Jobs as follows. The Scheduler selects which JobId is in run which causes that Job to

be allocated resources; the change of time is in accord with E in the corresponding used entry. Only because each Job

removes itself from active once it is finished does the demand on the Scheduler decrease and this will only occur when

the job has been granted enough resource; this requires that its JobId is moved into run. It is of course the responsibility

of planning to determine that executing the chosen discipline (EDF, FP, etc.) will ensure that deadlines are not breached.

3.7 Instantiating the Framework

Having provided a general model, the steps to instantiate it for a particular scheduling regime can be outlined.

(1) Complete the set of operational Modes of the system and the different Criticality levels of the application tasks.

(2) Define the Firmness of each deadline in each mode; and extend inv-TaskInfo where necessary.

(3) Extend as appropriate the Load parameters to deal with further resources and temporal properties that may be

utilised in the specific scheduling approach that was chosen during Planning.

(4) Complete the definition of the select predicate to embody the chosen scheduling discipline; this must include the

rules governing the execution of jobs with Soft deadlines.

(5) Extend the definition of inv-State to incorporate the rules of the scheduling discipline.

(6) Extend the definition of the scheduler and its methods; for example to complete the definitions of Release and

Overrun.

(7) Extend if necessary the definition of Job; for example modify guar-Job to articulate any mode-specific constraints

on its resource usage.

Note the framework does not limit the number of tasks, the number of criticality levels or the number of modes

of operation. Any scheduling policy that can be defined via a select predicate can be accommodated ś this includes

Earliest Deadline First (EDF), Fixed Priority, Round Robin and FIFO. Although the framework as presented utilises only

a uniprocessor, ğ3.1 discusses how it can easily be extended to manage homogeneous multiprocessor and multicore

architectures. Although the specification is straightforward, some necessary parameters such as a task’s WCET can be

more difficult to determine accuratelyin these hardware platforms. The schedulability test can also be more complex

(and hence error prone) if jobs can migrate between cores due to the scheduling approach or as part of the mode change

protocol.

The application of this framework to a non-trivial mixed-criticality example is given in ğ4.

3.8 Overall correctness: linking planning and execution

As indicated in ğ2, scheduling can be split into a preliminary planning phase and the run-time execution of a scheduler

together with the jobs associated with the tasks of the application. Clearly both aspects have to be correct and they

8If a job with a Brittle deadline overruns (or arrives early), it will be dropped; an overrun of a job with a Hard deadline causes it to be allocated a more
relaxed (larger) C value (or smaller T) in the mode to which the system transitions.

Manuscript submitted to ACM

14 Alan Burns and Cliff B Jones

have to correspond. The body of this paper focusses on the Scheduler ; this short section provides links to material on

planning and enlarges on its required correspondence with the Scheduler Ð see also the discussion in ğ5.

The Framing part of the planning process must select a scheduling discipline Ð although, in some cases, it might be

dictated by the customer. Given a selection of discipline and parameters for items such as deadlines and job arrival

times, hardware must be selected for the run-time system; once this is done, other parameters such as task WCETs

can be obtained. The Confirming part of planning then has to verify that the job loads can be tolerated in a way that

ensures that deadlines will be met.

The aim of the framework developed in sections ğ2 and ğ3 of this paper is to define an initial formal model that can

be easily extended to cope with the particular behavioural properties of any proposed Mixed-Criticality scheduling

protocol. Ideally such a framework would include the basic elements of a schedulability test that could also be extended

to furnish the associated Confirming test for the new protocol. Unfortunately this is not currently possible as, even for a

simple single processor scheme, the two main scheduling methods (EDF and FP) are typically analysed in fundamentally

different ways: for EDF the standard schedulability test [6, 49] checks that all deadlines up to some defined point are

satisfied;9 for FP [4, 5, 37] it is usual to calculate first the worst-case response-time (R) for each task and then check that

R ≤ D for all tasks.

This fundamental difference as to how the common scheduling paradigms are analysed is exacerbated on multi-

processor systems where, for example, jobs or tasks may, or may not, migrate between all, or a subset, of the available

cores. These varying circumstances lead to many different forms of analysis.

Although no general analysis approach can currently form part of the framework, Bozhko and Brandenburg [10]

have shown that it is possible to define a general form of Response-Time Analysis (RTA) that can be applied to systems

scheduled using FP or EDF scheduling. One of the advantages of basing a general method of analysis on RTA is that

there is evidence (for a basic, single mode, non Mixed-Critically example) that the validity of the RTA schedulability test

can be proven with the proofs being checked by a theorem proving assistant; in the case of [9, 10, 17, 41] Coq was used.

Given this potential for RTA to act as a general purpose form of verified analysis we outline, in ğ5, how it can be

applied to the developed framework.

4 An example instantiation of the framework

As noted in the introduction, two previous papers have developed formal specifications for specific mixed-criticality

systems. In [36], EDF (Earliest Deadline First) scheduling was employed and the faults that were tolerated were overruns

of execution time (the C parameter in the general model) by the most critical tasks. In the other paper [16], FP (Fixed

Priority) scheduling was used and the tolerated faults arose from the most critical, event-triggered, tasks arriving for

execution too early (the T parameter being compromised). In this instantiation we again use FP scheduling but cater

for both forms of fault. We arrive at the formal model by instantiating the general framework and following the steps

outlined in ğ3.7.

If an event-triggered, critical, job arrives ‘too early’ then a mode change occurs and as a result the inter-arrival

parameter (T) is shortened. But to allow this increase in load to be managed, the time-triggered (lower criticality) tasks

have their T parameters extended in the new mode. All deadlines however continue to be satisfied.

9This is checked by assuming all tasks release their first job at time 0 and then release subsequent jobs as soon as allowed. For all deadlines (d) to be
checked the total work to be done by these jobs before time d must be shown to be no greater than d.

Manuscript submitted to ACM

A specification framework for mixed-criticality scheduling protocols 15

Additionally, if an event-triggered job executes for more than its C parameter allows, then a different mode change

occurs with the new mode facilitating a larger C for the highest criticality tasks; but in this mode the lower criticality

tasks are no longer guaranteed, their deadlines are Soft.

With FP (Fixed Priority) scheduling, the Planning stage both assigns priorities to each task (in each mode) and checks

for schedulability by employing a test based on Response-Time Analysis ś see ğ5. This test relies on the run-time

scheduler always executing the current job of the active task with the highest priority.

The actual priorities assigned to each task during planning (and assumed for tests of schedulability) can be derived

optimally [3] or be obtained via a heuristic (such as rate-monotonic priority assignment) that is proved to be effective

(if not actually optimal) [40]. The disadvantage of an optimal assignment scheme is that it can make the schedulability

test significantly more complex to derive and apply. All schedulability tests are sufficient, if the test is passed then all

the deadlines are guaranteed to be satisfied. But only the optimal tests are also necessary ś fail the test and deadlines

will be missed.

In this case study we assume that the deadlines are implicit (i.e. D is equal to T for all tasks in all modes). Moreover

priorities are allocated using the rate-monotonic algorithm. Hence, in all modes, the ordering of the priorities of the

tasks matches the ordering of their T parameter ś a shorter T implies a higher pri.

4.1 Instantiation of the General Model

Step 1 ś Criticality and Modes

Two levels of criticality suffice to illustrate this instantiation:10 Jobs of High criticality tasks are Event-Triggered Ð

hence TaskInfo.periodic is false. With Low criticality tasks, they are Time-Triggered so their TaskInfo.periodic is true.11

Criticality = {High, Low}

There are three modes of operation (Normal, Fault Tolerant and Overrun):

Mode = {Norm, Ft,Over}

Figure 2 illustrates these modes and the allowable transitions: Transition Norm → Ft occurs when Event-Triggered

tasks arrive too early. Transitions Norm → Over and Ft → Over occur when a job of a High criticality task executes

for too long. The only other allowable transitions are Over → Norm and Ft → Norm which occur when there is an

idle instant. This leaves one other possible transition, Over → Ft; this is not however a reasonable behaviour in this

example instantiation ś in Over, Low criticality tasks are no longer guaranteed to meet their deadlines, whereas in Ft

they are, a switch from Over to Ft would therefore not satisfy any application need. It follows from these behaviours

that terminal(mode) is true for Over but false for Norm and Ft.

Step 2 ś Firmness

With the modes and criticality levels defined, inv-TaskInfo can now be completed with the necessary properties of

the task parameters and the firmness of each deadline in each mode being specified. First we note that deadlines are

implicit, so T equals D in all situations. Next the C parameters for each task are the same in modes Norm and Ft.

10For applications that require more levels of criticality, it might be appropriate to define a partial order over the values (i.e. they do not have to be
linearly ordered).
11Although this example has a simple relationship between periodicity and criticality this is not in general the case. Hence the general model introduced
above has both a ‘periodic’ flag and a separate Criticality parameter.

Manuscript submitted to ACM

16 Alan Burns and Cliff B Jones

NORM FT OVER
 < T

> C

> C

{}

{}

Fig. 2. The modes and their transitions. The green mode is the initial mode in which all deadlines are met. The red mode is terminal.

Other (blue) modes define degraded behaviour. Transitions marked with < T occur when a job arrives too early; those with > C

imply a job has executed for too long. Dashed transitions can only occur when the set of active tasks is empty ({}).

For theHigh criticality tasks their periods (T) are potentially shorter in mode Ft as in modeNorm, but are unchanged

in mode Over. However the C parameters are greater in Over. As Over is a terminal mode the firmness of the High

criticality tasks is Brittle in that mode but Hard in the other two.

The Low criticality tasks have a related set of properties; periods are potentially longer in Ft, computation times are

smaller in Over and deadlines are Brittle in modes Norm and Ft but Soft in Over.

So in Over only High criticality tasks are guaranteed to execute and complete by their deadlines. Low criticality

periodic tasks are however still released for execution, but have Soft deadlines. There is no further degradation from

this mode (as the Over mode is terminal).

The above properties are formalised in the specification of inv-TaskInfo on the next page ś the lines in red being

copied from the general model derived in ğ2.2.

Steps 3, 4 and 5 ś Defining the Scheduling Approach

Here we need to add what is required to define FP scheduling. The run-time task parameter, priority, must be added to

TaskInfo; since tasks may have different priorities in different modes, the pri parameter is added to Load:

Load :: · · ·

pri : N

The select predicate from ğ3.8 is extended to reflect the preemptive FP discipline; furthermore the behaviour of jobs

with Soft deadlines must be defined. Here we require the priority of such jobs to be less than that of any active job

with a Hard or Brittle deadline:

select : (JobId
m
−→ JobInfo) × TaskMap ×Mode ×

[

JobId
]

→ B

select (active, tkm,mode, r) △

(active = { } ∧ r = nil ∨ r ∈ dom active) ∧

∀i, j ∈ dom active ·

tkm(active(j) .type) .loadm(mode) .pri ≤ tkm(active(r).type) .loadm(mode).pri ∧

(tkm(active(i) .type) .loadm(mode) .fness = Soft ∧ tkm(active(j).type) .loadm(mode) .fness ≠ Soft ⇒

tkm(active(i).type).loadm(mode).pri < tkm(active(j).type).loadm(mode).pri)

Manuscript submitted to ACM

A specification framework for mixed-criticality scheduling protocols 17

There is no need for any further extensions to inv-State in this example.

inv-TaskInfo : TaskInfo → B

inv-TaskInfo(info) △

info.loadm(Norm).fness ≠ Soft ∧

(∀mode ∈ Mode ·

(terminal(mode) ⇒ info.loadm(mode) .fness ≠ Hard) ∧

info.loadm(mode) .D = info.loadm(mode).T) ∧

info.loadm(Norm).C = info.loadm(Ft).C ∧

(info.Criticality = High ⇒

¬ info.periodic ∧

info.loadm(Ft) .T ≤ info.loadm(Norm) .T ∧

info.loadm(Ft) .T = info.loadm(Over) .T ∧

info.loadm(Norm) .C ≤ info.loadm(Over) .C ∧

info.loadm(Norm) .fness = Hard ∧

info.loadm(Ft) .fness = Hard ∧

info.loadm(Over) .fness = Brittle) ∧

(info.Criticality = Low ⇒

info.periodic ∧

info.loadm(Norm) .T ≤ info.loadm(Ft) .T ∧

info.loadm(Norm) .C ≥ info.loadm(Over) .C ∧

info.loadm(Norm) .fness = Brittle ∧

info.loadm(Ft) .fness = Brittle ∧

info.loadm(Over) .fness = Soft)

Step 6 ś Updating the Scheduler and its methods

With this example there is no need to modify the definition of the Scheduler (i.e. its pre, rely or guar conditions).

The definition of the Release method in the general model covers all the required behaviours. If a job arrives too early

and has a Hard deadline then the current mode must be Norm and a mode change to Ft is required. Hence rather than

just note that the mode must change (mode′ ≠ mode in post-Release in ğ3.3) we can be explicit as to the mode that must

be transitioned to (mode′ = Ft).

Two minor modifications are also required to Overrun to make the modes involved explicit. Here the changed lines

are shown in blue.

Overrun (j: JobId)

ext wr mode : Mode

rd tkm : TaskMap

wr active : JobId
m
−→ JobInfo

wr used : JobId
m
−→ Duration

Manuscript submitted to ACM

18 Alan Burns and Cliff B Jones

pre j ∈ dom active ∧

mode ∈ {Norm, Ft} ∧

used (j) > tkm(active(j).type) .loadm(mode).C

guar active′ = {j} −◁ active

post (tkm(active(j) .type).loadm(mode) .fness ≠ Hard ⇒ mode′ = mode) ∧

(tkm(active(j) .type).loadm(mode) .fness = Hard ⇒ mode′ = Over ∧ active′ = active)

There are no changes needed to the simple ModeUp method.

Step 7 ś Extend the definition of Job

The behaviour of each job, apart from when it overruns, is independent of the chosen scheduling approach, it therefore

does not need to be modified.

4.2 Summary

The above seven steps illustrate how the general framework can be instantiated to define the required behaviour

for a particular non-trivial mixed-criticality model. Most elements of the framework are unchanged (definitions of

TaskInfo, State, inv-State, Σ and inv-Σ, ModeUp, inv-trigger and Job), others are subject to minor alterations ś as the

allowable modes of the system are now fixed, (Scheduler , Release and Overrun). The main additions to the framework

are the concrete modes and criticality levels (and hence significant extensions to inv-TaskInfo to capture the rules for

transitioning between the modes). There is also the definition of the chosen scheduling protocol (as embodied in a

completed definition of select and the addition of the pri parameter to Load). In summary, the proposed framework

significantly reduces the effort needed to derive a full formal specification of a new mixed-criticality scheduler.

5 Response-Time Analysis (RTA) for the Framework

In this section we develop a general form of RTA that can be tailored to apply to the mixed-criticality protocols defined

by the developed framework. We also briefly outline how this analysis can be applied to the instantiation of the

framework developed in the previous section.

To keep the formulae in this section compact and looking familiar to readers who are familiar with the RTA literature,

a number of abbreviations are adopted: for particular tkm: TaskMap and tidi : TaskId:

Di = (tkm(tidi) .loadm) (Norm) .D

Ci = (tkm(tidi).loadm) (Norm).C

Ti = (tkm(tidi) .loadm) (Norm) .T

Ri = (tkm(tidi).loadm) (Norm).R

5.1 General Response-Time Analysis, RTA

Response-time analysis computes, for each task tidi : TaskId, the longest period of time until a job of tidi will complete

its execution (Ri); this must reflect both the WCET (Ci) of the task and the maximum total interference that the job can

experience. RTA works on one task at a time and uses a fixed-point equation to estimate the maximum load that all the

other tasks can generate that will interfere with tidi during its response time (of length Ri , from time of release which is

assumed without loss of generality to be time 0).

Manuscript submitted to ACM

A specification framework for mixed-criticality scheduling protocols 19

Ri = Ci +
∑︁

tidj ∈TaskId

Ij (Ri) (1)

where Ij (Ri) is the total (i.e. maximum) interference jobs from task tidj can have on task tidi in any interval of length Ri .

As noted in ğ3.8, the actual values of I to be used in eq(1) depend on the scheduling discipline chosen. For EDF

scheduling, all jobs with a deadline at or before 0 + Ri will count towards I ; for fixed priority scheduling it will be all

jobs that have been released before Ri and have a higher (or equal) priority than tidi . In addition, resource sharing

protocols and non-preemptive code within the OS may result in other jobs causing a form of interference that is usually

referred to as blocking. If, as is usually the case, the deadline (D) for a task is no greater that its period (T) then a task

cannot interfere with itself (Ii = 0); however if D > T it is possible for one job of a task to interfere with the next job of

the same task. Analysis for this scenario is available [13] but is not included here.

Equation eq(2) is a recurrence relation because the I term in eq(1) extends Ri . All equations derived from eq(1) are

solved using the standard techniques for solving recurrence relations; i.e. fixed point iteration:

rn+1i = Ci +
∑︁

tidj ∈N

Ij (r
n
i) (2)

with the initial value r0i being set to Ci , and rn+1i ≥ rni . To compute the least fixed point, the iteration stops when either

rn+1i = rni , in which case rni is the task’s response time (Ri = rni), or r
n+1
i > Di in which case this task, and hence the

whole task set, is unschedulable12.

5.2 Response-Time for the Multi-Modal Framework using Fixed Priority Scheduling

In this section we review the published method of using RTA to test a fixed priority mixed-criticality system with two

modes (Norm and Term) and hence one mode switch of importance. This scheme is capable of being applied to EDF

(and other scheduling schemes that are amenable to Response-Time Analysis). It is also extendable to more than two

modes of operation, although the analysis becomes more complex. This is discussed again in ğ5.6 where the approach is

applied to the instantiation of the general framework given in ğ4.

For fixed-priority scheduling eq(1) becomes:

Ri = B + Ci +
∑︁

tidj ∈hp (i)

⌈

Ri

Tj

⌉

Cj (3)

the summation being over all tasks with a higher (or equal) priority than that of tidi . The blocking term, B is the

maximum interference a job of lower priority can have on tidi . This arises from the management of shared resources and

non-interruptible code within the OS. It is straightforward to include this (constant) term, but for ease of presentation it

will be omitted from the following discussions.

5.3 Steady state analysis for Norm and Term

The two modes of operation are Norm and a terminal mode which is given the simple name Term.

The complete analysis consists of first checking that these two modes are schedulable, and, if they are, checking that

the worst-case mode change (from Norm to Term) is also schedulable. The approach applied in this paper follows that

used to derive RTA for the original analysis [5] of the Mixed-Criticality System model developed by Vestal [46].

12More efficient methods of undertaking RTA are available [19].

Manuscript submitted to ACM

20 Alan Burns and Cliff B Jones

The first step is to apply eq(3) to the steady state behaviour of each mode. This will generate mode-specific worst-case

response times (i.e. Ri (Norm) and Ri (Term)). If these values are less than the associated deadlines for each mode and

all tasks then the actual mode change can be addressed.

5.4 Mode change analysis

We again analyse each task in turn, and assume the mode change from Norm to Term occurs at arbitrary time S.

Figure 3 represents the worst-case behaviour of task tidi . Note S must be before Ri (Norm) as tidi must complete before

Ri (Norm) in mode Norm, and the switch must occur before it has completed. The sequence of rni values will start at S

and will either iterate to the solution, Ri (S), or obtain a value that is greater than Di (Term) in which case tidi cannot be

guaranteed to meet its deadline during a mode change taking place at time S. Different values of S are likely to lead to

different solutions (different values of Ri (S)). The final piece of the analysis will be to identify the longest response time:

Ri = max
S∈{0..Ri (N) }

Ri (S) (4)

which by construction will have a value less than Ti (Term). Fortunately, as proven in [5], not all values of S need be

evaluated, rather only values of S that correspond to the release of a new job of a lower criticality but higher priority

need to be considered.

Ri(Norm) Ri(S) Ti(Term)S0 r
n

i

Fig. 3. Schedulable Mode Switch of tidi at time S

5.5 Interference terms

Given a specific value of S when the mode of the system changes from Norm to Term and a current value of rni for

whatever task is being analysed, it is necessary to compute the maximum interference that this task can suffer in the

interval from 0 to rni . This allows a new value of rn (i.e. rn+1i) to be computed. Interference comes from the execution of

higher priority tasks. There are four sources of this interference in the model adopted in this paper, all of which apply

to jobs with non-Soft deadlines:

(1) Tasks that have a higher priority in Norm but a lower priority in Term.

(2) Tasks that have a lower priority in Norm but a higher priority in Term.

(3) Tasks of lower criticality that have higher priority in both modes.

(4) Tasks of higher criticality that have a higher priority in both modes.

Note that tasks may change their priority at time S (when the mode changes) and that higher criticality tasks may have

their execution time budgets increased or their periods decreased at S while lower criticality tasks (if they still have a

Brittle deadline and a higher priority) may have a lower budget and/or a longer period.

Manuscript submitted to ACM

A specification framework for mixed-criticality scheduling protocols 21

5.6 Applying RTA to the example instantiation

As illustrated in Figure 2 the example instantiation has three modes (Norm, FT and Over). Each of these modes must

first be assessed and then the mode changes from Norm to FT and Norm to Over. However the mode change from FT

to Over need not be analysed as its worst case behaviour is covered by the following test.

With the three modes of this example the worst-case behaviour may well occur when a mode change from Norm to

FT is followed almost immediately by a mode change from FT to Over. This would happen if a high criticality job was

released early and then executed for longer than allowed in the more constrained modes. To analyse this occurrence,

two mode change switch times, S1 and S2, are required. The mode change from Norm to FT occurs at time S1 with

S1 < Ri (Norm). The mode change from FT to Over then occurs at time S2 with S1 < S2 < Ri (S
1). The Ri (S

1) values

are obtained from the single mode change analysis that has already been carried out (S1 = S).

The response-time analysis follows the same pattern as before [5]. The interference from higher priority jobs is

computed for (and maximised over) the three intervals, 0 to S1, S1 to S2 and S2 to rni . Overall, as the number of modes,

and hence mode changes, increases the number of steps that need to be analysed grows exponentially. Fortunately RTA is

pseudo-polynomial and three or more modes can easily be accommodated. In practice most papers on Mixed-Criticality

Analysis limit their models to less than six modes.

6 Conclusions

The main contribution of this paper is that a generic model is provided which significantly decreases the effort required

to create a formal specification of any specific real-time scheduling scheme. There is extensive published work on

Mixed-Criticality scheduling and implementation, but not on their formal specification. We believe formalisation is

essential since the notion of mixed criticality as applied within critical Cyber Physical Systems has subtle semantics:

often concepts such as correctness, completeness, resilience and robustness are neither straightforward nor intuitive

for such systems.

The challenges śand their resolutionsś of providing a formal model include:

• separating the assumptions that developers canmake from the requirements on the code of the run-time Scheduler :

use of rely and guarantee conditions, and state invariants;

• delivering managed fault-tolerance: use of layers of rely-guarantee conditions with respect to the Mode of

execution;

• addressing the distinction between Time in the world external to the software and its internal ClockValues: use

of notion of precision from the definition of time bands;

• requiring that the methods of the Scheduler make progress: use of invariants that relate to deadlines, execution

times and ClockValues.

The developed framework has three main elements; (i) TaskInfo and JobInfo, (ii) State and Σ, (iii) the Scheduler and

the running Jobs. These relate to (i) the static and dynamic properties of each task and the jobs they create, (ii) the state

of the system and its relation to time in the system’s environment, and (iii) the run-time scheduler with its methods

that control the release of jobs, their termination, and if necessary their fault management, and entities that contain

the computations to be undertaken by each job. Key properties of the run-time system are enforced by the datatype

invariants: inv-TaskInfo, inv-State and inv-Σ, and by related rely and guarantee conditions.

During Planning the framework is expanded to cover the particular properties of the proposed system’s run-time

behaviour.

Manuscript submitted to ACM

22 Alan Burns and Cliff B Jones

The literature on formalising response time analysis includes [9, 10, 17, 18, 21, 41]; of which we consider it easiest

to build a bridge to the recent research at MPI Kaiserslautern. (An alternative avenue would be to link to [42] and

their use of the Duration Calculus.) Our future work will focus on the schedulability test that is derived and applied

during Planning to ensure that the application’s deadlines will always be satisfied. Ideally such tests will be proven to be

correct and their implementation verified using appropriate software tools. We aim to derive a general purpose test that

complements the other aspects of the framework. An initial approach will focus on RTA (Response Time Analysis) that

is well developed for priority based scheduling, but is currently less usable for EDF (Earliest Deadline First) scheduling.

We will also hope to build on the theorem proving assistant work cited in ğ5.

Acknowledgements

The authors’ initial collaboration started under funding from UK EPSRC and was continued under their Platform Grant

scheme. This research was funded in part by Innovate UK SCHEME project (10065634) and EPSRC Research Data

Management (no new primary data was created during this study). Jones’ research was also supported by RPG-2019-020

from the Leverhulme Foundation and polished by discussions at IFIP WG 2.3 and the Big Specification meetings at the

Isaac Newton Institute in Cambridge.

The authors are grateful to Björn Brandenburg for fruitful discussions on the related work at MPI Kaiserslautern;

useful input on readability from the anonymous referees is also gratefully acknowledged.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.

[2] J.-R. Abrial. The Event-B Book. Cambridge University Press, Cambridge, UK, 2010.

[3] N.C. Audsley. On priority assignment in fixed priority scheduling. Information Processing Letters, 79(1):39ś44, 2001.

[4] N.C. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings. Applying new scheduling theory to static priority preemptive scheduling.

Software Engineering Journal, 8(5):284ś292, 1993.

[5] S.K. Baruah, A. Burns, and R.I. Davis. Response-time analysis for mixed criticality systems. In Proc. IEEE Real-Time Systems Symposium (RTSS),

pages 34ś43, 2011.

[6] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptive scheduling of hard real-time sporadic tasks on one processor. In Proc. of IEEE Real-Time Systems

Symposium (RTSS), pages 182ś190, 1990.

[7] I. Bate, A. Burns, and R.I. Davis. A bailout protocol for mixed criticality systems. In Proc. 27th ECRTS, pages 259ś268, 2015.

[8] I. Bate, A. Burns, and R.I. Davis. An enhanced bailout protocol for mixed criticality embedded software. IEEE Transactions on Software Engineering,

43(4):298ś320, 2016.

[9] Kimaya Bedarkar, Mariam Vardishvili, Sergey Bozhko, Marco Maida, and Björn B Brandenburg. From intuition to Coq: A case study in verified

response-time analysis of FIFO scheduling. In 2022 IEEE Real-Time Systems Symposium (RTSS), pages 197ś210. IEEE, 2022.

[10] Sergey Bozhko and Björn B Brandenburg. Abstract response-time analysis: A formal foundation for the busy-window principle. In Proceedings of

the 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020), pages 6.1ś6.23, 2020.

[11] A. Burns and R.I. Davis. A survey of research into mixed criticality systems. ACM Computer Surveys, 50(6):1ś37, 2017.

[12] A. Burns and R.I. Davis. Mixed criticality systems: A review (13th edition). Technical Report MCC-1(13), available at https://www-users.cs.york.ac.

uk/ab38/review.pdf and the White Rose Repository, Department of Computer Science, University of York, 2022.

[13] A. Burns and A. J. Wellings. Analysable Real-Time Systems Programmed in Ada. ISBN: 9781530265503, 2016.

[14] Alan Burns and Ian J. Hayes. A timeband framework for modelling real-time systems. Real-Time Systems, 45(1ś2):106ś142, 6 2010.

[15] Alan Burns, Ian J. Hayes, and Cliff B. Jones. Deriving specifications of control programs for cyber physical systems. The Computer Journal,

63(5):774ś790, 2020.

[16] Alan Burns and Cliff B. Jones. Specifying fault-tolerant mixed-criticality scheduling. In Simon Foster and Augusto Sampaio, editors, The Application

of Formal Methods: Essays Dedicated to Jim Woodcock on the Occasion of His Retirement, pages 22ś42. Springer Nature Switzerland, 2024.

[17] Felipe Cerqueira, Felix Stutz, and Björn B Brandenburg. Prosa: A case for readable mechanized schedulability analysis. In 2016 28th Euromicro

Conference on Real-Time Systems (ECRTS), pages 273ś284. IEEE, 2016.

[18] Albert MK Cheng. Real-time systems: scheduling, analysis, and verification. John Wiley & Sons, 2003.

[19] R.I. Davis, A. Zabos, and A. Burns. Efficient exact schedulability tests for fixed priority pre-emptive systems. IEEE Transaction on Computers,

57(9):1261ś1276, 2008.

Manuscript submitted to ACM

https://www-users.cs.york.ac.uk/ab38/review.pdf
https://www-users.cs.york.ac.uk/ab38/review.pdf

A specification framework for mixed-criticality scheduling protocols 23

[20] Willem-Paul de Roever, Frank de Boer, Ulrich Hanneman, Jozef Hooman, Yassine Lakhnech, Mannes Poel, and Job Zwiers. Concurrency Verification:

Introduction to Compositional and Noncompositional Methods. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001.

[21] B. Dutertre and V. Stavridou. Formal analysis for real-time scheduling. In 19th DASC. 19th Digital Avionics Systems Conference. Proceedings (Cat.

No.00CH37126), volume 1, pages 1D4/1ś1D4/7 vol.1, 2000.

[22] R. Ernst and M. Di Natale. Mixed criticality systems?a history of misconceptions? IEEE Design & Test, 33(5):65ś74, 2016.

[23] A. Esper, G. Neilissen, V. Neils, and E. Tovar. How realistic is the mixed-criticality real-time system model. In Proc. 23rd International Conference on

Real-Time Networks and Systems (RTNS 2015), pages 139ś148, 2015.

[24] P. Graydon and I. Bate. Safety assurance driven problem formulation for mixed-criticality scheduling. In Proc. WMC, RTSS, pages 19ś24, 2013.

[25] I. J. Hayes, editor. Specification Case Studies. Prentice Hall International, second edition, 1992.

[26] I. J. Hayes and C. B. Jones. A guide to rely/guarantee thinking. In Jonathan Bowen, Zhiming Liu, and Zili Zhan, editors, Engineering Trustworthy

Software Systems ś Third International School, SETSS 2017, volume 11174 of Lecture Notes in Computer Science, pages 1ś38. Springer-Verlag, 2018.

[27] S. Iacovelli and R. Kirner. A lazy bailout approach for dual-criticality systems on uniprocessor platforms. Designs, 3(1), 2019.

[28] D. N. Jackson. Software Abstractions: logic, language, and analysis. MIT Press, 2012.

[29] Z. Jiang. How to build a mixed-criticality system in industry - from perspective of system architecture. In J. Li and Z. Guo, editors, Proc. 7th WMC

Workshop, IEEE Real-Time Systems Symposium (RTSS), year = 2019, pages 9ś14, 2019.

[30] Z. Jiang. How to build a mixed-criticality system in industry - from the perspective of system architecture. In Proc. 8th WMC Workshop, IEEE

Real-Time Systems Symposium (RTSS), pages 510ś517, 2020.

[31] Z. Jiang, S. Zhao, P. Dong, D. Yang, R. Wei, N. Guan, and N. Audsley. Re-thinking mixed-criticality architecture for automotive industry. In Proc.

IEEE 38th International Conference on Computer Design (ICCD), pages 510ś517, 2020.

[32] C. B. Jones. Development Methods for Computer Programs including a Notion of Interference. PhD thesis, Oxford University, 6 1981. Printed as:

Programming Research Group, Technical Monograph 25.

[33] C. B. Jones. Specification and design of (parallel) programs. In Proceedings of IFIP’83, pages 321ś332. North-Holland, 1983.

[34] C. B. Jones. Tentative steps toward a development method for interfering programs. Transactions on Programming Languages and System, 5(4):596ś619,

1983.

[35] C. B. Jones. Systematic Software Development Using VDM. Prentice Hall International, second edition, 1990.

[36] Cliff B. Jones and Alan Burns. Extending rely-guarantee thinking to handle real-time scheduling. Formal Methods in System Design, 62(1):119ś140,

2024.

[37] M. Joseph and P. Pandya. Finding response times in a real-time system. BCS Computer Journal, 29(5):390ś395, 1986.

[38] S. Law, I. Bate, and B. Lesage. Justifying the service provided to low criticality tasks in a mixed criticality system. In Proc 30th International Conference

on Real Time Networks and Systems, RTNS, pages 100ś110. ACM, 2020.

[39] J. Lee and M. Kim. Generalized models of mixed-criticality systems for real-time scheduling. Trans Eng Comput Sci, 1:1ś50, 2020.

[40] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment. JACM, 20(1):46ś61, 1973.

[41] Marco Maida, Sergey Bozhko, and Björn B Brandenburg. Foundational response-time analysis as explainable evidence of timeliness. In 34th

Euromicro Conference on Real-Time Systems (ECRTS 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[42] Ernst-Rüdiger Olderog and Henning Dierks. Real-Time Systems: Formal Specification and Automatic Verification. Cambridge University Press, 2008.

[43] A.V. Papadopoulos, E. Bini, S. Baruah, and A. Burns. AdaptMC: A Control-Theoretic Approach for Achieving Resilience in Mixed-Criticality Systems.

In Sebastian Altmeyer, editor, 30th Euromicro Conference on Real-Time Systems (ECRTS 2018), volume 106 of Leibniz International Proc. in Informatics

(LIPIcs), pages 14:1ś14:22. Schloss DagstuhlśLeibniz-Zentrum fuer Informatik, 2018.

[44] M. Paulitsch, O.M. Duarte, H. Karray, K. Mueller, D. Muench, and J. Nowotsch. Mixed-criticality embedded systemsśa balance ensuring partitioning

and performance. In Proc. Euromicro Conference on Digital System Design (DSD), pages 453ś461. IEEE, 2015.

[45] F. Reghenzani and W. Fornaciari. Mixed-criticality with integer multiple WCETs and dropping relations: new scheduling challenges. In Proc. 28th

Asia and South Pacific Design Automation Conference, pages 320ś325, 2023.

[46] S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance. In Proc. Real-Time Systems Symposium

(RTSS), pages 239ś243, 2007.

[47] R. Wilhelm. Mixed feelings about mixed criticality (invited paper). In Florian Brandner, editor, Proc. 18th International Workshop on Worst-

Case Execution Time Analysis (WCET), volume 63 of OpenAccess Series in Informatics (OASIcs), pages 1:1ś1:9, Dagstuhl, Germany, 2018. Schloss

DagstuhlśLeibniz-Zentrum fuer Informatik.

[48] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement and Proof. Prentice Hall International, 1996.

[49] F. Zhang and A. Burns. Schedulability analysis for real-time systems with EDF scheduling. IEEE Transaction on Computers, 58(9):1250ś1258, 2008.

Manuscript submitted to ACM

24 Alan Burns and Cliff B Jones

A Appendix ś Notation

As indicated in ğ1.1, the specific syntax of a formal notation is unimportant and the formulae in the current paper could

readily be transcribed into Z [25, 48], B [1], Event-B [2] or Alloy [28]; this paper uses the widely know VDM [35] which

was the subject of an international standard in 1996 and last revised in 2008.

The notation for describing the objects manipulated is straightforward. The base types used are Booleans (B) and

natural numbers (N). Set types are defined by X -set and values can take part in expressions using familiar operators:

union S ∪ T and test for membership e ∈ S. The empty set is written { }; sets of enumerated constants can be defined as

in Firmness in ğ2.1; such constants can only be compared for equality (e.g. Hard ≠ Soft);

Map values (D
m
−→ R) are sets of pairs with the requirement of a many:one association so that they can be applied

to arguments in the same way as functions; the domain of a map value is domm thus m ∈ (D
m
−→ R) ∧ d ∈ domm

⇒ m(d) ∈ R. The other map operators are most easily described in terms of sets of pairs but notice that each operator

preserves the many:one property:

The union of maps is only defined where: domm1 ∩ domm2 = { }

Domain restriction: s ◁m = {(d, r) ∈ m | d ∈ s}

Domain subtraction: s −◁m = {(d, r) ∈ m | d ∉ s}

Map overwrite: m1 †m2 = (domm2 −◁m1) ∪m2

Finite sequence types can be thought of as maps from natural numbers (X∗
= (N

m
−→ X)). The length of a sequence

value is len s and elements can be accessed by indexing; the set of indexes is inds s = {1, · · · , len s} so:

s ∈ X∗ ∧ i ∈ inds s ⇒ s(i) ∈ X

Records are valuable when writing formal specifications because the named (and typed) fields are more readable

than anonymous tuples Ð see for example Load in ğ2.1. Optional values are marked by
[

X
]

and are equivalent to

X ∪ {nil}. Selection of fields from a record value is made by postfixing .field. Predicate restriction of record types by

invariants is exemplified in inv-State in ğ3.1. Allied with each record description is a constructor function that builds

record values from those suitable for its fields but only applies to values which satisfy the invariants. The ranges of

distinct mk- functions are automatically disjoint. Furthermore, these constructor functions can be used on the left

of local let definitions to decompose a record value to provide names for its field values (see rely-Job in ğ3.5); it is

useful to echo the names of the record fields for the values but they can be abbreviated since these are local bindings.

Functions are normally presented with their signatures; predicates are functions whose range is B (see inv-TaskInfo in

ğ2.2). Notice that, unlike maps, mathematical functions can have infinite domains.

In a sequential setting, so-called ‘operations’ are like functions which take śand yieldś an object of type state. Thus

Release in ğ3.3 can change State objects but its actual read/write access to the fields of these objects are defined after the

external keyword. Pre conditions for operations define the set of starting states in which the operation is required to

work; post conditions are predicates of the initial and final states and specify the permissible relation between them

(values in the final state are distinguished by primes, e.g. active′). Notice that the required results might not be unique;

specifications can permit non-determinism. There is a ‘satisfiability’ requirement that there must be at least one possible

final state for any initial state. Rely and guarantee conditions as they apply to concurrent systems are described in ğ1.1.

In addition to the state transitions which are essentially viewed as discrete, some phenomena of real-time systems

have to be described over continuous time; this extension is described in ğ3.2. There is also a need to specify that

an operation is executed in a particular time interval; since operations cannot be ‘invoked’ from logical expressions,

Manuscript submitted to ACM

A specification framework for mixed-criticality scheduling protocols 25

this effect is achieved by quoting the post condition of the operation (see inv-Release-timing in ğ3.3); this approach is

described in [35, ğ9.1].

Manuscript submitted to ACM

	Abstract
	1 Introduction
	1.1 Background material

	2 Scheduling
	2.1 Tasks define types of jobs
	2.2 Fault-tolerance: modes

	3 Specifying a general Scheduler
	3.1 Runtime State
	3.2 Specification grounded in Time
	3.3 Scheduler class and methods
	3.4 Reestablishing normal mode
	3.5 Assumptions about Jobs
	3.6 Forcing progress
	3.7 Instantiating the Framework
	3.8 Overall correctness: linking planning and execution

	4 An example instantiation of the framework
	4.1 Instantiation of the General Model
	4.2 Summary

	5 Response-Time Analysis (RTA) for the Framework
	5.1 General Response-Time Analysis, RTA
	5.2 Response-Time for the Multi-Modal Framework using Fixed Priority Scheduling
	5.3 Steady state analysis for Norm and Term
	5.4 Mode change analysis
	5.5 Interference terms
	5.6 Applying RTA to the example instantiation

	6 Conclusions
	References
	A Appendix – Notation

