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This paper studies the welfare effects of providing pre-trip information to morning com-
muters in a single-bottleneck model, where both bottleneck capacity and travel demand are
exogenously stochastic and assumed to follow an arbitrary joint distribution. We first de-
rive the equilibrium travel costs under varying levels of information completeness, and then
examine how information completeness influences travel costs and the key factors driving
the welfare outcomes of information provision. We find that the welfare effects of pro-
viding pre-trip information are associated with the information completeness, the degree
of correlation between bottleneck capacity and demand, and the frequency and amplitude
of bottleneck capacity and demand changes. Although providing full information is never
welfare-reducing, providing partial information can increase travel costs compared to no in-
formation (i.e., information paradox) when demand and bottleneck capacity are moderately
correlated. Nevertheless, transitioning from partial to full information consistently leads to
a reduction in travel costs. Our numerical examples further confirm the theoretical results
and highlight the necessity of accounting for uncertainties in both supply and demand when
developing traveler information systems.

Keywords: Morning commute problem, stochastic supply and demand, advanced traveler8

information system, information completeness, information value9

1. Introduction10

Nowadays, more than 50% of the world’s population lives in cities (Goetz, 2019). Al-11

though the agglomeration effect of cities can bring benefits to people’s lives, such as high-12

quality medical care and education, it also leads to many problems. One of the formidable13

problems in many cities, especially big ones, is traffic congestion (Small and Verhoef, 2007).14

In particular, many commuters living in big cities often experience severe traffic congestion15

during peak hours. The 2021 Urban Mobility Report estimated that the price of congestion16

in the U.S. was up to $190 billion in 2019, resulting from 8.7 billion hours of travel delay17
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and 3.5 billion gallons of additional fuel (Schrank et al., 2021). From 1989 to 2019, the delay18

hours for each commuter in the most populated areas in the U.S. increased from 27 to 5419

hours per year, nearly doubling over three decades (Schrank et al., 2021). It is expected20

that the urban population will continue to grow in recent years, so the problems caused by21

traffic congestion may worsen as the urban population grows (Goetz, 2019). The ultimate22

reason for traffic congestion is the demand-supply imbalance. Moreover, various unpre-23

dictable events, such as traffic accidents, adverse weather, and unannounced road works, as24

well as individual constraints that prevent commuters from driving, such as residential relo-25

cations, vacations, and other personal circumstances, further exacerbate the uncertainty in26

both travel demand and network capacity. This uncertainty intensifies the supply-demand27

imbalance, making traffic congestion more severe and unpredictable. Therefore, reducing28

the supply and demand uncertainty in transportation is one feasible way to reduce traffic29

congestion and additional travel costs.30

In recent years, the development of advanced traveler information systems (ATIS), par-31

ticularly the widespread use of smartphone navigation applications, can better collect and32

deliver travel information to commuters (Ben-Elia and Avineri, 2015). The advent of ATIS33

inspires us to understand how commuters respond to the provided information and what34

factors and how these factors affect the performance of ATIS so that it better develops.35

Providing information about traffic states to commuters before they depart (i.e., pre-trip36

information) is a common way to reduce uncertainty in transportation (Lindsey et al., 2014;37

Han et al., 2021). Previous studies have demonstrated that the welfare effects of pre-trip38

information in the morning commute are related to many factors, such as information accura-39

cy (Arnott et al., 1999; Yu et al., 2021), unpredictable fluctuations in road capacities (Arnott40

et al., 1991; Khan and Amin, 2018; Han et al., 2021), commuter heterogeneity (Khan and41

Amin, 2018; Yu et al., 2021), historical knowledge (Zhu et al., 2019), and pricing schemes (Yu42

et al., 2023). These studies did good work in understanding the welfare effects of pre-trip in-43

formation; however, most of them only considered the uncertainty in supply (i.e., stochastic44

bottleneck capacity). Although some studies, such as Arnott et al. (1999), consider uncer-45

tainty in both supply and demand, the underlying factors influencing the welfare effects of46

pre-trip information remain insufficiently explored and understood.47

Uncertainty is ubiquitous in both supply and demand of transportation systems, often48

leading to adverse effects such as increased costs and traffic congestion. These negative49

impacts, however, are typically believed to be alleviated through the provision of travel-50

er information. However, when supply and demand are both stochastic, it is still unclear51

about the welfare effects of information provision and what factors and how these factors52

influence the welfare effects of this pre-trip information in the morning commute. In this53

paper, we investigate the welfare effects of providing pre-trip information to morning com-54

muters in a single-bottleneck model where bottleneck capacity (i.e., supply) and the number55

of commuters (i.e., demand) are both stochastic. We first investigate travel costs at user56

equilibrium under varying levels of pre-trip information provision, specifically focusing on57

information completeness. We distinguish between three levels of information completeness:58

(1) no information, where commuters make decisions without any prior knowledge of the59

stochastic conditions affecting their journey; (2) partial information, where commuters have60

2



access to limited pre-trip details, such as either demand or capacity forecasts; and (3) full61

information, where commuters are fully informed about the joint realization of both de-62

mand and capacity before departure. Next, we evaluate the value of providing different63

levels of pre-trip information (i.e., information value) by comparing the equilibrium travel64

costs under varying levels of information completeness. The value of pre-trip information is65

measured by the change in travel costs when providing one level of information complete-66

ness to commuters, compared to another level of completeness. Specifically, we focus on67

the value of pre-trip information by comparing partial information with no information, full68

information with no information, and full information with partial information, as well as69

examining the effects of two types of partial information, namely demand information and70

bottleneck information. Pre-trip information is considered welfare-improving (or welfare-71

reducing) if it results in a decrease (or increase) in travel costs relative to the scenario with72

lower completeness or no information. However, if the pre-trip information does not affect73

travel costs compared to scenarios with lower completeness or no information, it is welfare-74

neutral (Lindsey et al., 2014; Han et al., 2021). Also, we assume the information provided75

to commuters before departure is one hundred percent accurate.76

Our study differs from the previous ones about the value of pre-trip information in the77

morning commute in at least two aspects. First, the stochastic demand and bottleneck ca-78

pacity are assumed to follow an arbitrary joint distribution, and the degree of correlation79

between supply and demand is introduced to describe the relationship between bottleneck80

capacity and demand caused by unpredictable events. Second, the welfare effects of infor-81

mation completeness are considered by providing different amounts of pre-trip information.82

We derive the expected travel costs under user equilibrium in the three regimes regard-83

ing the amounts of information provision: zero-information, partial-information, and full-84

information. Two scenarios in the partial-information regime, i.e., only providing demand85

information and only providing supply information, are considered.86

Our study quantifies the welfare effects of varying levels of information completeness87

in a correlated stochastic environment, where demand and bottleneck capacity are jointly88

distributed. By introducing a flexible correlation structure between supply and demand, we89

develop a analytical framework that captures how different degrees of information complete-90

ness interact with underlying system uncertainties to influence equilibrium travel costs and91

commuter welfare. Our study makes several contributions to the literature on the morning92

commute problem with stochastic demand and bottleneck capacity as well as ATIS. First,93

we theoretically demonstrate that providing full pre-trip information consistently improves94

welfare compared to no information, as it simultaneously eliminates uncertainty on both the95

supply and demand sides. Second, the welfare effects of providing partial information, rela-96

tive to no information, depend on the correlation between bottleneck capacity and demand,97

as well as the frequency and magnitude of their fluctuations. Notably, when supply and de-98

mand are uncorrelated, partial information is either welfare-neutral or beneficial. However,99

when they are moderately correlated, partial information may lead to higher travel costs100

compared to no information—a phenomenon known as the information paradox. Third, we101

find that the type of partial information matters: bottleneck capacity information generally102

yields better performance than demand information, especially under moderate correlation103
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scenarios. Fourth, the transition from partial to full information consistently reduces travel104

costs, even though partial information alone may trigger the information paradox over zero105

information.106

The rest of the paper is organized as follows. Section 2 reviews the related literature.107

Section 3 presents the model. Section 4 derives the equilibrium solutions when providing108

different amounts of pre-trip information. Section 5 investigates the welfare effects of pre-109

trip information. Section 6 provides numerical examples to confirm the theoretical findings.110

Section 7 concludes the paper and discusses potential research directions.111

2. Literature review112

For decades, many transport researchers and policymakers have paid attention to the113

morning commute problem since commuters during peak hours usually experience more114

severe congestion than in other traveling periods, thereby leading to many adverse effects,115

such as additional travel costs and greenhouse gas emissions (Small, 2015; Li et al., 2020).116

The single-bottleneck model proposed by Vickrey (1969) has been a classical theoretical base117

to investigate the morning commute problem, in which commuters need to balance the trade-118

off between travel time and schedule delay. Many studies since then have extended the model119

in various directions, such as stochastic capacity (Xiao et al., 2015; Long et al., 2022), elastic120

demand (Arnott et al., 1999; Liu et al., 2025), information provision (Arnott et al., 1991;121

Khan and Amin, 2018; Han et al., 2021; Yu et al., 2023), the value of reliability (Fosgerau122

and Karlström, 2010; Liu et al., 2020), congestion pricing and metering (De Palma and123

Lindsey, 2011), and so forth.124

One non-negligible reason for traffic congestion and the difficulties of traffic prediction125

is uncertainty. In the morning commute, uncertainty significantly influences departure time126

choice behavior and changes departure flow patterns and travel costs. For example, Xi-127

ao et al. (2015) found that uncertainty in bottleneck capacities would cause commuters to128

depart earlier and spread departure flows over a longer period compared to a determin-129

istic bottleneck setting. Also, the departure flow patterns became more complex under130

a stochastic bottleneck setting than a deterministic bottleneck setting. For example, Long131

et al. (2022) identified five possible departure flow patterns formed in different queuing type-132

s and schedule delay types when the bottleneck capacity was assumed to follow a general133

continuous probability distribution; in contrast, only one pattern emerges when capacity is134

deterministic. Furthermore, Fosgerau (2008) found that the stochastic of demand and bot-135

tleneck capacity could increase congestion costs by up to 50% compared to the case where136

demand and bottleneck capacity were deterministic.137

Providing information is a practical and effective strategy to influence travelers’ behavior138

in transportation systems. This, in turn, can help alleviate congestion and optimize system139

efficiency. Ben-Elia and Avineri (2015) reviewed information classification in travel behav-140

ior research. Information sources are typically categorized into three fundamental types:141

experiential, descriptive, and prescriptive. Experiential information is acquired through142

continuous learning from historical experience feedback. Descriptive information describes143

current or predicted travel conditions, while prescriptive information includes recommenda-144
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tions, guidelines, or alternative suggestions. Pre-trip information, which is provided before145

the journey begins, falls under the category of descriptive information as it helps to elim-146

inate uncertainty about the trip, providing travelers with critical insights into conditions147

they may face. Many studies have investigated the welfare effects of information provision148

in the morning commute. For example, Arnott et al. (1991) used a simple model with depar-149

ture time and route choices, where bottleneck capacity was assumed to follow the Bernoulli150

distribution. They found that providing imperfect information might increase travel costs151

compared to no pre-trip information. Khan and Amin (2018) studied the effects of het-152

erogeneous information on departure choice behavior in a bottleneck model with stochastic153

capacity, where information heterogeneity was described using a Bayesian game with two154

asymmetrically informed commuter populations, providing evidence for the importance of155

the degree of information penetration. Zhu et al. (2019) studied the impact of long-term his-156

torical knowledge and real-time information provision on the bounded rational commuters in157

a bottleneck corridor with stochastic capacity. They found that the convergence of bound-158

ed rational user equilibrium was influenced by information perceptions. Yu et al. (2021)159

investigated the joint effects of inaccurate pre-trip information and commuters’ respons-160

es and heterogeneity on morning commute behavior under stochastic bottleneck capacity.161

They found that the welfare effects of inaccurate information were significantly influenced162

by commuters’ responses and heterogeneity. Inaccurate information might be better than163

accurate information when commuters complied with the provided inaccurate information.164

Han et al. (2021) studied the value of pre-trip information in the morning commute with165

departure time and route choices in which bottleneck capacity was assumed to follow a gen-166

eral probability distribution. They found that information accuracy and the uncertainty of167

the free-flow travel time significantly influenced the welfare effects of pre-trip information.168

Full and accurate pre-trip information might be welfare-reducing when free-flow travel time169

and bottleneck capacity were both stochastic. Yu et al. (2023) investigated the effects of170

information provision and congestion pricing on social welfare and travel costs in the morn-171

ing commute under price-sensitive demand and stochastic bottleneck capacity. They found172

that responsive pricing performed better than habitual pricing, especially when high-quality173

information was provided.174

Furthermore, in the context of information provision, the completeness of information is175

crucial in shaping the performance of transportation systems. Previous studies have inves-176

tigated the influence of information complete (or information integrity) on travel behavior177

and system efficiency. For example, Peeta et al. (2004) quantified information complete-178

ness as the perceived information reliability (PIR) metric. They found that when PIR was179

small, the convergence of Wardrop equilibrium decreased. Abdel-Aty and Yuan (2010) de-180

veloped a robust static traffic assignment model that accounted for incomplete information,181

demonstrating that the absence of information results in increased total system travel time.182

Avitabile et al. (2018) discovered that information completeness had an inverted U-shaped183

relationship with cognitive load, as demonstrated through eye-tracking behavioral experi-184

ments. They explained that providing too much information can actually reduce the quality185

of travel decisions. Lu et al. (2020) proposed an information integrity compensation frame-186

work and developed the information integrity index. They demonstrated that when data187
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completeness was low, prediction errors increased nonlinearly. Furthermore, some studies188

investigated the welfare effects of pre-trip information in the morning commute under the189

uncertainty of demand and supply. Arnott et al. (1988) investigated the impact of informa-190

tion on the time-of-use decisions of commuters in a congestible facility where demand and191

capacity were stochastic. They further analyzed a simple case of partial information where192

demand was fixed and capacity followed the Bernoulli Distribution, finding that complete193

information was better than zero information. Arnott et al. (1999) showed that information194

might reduce social welfare when demand was isoelastic in price and bottleneck capacity195

was stochastic. They also found that imperfect information might negatively affect social196

welfare compared to no information.197

From the literature mentioned above, we find that most studies only investigate the198

impact of pre-trip information in the morning commute under the stochastic bottleneck199

capacity. Relatively few studies have investigated the welfare effects of pre-trip information200

when both travel demand and bottleneck capacity are stochastic. Furthermore, although201

Arnott et al. (1988) investigated the impact of partial information on commuting costs, they202

only studied a simple case where demand was assumed to be fixed. 1 Also, Khan and Amin203

(2018) argued that additional insights about the value of information could be gained by204

assuming that the demand and bottleneck capacity followed an arbitrary joint distribution.205

Motivated by these gaps, this paper presents a general analysis of the impact of partial and206

full information on the morning commute, where demand and bottleneck capacity are both207

exogenously stochastic and are assumed to follow an arbitrary joint distribution. Partial208

information refers to scenarios in which commuters are informed about either demand or209

bottleneck capacity prior to departure, while full information provides both. We pay special210

attention to analyzing the impact of information completeness, the degree of correlation211

between demand and bottleneck capacity, and the frequency and amplitude of bottleneck212

capacity and demand changes.213

3. The model214

3.1. Assumptions and notations215

In the model, we assume a highway with a bottleneck connecting a residential district216

(RD) and a central business district (CBD). Unlike the deterministic setting of the classical217

bottleneck model, there is uncertainty in demand and bottleneck capacity. The uncertainty218

in bottleneck capacity can arise from factors such as adverse weather, accidents, roadwork,219

or special events. Furthermore, we incorporate uncertain travel demand to account for220

commuters who do not drive to work every weekday. This uncertainty in travel demand221

is exogenous, primarily driven by external factors such as adverse weather, residential re-222

locations, personal vacations, and other circumstances that prevent commuting. Previous223

theoretical studies on stochastic demand have typically modeled the variability in travel de-224

mand as either exogenous (Zhong et al., 2014; Pedroso et al., 2024) or price-sensitive (Arnott225

1Arnott et al. (1988) argued that a general analysis of partial information was conceptually and analyti-
cally difficult; therefore, they only investigated a simplified situation where demand was fixed.
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et al., 1993b; van den Berg, 2012; Liu et al., 2025). In this study, we assume that both travel226

demand and bottleneck capacity follow exogenously given probability distributions.227

We denote the set of possible bottleneck capacity states as Ω and the possible demand228

states as Ψ. Let sω denote the bottleneck capacity in state ω, where ω ∈ Ω, and Nψ229

denote the demand in state ψ, where ψ ∈ Ψ. Let N and N denote the minimum and230

maximum demand, respectively, and let s and s denote the lower and upper bounds of the231

bottleneck capacity, respectively. Then, the relationship between N and N can be described232

as N = πNN , where 0 < πN < 1, and the relationship between s and s can be described as233

s = πss, where 0 < πs < 1. Without loss of generality, we assume Ω and Ψ are continuous.234

Let j(Nψ, sω) denote the joint probability density function of a commuter departing from235

RD to CBD under demand Nψ and bottleneck capacity sω, and the corresponding joint236

cumulative distribution function can be described as J(Nψ, sω) =
∫ Nψ
N

∫ sω

s
j(Nψ, sω)dsωdNψ.237

Then, the probability density function and cumulative distribution function of sω are denoted238

as f(sω) and F (sω) =
∫ sω

s
f(sω)dsω. The probability density function of a commuter who239

needs to commute in condition ω is denoted as g(Nψ), and the corresponding cumulative240

distribution function is G(Nψ) =
∫ Nψ
N

g(Nψ)dNψ.241

We use correlation to denote the relationship between demand and bottleneck capacity.242

Further, referring to the rule of thumb, we classify the strength of the correlation between243

demand and bottleneck capacity into five levels: independent (r = 0), weak, moderate,244

strong, and complete (r = ±1). It should be noted that the weak, moderate, and strong245

correlations are relative divisions. When the correlation coefficient is close to ±1, we refer246

to the case as a strong correlation. When the correlation coefficient is close to 0, we refer247

to the case as a weak correlation. The strength of the relationship between the weak and248

strong correlations is regarded as a moderate correlation.249

Following the previous studies related to the nature of non-recurrent congestion caused250

by unpredictable events (Arnott et al., 1988, 1991; Khan and Amin, 2018; Han et al., 2021;251

Yu et al., 2023), the following assumptions are adopted in our model:252

Assumption 1. Commuters are risk-neutral to travel costs.253

Assumption 2. Commuters are homogeneous regarding the shadow values of travel time254

and schedule delay.255

Assumption 3. The bottleneck capacity and demand are constant within a day but may256

fluctuate from day to day.257

Assumption 4. The distributions of demand and bottleneck capacity are stationary and258

commonly known to all commuters.259

Assumption 3 reflects the practical observation that demand and bottleneck capacity260

tend to remain stable within a single day (e.g., during morning peak hours), while exhibit-261

ing variability across days due to external factors such as adverse weather, traffic incidents,262

or day-specific travel patterns. It allows us to capture meaningful uncertainty without intro-263

ducing within-day complexity. Assumption 4 underpins the formulation of an equilibrium264

concept in which commuters optimize their departure time choices based on expected trav-265

el costs without full information. This expected equilibrium captures long-run behavioral266

adaptation to a system characterized by stochastic yet predictable dynamics.267
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The notations used throughout the paper are listed in Table 1.268

3.2. The zero-information regime269

In the zero-information regime, commuters do not obtain the pre-trip information, and270

they are assumed to be aware of the joint probability distribution of the bottleneck capacity271

and demand based on their long-time experiences. The number of commuters and bottleneck272

capacity may fluctuate from day to day, and the commuters who choose the same departure273

time in their commuting days may experience different queue lengths and schedule delays.274

Let t∗ denote the work start time. In this regime, the expected travel cost of a commuter275

departing at time t is:276

E[CZ(t)] = E[αTψω(t) + βSDEψω(t) + γSDLψω(t)] (1)

where SDEψω(t) and SDLψω(t) are the schedule delay early and schedule delay late cost-277

s for the commuter departing at time t in bottleneck capacity state ω and demand s-278

tate ψ, which can be expressed as SDEψω(t) = max {(t∗ − t− Tψω(t)), 0} and SDLψω(t) =279

max {0, (t+ Tψω(t)− t∗)}, in which Tψω(t) is the travel time in bottleneck capacity state ω280

and demand state ψ, t ∈ [t0, te], and t0 and te denote the earliest and latest departure times,281

respectively. Let h(t) denote the departure rate at time t. A queue develops in bottleneck282

capacity state ω and demand state ψ when arrival rate exceeds bottleneck capacity sω, and283

the queuing length is Qψω(t) = max{H(t)− sω(t− t0), 0}, where H(t) is the cumulative de-284

partures at t and H(t) =
∫ t

t0
h(x)dx. The travel time at t in bottleneck capacity state ω and285

demand state ψ is Tψω(t) = Qψω(t)/sω + T f , where T f is the free-flow travel time. Without286

loss of generality, we set the free-flow travel time T f = 0, indicating that a commuter arrives287

at the bottleneck immediately after he/she departs from RD.288

3.3. The partial-information regime289

3.3.1. Only providing bottleneck information290

When providing bottleneck information, commuters will know the bottleneck condition291

before departure. In this case, the conditional density function of Nψ at a given sω is292

f(Nψ|sω) = ∂
∂Nψ

J(Nψ, sω), and the corresponding conditional cumulative distribution func-293

tion is F (Nψ|sω) =
∫ Nψ
N

f(Nψ|sω)dNψ. When only providing bottleneck information, the294

expected travel cost of a commuter departing at time t is:295

E[CB
ψ|ω(t)] = E[αTψ|ω(t) + βSDEψ|ω(t) + γSDLψ|ω(t)] (2)

where SDEψ|ω(t), SDLψ|ω(t), and Tψ|ω(t) denote the schedule delay early costs, sched-296

ule delay late costs, and travel time costs for the commuter departing at time t in297

demand state ψ at a given bottleneck capacity state ω, which can be expressed as298

SDEψ|ω(t) = max
{

(t∗ − t− Tψ|ω(t)), 0
}

, SDLψ|ω(t) = max
{

0, (t+ Tψ|ω(t)− t∗)
}

and299

Tψ|ω(t) = Qψ|ω(t)/sω +T f . The queuing length is Qψ|ω(t) = max{
∫ t

t0
h(x)dx− sω(t− t0), 0},300

where h(t) denotes the departure rate at time t under the given bottleneck capacity state301

ω.302
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Table 1: Notational glossary.

Notation Description Notation Description
Scenarios

Z Zero-information scenario F Full-information scenario
D Demand-information scenario B Bottleneck-information scenario
Parameters

α Shadow value of travel time Ψ Set of possible demand states, Ψ = {H,L}
β Shadow value of schedule delay early Ω Set of possible bottleneck states, Ω = {G,B}
γ Shadow value of schedule delay late T f Free-flow travel time
t∗ Work start time
Variables

r The degree of correlation between the
random variables Nψ and sω

g(sω|Nψ) The conditional density function of sω at a giv-
en Nψ

ρψω The correlation parameter between the
random variables Nψ and sω

G(sω|Nψ) The conditional cumulative distribution func-
tion of sω at a given Nψ

sω Bottleneck capacity in condition ω s Maximum bottleneck capacity
Nψ Demand in condition ψ s Minimum bottleneck capacity, s = πss
N Maximum demand ω Possible states of a bottleneck
N Minimum demand, N = πNN ψ Possible states of a demand

θ Upper bound of θψω f(sω) Probability density function of sω
θ Lower bound of θψω, θ = πθθ F (sω) Cumulative distribution function of sω
pN Probability of demand under the high-

level (0 < pN < 1)
ps Probability of capacity in the good-condition

(0 < ps < 1)
g(Nψ) Probability density function of Nψ G(Nψ) Cumulative distribution function of Nψ
k(θψω) Probability density function of θψω K(θψω) Cumulative distribution function of θψω
j(Nψ, sω) Joint probability density function un-

der Nψ and sω

J(Nψ, sω) Joint cumulative distribution function under
Nψ and sω

P (sω) Probability distribution of sω P (Nψ|sω) Conditional probability of Nψ at a given sω
f(Nψ|sω) Conditional density function of Nψ at a

given sω

F (Nψ|sω) Conditional cumulative distribution function of
Nψ at a given sω

t0 Earliest departure time Tψ|ω(t) Travel time at time t under Nψ at a given sω
te Latest departure time Tψω(t) Travel time at time t under Nψ and sω
θ̂ Pseudo travel time, θ̂ = te − t0 Tω|ψ(t) Travel time at time t under sω at a given Nψ
P (Nψ) Probability distribution of Nψ P (sω|Nψ) Conditional probability of sω at a given Nψ
πs Capacity degradation rate (0 < πs < 1) πN Demand degradation rate (0 < πN < 1)
SDEψω(t) Schedule delay early at time t under Nψ

and sω

CD
ω|ψ(t) Travel cost at time t when only providing de-

mand information Nψ
SDEψ|ω(t) Schedule delay early at time t under Nψ

at a given sω

CZ(t) Travel cost at time t in the zero information
scenario

SDEω|ψ(t) Schedule delay early at time t under sω
at a given Nψ

CD(t) Travel cost at time t in the demand information
scenario

SDLψω(t) Schedule delay late at time t under Nψ
and sω

CF (t) Travel cost at time t in the full-information s-
cenario

SDLψ|ω(t) Schedule delay late at time t under Nψ
at a given sω

CB(t) Travel cost at time t in the bottleneck capacity-
information scenario

SDLω|ψ(t) Schedule delay late at time t under sω
at a given Nψ

CB
ψ|ω(t) Travel cost at time t when only providing bot-

tleneck capacity information sω
H(t) Cumulative departures at time t h(t) Departure rate at time t
P (θψω) Joint probability of Nψ and sω Qψω(t) Queue length at the bottleneck at time t under

Nψ and sω
θψω θψω = Nψ/sω
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3.3.2. Only providing demand information303

When providing demand information, commuters will know the number of commuter-304

s before departure. In this case, the conditional density function of sω at a given Nψ is305

g(sω|Nψ) =
∂
∂sω

J(Nψ, sω), and the corresponding conditional cumulative distribution func-306

tion is G(sω|Nψ) =
∫ sω

s
g(sω|Nψ)dsω. When only providing demand information, the ex-307

pected travel cost of a commuter departing at time t is:308

E[CD
ω|ψ(t)] = E[αTω|ψ(t) + βSDEω|ψ(t) + γSDLω|ψ(t)] (3)

where SDEω|ψ(t), SDLω|ψ(t), and Tω|ψ(t) denote the schedule delay early costs, sched-309

ule delay late costs, and travel time costs for the commuter departing at time t in310

bottleneck capacity state ω at a given demand state ψ, which can be expressed as311

SDEω|ψ(t) = max
{

(t∗ − t− Tω|ψ(t)), 0
}

, SDLω|ψ(t) = max
{

0, (t+ Tω|ψ(t)− t∗)
}

and312

Tω|ψ(t) = Qω|ψ(t)/sω +T f . The queuing length is Qω|ψ(t) = max{
∫ t

t0
h(x)dx− sω(t− t0), 0},313

where h(t) denotes the departure rate at time t under the given demand state ψ.314

3.4. The full-information regime315

In this full-information regime, commuters are provided with both demand and bottle-316

neck information before departure. In this regime, the travel cost in bottleneck capacity state317

ω and demand state ψ degrades into the classical bottleneck model under a deterministic318

setting. The travel cost of a commuter departing at time t is:319

CF
ψω(t) = αTψω(t) + βSDEψω(t) + γSDLψω(t) (4)

where SDEψω(t), SDLψω(t), and Tψω(t) denote the schedule delay early costs, schedule de-320

lay late costs, and travel time costs for the commuter departing at time t at given bot-321

tleneck capacity state ω and demand state ψ, which can be expressed as SDEψω(t) =322

max {(t∗ − t− Tψω(t)), 0}, SDLψω(t) = max {0, (t+ Tψω(t)− t∗)} and Tψω(t) = Qψω(t)/sω+323

T f . The queuing length is Qψω(t) = max{
∫ t

t0
h(x)dx− sω(t− t0), 0}, where h(t) denotes the324

departure rate at time t under the given bottleneck capacity state ω and demand state ψ.325

4. Equilibrium analysis326

In this section, we derive the expected travel costs under user equilibrium (UE) in the327

three information regimes. We first derive the general formulations of expected travel costs328

when the stochastic demand and bottleneck capacity are assumed to follow an arbitrary329

joint distribution. Then, we provide an example by assuming that the stochastic bottleneck330

capacity and demand follow Bernoulli distributions. The Bernoulli distribution allows us331

to capture key dynamics while maintaining analytical tractability. Moreover, in practice,332

bottleneck failures often occur suddenly and discretely, such as due to signal failures or lane333

closures. The capacity of bottlenecks may completely fail at certain times, while remaining334

normal at others. This “all or nothing” randomness is well-suited to the Bernoulli distribu-335

tion (Lindsey et al., 2014; Han et al., 2021). Also, fluctuations in travel demand, particularly336
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in contexts where demand is subject to abrupt changes, may also exhibit binary characteris-337

tics, making the Bernoulli distribution a reasonable choice (Albareda-Sambola et al., 2011;338

Ghaffarinasab, 2022). Furthermore, due to the simplicity of the Bernoulli distribution, its339

parameters can be estimated using empirical data or historical observations. This involves340

fitting the data to estimate the probabilities of high and low demand and capacity states,341

ensuring that the model parameters are both realistic and representative of the observed342

system behavior. 2
343

4.1. The zero-information regime344

4.1.1. General results345

Per the definition of user equilibrium (UE), the expected travel costs at UE under s-346

tochastic bottleneck capacity and demand can be obtained from347

dE[CZ(t)]/dt = 0, if h(t) > 0 (5)

Previous studies typically derived the expected travel costs at UE under stochastic capac-348

ity by analyzing departure patterns. Han et al. (2021) developed a simple method to obtain349

the expected travel costs at UE under stochastic capacity without analyzing the departure350

patterns. We extend the method proposed by Han et al. (2021) to derive the expected travel351

costs at UE under stochastic bottleneck capacity and demand. To this end, the following352

proposition is first proved.353

Proposition 1. The latest departure time te at UE is never earlier than the work start time354

t∗, i.e., te ≥ t∗.355

Proof: Assume this proposition is false, and all commuters depart before te. In this case,356

commuters departing at te may encounter three different scenarios: schedule delay early357

without congestion, schedule delay early with congestion, schedule delay late with conges-358

tion. In this case, delaying departure until t∗ is always better than departing at te because359

the schedule delay cost and/or queuing cost is reduced, we have E[CZ(te)] > E[CZ(t∗)].360

Therefore, the proposition te ≥ t∗ is true. 2361

According to Proposition 1, we have two cases, i.e., Case I (te > t∗) and Case II362

(te = t∗), based on the relationship between te and t∗. Furthermore, let θψω = Nψ/sω,363

where θψω ∈ [θ, θ]. Then, the probability density function of θψω can be obtained from364

k(θψω) =
∫ s

s
sωj(sω, sωθψω)dsω, and the corresponding cumulative probability distribution365

of θψω is K(θψω) =
∫ θψω
θ

k(θψω)dθψω. Also, we define the pseudo travel time θ̂ under s-366

tochastic bottleneck capacity and demand, where θ̂ = te− t0. In what follows, we derive the367

expected travel costs at UE in the two cases.368

2It is worth noting that calibrating the model parameters is a challenging yet essential step for translating
the theoretical framework into practical applications. However, this process involves substantial empirical
analysis and is beyond the scope of the present study.
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(Case I). Commuters departing at t0 will not experience congestion and will arrive at the369

CBD before t∗. Therefore, the expected travel costs at t0 under the stochastic bottleneck370

capacity and demand is371

E[CZ(t0)] = β(t∗ − t0) (6)

Unlike commuters departing at t0, commuters who depart at te will experience congestion372

if θψω > θ̂ or not experience congestion otherwise. If θψω > θ̂, the travel time of commuters373

who depart at te is θψω − θ̂. Therefore, the expected travel cost at te under stochastic374

bottleneck capacity and demand without pre-trip information is:375

E[CZ(te)] =

∫ θ̂

θ

k(θψω)γ(te − t∗)dθψω +

∫ θ

θ̂

k(θψω)
{

α(θψω − θ̂) + γ[te + (θψω − θ̂)− t∗]
}

dθψω

= γ(te − t∗) + (α + γ)

∫ θ

θ̂

k(θψω)(θψω − θ̂)dθψω

(7)
Since te = θ̂ + t0, the expected travel costs at te can be denoted as:376

E[CZ(θ̂)] = γ(θ̂ + t0 − t∗) + (α + γ)

∫ θ

θ̂

k(θψω)(θψω − θ̂)dθψω (8)

The first partial derivative of E[CZ(θ̂)] to θ̂ is:377

∂E[CZ(θ̂)]

∂θ̂
= γ − (α + γ)[1−K(θ̂)] (9)

where K(θ̂) is a non-decreasing and right-continuous function. Let θ̂∗ denote the pseu-378

do travel time that minimizes the expected travel costs of the last commuter. Setting379

∂E[CZ(θ̂)]/∂θ̂ = 0, we have K(θ̂∗) = α/(α + γ).380

Per the definition of UE, E[CZ(te)] = E[CZ(t0)]. Then we have the expected travel costs381

of each commuter at UE under stochastic bottleneck capacity and demand without pre-trip382

information in Case I:383

E[CZ ] =
β(α + γ)

β + γ

∫ θ

θ̂∗
k(θψω)θψωdθψω (10)

where θ̂∗ = K−1(α/(α + γ)).384

(Case II). The expected travel costs at t0 and te(t
∗) under stochastic bottleneck capacity385

and demand without pre-trip information can be formulated as follows:386











E[CZ(t0)] = βθ̂

E[CZ(te)] = (α + γ)

∫ θ

θ̂

k(θψω)(θψω − θ̂)dθψω
(11)

Letting E[CZ(te)] = E[CZ(t0)], we can have the pseudo travel time θ̂∗∗ by solving βθ̂∗∗ =387

(α+ γ)
∫ θ

θ̂∗∗
k(θψω)(θψω − θ̂∗∗)dθψω. The expected travel cost of each commuter at UE under388
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the stochastic demand and capacity without pre-trip information in Case II is389

E[CZ ] = βθ̂∗∗ (12)

The boundary condition between Case I and Case II can be obtained by solving K(θ̂∗∗) =390

α/(α + γ). The derivation of this boundary condition can be found in the Appendix A.1.391

If the two random variables sω and Nψ follow a joint discrete probability distribution, the392

above method can also be used to derive the expected travel cost per commuter at UE (see393

Appendix A.2 for details).394

4.1.2. Results for the Bernoulli distribution395

To simplify analysis and without loss of generality, many previous studies assumed that396

the stochastic bottleneck capacity followed the Bernoulli distribution (Arnott et al., 1991;397

Khan and Amin, 2018; Han et al., 2021). Here, we further derive the formulations of expected398

travel costs at UE by assuming that the bottleneck capacity and demand follow Bernoulli399

distributions. Let ω ∈ Ω = {G,B} denote the set of possible bottleneck states, and ψ ∈400

Ψ = {H,L} denote the set of possible demand states. We assume the bottleneck capacity401

in bad condition (i.e., sB = s) with probability P (sB) = 1 − ps and bottleneck capacity in402

good condition (i.e., sG = s) with probability P (sG) = ps. The relationship between sG403

and sB can be expressed as sB = πssG, where πs is the degradation amplitude of bottleneck404

capacity in bad condition over good condition and 0 < πs < 1. Furthermore, we set a405

commuter’s commuting probabilities under the high-level demand (i.e., NH = N) and the406

low-level demand (i.e., NL = N) as P (NH) = pN and P (NL) = 1 − pN , respectively.407

The relationship between NG and NB can be expressed as NB = πNNG, where πN is the408

degradation amplitude of the number of commuters in low-level demand over high-level409

demand and 0 < πN < 1.410

Therefore, we have four possible state combinations under stochastic demand and bottle-411

neck capacity, i.e., HG, LG, HB, and LB, and the joint probability under a possible state412

combination is P (θψω). In transportation systems, demand and bottleneck capacity are of-413

ten influenced by common external factors. For example, adverse weather conditions, such414

as heavy rain or snow, can simultaneously reduce bottleneck capacity and increase travel415

demand. Therefore, it is reasonable to expect a correlation between demand and capaci-416

ty in many real-world scenarios. Capturing this interdependence is crucial for accurately417

modeling system performance and for assessing the effectiveness of information provision418

strategies under uncertainty. In this study, we apply the Pearson correlation coefficient r as419

a tractable and interpretable metric to quantify the linear relationship between stochastic420

demand and bottleneck capacity under Bernoulli distributions:421

r =
P (θHG)P (θLB)− P (θHB)P (θLG)
√

P (NH)P (NL)P (sG)P (sB)
, (13)

where P (θψω) = P (Nψ, sΩ) and −1 ≤ r ≤ 1. If r = 0, demand and bottleneck capacity are422

uncorrelated. If r > 0, demand and bottleneck capacity are positively correlated, indicating423

that high and low demand levels are more likely to correspond to good and bad bottleneck424
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conditions, respectively. If r < 0, demand and bottleneck capacity are negatively correlated,425

indicating that high and low demand levels are more likely to correspond to bad and good426

bottleneck conditions, respectively. The relationships among the values of θψω under the427

four possible state combinations can be described as θLG < {θHG, θLB} < θHB. To simplify428

the following description, we let θ1 = θLG, θ2 = min{θHG, θLB}, θ3 = max{θHG, θLB}, and429

θ4 = θHB to make sure θ1 < θ2 < θ3 < θ4. When πN > πs, we have θ2 = θHG and θ3 = θLB,430

otherwise, we have θ2 = θLB and θ3 = θHG. The expressions of E[CZ ] under Bernoulli431

distributions can be found in the Appendix A.3.432

4.2. The partial-information regime433

We adopt a similar method for deriving the expected travel costs without pre-trip infor-434

mation to obtain the expected travel costs when providing partial pre-trip information.435

4.2.1. Only providing bottleneck information436

When the bottleneck capacity and demand follow an arbitrary joint distribution, the437

expected travel cost of each commuter at UE at a given bottleneck state ω is:438

E[CB
ψ|ω] =











(α + γ)β

(β + γ)sω

∫ N

N̂∗

f(Nψ|sω)NψdNψ if te > t∗

N̂∗∗β/sω if te = t∗
(14)

where N̂∗ = F−1(α/(α + γ)) and N̂∗∗ can be obtained by solving the nonlinear equation439

N̂∗∗β = (α + γ)
∫ N

N̂∗∗
f(Nψ|sω)[Nψ − N̂∗∗]dNψ.440

The expected travel cost of each commuter at UE under stochastic bottleneck capacity441

and demand with providing bottleneck information is:442

E[CB] =

∫ s

s

f(sω)E[C
B
ψ|ω]dsω (15)

Furthermore, if the bottleneck capacity and demand follow Bernoulli distributions, we443

have the conditional probability of Nψ at a given sω: P (Nψ|sω) = P (Nψ, sω)/P (sω). The444

expected travel cost of a commuter at UE with bottleneck capacity information is:445

E[CB] = psE[C
B
ψ|G] + (1− ps)E[C

B
ψ|B] (16)

where E[CB
ψ|G] and E[CB

ψ|B] denote the expected travel costs when bottleneck capacity in446

good and bad conditions, respectively. The expressions of E[CB
ψ|G] and E[CB

ψ|B] can be found447

in the Appendix A.4.448

4.2.2. Only providing demand information449

When the bottleneck capacity and demand follow an arbitrary joint distribution, the450

expected travel cost of each commuter at UE at a given demand state ψ is:451

E[CD
ω|ψ] =











Nψ(α + γ)β

β + γ

∫ ŝ∗

s

g(sω|Nψ)/sωdsω if te > t∗

Nψβ/ŝ
∗∗ if te = t∗

(17)
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where ŝ∗ = G−1(γ/(α + γ)) and ŝ∗∗ can be obtained by solving the nonlinear equation452

β/ŝ∗∗ = (α + γ)
∫ ŝ∗∗

s
g(sω|Nψ)[1/sω − 1/ŝ∗∗]dsω.453

The expected travel cost of each commuter at UE under stochastic bottleneck capacity454

and demand with demand information is:455

E[CD] =

∫ N

N

g(Nψ)E[C
D
ω|ψ]dNψ (18)

Furthermore, if the bottleneck capacity and demand follow Bernoulli distributions, we456

have the conditional probability of sω at a given Nψ: P (sω|Nψ) = P (Nψ, sω)/P (Nψ). The457

expected travel cost of a commuter at UE with bottleneck capacity information is:458

E[CD] = pNE[C
D
ω|H ] + (1− pN)E[C

D
ω|L] (19)

where E[CD
ω|H ] and E[CD

ω|L] denote expected travel costs under high and low demand levels,459

respectively. The expressions of E[CD
ω|H ] and E[CD

ω|L] can be found in the Appendix A.5.460

4.3. The full-information regime461

When the bottleneck capacity and demand follow an arbitrary joint distribution, the462

expected travel cost of a commuter at UE under stochastic bottleneck capacity and demand463

with full pre-trip information can be formulated as follows:464

E[CF ] =
βγ

β + γ

∫ θ

θ

θψωk(θψω)dθψω (20)

Furthermore, if the bottleneck capacity and demand follow Bernoulli distributions, the465

expected travel cost of a commuters at UE with full pre-trip information is:466

E[CF ] =
βγ

β + γ
[P (θHG)θHG + P (θHB)θHB + P (θLG)θLG + P (θLB)θLB] (21)

5. The value of pre-trip information467

Up to now, we have derived the expected travel costs at UE in the three regimes, i.e.,468

zero-information, partial-information and full-information. In this section, we analyze the469

value of providing different kinds of information. Figure 1 illustrates the three information470

regimes and the value of providing different information. In this section, we analyze the471

value of full information over zero information (i.e., GZF ), the value of partial information472

over zero information (i.e., GZB, GZD, and GBD), and the benefit gains/losses from partial473

information to full information (i.e., GBF and GDF ).474
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Figure 1: Three information regimes and the value of providing different kinds of pre-trip information.

5.1. The value of full pre-trip information475

The benefit gains from providing full pre-trip information over zero information are:476

GZF = E[CZ ]− E[CF ] (22)

Proposition 2. Let assumptions hold, then,477

(a) (General probability distribution) providing full pre-trip information does not increase478

travel costs compared to zero information (i.e, GZF ≥ 0).479

(b) (Bernoulli distribution) providing full pre-trip information is welfare-neutral (i.e, GZF =480

0) when the amplitude of bottleneck capacity drop is equal to the amplitude of demand drop481

(i.e., πs = πN) and bottleneck capacity and demand are perfectly positively correlated (i.e.,482

r = 1).483

Proof: The proof can be found in Appendix A.6. 2484

Proposition 2 asserts that providing full pre-trip information never generates adverse485

effects on travel costs compared with no information provided when bottleneck capacity and486

demand are both stochastic. Therefore, considering uncertainty on both sides of supply and487

demand in the morning commute is a sound way of developing ATIS. Previous studies, such488

as Arnott et al. (1991) and Han et al. (2021), found that providing full pre-trip information489

is always welfare-improving over zero information when demand is fixed and bottleneck490

capacity is stochastic. However, Proposition 2(b) provides a special case that providing full491

information may be welfare-neutral, indicating the necessity of considering uncertainty in492

both supply and demand sides.493

5.2. The value of partial information494

The benefit gains/losses from providing partial information (i.e., bottleneck capacity or495

demand information) over zero information are:496

{

GZB = E[CZ ]− E[CB]

GZD = E[CZ ]− E[CD]
(23)
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where GZB and GZD denote the welfare gains/losses from providing bottleneck capacity497

information and demand information over zero information, respectively.498

The following corollary reveals the benefit effects of providing partial information over499

zero information when demand and bottleneck capacity are strongly correlated.500

Corollary 1. (General probability distribution). Providing partial pre-trip information is501

more likely to be welfare-improving (i.e, GZD > 0 and GZB > 0) when demand and bottleneck502

capacity are strongly correlated.503

Proof: Obviously. 2504

Commuters can infer the conditional probability of the other state after obtaining one505

kind of partial information. Corollary 1 indicates that when the changes in bottleneck ca-506

pacity are strongly associated with the changes in demand, commuters are more likely to507

benefit from partial pre-trip information. When demand and bottleneck capacity are com-508

pletely correlated, providing partial information is equivalent to providing full information.509

When demand and bottleneck capacity are strongly correlated, the effects of providing par-510

tial information are similar to providing full information. Per Proposition 2, providing full511

pre-trip information is never welfare-reducing. Therefore, providing partial information is512

welfare-improving when demand and bottleneck capacity are strongly correlated.513

5.2.1. The value of bottleneck information514

The following propositions reveal interesting properties about the welfare effects of pro-515

viding bottleneck information compared to zero information.516

Proposition 3. When bottleneck capacity and demand are uncorrelated,517

(a)(General probability distribution) providing bottleneck capacity information does not in-518

crease travel costs compared to zero information (i.e, GZB ≥ 0).519

(b)(Bernoulli distribution) providing bottleneck capacity information is more likely to be520

welfare-neutral over zero information (i.e., GZB = 0) when the amplitude of bottleneck ca-521

pacity drop is less than the amplitude of demand drop (i.e., πs > πN) and demand frequently522

experiences degradation (i.e., pN < γ

γ+α
).523

Proof: The proof can be found in the Appendix A.7. 2524

Proposition 4. Let demand and bottleneck capacity follow Bernoulli distributions, then,525

(a) If the amplitude of bottleneck capacity drop is more than the amplitude of demand drop526

(i.e., πs < πN), providing bottleneck information is always welfare-improving(i.e., GZB > 0).527

(b) If the amplitude of bottleneck capacity drop is less than the amplitude of demand drop528

(i.e., πs > πN), providing bottleneck information can be welfare-reducing(i.e., GZB < 0)529

when bottleneck capacity and demand are moderately correlated and bottleneck capacity rarely530

experiences degradation.531

Proof: The proof can be found in the Appendix A.8. 2532

Propositions 3 and 4 indicate that the benefit gains/losses from bottleneck capacity533

information are associated with the correlation between capacity and demand and the fre-534

quency and severity of bottleneck capacity and demand reductions. Proposition 3 implies535
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that providing bottleneck capacity information can be welfare-neutral over zero information536

if the amplitude of bottleneck capacity degradation is less than the amplitude of demand537

degradation and demand frequently experiences degradation. Proposition 4(a) asserts that538

commuters always benefit from providing partial pre-trip information over zero informa-539

tion when the amplitude of bottleneck capacity degradation is more than the amplitude of540

demand degradation (i.e., πs < πN). However, Proposition 4(b) indicates that providing541

bottleneck capacity information may induce paradox over zero information when bottleneck542

capacity and demand are moderately correlated and the amplitude of bottleneck capacity543

drop is less than the amplitude of demand drop (i.e., πs > πN). In this case, providing544

bottleneck information may induce concentration behavior, thereby possibly generating a545

deadweight loss.546

5.2.2. The value of demand information547

The following propositions reveal interesting properties about the welfare effects of pro-548

viding demand information over zero information.549

Proposition 5. When bottleneck capacity and demand are uncorrelated,550

(a)(General probability distribution) providing demand information does not increase travel551

costs compared to zero information (i.e, GZD ≥ 0).552

(b)(Bernoulli distribution) providing demand information is more likely to be welfare-neutral553

over zero information (i.e., GZD = 0) when the amplitude of bottleneck capacity drop is larger554

than the amplitude of demand drop (i.e., πs < πN) and bottleneck capacity rarely experiences555

degradation (i.e., ps >
α

γ+α
).556

Proof: The proof can be found in the Appendix A.9. 2557

Proposition 6. Let demand and bottleneck capacity follow Bernoulli distributions, then,558

(a) If the amplitude of bottleneck capacity drop is less than the amplitude of demand drop559

(i.e., πs > πN), providing demand information is always welfare-improving (i.e., GZD > 0)560

when bottleneck capacity and demand are negatively correlated.561

(b) If the amplitude of bottleneck capacity drop is larger than the amplitude of demand drop562

(i.e., πs < πN), providing demand information may be welfare-reducing (i.e., GZD < 0)563

when bottleneck capacity and demand are moderately correlated and bottleneck capacity rarely564

experiences degradation.565

(c) If the amplitude of bottleneck capacity drop is less than the amplitude of demand drop566

(i.e., πs > πN) , providing demand information may be welfare-reducing (i.e., GZD < 0)567

when bottleneck capacity and demand are moderately positively correlated and bottleneck568

capacity and demand both frequently experiences degradation.569

Proof: The proof can be found in the Appendix A.10. 2570

Similar to providing bottleneck capacity information, Propositions 5 and 6 indicate571

that the benefit gains/losses from demand information over zero information are associated572

with the correlation degree between demand and bottleneck capacity and the frequency and573

severity of bottleneck capacity and demand changes. Proposition 5 asserts that providing574
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demand information is also never welfare-reducing over zero information when demand and575

bottleneck capacity are uncorrelated. Also, providing demand information can be welfare-576

neutral over zero information when the amplitude of demand degradation is less than the577

amplitude of bottleneck capacity degradation and bottleneck capacity rarely experiences578

degradation.579

Like the welfare effects caused by providing bottleneck capacity information, Propo-580

sition 6 implies that providing demand information may also induce information paradox581

(i.e., providing demand information may increase travel costs compared to zero information)582

when demand and bottleneck capacity are moderately correlated. However, different from583

providing bottleneck capacity information, there are two possible situations that may oc-584

cur information paradox when providing demand information. Especially, Proposition 6(b)585

indicates that the paradox of providing demand information may occur when bottleneck586

capacity rarely experiences degradation and the amplitude of bottleneck capacity drop is587

larger than the amplitude of demand drop. Proposition 6(c) indicates that the paradox of588

providing demand information may occur when demand and bottleneck capacity both fre-589

quently experience degradation and the amplitude of bottleneck capacity drop is less than590

the amplitude of demand drop.591

5.2.3. The comparison between bottleneck capacity information and demand information592

The above analysis indicates that the welfare effects of providing bottleneck capacity and593

demand information are different. Previous studies about the welfare effects of providing594

pre-trip information under stochastic traffic state usually assume the demand is fixed (Lind-595

sey et al., 2014; Khan and Amin, 2018; Han et al., 2021). Next, we analyze the benefit596

gains/losses from providing demand information over bottleneck capacity information to597

understand the differences in the welfare effects of providing the two kinds of partial informa-598

tion. The benefits gains/losses from providing demand information compared to bottleneck599

capacity information are:600

GBD = E[CB]− E[CD] (24)

The following proposition reveals interesting properties about which partial information601

(i.e., demand information or bottleneck capacity information) is more valuable when demand602

and bottleneck capacity are both stochastic.603

Proposition 7. Let demand and bottleneck capacity follow Bernoulli distributions, then,604

(a) If the amplitude of bottleneck capacity drop is larger than the amplitude of demand drop605

(πs < πN), providing bottleneck capacity information is more valuable than providing demand606

information (i.e., GBD < 0).607

(b) If the amplitude of bottleneck capacity drop is less than the amplitude of demand drop608

(πs > πN), providing bottleneck capacity information is more likely to be more valuable than609

providing demand information (i.e., GBD < 0) when bottleneck capacity and demand are not610

strongly correlated and bottleneck capacity rarely experience degradation.611

Proof: The proof can be found in Appendix A.11 and Appendix A.12. 2612
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Proposition 7(a) asserts when the amplitude of bottleneck capacity degradation is larger613

than the amplitude of demand degradation, providing bottleneck capacity must be better614

than providing demand information. However, Proposition 7(b) indicates that providing615

which kind of partial information is better depends on the frequency and severity of bottle-616

neck capacity and demand changes when the amplitude of bottleneck capacity degradation617

is less than the amplitude of demand degradation. These results indicate that providing618

bottleneck information is more likely to be better than providing demand information when619

demand and bottleneck capacity are both stochastic.620

Up to now, we have discussed the welfare effects of providing two kinds of partial informa-621

tion (i.e., demand information and bottleneck capacity information) over zero information622

and compared the welfare effects between demand information and bottleneck capacity in-623

formation. We find that the welfare effects of partial information are significantly affected624

by the correlation relationship between demand and bottleneck capacity and the frequency625

and severity of demand and bottleneck capacity changes. When demand and bottleneck626

capacity are moderately correlated, providing partial information can be welfare-reducing627

over zero information (i.e., information paradox).628

5.3. The benefit gains/losses from partial information to full information629

The benefit gains/losses from providing full information over partial information are:630

{

GBF = E[CB]− E[CF ]

GDF = E[CD]− E[CF ]
(25)

where GBF and GDF denote the welfare gains/losses from full information compared to631

providing bottleneck capacity information and demand information, respectively.632

Proposition 8. Let demand and bottleneck capacity follow general probability distributions,633

(a) Providing full information does not increase travel costs compared to providing partial634

information (i.e., GBF ≥ 0 and GDF ≥ 0).635

(b) The benefit gains from providing full information over partial information increase as α636

increases (i.e., ∂GBF/∂α > 0 and ∂GDF/∂α > 0).637

Proof: The proof can be found in Appendix A.13. 2638

Proposition 8(a) asserts providing full information cannot be welfare-reducing over par-639

tial information, indicating that developing ATIS to provide information on both the supply640

and demand sides will not generate a deadweight loss for the morning commute. Proposi-641

tion 8(b) indicates that traffic congestion and travel time caused by congestion play crucial642

roles in the welfare effects of providing full information over partial information. Providing643

full information can gain more benefits than providing partial information as traffic conges-644

tion becomes more severe. In other words, when traffic congestion is severe, providing full645

information can ease more congestion than providing partial information, thereby reducing646

travel costs and travel time caused by traffic congestion.647
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6. Numerical examples648

In this section,we present numerical results to illustrate how pre-trip information affects649

benefit gains/losses under stochastic demand and bottleneck capacity. Unless otherwise650

specified, we adopt the following parameters based on the empirical findings in Small (1982):651

α = 6.4, β = 3.9 and γ = 15.21. The other parameters are set as: N = 5000(veh), s =652

6000(veh/h). We assume the stochastic bottleneck capacity and demand follow Bernoulli653

distributions.654

6.1. The benefit gains of providing full information over zero information655

Figure 2: Benefit gains from full information for different r, πN and πs (i.e., pN = ps = 0.5).

Fig. 2 presents the benefit gains of providing full information over zero information (i.e.,656

GZF ) for different correlation coefficients (i.e., r) and the amplitudes of bottleneck capacity657

and demand degradations (i.e., πs and πN). We can see that the providing full informa-658

tion is usually welfare-improving over zero information. This result confirms Proposition 2,659

indicating that providing full information to reduce uncertainty on both the supply and660

demand sides is usually useful in reducing travel costs. Previous studies, such as Arnott661

et al. (1991) and Han et al. (2021), found that providing full and accurate information is662

always welfare-improving when bottleneck capacity is stochastic but demand is fixed. How-663

ever, when demand and bottleneck capacity are both stochastic and completely positively664

correlated, providing full pre-trip information may be welfare-neutral. This result confirms665

Proposition 2(b). Furthermore, it should be noted that the benefit gains GZF are not nec-666

essarily monotonic in the correlation coefficient r and the amplitude of demand reduction667

πN (see Figure 13 in the Appendix A.14 for more details).668

6.2. The welfare effects of providing partial information669

6.2.1. The benefit gains/losses of providing bottleneck information over zero information670

Fig. 3 presents the benefit gains from providing bottleneck capacity information over671

zero information (i.e., GZB) for different frequency and severity of bottleneck capacity and672
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Figure 3: Benefit gains/losses from bottleneck capacity information over zero information for different ps,
pN , πs and πN when demand and bottleneck capacity are uncorrelated (i.e., r = 0). The white solid lines
indicate where GZB = 0, and the white dashed line represents the boundary defined by pN = γ/(α+ γ).

demand reductions when demand and bottleneck capacity are uncorrelated. We can see673

that providing bottleneck capacity information will not increase travel costs compared to674

zero information when demand and bottleneck capacity are uncorrelated, verifying Propo-675

sition 3(a). Furthermore, as shown in Fig. 3(a), providing bottleneck capacity information676

can be welfare-neutral when πs > πN and demand frequently experience degradation (i.e.,677

pN < γ

α+γ
), which confirms Proposition 3(b).678

Fig. 4 presents the benefit gains/losses of providing bottleneck capacity information679

over zero information (i.e., GZB) for different correlation coefficients r. We can see that680

providing bottleneck information is welfare-improving when demand and bottleneck capacity681

are strongly correlated (i.e., |r| is large), which confirms Corollary 1. Furthermore, as shown682

in Fig. 4(a-b), providing bottleneck capacity information is always welfare-improving over683

zero information when the amplitude of demand degradation is larger than the amplitude684

of bottleneck capacity (i.e., πN > πs), which confirms Proposition 4(a). When bottleneck685

capacity rarely experience degradations (i.e., ps is large) and the amplitude of demand686

degradation is less than the amplitude of bottleneck capacity (i.e., πN < πs), providing687

bottleneck capacity information can be (1) welfare-neutral if demand and bottleneck capacity688

are uncorrelated and (2) welfare-reducing if demand and bottleneck capacity are moderately689

correlated. These results confirm Proposition 3(b) and Proposition 4(b), indicating that690

only providing bottleneck capacity may even increase travel costs (i.e., the emergence of the691

information paradox) compared to zero information when demand and bottleneck capacity692

are both stochastic.693

Fig. 5 presents the benefit gains/losses from bottleneck capacity information over zero694

information (i.e., GZB ) for different pN , πN and r. As shown in Fig. 5, providing bottle-695

neck capacity information can be likely welfare-reducing when the amplitude of bottleneck696

capacity drop is less than the amplitude of demand drop (i.e.,πs > πN), bottleneck capacity697
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Figure 4: Benefit gains/losses from bottleneck capacity information over zero information for different r, ps
and pN (i.e., (a-b) πs = 0.5, πN = 0.8; (c-d) πs = 0.5, πN = 0.4).

Figure 5: Benefit gains/losses from bottleneck information over zero information for different pN , πN and r
(i.e., (a) r = −0.2; (b) r = 0.2), with fixed πs = 0.5, ps = 0.8. The white solid lines indicate where GZB = 0.
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rarely experiences degradation, and travel demand and bottleneck capacity are moderate-698

ly positively correlated. This result provides additional evidence that providing bottleneck699

information can lead to an information paradox compared to zero information when travel700

demand and bottleneck capacity are moderately correlated, thereby reaffirming Proposi-701

tion 4(b).702

6.2.2. The benefit gains/losses of providing demand information over zero information703

Figure 6: Benefit gains/losses from demand information over zero information for different pN , ps, πs and
πN when demand and bottleneck capacity are uncorrelated (i.e., r = 0).

Fig. 6 presents the benefit gains of providing demand information over zero information704

(i.e., GZD) for different frequency and severity of bottleneck capacity and demand reductions705

when demand and bottleneck capacity are uncorrelated. Like providing bottleneck capacity706

information, we can see that providing demand information is also not welfare-reducing707

compared to zero information, verifying Proposition 5(a). Providing demand information708

can be welfare-neutral when πN > πs and bottleneck capacity rarely experience degradation709

(i.e., ps >
α

α+γ
), corresponding to Fig. 6(b), which confirms Proposition 5(b).710

Fig. 7 presents the benefit gains/losses of providing demand information over zero infor-711

mation (i.e., GZD) for different correlation coefficients r. We can see that providing demand712

information is also welfare-improving when demand and bottleneck capacity are strongly cor-713

related (i.e., |r| is large), which reaffirms Corollary 1. Furthermore, as shown in Fig. 7(c),714

providing demand information is always welfare-improving when the amplitude of demand715

degradation is larger than the amplitude of bottleneck capacity degradation and bottleneck716

capacity and demand are negatively correlated, which confirms Proposition 6(a). As shown717

in Fig. 7(a-b), providing demand information may be welfare-reducing over zero informa-718

tion when the amplitude of bottleneck capacity degradation is larger than the amplitude of719

demand degradation and demand and bottleneck capacity are moderately correlated. These720

results confirm Proposition 6(b). Also, as shown in Fig. 7(d), providing demand information721

can be welfare-reducing over zero information when the amplitude of demand degradation is722
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Figure 7: Benefit gains/losses from demand information over zero information for different r, ps and pN .
(i.e., (a-b) πs = 0.5, πN = 0.8; (c-d) πs = 0.5, πN = 0.4).

larger than the amplitude of bottleneck capacity degradation, bottleneck capacity and de-723

mand are positively moderately correlated, and demand and bottleneck capacity frequently724

experience degradations. This result verifies Proposition 6(c). Compared to providing bot-725

tleneck capacity, providing demand information is more likely to be welfare-reducing over726

zero information.727

Fig. 8 presents the benefit gains/losses GZD from demand information over zero informa-728

tion for different ps, πs and r. As shown in Fig. 8(b), providing demand information can be729

welfare-reducing compared to zero information when bottleneck capacity and travel demand730

are moderately positively correlated, particularly under the following two conditions: (1)731

when the amplitude of bottleneck capacity drop is less than the amplitude of demand drop732

(i.e.,πs > πN) and bottleneck capacity and demand both frequently experiences degradation;733

(2) when the amplitude of bottleneck capacity drop is larger than the amplitude of demand734

drop (i.e.,πs < πN) and bottleneck capacity rarely experiences degradation. These results735

provide additional evidence supporting Proposition 6(b) and (c).736
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Figure 8: Benefit gains/losses from demand information over zero information for different ps, πs and r (i.e.,
(a) r = −0.2; (b) r = 0.2), with fixed πN = 0.5, pN = 0.2. The white solid lines indicate where GZD = 0.

Figure 9: Benefit gains/losses from capacity information as compared to from demand information GBD for
different r, ps and pN (i.e., (a-b) πs = 0.5, πN = 0.8; (c-d) πs = 0.5, πN = 0.4).
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6.2.3. The comparison between bottleneck capacity information and demand information737

Fig. 9 shows the benefit gains from capacity information as compared to from demand738

information GBD when demand and bottleneck capacity are correlated for different r, ps,739

and pN . As shown in Fig. 9(a-b), providing bottleneck capacity information is always bet-740

ter than providing demand information (i.e., GBD < 0) when the amplitude of bottleneck741

capacity degradation is larger than the amplitude of demand degradation (i.e., πs < πN),742

which confirms Proposition 7(a). Also, as shown in Fig.9(c-d), providing bottleneck capacity743

information can still be more valuable than providing demand information when the ampli-744

tude of bottleneck capacity degradation is less than the amplitude of demand degradation745

(i.e., πs > πN), bottleneck capacity and demand are not strongly correlated, and bottleneck746

capacity rarely experience degradation. These results verify proposition 7(b).747

6.3. The benefit gains from full information as compared to providing partial information748

Figure 10: The benefit gains (i.e., GBF and GDF from providing full information over bottleneck information
or demand information for different πN and r, with fixed pN = ps = 0.5 and πs = 0.5.

Fig. 10 presents the benefit gains from providing full information compared to providing749

only bottleneck information or demand information for different πN and r. As shown in750

Fig. 10, the benefit gains from full information decrease as πN increases. Furthermore,751

providing full information is always welfare-improving compared to partial information when752

demand and bottleneck capacity are not completely correlated, which provides evidence for753

supporting Proposition 8(a).754

Fig. 11 presents the benefit gains from providing full information over partial information755

for different α and r. As shown in Fig. 11, providing full information is never welfare-reducing756

compared with providing partial information. This result reconfirms Proposition 8(a). Also,757

when demand and bottleneck capacity are not completely correlated, providing full informa-758

tion is always welfare-improving over partial information, indicating that developing an ATIS759

to reduce uncertainty in both the demand and supply sides is useful to reduce commuting760

costs. Furthermore, the benefit gains from partial information to full information increase as761
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Figure 11: The benefit gains (i.e., GBF andGDF ) from providing full information over bottleneck information
or demand information for different α under different r with fixed pN = ps = 0.5. (a-b). πs = 0.5, πN = 0.4;
(c-d). πs = 0.5, πN = 0.8.

α increases, indicating the necessity of reducing uncertainty in both the demand and supply762

sides when commuters are more averse to congestion. This result affirms Proposition 8(b).763

Fig. 12 presents the benefit gains from providing full information over bottleneck in-764

formation or demand information for different β and γ under different r. As shown in765

Fig. 12(a-b), the relation between GBF and β as well as the relation between GDF and β766

may be non-monotonic. When demand and bottleneck capacity are positively correlated,767

GBF first increases and then decreases as β increases, while GDF initially increases, then768

decreases, and finally increases again as β increases. As shown in Fig. 12(c-d), the relation769

between GBF and γ as well as the relation between GDF and γ may also be non-monotonic.770

When demand and bottleneck capacity are uncorrelated, both GBF and GDF first decrease771

and then increase as γ increases. However, when demand and bottleneck capacity are neg-772

atively correlated, both GBF and GDF increase as γ increases.773
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Figure 12: The benefit gains (i.e., GBF and GDF ) from providing full information over capacity information
or demand information under varying β or γ for different r, with fixed πN = 0.4, πs = 0.5, pN = ps = 0.5.

7. Conclusions and discussion774

In this paper, we have investigated the welfare effects of partial and full pre-trip informa-775

tion on the morning commute behavior under stochastic demand and bottleneck capacity.776

The factors paid attention in the problem include information completeness, the degree of777

correlation between bottleneck capacity and demand, and the frequency and amplitude of778

bottleneck capacity and demand changes. The value of pre-trip information is reflected in the779

difference between the expected travel costs and different amounts of pre-trip information,780

including zero, partial, and full information.781

We find that providing full pre-trip information does not increase travel costs compared782

to zero information (Proposition 2), indicating that simultaneously eliminating uncertain-783

ty on both sides of supply and demand can always bring positive benefits to the morning784

commute. However, the benefit gains/losses of providing partial information over zero infor-785

mation depend on the degree of correlation between bottleneck capacity and demand and the786

frequency and amplitude of bottleneck capacity and demand changes (Propositions 3 - 6).787

We find that providing partial pre-trip information does not increase travel costs compared788
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to zero information when bottleneck capacity and demand are uncorrelated (Propositions 3789

and 5). However, providing partial information can be welfare-reducing over zero informa-790

tion when bottleneck capacity and demand are moderately correlated (Propositions 4 and791

6). Also, the welfare effects of the two kinds of partial information, demand information and792

bottleneck information, are different when demand and bottleneck capacity are not com-793

pletely correlated. Which kind of partial information is more efficient depends on the degree794

of correlation between bottleneck capacity and demand and the frequency of demand and795

bottleneck capacity changes (Propositions 7). Providing bottleneck capacity information is796

more likely to have a better performance than providing demand information. Furthermore,797

although providing partial information may induce information paradox, the welfare effects798

from partial information to full information are always positive (Propositions 8).799

Our study has practical implications, particularly for the design and implementation800

of ATIS. First, given the ubiquity of uncertainties on both the demand and supply sides,801

ATIS should deliver differentiated levels of pre-trip information based on the correlation802

between demand and bottleneck capacity, as well as the expected uncertainty in traffic803

conditions. This allows for targeted information provision that can help optimize commuter804

decision-making and reduce travel costs under varying conditions. Second, ATIS design805

should prioritize the provision of full pre-trip information in scenarios with high uncertainty806

to ensure better overall welfare, while partial information may be sufficient and beneficial807

when uncertainty is lower or when supply and demand are uncorrelated. Third, integrating808

pre-trip information with transport policies has the potential to significantly enhance their809

effectiveness. For example, providing pre-trip information about bottleneck capacity and810

demand can help commuters make more informed travel decisions, thereby improving the811

performance of policies such as congestion pricing and variable speed limits in managing812

demand and alleviating congestion. By dynamically adjusting pricing and speed limits based813

on real-time and predictive information, ATIS can serve as a key instrument for maximizing814

the effectiveness of these policies.815

Our study can be extended in several directions for further research. First, the partial and816

full information concerned in our analysis is one hundred percent accurate. Previous studies817

have revealed that information accuracy is an important factor in affecting the performance818

of pre-trip information in the morning commute under stochastic bottleneck capacity (Arnot-819

t et al., 1999; Yu et al., 2021).Therefore, the first research direction is to understand the820

welfare effects of inaccurate information on the morning commute under stochastic demand821

and bottleneck capacity. Second, our model investigates the morning commute behavior in822

the classical single-bottleneck highway connecting one origin and one destination. However,823

previous studies have shown that the commuting behavior in multiple-bottleneck models and824

complex network structures, such as the Y-shaped networks, are distinct from the classical825

single-bottleneck model (Arnott et al., 1993a; Li et al., 2024). Therefore, whether the para-826

dox of providing partial information still exists in multiple-bottleneck models and complex827

network structures should be further investigated. Third, we only consider the departure828

time choice under stochastic bottleneck capacity and demand in the morning commute; how-829

ever, commuters usually face a series of choices, such as departure time, route, and mode, for830

each trip (Mannering et al., 1994). Therefore, the third direction is to investigate the value831
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of partial and full information under uncertainty when commuters face multiple objectives.832

Fourth, in our model, travel demand is treated as exogenously given. However, demand833

may fluctuate in response to factors such as traffic conditions. Therefore, understanding the834

value of partial and full information under price-sensitive demand and stochastic bottleneck835

capacity is an important direction for future research. Fifth, the provision of information836

typically incurs costs, such as those associated with the development of ATIS. While our837

study focuses on the potential benefits of information provision, integrating the costs into838

a more comprehensive framework would be essential for assessing the net impact of infor-839

mation systems. Sixth our study primarily investigates the value of pre-trip information840

on travel costs under stochastic bottleneck capacity and demand. The interaction between841

pre-trip information and combination policies, such as congestion pricing and variable speed842

limits, could provide an effective strategy for reducing congestion and enhancing overall traf-843

fic flow. Exploring how these policies can be integrated with ATIS offers valuable insights844

into better demand management and system optimization, particularly during peak hours.845

Last but not least, we propose a general framework to evaluate the value of partial and full846

information by assuming that travel demand and bottleneck capacity follow a joint proba-847

bility distribution. To facilitate analytical derivations, we adopt the Bernoulli distribution848

as a stylized example. However, it is worth noting that the Bernoulli distribution may not849

fully capture the complexities and nuances of real-world traffic systems. Therefore, when850

applying this framework to practical scenarios, the distributions of travel demand and bot-851

tleneck capacity should be carefully calibrated using empirical data to ensure the model’s852

relevance and accuracy.853
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Appendix857

A.1. Boundary condition between Case 1 and Case 2.858

In Case 2, assume that the expected travel costs at t0 and te(t
∗) when the work start859

time t∗ becomes t∗ + δ are:860











E[CZ(t0)] = βθ̂ + βδ

E[CZ(te)] = γδ + (α + γ)

∫ θ

θ̂

k(θψω)(θψω − θ̂)dθψω.
(26)

Since θ̂∗ = t∗ − t0 and θ̂ = t∗ + δ− t0, we can have θ̂ = δ+ θ̂∗ . When the system reaches861

user equilibrium, E[CZ(t∗ + δ)] > E[CZ(t∗)], we have:862

γ >
α + γ

δ

∫ θ̂

θ̂∗
k(θψω)(θψω − θ̂∗) + (α + γ)[1−K(θ̂)]. (27)
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When lim δ → 0, we have K(θ̂) ≈ K(θ̂∗) ≥ α/(α + γ) and the condition θ < θ̂∗ < θ needs863

to be satisfied at this point. Therefore, the boundary condition between Case 1 and Case 2864

can be obtained by solving K(θ̂∗) = α/(α + γ).865

866

A.2. Equilibrium solution under a general discrete probability distribution.867

If stochastic bottleneck capacity sω and demand Nψ follows a general discrete probability868

distribution, then we denote the probability in bottleneck capacity sω and demand Nψ as869

P (sω) and P (Nψ), in which ωψ ∈ {1, 2, · · · , k, · · · , K} denote all possible discrete conditions.870

(1) When te > t∗, the expected travel cost per commuter at UE can be denoted as:871

φ(θ̂) =
γβ

γ + β
θ̂ +

(α + γ)β

β + γ

K
∑

ψω=k

P (θψω)(θψω − θ̂), (28)

in which θk−1 ≤ θ̂, and θk ≥ θ̂. The first partial derivative of Φ(θ̂) to θ̂ is:872

∂Φ(θ̂)

∂θ̂
=
β[(α + γ)G(θk)− α]

β + γ
. (29)

Letting G(θk) =
∑k

ψω=1 P (θψω),we assume that there are θ∗k−1 and θ∗k which satisfies873

G(θ∗k−1) <
α

α+γ
< G(θ∗k). The expected travel cost at UE is: E[CZ ] = min

{

Φ(θ∗k−1),Φ(θ
∗
k)
}

.874

(2) When te = t∗, the expected travel cost per commuter at UE can be denoted as:875

φ(θ̂∗∗) = βθ̂∗∗, (30)

in which θ̂∗∗ can be obtained by solving βθ̂∗∗ = (α + γ)
∑K

ψω=k P (θψω)(θψω − θ̂∗∗). Besides,876

the boundary condition between Case 1 and Case 2 can be obtained by solving G(θ̂∗∗) =877

α/(α + γ) and θ̂∗∗ ∈ {θ1, θ2, θ3, θ4}.878

879

A.3. Equilibrium solutions when demand and capacity follow Bernoulli distributions.880

Let ρψω be the correlation parameter between the random variables sω and Nψ. Then,881

we have the joint probability distribution of the random variables Nψ and sω: P (θψω) =882

ρψωP (Nψ)P (sω). r is the degree of correlation between the random variables Nψ and sω.883

Therefore, we have the relationships between the degree of correlation r and the correlation884

parameter ρψω: ρHG = 1 + r
√

(1−pN )(1−ps)
pNps

, ρHB = 1 − r
√

(1−pN )ps
pN (1−ps)

, ρLG = 1 − r
√

pN (1−ps)
(1−pN )ps

,885

and ρLB = 1 + r
√

pNps
(1−pN )(1−ps)

.886

We assume the demand in low level N with probability 1 − pN and in high level N887

with probability pN , and the bottleneck capacity in bad condition s with probability 1− ps888

and in good condition s with probability ps. When πN ≥ πs is satisfied, congestion can889

definitely be alleviated by adjusting the bottleneck capacity. If πN ≥ πs, then θ2 = NH/SG890

and θ3 = NL/SB. We can have the specific expression of the joint probability distribution891
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of the random variable sω and Nψ is:892

P (Nψ, sω) =



















ρHBpN(1− ps), if Nψ = NH , sω = sB

ρLB(1− pN)(1− ps), if Nψ = NL, sω = sB

ρHGpNps, if Nψ = NH , sω = sG

ρLG(1− pN)ps, if Nψ = NL, sω = sG

(31)

where ρLB ∈ [0,max
{

1
1−pN

, 1
1−ps

}

], ρLG ∈ [0,max
{

1
1−pN

, 1
ps

}

], ρHB ∈ [0,max
{

1
pN
, 1
1−ps

}

],893

and ρHG ∈ [0,max
{

1
pN
, 1
ps

}

].894

The expected travel costs in the four conditions can be denoted as:895

(1)
α

α + γ
< G(θ1)(i.e., ps ≥

α

α + γ
, r <

(α + γ)(1− pN)ps − α

(α + γ)
√

(1− pN)(1− ps)pspN
) : E[CZ ] = Φ(θ1);

(2) G(θ1) ≤
α

α + γ
< G(θ2)(i.e., ps ≥

α

α + γ
,

(α + γ)(1− pN)ps − α

(α + γ)
√

(1− pN)(1− ps)pspN
≤ r) :

E[CZ ] = min {Φ(θ1),Φ(θ2)} = Φ(θ2) =
γβθ2

(γ + β)
+

(γ + α)β

(γ + β)
{ρHGpsθ3 + ρHB(1− ps)θ4 − θ2} pN ;

(3) G(θ2) ≤
α

α + γ
< G(θ3)(i.e., ps <

α

α + γ
, r <

α− (α + γ)(pNps + 1− pN)

(α + γ)
√

(1− pN)(1− ps)pspN
) :

E[CZ ] = min {Φ(θ2),Φ(θ3)} = Φ(θ3) =
γβθ3

(γ + β)
+

(γ + α)β

(γ + β)
ρHBpN(1− ps)(θ4 − θ3);

(4) G(θ3) ≤
α

α + γ
< G(θ4)(i.e., ps <

α

α + γ
,
α− (α + γ)(pNps + 1− pN)

(α + γ)
√

(1− pN)(1− ps)pspN
≤ r) :

E[CZ ] = min {Φ(θ3),Φ(θ4)} = Φ(θ4) =
γβθ4

(γ + β)
;

Then, we have the boundary condition separating Case 1 (te > t∗) and Case 2 (te = t∗).896

By solving βθ̂∗ = (α + γ)
∑θ

θ̂∗
P (θψω)(θψω − θ̂∗), we have θ̂∗.897

(a) θ1 < θ̂∗ < θ2, θ̂
∗
1 =

(α+γ)[P (θHG)θ2+P (θLB)θ3+P (θHB)θ4]
β+(α+γ)[pN+P (θLB)]

when 0 < πN ≤ [β+(α+γ)(1−ps)]πs−(α+γ)P (θHB)
(α+γ)(1−ps)−(α+γ)P (θHB)

.898

(b) θ2 < θ̂∗ < θ3, θ̂
∗
2 =

(α+γ)[P (θLB)θ3+P (θHB)θ4]
β+(α+γ)(1−ps)

when (α+γ)P (θHB)
β+(α+γ)P (θHB)

≤ πN < 1.899

(c) θ3 < θ̂∗ < θ4, θ̂
∗
3 =

(α+γ)P (θHB)θ4
β+(α+γ)P (θHB)

when [β+(α+γ)(1−ps)]πs−(α+γ)P (θHB)
(α+γ)(1−ps)−(α+γ)P (θHB)

< πN < (α+γ)P (θHB)
β+(α+γ)P (θHB)

.900

The expected travel cost when the system reaches the user equilibrium in Case 2 is901

E[CZ ] = βθ̂∗, otherwise, Case 1. The expected travel costs without information when902

πN ≤ πs as shown in Table A1.903

In Table A1, π∗
N = [β+(α+γ)(1−ps)]πs−(α+γ)P (θHB)

(α+γ)(1−ps)−(α+γ)P (θHB)
and π∗∗

N = (α+γ)P (θHB)
β+(α+γ)P (θHB)

. π∗
N is a strictly904

monotonically increasing function of r, i.e. ∂π∗
N/∂r > 0, but π∗∗

N is a strictly monotonically905

decreasing function of r, i.e. ∂π∗∗
N /∂r < 0. φ(θk) =

γβθk
γ+β

+ (α+γ)β
γ+β

∑K

ψω=k P (θψω)(θψω − θk)906

and βθ̂∗k = (α + γ)
∑K

ψω=k+1 P (θψω)(θψω − θ̂∗k), in which θ̂∗3 > θ̂∗2 > θ̂∗1. From the Table A1,907

it can be seen that the correlation between demand and bottleneck capacity, the frequency908
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Table A1: The expected travel costs at UE when the stochastic demand and bottleneck capacity follow the
Bernoulli distribution and πN > πs.

πN
0 ≤ ps <

α
α+γ

rmin ≤ r < α−(α+γ)(pNps+1−pN )

(α+γ)
√
pNps(1−pN )(1−ps)

α−(α+γ)(pNps+1−pN )

(α+γ)
√
pNps(1−pN )(1−ps)

≤ r ≤ rmax

0 < πN < π∗∗
N Φ(θ4)

βθ̂∗3
π∗∗
N < πN < 1 Φ(θ3)

πN
α

α+γ
≤ ps < 1

rmin ≤ r < (α+γ)(1−pN )ps−α

(α+γ)
√
pNps(1−pN )(1−ps)

(α+γ)(1−pN )ps−α

(α+γ)
√
pNps(1−pN )(1−ps)

≤ r ≤ rmax

0 < πN ≤ π∗
N βθ̂∗1 βθ̂∗3π∗

N < πN < π∗∗
N βθ̂∗3

π∗∗
N < πN < 1 βθ̂∗2

and severity of demand and capacity reduction will significantly affect the expected travel909

costs and commuting patterns.910

When this premise is not satisfied, congestion is also bound to occur by adjusting the911

capacity of bottlenecks. This means that πN ≤ πs, θ2 = NL/SB and θ3 = NH/SG. The912

specific expression of the joint probability distribution of sω and Nψ is same.913

The expected travel costs in the four conditions can be denoted as:914

(1)
α

α + γ
< G(θ1)(i.e., pN ≥ γ

α + γ
, r <

(α + γ)(1− pN)ps − α

(α + γ)
√

(1− pN)(1− ps)pspN
) : E[CZ ] = Φ(θ1);

(2) G(θ1) ≤
α

α + γ
< G(θ2)(i.e., pN ≥ γ

α + γ
,

(α + γ)(1− pN)ps − α

(α + γ)
√

(1− pN)(1− ps)pspN
≤ r) :

E[CZ ] = min {Φ(θ1),Φ(θ2)} = Φ(θ2) =
γβθ2

(γ + β)
+

(γ + α)β

(γ + β)
{ρHGpsθ3 + ρHB(1− ps)θ4 − θ2} pN ;

(3) G(θ2) ≤
α

α + γ
< G(θ3)(i.e., pN <

γ

α + γ
, r <

α− (α + γ)(pNps+ 1− pN)

(α + γ)
√

(1− pN)(1− ps)pspN
) :

E[CZ ] = min {Φ(θ2),Φ(θ3)} = Φ(θ3) =
γβθ3

(γ + β)
+

(γ + α)β

(γ + β)
ρHBpN(1− ps)(θ4 − θ3);

(4) G(θ3) ≤
α

α + γ
< G(θ4)(i.e., pN <

γ

α + γ
,
α− (α + γ)(pNps + 1− pN)

(α + γ)
√

(1− pN)(1− ps)pspN
≤ r) :

E[CZ ] = min {Φ(θ3),Φ(θ4)} = Φ(θ4) =
γβθ4

(γ + β)
.

Then we solve the boundary condition separating Case 1(te > t∗) and Case 2(te = t∗).915

By solving βθ̂∗ = (α + γ)
∑θ

θ̂∗
P (θψω)(θψω − θ̂∗), we can be obtained θ̂∗.916

(a)θ1 < θ̂∗ < θ2, θ̂
∗
1 =

(α+γ)[P (θLB)θ2+P (θHG)θ3+P (θHB)θ4]
β+(α+γ)[pN+P (θLB)]

when 0 < πs ≤ [β+(α+γ)(1−ps)]πN−(α+γ)P (θHB)
(α+γ)(1−ps)−(α+γ)P (θHB)

.917
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(b)θ2 < θ̂∗ < θ3, θ̂
∗
2 =

(α+γ)[P (θHG)θ3+P (θHB)θ4]
β+(α+γ)(1−ps)

when (α+γ)P (θHB)
β+(α+γ)P (θHB)

≤ πs < 1.918

(c)θ3 < θ̂∗ < θ4, θ̂
∗
3 =

(α+γ)P (θHB)θ4
β+(α+γ)P (θHB)

when [β+(α+γ)(1−ps)]πN−(α+γ)P (θHB)
(α+γ)(1−ps)−(α+γ)P (θHB)

< πs <
(α+γ)P (θHB)

β+(α+γ)P (θHB)
.919

The expected travel cost when system at UE in case 2 is E[CZ ] = βθ̂∗, otherwise, Case920

1. The expected travel costs without information when πN ≤ πs as shown in Table A2:921

Table A2: The expected travel costs at UE when the stochastic demand and bottleneck capacity follow the
Bernoulli distribution and πN ≤ πs.

πs
0 ≤ pN < γ

α+γ

rmin ≤ r < α−(α+γ)(pNps+1−pN )

(α+γ)
√
pNps(1−pN )(1−ps)

α−(α+γ)(pNps+1−pN )

(α+γ)
√
pNps(1−pN )(1−ps)

≤ r ≤ rmax

0 < πs < π∗∗
s

Φ(θ4)
βθ̂∗3

π∗∗
s < πs < 1 Φ(θ3)

πs

γ

α+γ
≤ pN < 1

rmin ≤ r < (α+γ)(1−pN )ps−α

(α+γ)
√
pNps(1−pN )(1−ps)

(α+γ)(1−pN )ps−α

(α+γ)
√
pNps(1−pN )(1−ps)

≤ r ≤ rmax

0 < πs ≤ π∗
s βθ̂∗1

βθ̂∗3
π∗
s < πs < π∗∗

s βθ̂∗3

π∗∗
s < πs < 1 βθ̂∗2

In Table A2, π∗
s = [β+(α+γ)pN ]πN−(α+γ)P (θHB)

(α+γ)pN−(α+γ)P (θHB)
and π∗∗

s = (α+γ)P (θHB)
β+(α+γ)P (θHB)

. π∗
s is a strictly922

monotonically increasing function of r, i.e. ∂π∗
s/∂r > 0, but π∗∗

s is a strictly monotonically923

decreasing function of r, (i.e. ∂π∗∗
s /∂r < 0). φ(θk) =

γβθk
γ+β

+ (α+γ)β
γ+β

∑K

ψω=k P (θψω)(θψω − θk)924

and βθ̂∗k = (α + γ)
∑K

ψω=k+1 P (θψω)(θψω − θ̂∗k), in which θ̂∗3 > θ̂∗2 > θ̂∗1. From the Table A2,925

it can be seen that the correlation between demand and bottleneck capacity, the frequency926

and severity of demand and capacity reduction will significantly affect the expected travel927

costs and commuting patterns.928

929

A.4. Equilibrium solutions with the bottleneck capacity information when demand and930

capacity follow Bernoulli distributions.931

The probability of demand being in different state changes when commuters has acquired932

bottleneck capacity information before departure. When commuters are given information933

that the bottleneck capacity is in good condition for the day, the demand in bad condition N934

with probability P ′(θLG) = (1− pN)ρLG or in good condition N with probability P ′(θHG) =935

pNρHG. When commuters are given information that the bottleneck capacity is in bad936
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condition for the day, the demand in bad conditionN with probability P ′(θLB) = (1−pN)ρLB937

or in good condition N with probability P ′(θHB) = pNρHB. We can have the new joint938

probability distribution of the random variables is: P ′(Nψ, sω) = ρNψsωP (Nψ).939

Thus, we have the expected travel costs with bottleneck capacity information under the940

four possible states CB
LG, C

B
HG, C

B
HB and CB

LB :941

When the bottleneck capacity is in good condition for the day (θψω ∈ {θLG, θHG}),942

if r < [γ−(α+γ)pN ]ps

(α+γ)
√

(1−pN )(1−ps)pspN
, CB

LG + CB
HG = ΦB(θLG) =

γβθLG
(γ+β)

+ (γ+α)β
(γ+β)

ρHGpN(θHG − θLG);943

If r ≥ [γ−(α+γ)pN ]ps

(α+γ)
√

(1−pN )(1−ps)pspN
, CB

LG + CB
HG = min

{

ΦB(θLG),Φ
B(θHG)

}

= ΦB(θHG) =
γβθHG
(γ+β)

.944

When the bottleneck capacity is in bad condition for the day (θω ∈ {θLB, θHB}),945

if r < [(α+γ)pN−γ](1−ps)

(α+γ)
√

(1−pN )(1−ps)pspN
, CB

LB + CB
HB = min

{

ΦB(θLB),Φ
B(θHB)

}

= ΦB(θHB) =
γβθHB
(γ+β)

;946

If r ≥ [(α+γ)pN−γ](1−ps)

(α+γ)
√

(1−pN )(1−ps)pspN
, CB

LB + CB
HB = ΦB(θLB) =

γβθLB
(γ+β)

+ (γ+α)β
(γ+β)

ρHBpN(θHB − θLB).947

Then We solve the boundary condition separating Case 1(te > t∗) and Case 2(te = t∗).948

By solving βθ̂∗ = (α + γ)
∑θ

θ̂∗
P (θψω)(θψω − θ̂∗), we can obtain θ̂∗. When the bottleneck949

capacity is in good condition for the day, we can be obtained θ̂∗ = (α+γ)ρHGpNθHG
β+(α+γ)ρHGpN

. We have950

that θLG < θ̂∗ < θHG always holds when 0 < πN < (α+γ)ρHGpN
β+(α+γ)ρHGpN

. When the bottleneck951

capacity is in bad condition for the day, we can be obtained θ̂∗∗ = (α+γ)ρHBpNθHB
β+(α+γ)ρHBpN

. We have952

that θLB < θ̂∗∗ < θHB always holds when 0 < πN < (α+γ)ρHBpN
β+(α+γ)ρHBpN

. The expected travel cost953

when the system reaches the user equilibrium in case 2 is CB = βθ̂∗, otherwise, Case 1.954

By solving E[CB] = ps(C
B
LG + CB

HG) + (1 − ps)(C
B
LB + CB

HB), we can have the expected955

travel cost of a commuter at UE under stochastic conditions with capacity information.956

957

A.5. Equilibrium solutions with the demand information when demand and capacity follow958

the Bernoulli distribution959

The probability of bottleneck capacity being in different state changes when commuters960

has acquired demand information before departure.When commuters are given information961

that the demand is in good condition for the day, the bottleneck capacity in bad condition s962

with probability P ′(θHB) = (1− ps)ρHB or in good condition s with probability P ′(θHG) =963

psρHG. When commuters are given information that the demand is in bad condition for the964

day, the bottleneck capacity in bad condition s with probability P ′(θLB) = (1−ps)ρLB or in965

good condition s with probability P ′(θLG) = psρLG. We can have the new joint probability966

distribution of the random variables is: P ′(Nψ, sω) = ρNψsωP (sω).967

Thus, we have the expected travel costs with demand information under the four possible968

states CD
LG, C

D
HG, C

D
HB and CD

LB :969

When the bottleneck demand is in good condition for the day (θψω ∈ {θHG, θHB}),970

if r ≥ [(α+γ)(1−ps)−γ]pN

(α+γ)
√

(1−pN )(1−ps)pspN
, CD

HB+C
D
HG = ΦD(θHG) =

γβθHG
(γ+β)

+ (γ+α)β
(γ+β)

ρHB(1−ps)(θHB−θHG);971

If r < [(α+γ)(1−ps)−γ]pN

(α+γ)
√

(1−pN )(1−ps)pspN
, CD

HB+CD
HG = min

{

ΦD(θHG),Φ
D(θHB)

}

= ΦD(θHB) =
γβθHB
(γ+β)

.972

When demand is in bad condition for the day (θψω ∈ {θLG, θLB}),973

36



if r ≥ [γ−(α+γ)(1−ps)](1−pN )

(α+γ)
√

(1−pN )(1−ps)pspN
, CD

LB + CD
LG = min

{

ΦD(θLB),Φ
D(θLG)

}

= ΦD(θLB) =
γβθLB
(γ+β)

;974

If r < [γ−(α+γ)(1−ps)](1−pN )

(α+γ)
√

(1−pN )(1−ps)pspN
, CD

LB+C
D
LG = ΦD(θLG) =

γβθLG
(γ+β)

+ (γ+α)β
(γ+β)

ρLB(1−ps)(θLB−θLG).975

Then We solve the boundary condition separating Case 1(te > t∗) and Case 2(te = t∗).976

By solving βθ̂∗ = (α + γ)
∑θ

θ̂∗
P (θψω)(θψω − θ̂∗), we can be obtained θ̂∗. When the demand977

is in good condition for the day, we can be obtained θ̂∗ = (α+γ)ρHB(1−ps)θHB
β+(α+γ)ρHB(1−ps)

. We have that978

θHG < θ̂∗ < θHB always holds when 0 < πs <
(α+γ)ρHB(1−ps)

β+(α+γ)ρHB(1−ps)
. When the demand is979

in bad condition for the day, we can be obtained θ̂∗∗ = (α+γ)ρLB(1−ps)θLB
β+(α+γ)ρLB(1−ps)

. We have that980

θLG < θ̂∗∗ < θLB always holds when 0 < πs <
(α+γ)ρLB(1−ps)

β+(α+γ)ρLB(1−ps)
. The expected travel cost981

when the system reaches the user equilibrium in case 2 is CD = βθ̂∗, otherwise, Case 1.982

By solving E[CD] = pN(C
D
HG +CD

HB) + (1− pN)(C
D
LG +CD

LB), we can have the expected983

travel cost of a commuter at UE under stochastic conditions with demand information.984

985

A.6. Proof of Proposition 2.986

Part (a): If te > t∗, GZF = αβ

β+γ

∫ θ

θ̂∗
[k(θψω)θψω − k(θψω)θ̂

∗]dθψω + γβ

β+γ

∫ θ̂∗

θ
[k(θψω)θ̂

∗ −987

k(θψω)θψω]dθψω ≥ 0; otherwise, GZF = βθ̂∗∗ − βγ

β+γ

∫ θ

θ
θψωk(θψω)dθψω >

αβ

β+γ

∫ θ

θ̂∗
[k(θψω)θψω −988

k(θψω)θ̂
∗]dθψω +

γβ

β+γ

∫ θ̂∗

θ
[k(θψω)θ̂

∗ − k(θψω)θψω]dθψω > 0.989

Part (b): If πs = πN and bottleneck capacity and demand are perfectly positive correlated,990

we have θ2 = θ3 = θ̂∗ and P (θ1) = P (θ4) = 0. When te > t∗, GZF = 0; otherwise, GZF > 0991

992

A.7. Proof of Proposition 3.993

Part (a): If te > t∗, using Eq.(10) and Eqs.(14)-(15), we can derive the expected benefit994

gains from providing bottleneck information over zero information:995

996

GZB = E[CZ ]− E[CB] =
(α + γ)β

β + γ

{

∫ θ

θ̂∗
θψωk(θψω)dθψω −

∫ s

s

f(sω)

sω

∫ N

N̂∗

f(Nψ|sω)NψdNψdsω

}

(32)

where f(Nψ|sω) = ∂
∂Nψ

J(Nψ, sω), k(θψω) =
∫ s

s
sωj(θψωsω, sω)dsω. When bottleneck capacity997

and demand are uncorrelated, f(Nψ|sω) = g(Nψ), j(θψωsω, sω) = g(θψωsω)f(sω).998

GZB =
(α + γ)β

β + γ

{

∫ θ

θ̂∗
θψω

∫ s

s

sωg(θψωsω)f(sω)dsωdθψω −
∫ s

s

f(sω)

sω

∫ N

N̂∗

g(Nψ)NψdNψdsω

}

=
(α + γ)β

β + γ

{

∫ s

s

∫ N

sθ̂∗

Nψ

sω
f(sω)g(Nψ)dsωdNψ −

∫ s

s

∫ N

N̂∗

Nψ

sω
f(sω)g(Nψ)dsωdNψ

}

(33)

where
∫ θ

θ̂∗
g(Nψ)f(sω)dθψω =

∫ N

N̂∗
g(Nψ)dNψ = γ

α+γ
. Hence, sθ̂∗ ≤ N̂∗, GZB ≥ 0.999

Part(b): When two conditional variables are uncorrelated (i.e., r = 0), πs > πN and pN <1000

γ

α+γ
, by combining Eq.(16), Tables A1 and A2, we can obtain the expected benefit from1001
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bottleneck information to zero information:1002

GZB = E[CZ ]− psE[C
B
ψ|G]− (1− ps)E[C

B
ψ|B] = Φ(θ3)− psβθ̂

∗∗
1 − (1− ps)θ̂

∗∗
2 (34)

where the specific expressions of Φ(θ3), θ̂
∗∗
1 and θ̂∗∗2 can be found in Appendix A.3 and1003

Appendix A.4. By substituting specific expressions and r = 0, and simplifying, we obtain:1004

GZB =
β[(γ + α)pN − γ](NH − psNL)

(γ + β)sG
+
β[(γ + α)pNNL + (1− 2pN)NH − αNL](1− ps)

(γ + β)sB
(35)

When πN = πs and pN < γ

α+γ
, we have GZB = 0.1005

In the above, we find a special case when demand varies slightly that satisfies GZB = 0,1006

the proposition is true. So we can conclude that providing bottleneck information can be1007

welfare-neutral over zero information when bottleneck capacity and demand are independent1008

(i.e., r = 0). If demand and πs > πN frequently experience drops, providing bottleneck1009

information can be likely welfare-neutral (i.e,GZB = 0).1010

1011

A.8. Proof of Proposition 4.1012

Part (a): If two conditional variables are moderately correlated and πN < πs:1013

(1) When ps is large and pN is small, the benefit gains from bottleneck information is1014

GZB =
(γ + α)β[ρHGpNpsNHsB + ρHBpN(1− ps)NHsG]

[β + (γ + α)(1− ps)]sBsG
− (γ + α)βpsρHGpNNH

[β + (γ + α)ρHGpN ]sG
− γβ(1− ps)NL

(β + γ)sB

− (α + γ)β(1− ps)(NH −NL)ρHBpN
(β + γ)sB

, ρHGpN > (1− ps),

GZB <
β(α + γ)(1− ps)

sB

{

ρHBpNNH

β + (γ + α)(1− ps)
− ρHBpNNH + (γ − ρHBpN)NL

β + γ

}

< 0

(36)
(2) When ps and pN are large, the benefit gains from bottleneck information is1015

GZB =
γβ(sB − pssG)NH

(γ + α)sGsB
+ (γ + α)βNHpN

{

(1− psρHG)(1− πs)

(γ + β)sB
− psρHG

[β + (γ + α)ρHGpN ]sG

}

(37)
When bottleneck capacity rarely experiences degradation (i.e., πs < ps and ps >1016

(1−πs)[β+(γ+α)ρHGpN ]
ρHG(1−πs)[β+(γ+α)ρHGpN ]+ρHGπs(γ+β)

), GZB < 0.1017

Therefore, we can conclude that when bottleneck capacity and demand have a moderately1018

correlation, bottleneck capacity rarely experience degradation, providing bottleneck infor-1019

mation is more likely to be welfare-reducing over zero information (i.e., GZB < 0) when1020

πN < πs.1021

Part (b): When πs < πN and bottleneck capacity and demand are negatively correlated:1022

GZB =
γβNH

(γ + β)sB
− ps[

γβNL

(γ + β)sG
+

(γ + α)β

γ + β
ρHGpN(

NH

sG
− NL

sG
)]− (1− ps)

γβNH

(γ + β)sB

∂GZB

∂ρHG
= −(γ + α)βpNps(NH −NL)

(γ + β)sG
< 0,

∂ρHG
∂r

> 0

(38)
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When πs < πN and bottleneck capacity and demand are positively correlated:1023

GZB =
(γ + α)β(1− ps)[ρLB(1− pN)NL − ρHBpNNH ]

[β + (γ + α)(1− ps)]sB
− (γ + α)βpsρHGpNNH

[β + (γ + α)ρHGpN ]sG
− γβ(1− ps)NH

(β + γ)sB

∂GZB

∂ρHG
=

(γ + α)βpNps(NL +NH)

[β + (γ + α)(1− ps)]sB
− (γ + α)β2pspNNH

[β + (γ + α)ρHGpN ]2sG
> 0,

∂ρHG
∂r

> 0

(39)
Therefore, the benefit gains from bottleneck information decreases as the value of the1024

degree of correlation increases when πs < πN . When bottleneck capacity and demand are1025

perfectly positive correlated, GZB ≥ 0. So we can conclude that the benefit gains from1026

bottleneck capacity information GZB ≥ 0 when πs < πN .1027

1028

A.9. Proof of Proposition 5.1029

Part (a): If te > t∗, using Eq.(10) and Eq.(17)-(18),we can derive the expected benefit from1030

demand information to zero information:1031

1032

GZD = E[CZ ]− E[CD] =
(α + γ)β

β + γ

{

∫ θ

θ̂∗
θψωk(θψω)dθψω −

∫ N

N

Nψg(Nψ)

∫ ŝ∗

s

g(sω|Nψ)

sω
dsωdNψ

}

(40)

where g(Nψ|sω) = ∂
∂sω

J(Nψ, sω), k(θψω) =
∫ s

s
sωj(θψωsω, sω)dsω. When bottleneck capacity1033

and demand are uncorrelated, g(sω|Nψ) = f(sω), j(θψωsω, sω) = g(θψωsω)f(sω).1034

GZD =
(α + γ)β

β + γ

{

∫ θ

θ̂∗
θψω

∫ s

s

sωg(θψωsω)f(sω)dsωdθψω −
∫ ŝ∗

s

Nψg(Nψ)

∫ N

N

f(sω)

sω
dNψdsω

}

=
(α + γ)β

β + γ

{

∫ N

sθ̂∗

∫ s

s

Nψg(Nψ)f(sω)

sω
dsωdNψ −

∫ N

N

∫ ŝ∗

s

Nψg(Nψ)f(sω)

sω
dsωdNψ

}

(41)

where
∫ θ

θ̂∗
g(Nψ)f(sω)dθψω =

∫ ŝ∗

s
f(sω)dsω = γ

α+γ
. Hence, sθ̂∗ ≤ N and ŝ∗ ≤ s, GZD ≥ 0.1035

Part (b): When πs ≤ πN and ps >
α

α+γ
, the benefit gains from demand information to zero in-1036

formation isGZD = (γ+α)β(1−ps)
sB

{

(1−pN )ρLBNL+pNρHBNH
β+(α+γ)(1−ps)

− pNρHBNH
β+(α+γ)ρHB(1−ps)

− (1−pN )ρLBNL
β+(α+γ)ρLB(1−ps)

}

.1037

If two conditional variables are uncorrelated(r = 0), GZD = 0.1038

In the above, we find a special case when bottleneck capacity and demand both rarely1039

experience drops that satisfies GZD = 0, the proposition is true. So we can conclude1040

that providing demand information does not necessarily improve welfare when bottleneck1041

capacity and demand are independent of each other(r = 0). If bottleneck capacity rarely1042

experience drops, providing demand information can be likely welfare-neutral (i.e,GZD = 0).1043

1044

A.10. Proof of Proposition 6.1045

Part (a): If two conditional variables are moderately correlated and πN ≥ πs. When ps is1046
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large, the benefit gains from bottleneck information over zero information is1047

GZD =
(γ + α)β(1− ps)

sB

{

NL + pNρHB(NH −NL)

β + (α + γ)(1− ps)
− pNρHBNH

β + (α + γ)ρHB(1− ps)

}

− (γ + α)β(1− ps)

sB

(1− pN)ρLBNL

β + (α + γ)ρLB(1− ps)

∂GZD

∂ρHB
=

(γ + α)β(1− ps)

sB

{

pN(1− πN)

β + (α + γ)(1− ps)
− pNβ

[β + (α + γ)ρHB(1− ps)]2

}

− (γ + α)β(1− ps)

sB

πN [(1− pN)β + (α + γ)(1− ps)]

[β + (α + γ)ρLB(1− ps)]2

<
(γ + α)β(1− ps)

sB

{

pN(1− πN)

β + (α + γ)(1− ps)
− (1− πN)pN − πN

β
− πN(α + γ)(1− ps)

β2

}

< 0

(42)
If bottleneck capacity and demand are uncorrelated, GZD = 0. So GZD has a value less1048

than 0 when capacity and demand have a moderate positive correlation.1049

In the above, we can conclude that providing demand information is more likely to be1050

welfare-reducing(i.e., GZD < 0) when capacity and demand have a moderately correlation,1051

πN ≥ πs, and bottleneck capacity rarely experience drops.1052

Part (b): bottleneck capacity and demand are negatively correlated.1053

(1) When πs ≥ πN , ps is small and pN is large,1054

1055

GZD =
(1− pN)γβNH

(γ + β)sB
− (1− pN)β

γ + β
[
γNL

sG
+

(γ + α)ρLB(1− ps)NL(sG − sB)

sBsG
]

∂GZD

∂ρLB
= −(γ + α)β

γ + β
(1− ps)(1− pN)(

NL

sB
− NL

sG
) < 0,

∂ρHB
∂r

> 0

(43)

(2) When πs ≥ πN , ps is large and pN is small,1056

1057

GZD =
(α + γ)pN [sB + ρHB(1− ps)(sG − sB)]NH

[β + (α + γ)(1− ps)]sBsG
− γβ(1− pN)NL

(γ + β)sG
− pN

(α + γ)(1− ps)ρHBNH

[β + (α + γ)(1− ps)ρHB]sB

− (γ + α)β(1− ps)(1− pNρHB)

γ + β
(
NL

sB
− NL

sG
),

∂ρHB
∂r

< 0

∂GZD

∂ρHB
=

(α + γ)pN(1− ps)

sB

{

(1− πs)NH

[β + (α + γ)(1− ps)]
− βNH

[β + (α + γ)(1− ps)ρHB]2
+
β(1− πs)NL

(γ + β)

}

> 0

(44)
Therefore, the benefit gains from demand information increases as the value of the degree1058

of correlation decreases when bottleneck capacity and demand are negatively correlated and1059

πs ≥ πN . When bottleneck capacity and demand are uncorrelated, GZD ≥ 0. So we can1060

conclude that the benefit gains from demand capacity information GZD ≥ 0 when bottleneck1061

capacity and demand are negative correlated (r < 0) and πs ≥ πN .1062

part(c): If two conditional variables have a moderate positive correlation and πN < πs.1063

When pN and ps are small, the benefit gains from demand information to zero information1064
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is1065

GZD =
(γ + α)βpNNH [ρHGpsπs + ρHB(1− ps)]

[β + (γ + α)(1− ps)]sB
− γβpNNH

(γ + β)sB
− γβ(1− pN)NL

(γ + β)sG

− (γ + α)βρLB(1− pN)(1− ps)NL(sG − sB)

(γ + β)sBsG

(45)

If demand frequently experience degradation (i.e., pN < πN [γπs+(γ+α)(1−ps)(1−πs)]
(γ+α)(γ+β)πs−γ(1−πN )[β+(γ+α)(1−ps)]

),1066

GZD < 0. So we can conclude that providing demand information is more likely to be welfare-1067

reducing(i.e., GZD < 0) when capacity and demand have a moderate positive correlation,1068

πN < πs, and bottleneck capacity and demand both frequently experience drops.1069

1070

A.11. Lemma 1 and its proof.1071

If
∫ x

a
f(t)dt ≥

∫ x

a
g(t)dt, x ∈ [a, b) and

∫ b

a
f(t)dt ≥

∫ b

a
g(t)dt, so

∫ b

a
xf(x)dx ≥

∫ b

a
xg(x)dx1072

The proof: let φ(x) = f(x) − g(x), The two conditions given above become
∫ x

a
φ(t)dt ≥ 01073

and
∫ b

a
φ(t)dt = 0. Let φ(x) = Φ′(x), we have

∫ b

a
xφ(x)dx = −xΦ(x)− φ(x)|ba ≤ 0.1074

1075

A.12. Proof of Proposition 7.1076

Part (a): Assume bottleneck capacity rarely experience degradation (i.e., ps is large) and1077

πN < πs.1078

(1) If bottleneck capacity and demand have a negative correlation, the benefit gains in1079

shifting from bottleneck information to demand information is1080

GBD =
γβ[NH − (1− pN)NL]

(γ + β)sG
− pNγβNH

(γ + β)sB
− (γ + α)β[(1− pN)− P (θLG)]

γ + β

NL

sB

+
(γ + α)β[(1 + ps − pN)NL + psNH − (2NL +NH)P (θLG)]

(γ + β)sG

(46)

If GBD < 0, pN needs to satisfy the condition: pN ≤ (1+πs)πNρLB−(1+πN )πs(1−ρLB)
(1+πs)πNρLB+(1+πN )πsρLB

.1081

(2) If bottleneck capacity and demand have a positive correlation, the benefit gains from1082

providing bottleneck information over providing demand information is1083

GBD =
γβ[(ps − pN)πsNH − (1− pN)NL]

(γ + β)sB
+

(α + γ)βP (θHB)NH

(γ + β)sB
[
γ − (α + γ)ρHBpN
β + (α + γ)ρHBpN

+ πs]

(47)
If GBD < 0, pN needs to satisfy the condition: pN ≥ γ+πsβ

(1−πs)(α+γ)ρHB
.1084

So we can conclude that demand information can be more valuable (i.e., GBD > 0)1085

when the amplitude of bottleneck capacity drop is less than the amplitude of demand drop1086

(i.e.,πN < πs) and bottleneck capacity rarely experience drops.1087

Part (b): Assume the amplitude of bottleneck capacity drop is larger than the amplitude of1088

demand drop (i.e., πN > πs). The benefit gains from providing bottleneck information over1089
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providing demand information are1090

GBD =
(α + γ)β

γ + β

∫ s

s

f(sω)

sω

∫ N

N̂∗

Nψf(Nψ|sω)dNψdsω −
∫ N

N

g(Nψ)Nψ

∫ ŝ∗

s

g(sω|Nψ)

sω
dsωdNψ

(48)
Let u = sω/s and v = Nψ/N , we assume û∗ = ŝ∗/s and v̂∗ = N̂∗/N . we can get it by1091

substituting the definite integral:1092

GBD =
(α + γ)βN

2

γ + β

{
∫ 1

v̂∗
vf(vN |us)

∫ 1

πs

f(us)

u
dudv −

∫ 1

πN

vg(vN)

∫ û∗

πs

g(us|vN)

u
dudv

}

=
(α + γ)βN

2

γ + β

{
∫ 1

v̂∗
vf(vN |us)

∫ 1

πs

f(us)

u
dudv −

∫ 1

πN

vg(vN)

∫ 1

πs

g(us|vN)

u
dudv

}

+
(α + γ)βN

2

γ + β

∫ 1

πN

vg(vN)

∫ 1

û∗

g(us|vN)

u
dudv

(49)
By lemma 1 in the Appendix A.11, f(vN |us) ≥ g(vN) and g(us|vN) ≥ f(us), we have1093

∫ b

a
vf(vN |us) ≤

∫ b

a
vg(vN) and

∫ b

a
g(us|vN)/u ≥

∫ b

a
f(us)/u. It follows that:1094

1095

GBD ≤ (α + γ)βN
2

γ + β

∫ 1

πs

f(us)

u

{
∫ 1

v̂∗
vf(vN |us)−

∫ 1

πN

vg(vN)dv

}

du

+
(α + γ)βN

2

γ + β

∫ 1

πN

vg(vN)

∫ 1

û∗

g(us|vN)

u
dudv

(50)

So we can conclude that when providing bottleneck capacity information is more valu-1096

able than providing demand information when the amplitude of bottleneck capacity drop is1097

larger than the amplitude of demand drop (i.e.,πN > πs).1098

1099

A.13. Proof of Proposition 8.1100

Part (a): (From demand information to full information)1101

If te > t∗, the expected benefit gains from providing full information over demand informa-1102

tion are1103

1104

GDF =
(α + γ)β

β + γ

∫ N

N

Nψg(Nψ)

∫ ŝ∗

s

g(sω|Nψ)

sω
dsωdNψ − γβ

β + γ

∫ θ

θ

θψωk(θψω)dθψω

≥ αβ

β + γ

∫ N

N

Nψ

∫ ŝ∗

s

j(Nψ, sω)(ŝ
∗ − sω)

ŝ∗sω
dsωdNψ +

γβ

β + γ

∫ N

N

Nψ

∫ s

ŝ∗

j(Nψ, sω)(sω − ŝ∗)

ŝ∗sω
dsωdNψ

(51)

where g(sω|Nψ) =
∂
∂sω

J(Nψ, sω), k(θψω) =
∫ s

s
sωj(θψωsω, sω)dsω.1105

If te = t∗, the expected benefit gains from providing full information over demand informa-1106

tion are1107
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1108

GDF = βθ̂∗∗ − γβ

β + γ

∫ θ

θ

θψωk(θψω)dθψω

>
(α + γ)β

β + γ

∫ N

N

Nψg(Nψ)

∫ ŝ∗

s

g(sω|Nψ)

sω
dsωdNψ − γβ

β + γ

∫ θ

θ

θψωk(θψω)dθψω > 0

(52)

(From bottleneck information to full information):1109

If te > t∗, the expected benefit from bottleneck information to full information is1110

1111

GBF =
(α + γ)β

β + γ

∫ s

s

f(sω)

sω

∫ N

N̂∗

f(Nψ|sω)NψdNψdsω −
γβ

β + γ

∫ θ

θ

θψωk(θψω)dθψω

≥ αβ

β + γ

∫ s

s

1

sω

∫ N

N̂∗

j(Nψ, sω)(Nψ − N̂∗)dNψdsω +
γβ

β + γ

∫ s

s

1

sω

∫ N̂∗

N

j(Nψ, sω)(N̂
∗ −Nψ)dNψdsω

(53)

where f(Nψ|sω) = ∂
∂Nψ

J(Nψ, sω), k(θψω) =
∫ s

s
sωj(θψωsω, sω)dsω.1112

If te = t∗, the expected benefit from bottleneck information to full information is1113

1114

GBF = βθ̂∗∗ − γβ

β + γ

∫ θ

θ

θψωk(θψω)dθψω

>
(α + γ)β

β + γ

∫ s

s

f(sω)

sω

∫ N

N̂∗

f(Nψ|sω)NψdNψdsω −
γβ

β + γ

∫ θ

θ

θψωk(θψω)dθψω > 0

(54)

Hence GDF ≥ 0 and GBF ≥ 0, we have providing full information does not increase1115

travel costs compared to providing partial information.1116

Part (b):Take the derivative of GBF and GDF with respect to α:1117

∂GBF

∂α
=

β

β + γ

∫ s

s

f(sω)

sω

∫ N

N̂∗

f(Nψ|sω)NψdNψdsω > 0

∂GDF

∂α
=

β

β + γ

∫ N

N

Nψg(Nψ)

∫ ŝ∗

s

g(sω|Nψ)

sω
dsωdNψ > 0

(55)

So we can conclude that the benefit gains from full information as compared to providing1118

only partial information are a increasing function of α.1119

1120

A.14. The benefit gains GZF from complete information for different ps, pN , r and πN when1121

demand and bottleneck capacity follow the Bernoulli distribution1122

As shown in Fig. 13, the welfare gains GZF are not necessarily monotonic with respect to1123

the correlation coefficient r or the amplitude of demand reduction πN . When both bottleneck1124

capacity and demand are stochastic and correlated, the relation between GZF and r becomes1125

significantly more complex.1126

43



Figure 13: Benefit gains from providing full information over zero information under varying r for different
ps, pN , πs and πN .
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