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Abstract 

Although existing studies have demonstrated the potential of Connected and Automated Vehicles (CAVs) 
to optimise traffic flow and suppress disturbances, most current mixed traffic flow models adopt idealised 
deterministic approaches for modelling Human-Driven Vehicles (HDVs). Such methods are limited in their 
ability to accurately capture the evolution of oscillations observed in real-world traffic. Moreover, the 
influence of the spatial distribution of CAVs on system performance is often overlooked. To address these 
limitations, this study introduces a novel metric—Platoon intensity—to quantify the spatial clustering 
characteristics of CAVs within mixed traffic flow. This indicator enables a unified characterisation of CAV 
distribution patterns across various penetration rates, and theoretical bounds on pairwise vehicle 
probabilities under different traffic conditions are derived accordingly. A mixed traffic flow model is further 
developed, incorporating stochastic car-following behaviour of HDVs, behavioural degradation of CAVs, 
and a constraint on maximum platoon size. By introducing stochastic differential equations, the model 
successfully reproduces velocity fluctuations triggered by endogenous disturbances. Based on this 
framework, a series of systematic numerical experiments are conducted to comprehensively analyse traffic 
efficiency, stability, and energy consumption under varying CAV penetration rates and spatial distribution 
patterns. A quantitative relationship is established between platoon intensity and macroscopic traffic 
performance indicators. The main findings of this study are as follows: (1) The spatial distribution of vehicles 
significantly impacts macroscopic traffic performance, with maximum differences of 9.70%, 145.20%, and 
7.58% observed in average speed, coefficient of variation of speed, and average energy consumption, 
respectively. (2) At a fixed CAV penetration rate, increasing platoon intensity enhances traffic efficiency and 
reduces average energy consumption, but exacerbates traffic instability. This research provides theoretical 
insights and practical implications for future CAV deployment strategies and traffic management measures. 
 

Keywords: Mixed traffic flow；Connected and Automated Vehicles；stochastic car-following model；Spatial distribution 
of vehicles；Platoon intensity   
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1. Introduction 

With the rapid advancement of intelligent connected and automated driving technologies, Connected 
and Automated Vehicles (CAVs) are widely regarded as one of the key driving forces behind the 
transformation of future transport systems. Leveraging high-precision sensing, vehicle-to-vehicle 
communication, and autonomous control technologies, CAVs possess capabilities such as cooperative 
driving, rapid response, and disturbance suppression [1], and are thus expected to significantly enhance 
traffic safety [2], [3] , efficiency[4], [5] , and sustainability [6], [7]. However, for the foreseeable mid-to-long 
term, road traffic systems will inevitably operate under a mixed traffic condition comprising both CAVs and 
Human-Driven Vehicles (HDVs) [8]. The study of such mixed traffic flow is of crucial importance for future 
traffic control and optimisation strategies [9]. During this transitional period, the behavioural heterogeneity 
between CAVs and HDVs will pose unprecedented challenges to traffic flow stability, evolution patterns, and 
control mechanisms [10], while also offering new research opportunities for traffic modelling and system 
optimisation. 

As a typical socio-technical complex system, the dynamic behaviour of road traffic is profoundly 
influenced by the stochasticity inherent in HDV driving behaviours. Such randomness is manifested in car-
following processes through acceleration fluctuations and uncertain gaps during lane changes [11]. The 
stochastic nature of HDV behaviour originates from heterogeneous factors such as driver perception 
differences, psychological and physiological characteristics, and environmental sensing errors [12]. Studies 
have shown that the standard deviation of acceleration during car-following can reach 0.2–0.4 m/s² [13]. 
These microscopic random perturbations are nonlinearly amplified through inter-vehicle interactions, 
leading to macroscopic instabilities such as traffic oscillations and reduced throughput [14]. Although CAVs 
naturally exhibit the potential to optimise flow and suppress disturbances, previous studies [7], [15] have 
indicated that a 20% CAV penetration rate can improve road capacity by 9%–18% and enhance fuel efficiency 
by approximately 8.14%. Nevertheless, many existing mixed traffic flow models continue to represent HDV 
behaviour using deterministic car-following models [16], [17]. While such idealised modelling facilitates 
theoretical analysis, it neglects the widespread metastable and fluctuating phenomena observed in real-
world traffic [18], limiting the model's ability to capture the evolution of traffic oscillations and potentially 
underestimating the systemic benefits of CAVs. More importantly, current research often assumes random 
distribution of CAVs within traffic flow [3], [19], or considers only a limited number of typical configurations  
[20] (e.g., front/rear concentration or alternating arrangements), largely overlooking the profound impact of 
CAV spatial distribution patterns on macroscopic traffic performance. 

The long-standing lack of systematic investigation into CAV spatial distribution stems from two main 
challenges: first, the absence of a unified physical interpretation of spatial distribution; second, the high 
diversity of CAV arrangements and the lack of an established mapping between these configurations and 
macroscopic traffic performance. To address these challenges, this study introduces the concept of platoon 
intensity to quantitatively describe the spatial distribution of CAVs. This metric reflects the degree of spatial 
clustering among CAVs by measuring the proportion of CAV–CAV follower pairs among all CAVs. It thereby 
offers a unified and comparable spatial distribution indicator across different penetration rates and 
arrangement scenarios. Building on this, a mixed traffic flow model is developed that simultaneously 
accounts for the stochastic car-following behaviour of HDVs and the spatial distribution characteristics of 
CAVs. At the microscopic level, stochastic differential equations are introduced to represent the random 
nature of HDV behaviour, enabling the reproduction of endogenous traffic oscillations not caused by lane 
changes or external disturbances. At the spatial level, the evolution of CAV clustering structures in mixed 
traffic is modelled using platoon intensity. This framework supports comparative analyses of traffic 
efficiency, stability, and energy consumption under varying CAV penetration levels and spatial distribution 
patterns. 

The main contributions of this study are as follows: 
1） An improved definition of platoon intensity is proposed to quantify the spatial distribution of CAVs 
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in mixed traffic flow. In addition, the theoretical proportions of four types of vehicle pairs under 
different traffic conditions are derived, along with the theoretical bounds of platoon intensity. 

2） A mixed traffic flow model is constructed that incorporates HDV behavioural stochasticity, CAV 
degradation, and a maximum platoon size constraint, offering a more realistic reproduction of 
endogenous traffic oscillation generation and propagation. 

3） A comprehensive simulation study is conducted covering all CAV spatial distribution scenarios, 
through which quantitative relationships between platoon intensity and macroscopic performance 
indicators are established, revealing the mechanisms by which CAV spatial distribution affects traffic 
efficiency, instability, and energy consumption. 

The remainder of this paper is structured as follows: Section 2 provides a comprehensive review of the 
development of traffic flow modelling theories, with an emphasis on stochastic modelling approaches and 
progress in CAV spatial distribution research. Section 3 details the construction and validation of the 
proposed mixed traffic flow model, which incorporates both behavioural stochasticity and vehicle spatial 
distribution. Section 4 presents the design and analysis of the numerical simulation experiments. Section 5 
concludes the paper and discusses the implications of the findings. 

2. Literature review 

2.1. Stochastic car-following behaviour and traffic oscillations 

In traditional traffic flow studies, the formation of traffic oscillations has long been attributed to lane-
changing manoeuvres, sudden deceleration, or disturbances at bottlenecks. However, Laval et al. [21], 
through theoretical modelling and numerical simulation, demonstrated that even in the absence of external 
disturbances or lane changes, oscillations can still arise purely from the inherent stochasticity in human 
driving behaviour. This phenomenon was initially proposed by Yeo et al. [22], although it was not validated 
at the modelling level. Such endogenous traffic oscillations reveal the deep-rooted influence of microscopic 
uncertainty in HDV driving behaviour on the macroscopic stability of traffic flow [23]. Jiang et al. [24] further 
validated the generation and propagation of such endogenous oscillations through full-scale vehicle 
experiments on open roads. This uncertainty stems from driver heterogeneity and the random nature of 
physiological responses and behavioural actions [13]. To simulate and investigate such uncertain behaviours, 
scholars have incorporated various forms of random disturbances into car-following models to characterise 
stochastic fluctuations in drivers’ perception, decision-making, and execution processes. These disturbances 
represent deviations in reaction time, desired headway, acceleration judgement, and throttle or brake 
operations [25], becoming a crucial modelling approach for representing the stochastic nature of microscopic 
traffic flow. 

Currently, mainstream stochastic car-following models can be broadly classified into three types: (1) 
Additive noise models: These introduce noise into deterministic car-following models. For instance, Liu et 
al. [26] incorporated a stochastic disturbance term into the acceleration function of the Optimised Velocity 
Model and designed a velocity-difference feedback control strategy to enhance flow stability. Laval et al. [21] 
introduced white noise into the Newell model, formulating a stochastic differential equation that revealed a 
concave growth pattern of velocity standard deviation along the vehicle platoon. Sharma et al. [27] proposed 
a Human driver Intelligent Driver Model with estimation errors, using a Wiener process to model time-
varying estimation errors in spacing and relative speed. Bouadi et al. [28] proposed a general stochastic car-
following equation with speed-dependent noise and, through linearisation, derived a state-space model that 
confirmed the destabilising effect of stochasticity on traffic flow. (2) Parameter-randomised models: These 
assume that parameters of deterministic models follow specific distributions. Jin et al. [29] modelled driver 
heterogeneity using a normally distributed desired time headway. Zheng et al. [20] treated HDVs’ free-flow 
speed, minimum safety gap, and inverse reaction time as Beta-distributed random variables and employed 
the Newell nonlinear speed-spacing relation to capture car-following behaviour. Li et al. [30] introduced 
randomness by allowing the desired time gap in the IDM to fluctuate within an interval, capturing 
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behavioural variability. (3) Behavioural-cognitive models: These are based on human behavioural traits and 
cognitive processes. Wang et al. [31] classified HDV driving states into inattentive, alert, and close-following, 
using state-dependent reaction times and acceleration transitions to simulate stochastic following behaviour. 
Similarly, Tian et al. [32] proposed a mode-switching stochastic model that incorporated spacing-insensitive 
regions and adopted different car-following modes under varying headways. Yuan et al. [33] provided a 
behaviourally grounded explanation by modelling the mean and standard deviation of desired acceleration 
as linear functions of speed, and proposed a desired acceleration error framework to overcome the limitations 
of deterministic models. It is worth noting that not all stochastic car-following models successfully reproduce 
endogenous oscillations. Many studies introduced external disturbances, such as sudden deceleration or 
bottlenecks, into HDV traffic to trigger oscillations [11], [25], [27]. These oscillations are exogenous rather 
than induced by stochastic car-following behaviour. The key difference is that endogenous oscillations, while 
smaller in amplitude, are widely generated in HDV traffic [34]. Successfully reproducing spontaneous 
oscillations has become a key criterion for evaluating stochastic car-following models. Building on the 
successful reproduction of endogenous traffic oscillations, this study employs the indicator of “platoon 
intensity” to explore the spatial distribution of CAVs — an aspect rarely considered in existing literature [1], 
[13], [35], [36]. 

2.2. Spatial distribution of CAVs and platoon intensity 

In mixed traffic flow systems, the introduction of CAVs brings not only new car-following behaviours 
but also transforms the spatiotemporal dynamics of traffic. In recent years, researchers have increasingly 
recognised that the spatial distribution of CAVs within traffic flow significantly influences system 
performance [37]. Even under the same CAV penetration rate, different spatial arrangements — such as 
clustering of CAVs, uniform distribution, or interleaving with HDVs — may lead to markedly different traffic 
outcomes [38]. As such, the macroscopic effects of CAV spatial distribution in mixed traffic have become an 
emerging research focus. Some scholars have explored this issue by constructing and simulating specific 
spatial distribution scenarios. Zhu et al. [39] examined six vehicle distribution scenarios and found that 
concentrating CAVs at the front of the traffic flow yielded better dynamic performance. Dong et al. [40] 
studied platoons of 2 to 20 vehicles, discovering that placing CAVs at both ends of the platoon optimised 
energy efficiency. Sharma et al. [27] defined three distribution scenarios — optimal, worst, and random — 
based on the number of degraded CAVs and investigated them under varying penetration rates. However, 
such studies are limited in scope and lack quantitative indicators to measure spatial distribution [41], making 
them insufficiently comprehensive and physically interpretable. 

To quantify and characterise CAV spatial distribution, some studies have proposed indicators based on 
consecutive vehicle types, such as continuous CAV sequence length [42] or average CAV platoon size [43]. 
However, these indicators are difficult to generalise or normalise under high penetration rates or complex 
distributions. To address this limitation, researchers have introduced the concept of platoon intensity, a 
normalised metric for measuring CAV spatial clustering. Low platoon intensity indicates dispersed CAVs, 
whereas high platoon intensity suggests aggregation into platoons [15]. Ghiasi et al. [44] proposed a Markov 
chain-based platoon intensity definition suited to infinite traffic flows, though it lacks interpretability and is 
less applicable to finite vehicle numbers. Jiang et al. [45] defined platoon intensity as the proportion of CAVs 
forming cooperative platoons, but this measure has limited sensitivity to spatial variation. More recently, 
Zhao et al. [46] and He et al. [47] introduced new definitions based on adjacent vehicle relationships, linking 
platoon intensity to HDVs and making it suitable for studying endogenous oscillations triggered by HDV 
randomness. Zhao’s definition, based on autocorrelation functions, is relatively complex and lacks clear 
physical interpretation. By contrast, He’s definition — the ratio of CAV–CAV pairs to total CAVs — offers a 
unified and interpretable measure of clustering across different CAV penetration rates and is more suitable 
for the current study. Building upon He’s simplified definition, this study expands the range of platoon 
intensity values and explores its relationship with CAV penetration rate. 

Table 1 summarises recent studies on randomness in mixed traffic and vehicle spatial distribution. 
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Compared with existing literature, this work uniquely considers both HDV stochasticity and varying spatial 
distributions of CAVs, providing a comprehensive examination of how spatial distribution affects 
macroscopic traffic performance under stochastic HDV behaviour. 

Table 1 Comparison of mixed traffic flow research 

Author, Year Stochasticity 
Endogenous 

traffic oscillation 

Spatial 
distribution 

Platoon 
intensity 

Max platoon 
size 

Degeneratio
n of CAVs 

Mao et al., 2024[11] √ √ √    

Li et al. 2024[13] √ √     

Lu et al., 2024[25] √  √   √ 

Sharma et al., 2021[27] √  √   √ 

Jin et al., 2021[29] √  √   √ 

Zheng et al., 2019[34] √ √ √    

Yao et al., 2022[38]   √ √ √ √ 

Dong et al., 2025[40] √ √ √   √ 

Liu et al., 2024[41] √  √   √ 

Ghiasi et al., 2017[44]   √ √   

Zhao et al., 2024[46]   √ √   

Wang et al., 2024[48]     √ √ 

Jiang et al. 2021[49]     √ √ 

This paper √ √ √ √ √ √ 

3. Methodology 

3.1. Basic definitions and assumptions 

The mixed traffic flow considered in this study consists of two types of vehicles: Human-Driven Vehicles 
(HDVs) and Connected and Automated Vehicles (CAVs). HDVs are vehicles that are fully controlled by 
human drivers, without any sensing devices, communication modules, or autonomous driving capabilities. 
In contrast, CAVs are equipped with advanced information and communication systems, sensors, and 
autonomous driving systems that enable vehicle-to-everything (V2X) communication and driverless 
operation. CAVs can be further classified based on their leading vehicle into: DCAV (Degraded CAV), FCAV 
(Following CAV), and LCAV (Leading CAV). 

Given the research aims and the influence of various factors in complex road traffic systems, the 
following assumptions are made: 

(1) Sensor failures and communication delays are not considered. 
(2) The road is a single-lane with no lane-changing or on/off-ramps; the total number of vehicles 

remains constant. 
(3) All vehicles are assumed to have the same length; variations in CAV models and performance are 

neglected. 

 

Fig. 1 Car-following scenarios in mixed traffic flow 



5 

 

Figure 1 illustrates the different car-following scenarios observed in mixed traffic flow. These scenarios 
are closely related to the car-following models, stochastic behaviour, and spatial distribution. Four types of 
car-following relationships are defined based on vehicle combinations.  

Case 1：HDV Following Behaviour (HDV following HDV or CAV) 
Here, the following vehicle is an HDV, which cannot communicate with the vehicle ahead. This 

corresponds to a traditional human-driving scenario, where the minimum headway depends on driver 
reaction time. Even if the preceding vehicle is a CAV, the HDV cannot perceive or respond to its data. When 
sudden changes occur in the lead vehicle’s behaviour, the human driver must respond with a delay. Due to 
the high variability in driver behaviour and surrounding conditions, this scenario is highly stochastic and 
the cause of endogenous traffic oscillations. 
Case 2：DCAV Following Behaviour (CAV following HDV) 

When a CAV follows an HDV, it degrades into a DCAV because it can no longer use V2X communication. 
It must rely solely on sensors to perceive the HDV's behaviour. Since the HDV lacks communication 
capabilities, the CAV cannot anticipate changes and must react in real-time. DCAVs, as the CAVs closest to 
HDVs, play a critical role in suppressing stochastic oscillations. Unlike HDVs, DCAVs exhibit deterministic 
car-following behaviour. 
Case 3：FCAV Following Behaviour (CAV following CAV within the same platoon) 

When two CAVs are part of the same platoon, the following CAV (FCAV) can receive real-time data from 
the lead CAV, including acceleration and deceleration. This allows very short headways and coordinated 
driving. Whether the preceding vehicle is a DCAV or FCAV, the car-following mode remains identical. This 
scenario reflects fully automated platoon-following behaviour and is devoid of randomness. 
Case 4：LCAV Following Behaviour (CAV following CAV outside the same platoon) 

To avoid overly long platoons, a maximum platoon size is defined. When exceeded, new platoons are 
formed, and the first CAV in the new group becomes the LCAV. LCAVs do not coordinate with vehicles 
ahead. This car-following scenario is also fully deterministic. 

3.2. Spatial distribution in mixed traffic flow 

3.2.1 Definition of the platoon intensity index 

The spatial distribution of CAVs refers to their positioning within the traffic flow, including the number 
of CAVs, platoon formations, and their locations relative to other vehicles. In this study, we quantify the 
degree of CAV clustering using the Platoon Intensity (PI), an indicator that reflects how densely CAVs are 
grouped. This metric helps examine how spatial distribution evolves under different penetration rates, 
thereby supporting theoretical analyses of mixed traffic scenarios. In the illustrative examples presented, we 
assume a fixed CAV penetration rate of 50%, meaning that in a 10-vehicle flow, there are 5 CAVs and 5 HDVs. 

Due to the multitude of possible spatial arrangements, quantifying vehicle distributions with a clear 
physical interpretation presents a significant challenge. This study approaches the problem from the 
perspective of CAV clustering, adopting the concept of platoon intensity to explore the underlying 
mechanisms through which spatial distribution affects traffic flow. Platoon intensity is defined as the 
proportion of CAVs that are following another CAV within a platoon[47], as shown in Equation (1). This 
definition allows for an accurate representation of various spatial distribution patterns of CAVs. The primary 
reason for employing this metric lies in its clear physical relevance to traffic dynamics. The intensity of CAV 
clustering directly determines the car-following regimes in mixed traffic flow and can be further linked to 
the emergence of traffic oscillations induced by stochastic following behaviours. 𝑃𝐼 = 𝑁𝐶𝐶𝑁𝐶𝐴𝑉 , (1) 
where 𝑁𝐶𝐶  is the number of CAV-CAV pairs, and 𝑁𝐶𝐴𝑉 is the total number of CAVs. By definition, PI ranges 
from 0 (no platooning) to 1 (only achievable in a full-CAV scenario). 

As illustrated in Figure 2, in scenario (a), all CAVs travel individually and are separated by HDVs, 
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without forming any platoons. In this case, the number of CAV-following-CAV pairs is zero, resulting in a 
platoon intensity of 0. In scenario (b), four out of the five CAVs operate in two platoons of size two. There are 
two CAV-following-CAV pairs, giving a platoon intensity of 2/5. Compared with scenario (a), the degree of 
CAV clustering within the mixed traffic flow increases. In scenario (c), all five CAVs travel as a single platoon, 
resulting in four CAV-following-CAV pairs and thus a platoon intensity of 4/5 — the highest possible value 
for this traffic setting, indicating the greatest level of CAV clustering. Therefore, the use of platoon intensity 
provides an intuitive and physically meaningful measure to characterise the spatial distribution of vehicles. 

 
Fig. 2 Use platoon intensity to quantify different spatial distribution of CAVs 

 

3.2.2 Vehicle pairing probabilities 

Platoon intensity, expressed as a proportion of vehicle counts, characterises the spatial distribution of 
CAVs within mixed traffic flow. Based on this definition, it is possible to derive the spatial arrangement of 
vehicles and the occurrence probabilities of different vehicle pairs under a given level of platoon intensity. 
This derivation facilitates a deeper understanding of the relationship between platoon intensity and spatial 
distribution, and supports the use of platoon intensity to represent specific mixed traffic configurations — 
thereby laying a foundation for future large-scale simulation experiments. 

Lemma 1：The probability of four types of vehicle pairs appearing in mixed traffic flow is: 

{ 
 𝑃𝐶𝐶 = 𝜌 ∙ 𝑃𝐼𝑃𝐻𝐶 = 𝜌 ∙ (1 − 𝑃𝐼)𝑃𝐶𝐻 = (1 − 𝑃𝐼) ∙ 𝜌𝑃𝐻𝐻 = (1 − 𝜌) − (1 − 𝑃𝐼) ∙ 𝜌, (2) 

where 𝑃𝐶𝐶 , 𝑃𝐻𝐶 , 𝑃𝐶𝐻 , 𝑃𝐻𝐻 representing the probabilities of a CAV following a CAV, an HDV following a CAV, 
a CAV following an HDV, and an HDV following an HDV, respectively. 𝜌 denotes the CAV penetration rate, 
i.e. the proportion of CAVs in the traffic flow.  

Proof: 
Assuming a total of 𝑁 vehicles, the numbers of CAVs and HDVs are 𝜌𝑁 and (1 − 𝜌)𝑁, respectively. 

The platoon intensity further categorises CAVs into two groups: those following another CAV and those 
following an HDV. Accordingly, the quantities of these two groups are 𝜌𝑁𝑃𝐼 and 𝜌𝑁(1 − 𝑃𝐼), respectively. 
To model the mixed traffic flow under the given definition of platoon intensity, a Markov chain framework 
is adopted. It is assumed that the vehicle sequence follows a Markov process, wherein the type of the 
following vehicle (i.e., the transition probability) depends solely on the type of the current vehicle. Let the 
state of the 𝑛𝑡ℎ vehicle be denoted by 𝑍𝑛 ∈ {𝐶𝐴𝑉,𝐻𝐷𝑉}, where C represents a CAV and H represents an 
HDV. Under this formulation, four possible vehicle pair types exist in the mixed traffic flow: CC, CH, HH, 
and HC. The definition of platoon intensity can thus be reformulated in terms of the probabilities of these 
vehicle pair types as follows: 𝑃𝐼 = 𝑁𝐶𝐶𝑁𝐶𝐴𝑉 = 𝑁𝐶𝐶𝑁𝐶𝐶 + 𝑁𝐶𝐻 , (3) 
where 𝑁𝐶𝐶   is the number of vehicle pairs in which a CAV follows another CAV, 𝑁𝐶𝐻  is the number of 
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vehicle pairs where a CAV follows an HDV, 𝑁𝐶𝐴𝑉 is the total number of CAVs. 
 The corresponding transition probability matrix can be expressed as follows: 𝑇 = [𝑡𝐶𝐶 𝑡𝐻𝐶𝑡𝐶𝐻 𝑡𝐻𝐻] . (4) 

The elements of this matrix represent the conditional probabilities of a particular type of vehicle 
following a given leading vehicle. For instance, 𝑡𝐻𝐶  denotes the probability that an HDV follows a CAV. For 
the sake of derivation, we assume 𝑡𝐶𝐶 = 𝑞 , which represents the probability that a CAV is followed by 
another CAV. Given that only two vehicle types exist in the mixed traffic flow, it follows that 𝑡𝐻𝐶 = 1 − 𝑞, 
i.e., the probability that a CAV is followed by an HDV. Similarly, we define 𝑡𝐶𝐻 = 𝑟, and consequently 𝑡𝐻𝐻 =1 − 𝑟. 

At steady state, the Markov chain satisfies the detailed balance condition, meaning that the proportion 
of HDVs converted to CAVs is equal to the proportion of CAVs converted to HDVs. Based on the definitions 
of 𝑡𝐶𝐻 and 𝑡𝐻𝐶 , the following equilibrium condition is obtained: 𝑟 ∙ (1 − 𝜌) = (1 − 𝑞) ∙ 𝜌. (5) 

Since the platoon intensity reflects the proportion of CC vehicle pairs among all CC and CH vehicle pairs, 
Eq. (3) can be reformulated to yield Eq. (6). 𝑃𝐼 = 𝑁𝐶𝐶𝑁𝐶𝐶 + 𝑁𝐶𝐻 = 𝑞 ∙ 𝜌𝑞 ∙ 𝜌 + 𝑟 ∙ (1 − 𝜌) . (6) 

By substituting Eq. (5) into this expression and simplifying, the transition probabilities 𝑞 and 𝑟 can be 
explicitly derived in terms of 𝑃𝐼 and 𝜌, as shown below: 𝑞 = 𝑃𝐼, (7) 𝑟 = (1 − 𝑃𝐼) ∙ 𝜌1 − 𝜌 . (8) 

Accordingly, based on the state transition probabilities, the probabilities of the four possible vehicle pair 
types in mixed traffic flow can be determined: 

{ 
 𝑃𝐶𝐶 = 𝑃𝐶𝐴𝑉 ∙ 𝑡𝐶𝐶 = 𝜌 ∙ 𝑞 = 𝜌 ∙ 𝑃𝐼𝑃𝐻𝐶 = 𝑃𝐶𝐴𝑉 ∙ 𝑡𝐻𝐶 = 𝜌 ∙ (1 − 𝑞) = 𝜌 ∙ (1 − 𝑃𝐼)𝑃𝐶𝐻 = 𝑃𝐻𝐷𝑉 ∙ 𝑡𝐶𝐻 = (1 − 𝜌) ∙ 𝑟 = (1 − 𝑃𝐼) ∙ 𝜌𝑃𝐻𝐻 = 𝑃𝐻𝐷𝑉 ∙ 𝑡𝐻𝐻 = (1 − 𝜌) ∙ (1 − 𝑟) = (1 − 𝜌) − (1 − 𝑃𝐼) ∙ 𝜌 . (9) 

These conditional probabilities are denoted as 𝑃𝐶𝐶 , 𝑃𝐻𝐶 , 𝑃𝐶𝐻, and 𝑃𝐻𝐻, representing respectively: the 
probability that a CAV is followed by a CAV; the probability that a CAV is followed by an HDV; the 
probability that an HDV is followed by a CAV; and the probability that an HDV is followed by an HDV. 
According to the definitions and Eq. (9), it is straightforward to verify the validity of Eq. (10), which confirms 
that the sum of the probabilities of all vehicle pair types equals one. This consistency ensures the rationality 
of the derived vehicle pair probabilities in mixed traffic flow. 

{ 𝑃𝐶𝐶 + 𝑃𝐶𝐻 = 𝑃𝐶𝐴𝑉𝑃𝐻𝐻 + 𝑃𝐻𝐶 = 𝑃𝐻𝐷𝑉𝑃𝐶𝐶 + 𝑃𝐶𝐻 + 𝑃𝐻𝐻 + 𝑃𝐻𝐶 = 1 . (10) 
Lemma 1 proof ends. 
To evaluate the effectiveness and accuracy of the proposed method for constructing specific mixed traffic 

flows based on vehicle pair probabilities, a series of computer-based simulation experiments were designed 
for systematic validation. Under a fixed CAV penetration rate of 50%, mixed traffic flows were generated 
with platoon intensities of 0.2, 0.4, 0.6, and 0.8, respectively. For each scenario, a traffic flow consisting of 
1,000 vehicles was created, and each condition was repeated 10 times. The actual CAV penetration rates and 
platoon intensities of the generated flows were then computed for each run. Figure 3 presents the mean and 
standard deviation of each group of experiments, with error bars indicating the standard deviation across 
repeated trials. It can be observed that, across all specified platoon intensity levels, the actual traffic flow 
parameters closely align with their theoretical expectations, with minimal deviation. Furthermore, the 
method exhibits strong stability and reproducibility. These results confirm the feasibility and precision of 
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using the derived vehicle pair probabilities to generate mixed traffic flows with target spatial distributions 
of CAVs under various platoon intensity settings. 

 

Fig.3 The average data and standard deviations of the simulated mixed traffic flow 

3.2.3 Range of platoon intensity 

In mixed traffic flow, platoon intensity serves as a key metric for quantifying the clustering degree of 
CAVs. Its value is not only determined by the spatial distribution patterns of HDVs and CAVs, but is also 
influenced by the total number of vehicles and the CAV penetration rate. To isolate the effect of spatial 
distribution from other traffic parameters and focus solely on its impact, it is essential to study the feasible 
range of platoon intensity under fixed traffic conditions. This allows for a clearer understanding of how 
platoon intensity characterises mixed traffic flow and how it evolves with changes in the traffic environment. 

The theoretical range of platoon intensity in mixed traffic flow is given as follows: 

𝑃𝐼 = {  
  0, 𝜌 = 0[0, 1 − 1𝜌𝑁] , 0 < 𝜌 ≤ 0.5[2 − 1𝜌 , 1 − 1𝜌𝑁] , 0.5 ≤ 𝜌 < 11, 𝜌 = 1 , (11) 

where 𝜌 denotes the CAV penetration rate and 𝑁 is the total number of vehicles: 
 When 𝜌 = 0, there are no CAVs present in the traffic flow, and hence the platoon intensity is 0. When 𝜌 = 1, the traffic flow consists entirely of CAVs, and the platoon intensity reaches its maximum value of 1. 
For intermediate values of 𝜌, we discuss the minimum and maximum platoon intensity values separately. 
Intuitively, the platoon intensity reaches its maximum when all CAVs are arranged consecutively, forming 
a single contiguous group. In this case, the first CAV follows an HDV, and the number of CC vehicle pairs 

is 𝜌𝑁 − 1. Therefore, 𝑃𝐼𝑚𝑎𝑥 = 𝜌𝑁−1𝜌𝑁 = 1 − 1𝜌𝑁. Determining the minimum platoon intensity requires case-

based discussion. When 0 < 𝜌 ≤ 0.5, the number of CAVs is smaller than that of HDVs, allowing all CAVs 
to be fully separated by HDVs. In this situation, no CC vehicle pairs exist, and hence 𝑃𝐼𝑚𝑖𝑛 = 0. 

Lemma 2: When 0.5 ≤ 𝜌 < 1, the minimum value of platoon intensity in mixed traffic flow is 2 − 1𝜌. 

Proof: 
To minimise platoon intensity, the spatial distribution of vehicles should be arranged such that HDVs 

maximally separate the CAVs, thereby reducing the number of CC vehicle pairs to the lowest possible level. 
We begin by introducing the concept of HDV intervals, where each HDV acts as a separator between CAVs, 
partitioning them into multiple groups. The number of such intervals is 𝑚 = (1 − 𝜌)𝑁 . To achieve the 
minimum platoon intensity, it is necessary for each HDV interval to contain at least one CAV. Let 𝑥𝑖 denote 
the number of CAVs within the ith HDV interval. In each such interval, the number of CC vehicle pairs is 𝑥𝑖 − 1, assuming the CAVs are arranged consecutively. 
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Therefore, the total number of CC vehicle pairs in the entire mixed traffic flow is given by: 

𝑁𝐶𝐶𝑚𝑖𝑛 =∑(𝑥𝑖 − 1)𝑚
𝑖=1 =∑𝑥𝑖𝑚

𝑖=1 −𝑚 = 𝜌𝑁 −𝑚, (12) 
Substituting 𝑚 = (1 − 𝜌)𝑁 into the above expression yields: 𝑁𝐶𝐶𝑚𝑖𝑛 = 𝑁(2𝜌 − 1), (13) 
Therefore, 𝑃𝐼𝑚𝑖𝑛 = 𝑁𝐶𝐶𝑚𝑖𝑛𝑁𝐶𝐴𝑉 = 𝑁(2𝜌 − 1)𝜌𝑁 = 2 − 1𝜌 , (14) 
Based on the non-negativity constraint of the four vehicle pair probabilities derived in Eq. (9), the 

relationship 𝑃𝐼 ≥ 2 − 1𝜌 can be verified. 

Lemma 2 proof ends. 
To investigate the distributional characteristics of platoon intensity under fixed traffic conditions, we 

employed an exhaustive permutation approach using computer simulations. For a mixed traffic flow 
consisting of 10 vehicles, all possible spatial arrangements of CAVs were systematically generated. The 
corresponding platoon intensity for each arrangement was then calculated. Figure 4 presents the full 
distribution of platoon intensity values and their occurrence probabilities under nine different CAV 
penetration rates. Firstly, the observed ranges of platoon intensity values in all scenarios are consistent with 
the theoretical bounds defined in Eq. (11), confirming the applicability of the proposed bounds in small-scale 
mixed traffic systems. Additionally, as the CAV penetration rate increases, the probability of observing a 
platoon intensity of zero—i.e., where no CAVs are adjacent—declines significantly. For instance, when the 
penetration rate is 0.1, this probability is 100%; however, it progressively decreases and approaches zero as 
the penetration rate rises. Moreover, the overall distribution exhibits a rightward shift, indicating a tendency 
towards higher platoon intensities. In moderate penetration scenarios, the distribution becomes 
approximately normal. It is important to note that the range and distribution of platoon intensity are highly 
sensitive to the total number of vehicles. Different traffic scales yield distinct distribution patterns; however, 
the general trend of increasing platoon intensity with rising CAV penetration remains consistent. Therefore, 
despite variations in traffic size, platoon intensity serves as a robust and generalisable metric for quantifying 
spatial distribution characteristics in mixed traffic flow. 
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Fig. 4 The probability distribution of platoon intensity under different CAV penetration rates 

3.3. Stochastic car-following model in mixed traffic flow 

3.3.1 Stochastic car-following model of HDVs 

In this study, the stochastic optimal velocity model (SOVM) is employed to represent the car-following 
behaviour of HDVs. The original optimal velocity model (OVM) calculates a vehicle’s desired speed at the 
next time step based on the current headway and velocity. Its high sensitivity to inter-vehicle spacing enables 
it to perform effectively in the study of traffic congestion and oscillations [50]. The SOVM extends this by 
incorporating a stochastic differential equation, adding a Wiener process—dependent on headway—to the 
acceleration term, thereby capturing the random nature of HDV car-following behaviour [11]. The car-
following model of HDVs is given as: 

{  
  
  𝑑𝑣𝑛(𝑡)𝑑𝑡 = 𝛽 ∙ [𝑉𝑜𝑝(𝑠𝑛(𝑡)) − 𝑣𝑛(𝑡)] + 𝜇 ∙ √𝑠𝑛(𝑡) ∙ 𝑑𝑊(𝑡)𝑑𝑡𝑉𝑜𝑝(𝑠𝑛(𝑡)) = 12 𝑣𝑓 [tanh (𝑠𝑛(𝑡)𝑠0 − 𝛾) + tanh(𝛾)]𝑠𝑛(𝑡) = 𝑝𝑛−1(𝑡) − 𝑝𝑛(𝑡) − 𝑙𝑎𝑛(𝑡 + ∆𝑡) = 𝑣𝑛(𝑡 + ∆𝑡) − 𝑣𝑛(𝑡)∆𝑡

, (15) 
where  𝑣𝑛(𝑡) denotes the velocity of vehicle 𝑛 at time 𝑡, and 𝛽 is the velocity sensitivity coefficient. 𝑉𝑜𝑝 is 
the optimal velocity function, 𝑣𝑓 is the free-flow speed, 𝑠0 is the safety spacing, and 𝛾 is a dimensionless 
parameter. The spacing between vehicle 𝑛 and its leader 𝑛 − 1 at time 𝑡 is denoted by 𝑠𝑛(𝑡). 𝑝𝑛(𝑡) is the 
position of vehicle 𝑛, and 𝑙 is the vehicle length (set to 5 m). 𝜇 represents the stochastic term coefficient, 
and 𝑊(𝑡) is a standard Wiener process. ∆𝑡 is the time step, and 𝑎𝑛(𝑡 + ∆𝑡) is the acceleration at the next 
time step. The parameter values used in this study are adopted from the calibration of the SOVM using the 
NGSIM dataset, as proposed by Mao et al. [11]:  𝛽=0.93，𝜇=0.2，𝑣𝑓=30.63 m/s，𝑠0=12.14 m，𝛾=1.91. 
 A numerical approach is subsequently adopted to solve the stochastic differential equation (SDE) 
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governing the SOVM in order to obtain the vehicle velocity. The acceleration SDE includes both a 

deterministic term, 𝛽 ∙ [𝑉𝑜𝑝(𝑠𝑛(𝑡)) − 𝑣𝑛(𝑡)] , and a stochastic term, 𝜇 ∙ √𝑠𝑛(𝑡) ∙ 𝑑𝑊(𝑡)𝑑𝑡  . To facilitate 

discretisation, the equation is reformulated as follows: 𝑑𝑣𝑛(𝑡) = 𝛽 ∙ [𝑉𝑜𝑝(𝑠𝑛(𝑡)) − 𝑣𝑛(𝑡)] ∙ 𝑑𝑡 + 𝜇 ∙ √𝑠𝑛(𝑡) ∙ 𝑑𝑊(𝑡). (16) 
By integrating the equation from time 𝑡 to 𝑡 + 1, the left side 𝑑𝑣(𝑡) becomes: ∫ 𝑑𝑣(𝑡)𝑡+1

𝑡 = 𝑣(𝑡 + ∆𝑡) − 𝑣(𝑡), (17) 
while the deterministic term is approximated using the left-endpoint value at time 𝑡 multiplied by the time 
step ∆𝑡, yielding: ∫ 𝛽 ∙ [𝑉𝑜𝑝(𝑠𝑛(𝑡)) − 𝑣𝑛(𝑡)] ∙ 𝑑𝑡𝑡+1

𝑡 ≈ 𝛽 ∙ [𝑉𝑜𝑝(𝑠𝑛(𝑡)) − 𝑣𝑛(𝑡)] ∙ ∆𝑡. (18) 
For the stochastic term: ∫ μ ∙ √sn(t) ∙ dW(t)t+1

t ≈ μ ∙ √sn(t) ∙ [𝑤(𝑡 + 1) − 𝑤(𝑡)], (19) 
where the increment 𝑤(𝑡 + 1) − 𝑤(𝑡)~𝑁(0, ∆𝑡)，can be expressed as √∆𝑡 ∙ 𝑤(𝑡) (𝑤(𝑡)~𝑁(0,1)), hence: ∫ 𝜇 ∙ √𝑠𝑛(𝑡) ∙ 𝑑𝑊(𝑡)𝑡+1

𝑡 ≈ 𝜇 ∙ √𝑠𝑛(𝑡)√∆𝑡 ∙ 𝑤(𝑡). (20) 
By combining these components, the approximate discrete-time solution of the acceleration SDE is given 

by: 𝑣𝑛(𝑡 + ∆𝑡) = 𝑣𝑛(𝑡) + 𝛽 ∙ [𝑉𝑜𝑝(𝑠𝑛(𝑡)) − 𝑣𝑛(𝑡)] ∙ ∆𝑡 + 𝜇 ∙ √𝑠𝑛(𝑡)√∆𝑡 ∙ 𝑤(𝑡). (21) (18)
 The optimal velocity function 𝑉𝑜𝑝 used in this study takes the form of a sigmoidal hyperbolic tangent 
function, originally proposed by Bando et al. [50]. The free-flow speed 𝑣𝑓 sets the upper limit of the function, 
while the parameter 𝑠0 controls the steepness of the transition, and 𝛾 determines the inflection point—i.e., 
where the speed starts to rise significantly as the vehicle spacing increases. As illustrated in Figure 5, the red 
curve shows the relationship between vehicle spacing and the optimal velocity for the parameter settings 
adopted in this study. A decrease in the value of 𝑠0  results in a steeper curve. When the value of 𝛾  is 
increased, the inflection point of the curve lags. 

 
Fig. 5 Curves of speed function 𝑉𝑜𝑝 under different parameters 

3.3.2 Car-following model of FCAV 

For FCAVs in mixed traffic flow—i.e., CAVs that follow other CAVs within a platoon—their car-
following behaviour is modelled using the Cooperative Adaptive Cruise Control (CACC) model. The 
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behaviour of FCAVs is deterministic. The CACC model, developed by the PATH laboratory in the United 
States [51], adjusts a CAV's following speed based on vehicle-to-vehicle (V2V) communication and spacing 
error. The car-following behaviour of an FCAV is described as follows: 

{  
  𝑣𝑛(𝑡 + ∆𝑡) = 𝑣𝑛(𝑡) + 𝑘𝑝𝑒𝑛(𝑡) + 𝑘𝑑𝑒𝑛̇(𝑡)𝑒𝑛(𝑡) = 𝑝𝑛−1(𝑡) − 𝑝𝑛(𝑡) − 𝑙 − 𝑑 − 𝑇𝐶𝐴𝐶𝐶𝑣𝑛(𝑡)𝑎𝑛(𝑡) = 𝑘𝑝(𝑥𝑛−1(𝑡) − 𝑥𝑛(𝑡) − 𝑙 − 𝑑 − 𝑇𝐶𝐴𝐶𝐶𝑣𝑛(𝑡)) + 𝑘𝑑∆𝑣𝑛(𝑡)∆𝑡 + 𝑘𝑑𝑇𝐶𝐴𝐶𝐶 , (22) 

where 𝑣𝑛(𝑡 + ∆𝑡) denotes the speed of vehicle 𝑛 at time 𝑡 + ∆𝑡, and ∆𝑡 is the simulation time step. The 
parameters 𝑘𝑝  and 𝑘𝑑  are the model parameters of the CACC controller, set to 0.45 s-2 and 0.25 s-1, 
respectively. 𝑒𝑛(𝑡)  represents the spacing error at time 𝑡 , defined as the difference between the desired 
spacing and the actual spacing. 𝑝𝑛(𝑡) denotes the position of vehicle 𝑛 at time 𝑡, 𝑙 is the vehicle length, set 
to 5 m, and 𝑑 is the standstill safety distance, set to 2 m. The time headway 𝑇𝐶𝐴𝐶𝐶  for FCAVs using the CACC 
mode is set to 0.8 s. 𝑎𝑛(𝑡) is the acceleration of vehicle 𝑛 at time 𝑡. 

3.3.3 Car-following model of DCAV and LCAV 

The Intelligent Driver Model (IDM) [52] is employed to describe the car-following behaviour of 
degraded CAVs (DCAVs)—i.e., CAVs following HDVs—and leading CAVs (LCAVs) that initiate a new 
platoon after reaching the maximum platoon size. These vehicles exhibit deterministic behaviour. The IDM 
is a car-following model derived from the perspective of statistical physics, characterised by a small number 
of parameters with clear physical meanings. It is particularly well-suited to capturing the car-following 
dynamics of CAVs. The car-following behaviour of DCAVs and LCAVs is described as follows: 

{  
  𝑎𝑛(𝑡) = 𝐴 [1 − (𝑣𝑛(𝑡)𝑣𝑓 )𝛿 − (𝑠𝑛∗(𝑡)𝑠𝑛(𝑡))2]𝑠𝑛∗(𝑡) = 𝑑 + 𝑣𝑛(𝑡)𝑇𝐷𝐶𝐴𝑉 + 𝑣𝑛(t)[𝑣𝑛(𝑡)− 𝑣𝑛−1(𝑡)]2√𝐴𝑏 (23) 

where 𝑎𝑛(𝑡) denotes the desired acceleration of vehicle 𝑛 at time 𝑡, 𝐴 is the maximum acceleration (set to 
2 m/s²), and 𝑏 is the comfortable deceleration (set to –1 m/s²). 𝑣𝑛(𝑡) is the speed of vehicle 𝑛 at time 𝑡, and 𝑣𝑓 is the free-flow speed, set to 33.3 m/s. The exponent 𝛿, which controls the acceleration behaviour, is set 
to 4. 𝑠𝑛∗(𝑡)  is the desired spacing of vehicle 𝑛  at time 𝑡 , 𝑠𝑛(𝑡)  is the actual bumper-to-bumper spacing 
between vehicle 𝑛 and its predecessor. 𝑑 is the minimum standstill spacing, set to 2 m, and 𝑇𝐷𝐶𝐴𝑉 is the 
desired time headway for DCAVs and LCAVs, set to 1.1 s. 

3.4. Mixed traffic flow performance indicators  

3.4.1 Traffic efficiency 

Traffic efficiency is one of the key indicators used to evaluate the operational state of a transport system, 
and it is typically measured by the average vehicle speed. In mixed traffic environments, the behaviour of 
CAVs and HDVs significantly influences overall flow performance. Average speed reflects not only the 
degree of road capacity utilisation but also provides an indirect indication of congestion levels. Generally, 
due to their faster reaction times and shorter headways, CAVs can alleviate congestion and improve flow 
rates to some extent. However, in mixed traffic flows with stochastic HDV behaviour, the impact of different 
spatial distributions of vehicles on traffic efficiency remains insufficiently studied. By comparing average 
speeds across various CAV penetration rates and spatial configurations, the operational efficiency of the 
mixed traffic system can be effectively evaluated. The average speed is defined as: 

𝑣̅ = 1𝑁𝐾∑∑𝑣𝑖,𝑘𝐾
𝑘=1

𝑁
𝑖=1 , (24) 

where 𝑣̅ denotes the average speed of the mixed traffic flow over the measurement period, 𝑁 is the total 
number of vehicles, 𝐾 is the total number of time steps during the measurement, and 𝑣𝑖,𝑘 represents the 
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instantaneous speed of vehicle 𝑖 at time step 𝑘. 
3.4.2 Instability  

Due to the stochastic nature of HDV car-following behaviour, backward-propagating traffic oscillations 
may emerge in the flow. CAVs are expected to suppress such oscillations through deterministic car-following 
and precise control mechanisms. To assess the damping effects of different spatial configurations of CAVs on 
traffic oscillations, this study employs the coefficient of variation of vehicle speed as a measure of traffic flow 
instability. This metric reflects the degree of speed fluctuation within the traffic flow—larger fluctuations 
indicate greater instability. By comparing the coefficient of variation under different conditions, we can gain 
deeper insights into the mechanisms by which CAV spatial distribution influences traffic oscillations. 
Compared to the standard deviation of speed, the coefficient of variation eliminates the influence of 
measurement scale and better captures the instability of traffic flow. The coefficient of variation of vehicle 
speed is expressed as: 

𝑐𝑣̅ = √ 1𝑁𝐾 − 1∑ ∑ (𝑣𝑖,𝑘 − 𝑣̅)2𝐾𝑘=1𝑁𝑖=1 𝑣̅ , (25) 
where 𝑐𝑣̅ denotes the coefficient of variation of vehicle speed, 𝑣𝑖,𝑘 is the instantaneous speed of vehicle 𝑖 at 
time step 𝑘, and 𝑣̅ is the average speed of the traffic flow. 

3.4.3 Energy consumption  

Energy consumption is a key parameter for evaluating the sustainability and environmental impact of 
transport systems. In this study, the Normalised Fuel Consumption Rate (NFR) is employed as the metric for 
measuring energy consumption [53]. The NFR is calculated based on instantaneous vehicle acceleration, 
speed, and model parameters, offering an accurate representation of energy use under specific traffic 
conditions. In mixed traffic environments characterised by traffic oscillations, CAVs—owing to their superior 
driving strategies and cooperative control capabilities—have the potential to reduce overall system energy 
consumption. However, the relationship between platoon intensity and energy use in oscillatory flows 
caused by the stochastic behaviour of HDVs remains unclear. By comparing the NFR across different levels 
of platoon intensity, the effectiveness of various spatial distributions of CAVs in reducing energy 
consumption can be revealed. The NFR is derived from the Vehicle Specific Power (VSP), which is defined 
as: 𝑉𝑆𝑃𝑖,𝑘 = 𝑣𝑖,𝑘 ⋅ (1.1 ⋅ 𝑎𝑖,𝑘 + 0.132) + 0.000302 ⋅ 𝑣𝑖,𝑘3 , (26) 
where 𝑉𝑆𝑃𝑖,𝑘 is the Vehicle Specific Power of vehicle 𝑖 at time step 𝑘, measured in kW/ton, and 𝑎𝑖,𝑘 is the 
instantaneous acceleration of vehicle 𝑖 at time step 𝑘. 

The NFR is then calculated using the following piecewise function: 𝑁𝐹𝑅𝑖,𝑘 = { 1.0 ,    𝑉𝑆𝑃𝑖,𝑘 ≤ 0 1.71 ⋅ 𝑉𝑆𝑃𝑖,𝑘0.42 ,    𝑉𝑆𝑃𝑖,𝑘 > 0 , (27) 
where 𝑁𝐹𝑅𝑖,𝑘 denotes the Normalised Fuel Consumption Rate of vehicle 𝑖 at time step 𝑘. 
  The average NFR of the traffic flow over the measurement period is given by: 

𝑁𝐹𝑅̅̅ ̅̅ ̅̅ = 1000𝑣̅ × 1𝑁𝐾∑∑𝑁𝐹𝑅𝑖,𝑘𝐾
𝑘=1

𝑁
𝑖=1 . (28) 

In particular, to eliminate the influence of average speed, the result is divided by 𝑣̅, yielding the average 
per-kilometre fuel consumption, expressed in grams per kilometre (g/km). 

4. Numerical experiment 

4.1. Experimental setting 

Due to the current immaturity of autonomous driving technologies in the commercial vehicle sector, 
large-scale field studies on mixed traffic flow are difficult to implement in real-world scenarios in the short 
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term. Meanwhile, conducting physical experiments in closed test facilities imposes stringent requirements 
on environmental control and hardware resources, resulting in high implementation costs and operational 
complexity. As a result, most contemporary studies on CAVs predominantly adopt simulation-based 
approaches to obtain stable, controllable, and representative experimental data. In this study, a mixed traffic 
flow simulation platform was developed using Python. A single-lane ring road was constructed to emulate 
the operation of traffic on an infinitely long road. Owing to its closed boundary conditions and simple 
structure, the ring road has been widely used in studies on traffic oscillation propagation and traffic flow 
dynamics, making it particularly well-suited for the present analysis of traffic instability. The simulation 
setup follows the classic experimental configurations used by Stern et al. [35] and Sugiyama et al. [54] in their 
real-vehicle experiments on inducing traffic oscillations. A total of 15 vehicles were evenly distributed along 
the ring road, with an initial inter-vehicle spacing of 15 m and an initial speed of 20 m/s. The total simulation 
duration was set to 450 seconds with a time step of 0.1 seconds. To eliminate the influence of initial 
disturbances, the first 50 seconds of the simulation were designated as a warm-up phase, and all performance 
indicators were measured over the interval from 50 to 450 seconds. The instantaneous acceleration of each 
vehicle was dynamically updated based on the car-following models described in the previous section, with 
parameter values listed in Table 2. 

Table 2 Parameter settings 

Parameter Value Definition Parameter Value Definition 𝑙 5 m Uniform vehicle length 𝐴 2 m/s2 Maximum acceleration of CAVs 𝛽 0.93 
Speed sensitivity coefficient 

for HDVs 
b -1 m/s2 

Comfortable deceleration of 
CAVs 𝜇 0.2 

Coefficient of Wiener process 
for HDVs 

𝑣𝑚𝑎𝑥 33.3 m/s Free-flow speed of CAVs 𝑣𝑓 30.63 m/s Free-flow speed of HDVs 𝛿 4 Acceleration exponent for CAVs 𝑠0 12.14 m Desired safety gap for HDVs 𝑇𝐷𝐶𝐴𝑉 1.1 s 
Desired time headway for 

DCAVs 𝛾 1.91 
Optimisation speed function 

constant for HDVs 
𝑁 15 Total number of vehicles 

𝑘𝑝 0.45 
Proportional control gain for 

FCAVs 
𝐾 4000 

Total number of time steps 
during measurement 𝑘𝑑 0.25 

Derivative control gain for 
FCAVs 

∆𝑡 0.1 s Simulation time step 

𝑑 2 m Standstill gap for CAVs 𝑣0 20 m/s 
Initial vehicle speed in 

simulation 𝑇𝐶𝐴𝐶𝐶 0.8 s 
Desired time headway for 

FCAVs 
𝑆𝑚𝑎𝑥 4 

Maximum platoon size for 
CAVs 

4.2. Reproduction of traffic oscillations in human-driven traffic flow 

To verify the effectiveness of the stochastic car-following model in reproducing traffic oscillations 
induced by randomness, a simulation was first conducted under a purely human-driven traffic environment 
in which all 15 vehicles were set as HDVs. Using the position, time, and speed data of the 15 HDVs on the 
ring road, a spatiotemporal trajectory diagram and a speed heatmap were generated, as shown in Figure 6. 
Evident oscillations in both vehicle trajectories and speeds can be observed from the diagrams. These 
oscillations continuously propagate upstream along the traffic flow. Under conditions with no lane changing 
or external disturbances, vehicles exhibit repeated stop-and-go behaviour throughout the simulation. This 
result indicates that the stochastic car-following model adopted in this study can effectively capture the 
endogenous oscillatory characteristics of traffic flow, demonstrating strong physical plausibility and 
modelling capability. It lays a solid foundation for subsequent investigations into the effects of vehicle spatial 
distribution on the performance of mixed traffic flow within this modelling framework. 
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Fig. 6 Traffic oscillations caused by stochasticity of HDVs 

4.3. Mixed traffic flow experiments 

To investigate the impact of CAVs and their spatial distribution on the overall performance of mixed 
traffic flow under the influence of HDV stochasticity, a large number of simulation experiments were 
conducted in this study. Considering different CAV penetration rates, a total of 10,922 possible vehicle 
distribution patterns were generated for a 15-vehicle scenario. Each of these configurations was simulated 
independently on a single-lane ring road. During the simulations, instantaneous position, speed, and 
acceleration data for all vehicles were recorded. Based on these data, key performance indicators including 
traffic efficiency, instability, and energy consumption were calculated to evaluate how different spatial 
distributions of CAVs affect mixed traffic performance. Figure 7 presents spatiotemporal trajectory diagrams 
under representative CAV penetration levels. It can be observed that the blue trajectories, representing HDVs, 
still exhibit strong randomness in their car-following behaviour. These results demonstrate that endogenous 
traffic oscillations persist across various CAV penetration scenarios, highlighting the continued influence of 
HDV-induced stochasticity in mixed traffic environments.  

  

(a)20% (b)40% 

  

(c)60% (d)80% 
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Fig. 7 Mixed traffic flow trajectory diagram under different CAV penetration 

4.3.1 Impact of vehicle spatial distribution on traffic efficiency 

To investigate traffic efficiency in mixed traffic flow, the average speed is employed as the performance 
metric. Figure 8 presents a scatter plot of platoon intensity versus average speed across all vehicle distribution 
scenarios, with different colours representing different CAV penetration rates. A clear positive correlation is 
observed between platoon intensity and average speed, with a Pearson correlation coefficient of 𝑟 = 0.747. 
This suggests that an increase in platoon intensity generally leads to improved average speed. Specifically, 
when platoon intensity is 0, the average speed falls below 2.5 m/s, whereas when platoon intensity reaches 
0.8, the average speed exceeds 2 m/s. This reflects the effect of spatial aggregation: when CAVs are more 
closely grouped, they are able to travel cooperatively in the form of tightly connected platoons, thereby 
enhancing overall traffic efficiency. The coloured scatter points indicate different levels of CAV penetration, 
and the convex hull of data points with the same penetration rate represents the overall range of observations. 
It is evident that the range of platoon intensity shifts to the right as the CAV penetration rate increases, which 
aligns with the theoretical derivation of platoon intensity ranges previously discussed. Moreover, a general 
upward trend in average speed is observed with increasing CAV penetration rates. 

 

Fig. 8 Heatmap-style scatter plot of average speed under different platoon intensities 

Given that platoon intensity is highly dependent on CAV penetration rate, we isolate data under 
identical penetration levels to decouple the effect of penetration from that of spatial distribution. Boxplots 
are drawn to illustrate this relationship more clearly. These boxplots show the maximum, minimum, 
interquartile range, and median of average speeds under various platoon intensity at fixed CAV penetration 
levels. As shown in Figure 9, the boxplots for four different CAV penetration rates (20%, 40%, 60%, and 80%) 
exhibit the same pattern: average speed tends to increase with higher platoon intensity. To clearly display 
this trend, the x-axis of each subplot in Figure 9 is fixed to the full platoon intensity range (0–1), while the y-
axis is scaled independently for each penetration level. Although overlap in average speed values exists 
across different platoon intensity within the same penetration level, the upward trend remains evident. This 
confirms that, under the same CAV penetration rate, more clustered CAV distributions are beneficial to traffic 
efficiency. The underlying mechanism is that when CAVs are more spatially concentrated, they can form 
cooperative platoons using V2V communication technology. Vehicles within such platoons share 
synchronised motion data and are able to travel with smaller headways, thus increasing the average speed 
of the traffic flow. 
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(a)20% (b)40% (c)60% (d)80% 

Fig. 9 Boxplots of average speed against platoon intensity under four CAV penetration levels 

Table 3 presents the comparison of the maximum and minimum average speeds under different CAV 
penetration levels. In all four penetration scenarios, the highest average speeds are associated with higher 
platoon intensity (i.e., more clustered CAV distributions), while the lowest average speeds occur in low 
platoon intensity scenarios (i.e., more dispersed CAVs). However, for the 40% penetration case, the highest 
average speed is observed at a platoon intensity of 0.67, rather than the maximum possible value of 0.83; 
similarly, for 60% penetration, the lowest average speed occurs at a platoon intensity of 0.44, not the 
minimum of 0.33. This discrepancy may be attributed to the stochastic behaviour of HDVs. When the 
difference in platoon intensity between two configurations is relatively small, the influence of vehicle 
distribution on traffic efficiency may be masked by the randomised following behaviour of HDVs. In terms 
of magnitude, the difference between the highest and lowest average speeds at the same penetration level 
can be as much as 0.3712 m/s, with the relative difference reaching up to 9.70%. This highlights the critical 
role that spatial distribution plays in determining traffic efficiency in mixed traffic flow. 

Table 3 Comparison of optimal and worst cases for average speed 

CAV 
penetration 

Case 
Platoon 
intensity 

Vehicles spatial distribution Value Difference 
Percentage 

of difference 

20% 
Optimal 0.67 (0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1.894 

0.0776 4.27% 
Worst 0 (0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0) 1.8164 

40% 
Optimal 0.67 (0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0) 2.4672 

0.2046 9.04% 
Worst 0 (1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0) 2.2626 

60% 
Optimal 0.89 (1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) 3.3436 

0.2956 9.70% 
Worst 0.44 (1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1) 3.048 

80% 
Optimal 0.92 (1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) 4.6535 

0.3712 8.67% 
Worst 0.75 (1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) 4.2823 

 

4.3.2 Impact of vehicle spatial distribution on the instability 

The coefficient of variation of vehicle speed is adopted to evaluate the instability of mixed traffic flow. 
Figure 10 presents the scatter plot of platoon intensity versus the speed variation coefficient for all vehicle 
distribution scenarios, where different colours represent different CAV penetration rates. Overall, there is no 
significant linear relationship between platoon intensity and the speed variation coefficient, with a Pearson 
correlation coefficient of 𝑟 = −0.481. A noticeable reduction in the minimum value of the speed variation 
coefficient only appears when the platoon intensity approaches 1. Further examination of the convex hulls 
under various CAV penetration rates reveals that at 80% CAV penetration, the distribution of the speed 
variation coefficient is more reduced and convergent, indicating that a higher CAV presence contributes to 
enhanced control over traffic flow instability. However, since CAV penetration and platoon intensity change 
simultaneously in Figure 10, and are inherently coupled, it is necessary to further investigate the influence 
of platoon intensity under fixed CAV penetration conditions. 
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Fig. 10 Heatmap-style scatter plot of speed variation coefficient under different platoon intensities 

Figure 11 illustrates the boxplots of the speed variation coefficient under four typical CAV penetration 
rates (20%, 40%, 60%, and 80%) across various levels of platoon intensity. The results indicate that, under 
fixed penetration rates, the speed variation coefficient tends to increase as platoon intensity rises—suggesting 
that the more clustered the CAVs are, the higher the instability of the mixed traffic flow. Conversely, a more 
dispersed CAV distribution corresponds to weaker speed fluctuations and enhanced stability. This 
phenomenon arises primarily from the interaction between the deterministic car-following behaviour of 
CAVs and the stochastic driving behaviour of HDVs. When CAVs are more dispersed, a larger number follow 
behind HDVs. Their shorter reaction time and reduced headway allow them to absorb or dampen HDV-
induced acceleration and deceleration disturbances more effectively, thereby mitigating the propagation of 
traffic oscillations and improving the overall flow stability. In contrast, when CAVs are densely clustered, 
fewer follow HDVs, weakening this stabilising effect. 

(a)20% (b)40% (c)60% (d)80% 

Fig. 11 Boxplots of speed variation coefficient against platoon intensity under four CAV penetration levels 

Additionally, Table 4 compares the maximum and minimum values of the speed variation coefficient 
across different CAV penetration levels. In all cases, the lowest instability corresponds to lower platoon 
intensities (i.e., more dispersed CAV distributions), while the highest instability appears under higher 
platoon intensities (i.e., more aggregated CAV distributions). It is worth noting, however, that the maximum 
speed variation coefficient does not always occur at the absolute highest platoon intensity, suggesting that 
the random behaviour of HDVs can still exert interference at extreme ends, occasionally masking the effect 
of spatial distribution. Numerically, the difference between the maximum and minimum values of the speed 
variation coefficient reaches up to 0.2297, with a maximum relative difference of 145.20%, further confirming 
that vehicle spatial distribution has a significant impact on the instability of mixed traffic flow. This also 
implies that, under a given CAV penetration rate, optimising the spatial layout of CAVs can effectively 
enhance traffic flow stability. 
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Table 4 Comparison of optimal and worst cases for the speed variation coefficient  

CAV 
penetration 

Case 
Platoon 
intensity 

Vehicles spatial distribution Value Difference 
Percentage 

of difference 

20% 
Optimal 0 (1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 0.2701 

0.1243 46.02% 
Worst 0.33 (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1) 0.3944 

40% 
Optimal 0.3 (1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0) 0.2121 

0.2134 100.61% 
Worst 0.50 (0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0) 0.4255 

60% 
Optimal 0.56 (1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1) 0.1582 

0.2297 145.20% 
Worst 0.78 (0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) 0.3879 

80% 
Optimal 0.75 (1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1) 0.0884 

0.0783 88.57% 
Worst 0.83 (1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1) 0.1667 

4.3.3 Impact of vehicle spatial distribution on energy consumption 

Figure 12 presents the scatter plot of platoon intensity versus average energy consumption under all 
vehicle distribution conditions, with colour indicating the CAV penetration rate. Overall, a significant 
negative correlation is observed between platoon intensity and average energy consumption, with a Pearson 
correlation coefficient of 𝑟 = −0.764. This indicates that as platoon intensity increases, the average energy 
consumption tends to decrease. When platoon intensity equals 0, the average energy consumption exceeds 
700 g/km in all cases, whereas when platoon intensity exceeds 0.8, it consistently falls below 800 g/km. This 
suggests that when CAVs are more spatially clustered in the traffic flow, the resulting cooperative CAV 
platoons play a positive role in reducing energy consumption. Furthermore, an overall decreasing trend in 
energy consumption is observed as the CAV penetration rate increases. 

 

Fig. 12 Heatmap-style scatter plot of average energy consumption under different platoon intensities. 
Figure 13 shows the boxplots of average energy consumption across four CAV penetration rates (20%, 

40%, 60%, and 80%), under varying platoon intensities. A consistent trend can be observed: as platoon 
intensity increases—i.e. as CAVs become more spatially concentrated—the average energy consumption 
decreases. This implies that grouping CAVs into platoons is beneficial for reducing energy consumption in 
mixed traffic conditions. It is worth noting that, unlike average speed or speed variability, average energy 
consumption is not a direct output of the simulation. Rather, it is a composite indicator derived from each 
vehicle’s instantaneous speed and acceleration, used to compute the VSP, and then indirectly estimated 
based on the relationship between power and NFR. Thus, average energy consumption reflects the combined 
influence of both traffic efficiency and driving stability. Mechanistically, when CAVs form platoons, they 
adopt cooperative control strategies that enhance overall traffic speed while maintaining well-synchronised 
acceleration behaviour within the platoon. This reduces the frequent acceleration and deceleration caused by 
uncertainty in the behaviour of preceding vehicles. As a result, although slight increases in speed variability 
may occur, the fluctuation in acceleration does not necessarily increase, and may in fact decrease, thereby 
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contributing to lower energy consumption. Therefore, although higher platoon intensity may lead to 
increased local speed variation, the associated gains in average speed, smoother acceleration profiles, and 
improved drivetrain efficiency collectively result in reduced energy use. This phenomenon highlights once 
again the profound impact of vehicle spatial distribution on the performance of mixed traffic flow. In 
particular, with respect to energy efficiency, the rational aggregation of CAVs into platoons offers substantial 
advantages. 

    

(a)20% (b)40% (c)60% (d)80% 

Fig. 13 Boxplots of average energy consumption against platoon intensity under four CAV penetration 
levels 

Table 5 compares the maximum and minimum values of average energy consumption under different 
penetration rates. At all four penetration levels, the highest energy consumption corresponds to the lowest 
platoon intensity (dispersed CAVs), while the lowest energy consumption is observed under the highest 
platoon intensity (concentrated CAVs). Numerically, the largest absolute difference between the maximum 
and minimum values reaches 51.7809 g/km, with the highest relative difference being 7.58%. This further 
confirms the significant impact of vehicle spatial distribution on the average energy consumption of mixed 
traffic flow. 

Table 5 Comparison of optimal and worst cases for average energy consumption. 
CAV 

penetration 
Case 

Platoon 
intensity 

Vehicles spatial distribution Value Difference 
Percentage 

of difference 

20% 
Optimal 0.67 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) 897.7493 

33.521 3.73% 
Worst 0 (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0) 931.2703 

40% 
Optimal 0.83 (0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) 702.1213 

51.7809 7.37% 
Worst 0 (1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0) 753.9022 

60% 
Optimal 0.89 (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 535.2118 

40.5498 7.58% 
Worst 0.33 (1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1) 575.7616 

80% 
Optimal 0.92 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1) 379.0531 

25.5008 6.73% 
Worst 0.75 (1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1) 404.5539 

4.3.4 Influence of CAV penetration rate on mixed traffic flow 

Although previous subsections have examined the impact of varying CAV penetration rates on the 
performance of mixed traffic flow, it is important to note that CAV penetration and platoon intensity (i.e. the 
degree of spatial concentration among vehicles) are inherently coupled. Analysing their influence from a 
single perspective may obscure key details, particularly when comparing how different proportions of CAVs 
affect traffic stability and efficiency. To further investigate the interaction mechanisms between these factors, 
Figure 14 plots violin diagrams and mean trend lines for three indicators—average speed, speed variability 
coefficient, and average energy consumption—across the full set of simulation results, using CAV 
penetration rate as the horizontal axis. The violin plots illustrate the distribution of each indicator at each 
given penetration level. 

Figures 14(a) and 14(c) show the trends in average speed and average energy consumption, respectively, 
as the CAV penetration rate increases. It is evident that average speed rises steadily while average energy 
consumption declines, indicating that the introduction of CAVs has a generally positive effect on improving 
traffic efficiency and reducing energy usage. Furthermore, the distribution ranges of these two indicators 
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remain relatively narrow under different spatial distributions, as reflected by the smaller areas of the violin 
plots. This suggests that the influence of CAV penetration rate on these aspects of traffic performance is 
considerably stronger than that of spatial distribution. 

However, the relationship between speed variability coefficient and CAV penetration rate, depicted in 
Figure 14(b), exhibits a more complex pattern. Although the mean trend demonstrates an overall decline in 
speed variability with increasing CAV penetration—confirming the stabilising effect of CAVs in suppressing 
speed fluctuations—the violin plot area is markedly larger, and there is substantial overlap between 
distributions at different penetration levels. This reveals that spatial distribution of vehicles exerts a stronger 
disturbance and variation effect on the instability metric. Of particular note, at penetration rates of 20%, 40%, 
and 60%, while the majority of experiments show significantly reduced speed variability compared to the 
pure HDV (0% penetration) scenario, a small number of cases still exhibit higher levels of speed fluctuation. 
This phenomenon can be attributed to the interplay of several factors. Firstly, at low to moderate penetration 
levels, the number of CAVs may be insufficient to establish a global shock-absorbing chain. If these limited 
CAVs are also poorly distributed, their presence may disrupt the existing stable car-following structure 
among HDVs. Secondly, CAVs and HDVs differ fundamentally in their control mechanisms—CAVs typically 
feature shorter reaction times and more responsive acceleration. In the absence of coordinated platooning 
control, these characteristics can induce abrupt local speed changes, which are rapidly propagated to 
following HDVs, thereby exacerbating local instability. Moreover, HDV driving behaviour is inherently 
stochastic; even with identical vehicle orderings on a ring road, differences in individual driver behaviour 
alone can result in significant variations in speed standard deviation, masking some of the structural effects. 

In summary, while increasing the CAV penetration rate is broadly beneficial for improving traffic 
efficiency and reducing energy consumption, its effectiveness in mitigating traffic instability is more 
contingent upon the specific spatial distribution of vehicles and the nature of disturbances introduced by 
HDVs. Only at high penetration rates do CAVs consistently enhance traffic stability. This underscores the 
complex interplay of multiple interacting factors within mixed traffic systems. 

  
(a) Average speed (b) Speed variability coefficient 

 
(c) Average energy consumption 
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Fig. 14 Influence of CAV penetration rate on mixed traffic flow under three indicators 

4.4. Sensitivity analysis of maximum platoon size 

In practice, inter-vehicle communication among CAVs is constrained by factors such as communication 
range, signal errors, and system stability. As a result, research on CAV platoons often introduces an 
artificially defined maximum platoon size. Once the number of CAVs within a platoon reaches this upper 
limit, any subsequent CAVs are prevented from joining the existing platoon and must instead form a new 
one. In the context of this study, the setting of the maximum platoon size does not affect the value or 
distribution range of the platoon intensity metric. This is because platoon intensity, which quantifies the 
degree of spatial clustering among vehicles, is inherently defined by the number of CAVs following other 
CAVs, regardless of whether they are formally classified within the same CAV platoon. Therefore, even if the 
imposed limit on platoon size causes some otherwise continuous sequences of CAVs to be split into multiple 
platoons, their contributions to platoon intensity remain intact as long as the CAV-following-CAV 
relationship is preserved. Consequently, for a given spatial distribution of vehicles, the calculated platoon 
intensity remains consistent regardless of the maximum platoon size, demonstrating the robustness and 
validity of this metric in capturing spatial structure. 

Nevertheless, conducting a sensitivity analysis on the maximum platoon size is still of significant 
importance. While the value of platoon intensity is unaffected by the maximum platoon size, the performance 
of mixed traffic flow under different spatial configurations may still vary when the maximum platoon size 
is altered. To investigate this, a series of simulations were conducted under consistent experimental 
conditions but with varying maximum platoon sizes (3, 4, 5, and 6 vehicles), to examine their impact on key 
macroscopic traffic flow indicators. Figure 15 illustrates the variation in average speed, speed variability 
coefficient, and average energy consumption with respect to platoon intensity under different maximum 
platoon size settings. For each level of platoon intensity, data points represent the mean values across all 
simulation runs. This sensitivity analysis captures how traffic efficiency, instability, and energy performance 
respond to changes in maximum platoon size and spatial distribution. It is important to note that, as the 
experimental setup in this study involves a 15-vehicle mixed traffic flow, scenarios with a CAV penetration 
rate below 20% contain a maximum of only 3 CAVs. Given that the maximum platoon size parameter ranges 
from 3 to 6, the system performance in such cases is unaffected by changes in this parameter. Therefore, the 
sensitivity analysis focuses exclusively on CAV penetration rates of 40%, 60%, and 80%. Moreover, under a 
40% penetration rate, platoons of length ≥3 can only emerge when the platoon intensity exceeds 0.33. As a 
result, data points within the 0–0.33 platoon intensity range in Figures 15(a), 15(d), and 15(g) overlap heavily 
across different maximum platoon size settings. 

   
(a)Average speed, 40%  (b) Average speed, 60% (c) Average speed, 80% 
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(d)Variation coefficient, 40% (e) Variation coefficient, 60% (f) Variation coefficient, 80% 

   
(g)Energy consumption, 40% (h) Energy consumption, 60% (i) Energy consumption, 80% 

Fig. 15 Line chart of sensitivity analysis of maximum platoon size 

Figures 15(a–c) present the average speed in mixed traffic flow for the three selected CAV penetration 
rates. A clear pattern emerges: at multiple levels of platoon intensity, the average speed increases with the 
maximum platoon size, indicating a consistent effect of maximum platoon size across different spatial 
distributions. This improvement in speed can be attributed to the greater proportion of CAVs travelling 
cooperatively; tighter inter-vehicle communication and coordination among CAVs enhance overall traffic 
flow efficiency. Figures 15(d–f) display the trends in the speed variability coefficient. Similar to average speed, 
this coefficient also increases with greater maximum platoon size. However, this trend indicates a negative 
traffic implication: increased instability. This is because longer platoons result in tightly coordinated and 
highly responsive groups of CAVs. When this intense coordination interacts with surrounding HDVs—which 
have inherently slower reaction times—speed fluctuations are more readily amplified and propagated 
among HDVs, leading to the emergence of local oscillations. In other words, while the internal operation of 
the CAV platoons remains stable, the disturbances they generate may be transmitted more abruptly to 
adjacent HDVs, thereby reducing the overall system stability. Figures 15(g–i) show the trends in average 
energy consumption. In most cases, energy consumption decreases with increasing maximum platoon size, 
particularly at moderate levels of platoon intensity. This indicates that longer CAV platoons can reduce 
unnecessary acceleration and deceleration through smoother car-following and acceleration control, thereby 
enhancing energy efficiency. However, when platoon intensity approaches 1—indicating full aggregation of 
all CAVs—the sensitivity of energy consumption to maximum platoon size diminishes. This may be due to a 
saturation effect in coordinated control: when all CAVs are already operating in close coordination, the 
marginal benefit of further increasing the maximum platoon size is reduced. 

Overall, the maximum platoon size has a substantial influence on the macroscopic performance of mixed 
traffic flow. A larger maximum platoon size generally contributes to higher average speeds and lower energy 
consumption, but it may also introduce increased risk of instability within the system. 

5. Conclusions and discussion 

This study proposed a mixed traffic flow modelling framework that explicitly considers both the 
stochastic behaviour of HDVs and the spatial distribution of CAVs. Firstly, the concept of platoon intensity 
was introduced, and the vehicle adjacency probability and the theoretical bounds of spatial distribution were 
derived, thereby establishing a theoretical foundation for investigating the spatial structure of mixed traffic 
flows. Secondly, a stochastic car-following model based on stochastic differential equations was employed 
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to reproduce endogenous traffic oscillations on a ring road, which arise without lane-changing or abrupt 
deceleration behaviours. In the experimental section, this study systematically investigates the impact of 
CAV spatial distribution on traffic performance. Through numerical simulations, the relationships between 
three key indicators—average speed, coefficient of variation of speed, and average energy consumption—
are analysed under varying levels of CAV penetration and platoon intensity. The results reveal a coupling 
effect between CAV penetration rate and spatial distribution, leading to the following key findings: 

（1）Average speed exhibits a strong positive correlation with platoon intensity (Pearson correlation 
coefficient 𝑟 = 0.747). When CAVs are more spatially concentrated, it is easier to form stable CAV platoons 
that maintain short headways and synchronised longitudinal behaviour. This coordination substantially 
improves traffic efficiency; under the same penetration rate, clustered CAV distributions can increase average 
speed by up to approximately 9.70% compared to more dispersed distributions. 

（2）Regarding the coefficient of variation of speed, a general increasing trend is observed with rising 
platoon intensity under the same penetration level. When CAVs are more aggregated, their interactions with 
HDVs become less frequent, weakening the stabilising effect on traffic oscillations. Across different CAV 
penetration rates, similar levels of speed variation can be observed under different spatial distributions, 
indicating that both CAV penetration and platoon intensity significantly influence traffic flow stability—
though the effect is less pronounced at low to medium penetration levels. 

（3）Average energy consumption shows a strong negative correlation with platoon intensity (𝑟 =−0.764). The formation of CAV platoons through cooperative driving has a clear positive effect on reducing 
fuel consumption. Under the same penetration level, the difference in average energy consumption between 
the best and worst spatial distributions reaches 51.7809 g/km, representing a relative reduction of 7.58%. 

These findings offer important implications for the management of mixed traffic systems in real-world 
contexts. Merely increasing the proportion of CAVs is insufficient to maximise the systemic benefits of 
autonomous driving. More critically, CAVs must be guided to form rational spatial configurations. Therefore, 
future efforts in CAV scheduling and route planning should focus on the development of platoon 
coordination strategies and formation mechanisms. From a traffic management and infrastructure 
perspective, dynamic control strategies—such as cooperative car-following zones or dynamic lane allocation 
systems—may be introduced to fully exploit the advantages of CAVs in mixed traffic conditions. 

This study adopts a ring road scenario, which is advantageous for eliminating boundary effects and 
isolating vehicle interaction dynamics. However, such a simplified environment does not reflect real-world 
complexities such as signalised intersections, multi-lane geometries, or fluctuating traffic demand, which 
limits the generalisability of the findings. Future work will explore optimal spatial distribution patterns in 
more realistic traffic scenarios. Moreover, this study assumes ideal communication conditions among CAVs, 
excluding communication delays, data loss, or system failures. Future models should incorporate more 
realistic communication constraints to enhance model validity. Finally, although platoon intensity is adopted 
here as the primary metric for quantifying spatial distribution, future research could explore additional 
quantitative indicators to capture the spatial structure of CAVs in mixed traffic more comprehensively. 
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