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ABSTRACT

Extracellular Vesicles (EVs) are small, membrane-bound particles released by cells into biological fluids, where they function
as mediators of intercellular communication. These vesicles transport a diverse array of bioactive molecules, including proteins,
lipids, and nucleic acids, and play essential roles in regulating physiological and pathological processes. Recent research has re-
vealed the significance of EVs in reproductive biology, particularly in the areas of spermatozoa maturation, oocyte development,
embryo implantation, and maternal-fetal interactions. Given their widespread distribution and biological importance, EVs have
been increasingly studied for their potential applications in both human and livestock reproductive medicine. Understanding
the mechanisms by which EVs contribute to reproductive processes is crucial, as they offer novel opportunities for improving
reproductive health, diagnosing fertility disorders, and enhancing assisted reproductive technologies. In males, EVs derived
from seminal plasma and the epididymis influence sperm motility, capacitation, and fertilisation potential. In females, vesicles
secreted within follicular, oviductal, and uterine fluids mediate communication between the oocyte, embryo, and maternal re-
productive tract. Furthermore, placental-derived EVs regulate immune tolerance, vascular remodelling, and fetal development
throughout pregnancy. EVs are emerging as promising tools for fertility assessment and reproductive diagnostics. Their molecu-
lar cargo reflects the physiological state of the reproductive system, enabling their use as non-invasive biomarkers for evaluating
gamete quality, embryo viability, and pregnancy health. Despite their immense potential, challenges remain in optimising EV
isolation, improving characterisation techniques, and deciphering the precise molecular mechanisms underlying their function.
Standardisation of methodologies, development of targeted vesicle-based therapeutics, and validation of their efficacy in repro-
ductive medicine are necessary to fully realise their clinical utility. The field of EV research in reproductive biology continues
to evolve rapidly, and ongoing studies will undoubtedly lead to new insights into their role in fertility, embryo development, and
pregnancy maintenance.

1 | Introduction virtually all biological fluids (Littekivi et al. 2022; Rodriguez-
martinez and Roca 2022; Sun and Lerman 2020; Van Herwijnen
Extracellular Vesicles (EVs) are widely recognised as key media- et al. 2016). These vesicles, which range in size from 30 to

tors of intercellular communication and have been identified in 1000nm, serve as carriers of bioactive molecules that regulate
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various physiological processes. Their presence in reproductive
fluids, including seminal plasma (Reshi et al. 2021), follicular
fluid (Hasan et al. 2021), oviductal fluid (Almifiana et al. 2017),
and uterine secretions (Piibor et al. 2023), has sparked signifi-
cant interest for studying their involvement and function in re-
productive biology and physiology.

Reproduction is a highly complex process that involves in-
tricate signalling between gametes, the reproductive tract
(Ghersevich et al. 2015; Hasan et al. 2021), and the developing
embryo (Guzewska et al. 2023; Muhandiram et al. 2023; Segura-
Benitez et al. 2022). The discovery that EVs facilitate molecular
crosstalk at multiple stages of reproduction has led to increas-
ing investigations into their biological significance (Fazeli and
Godakumara 2024). In the male reproductive system, EVs may
influence spermatozoa maturation and development, capacita-
tion (Hasan et al. 2021) and interactions of spermatozoa with
the female reproductive tract (Reshi et al. 2023). In females, EVs
secreted in the follicular and endometrial environment con-
tribute to oocyte competence (Makieva, Saenz-de-Juano, et al.
2024), embryo implantation (Evans et al. 2019; Muhandiram
et al. 2023), and maternal immune modulation during preg-
nancy (Wu et al. 2022).

The study of EVs in reproductive medicine has expanded
due to their potential as biomarkers for fertility assessment
(Dissanayake et al. 2021; Rana et al. 2024) and potential ap-
plications for diagnosing reproductive disorders (Muraoka
et al. 2024a; Piibor et al. 2024). Their cargo composition, which
includes proteins, microRNAs, and lipids, may reflect the phys-
iological status of the reproductive system (Hart et al. 2023;
Mousavi et al. 2024), making them ideal candidates for non-
invasive diagnostics. Additionally, EV-based therapies are being
explored for enhancing in vitro fertilisation outcomes (Franko
and de Almeida Monteiro Melo Ferraz 2024), improving embryo
culture conditions (Bauersachs et al. 2020), and even developing
novel treatments for infertility (Liu et al. 2020; Poh et al. 2023).

The recognition of EVs as central players in reproductive pro-
cesses has prompted further research into their biogenesis,
molecular function, and translational applications. However,
challenges such as standardising isolation techniques, charac-
terising heterogeneous vesicle populations, and elucidating their
precise functional roles remain significant obstacles in the fur-
ther development of the field. Continued advancements in mo-
lecular biology, nanotechnology, and reproductive sciences will
be essential for fully understanding the function of EVs in any
physiological system, including reproductive systems. In addi-
tion, such developments will allow harnessing the therapeutic
and diagnostic potential of EVs in reproductive medicine.

2 | Biology and Biogenesis of EVs

EVs are categorised based on their size, mode of biogenesis,
and functional properties. They include exosomes, which are
the smallest vesicles ranging from 30 to 150nm, microvesi-
cles, which are larger and typically range from 150 to 1000 nm,
and apoptotic bodies, which can reach up to 2000nm in size
(Welsh et al. 2024; Yafiez-Mo et al. 2015). These vesicles are
released into the extracellular environment through distinct

cellular mechanisms, each contributing to their unique molec-
ular composition and function (Dissanayake et al. 2024; Hagey
et al. 2023).

Exosomes originate from endosomes; they form endosomal
compartments that contain intraluminal vesicles. These vesi-
cles are released into the extracellular space through fusion of
multivesicular bodies with the plasma membrane (Kalluri and
LeBleu 2020). Microvesicles, on the other hand, are formed by
outward budding of the plasma membrane, a process regulated
by lipid reorganisation and cytoskeletal remodelling (Tricarico
et al. 2017). Apoptotic bodies are generated during programmed
cell death and contain remnants of cellular components, includ-
ing nuclear fragments, organelles, and cytoplasmic proteins
(Battistelli and Falcieri 2020).

The cargo of EVs is selectively sorted and loaded into vesicles
through complex regulatory pathways (Lee et al. 2024). The
endosomal sorting complex required for transport, also known
as ESCRT, is a major determinant of exosome biogenesis and
is responsible for packaging specific biomolecules into vesicles
(Frankel and Audhya 2018). Lipid raft-associated pathways
(De Gassart et al. 2003) and tetraspanin proteins also play key
roles in vesicle cargo selection. The composition of EVs is highly
dynamic and varies depending on the cell of origin (Hagey
et al. 2023), physiological conditions (Hart et al. 2023), and envi-
ronmental stimuli (Mousavi et al. 2024).

EVs are enriched in proteins such as heat shock proteins, tet-
raspanins, and integrins, which are involved in cell adhesion,
signalling, and stress responses. Lipid analysis of vesicle mem-
branes has revealed a unique composition of sphingolipids, ce-
ramides, and cholesterol, contributing to membrane stability
and fusion properties (Ghadami and Dellinger 2023; Haraszti
et al. 2016). The presence of microRNAs, messenger RNAs, and
long non-coding RNAs within vesicles further highlights their
role in post-transcriptional gene regulation (O'Brien et al. 2020).
The ability of EVs to transfer functional nucleic acids between
cells has profound implications for reproductive biology, as they
can modulate gene expression and cellular behaviour in target
tissues (Dissanayake et al. 2024; Es-Haghi et al. 2019).

Advances in omics technologies, including proteomics, lipidom-
ics, and transcriptomics, have greatly enhanced our understand-
ing of EVs composition (Blandin et al. 2023; Ghanam et al. 2022;
Hayasaka et al. 2023; Lischnig et al. 2022). High-throughput
sequencing and mass spectrometry have allowed researchers
to identify key molecular signatures associated with reproduc-
tive EVs. These insights are essential for deciphering the func-
tional roles of vesicles in gamete development, fertilisation, and
embryo implantation (Beal et al. 2023; Mazzarella et al. 2024;
Piibor et al. 2023, 2024).

Despite significant progress, challenges remain in isolating
and characterising EVs with high specificity. Current isolation
methods, such as ultracentrifugation, size-exclusion chroma-
tography, and immunoaffinity capture, each have limitations in
terms of purity, yield, and vesicle integrity (Brennan et al. 2020;
Welsh et al. 2024). The development of microfluidic-based plat-
forms and single-vesicle analysis techniques will be crucial for
improving EV isolation and characterisation (Gao et al. 2023).

20f 16

Reproduction in Domestic Animals, 2025

ASUAOIT SUOWIWOY) dANEAI) d[qedrjdde ayy Aq pauraAoS are sa[onIe Y osn Jo sa[nI 10§y AIeIqr auruQ L[IAL UO (SUONIPUOI-PUB-SULIA)/W0Y" KA[1M " ATeIqT[ouI[uo//:sdni) SUonIpuo)) pue suLd L, Ay 23S *[S707/60/80] U0 Areiqr autuQ A[IA\ 1591 Aq 1 TOLBPY/ 111 01/10p/wod Ka[im* Kreiqrjauruo//:sdny woly papeo[umo( ‘€S ‘S70T ‘1€S06EF1



The study of EV biogenesis has provided important insights into
their regulatory mechanisms and functional relevance (Dar
et al. 2021; Dixson et al. 2024). Understanding how vesicles are
formed, packaged, and secreted will pave the way for developing
targeted therapeutic strategies that exploit their natural signal-
ling capabilities (Hadizadeh et al. 2022). Given their potential
for modulating reproductive processes, EVs represent a promis-
ing avenue for advancing fertility research and clinical applica-
tions (Parvin et al. 2024).

3 | Role of EVs in Male Fertility

EVs play a crucial role in male reproductive physiology, par-
ticularly in the processes of sperm maturation, motility reg-
ulation, and fertilisation (Rana et al. 2024; Xu et al. 2024).
The male reproductive tract is composed of several distinct
regions, including the testes, epididymis, prostate, and semi-
nal vesicles, all of which contribute secretions that ultimately
form the seminal plasma (Perumal 2012; Rodriguez-Martinez
et al. 2021). The fluid component of semen (seminal plasma)
contains a complex mixture of molecules, including proteins,
hormones, lipids, and EVs (Evans et al. 2021; Jodar et al. 2016;
Wang et al. 2022). These vesicles act as carriers of regulatory
molecules that influence sperm physiology and fertilisation
capacity.

Spermatogenesis, the process of sperm cell production, occurs
within the seminiferous tubules of the testes and involves a com-
plex series of cell divisions and differentiation steps (Nishimura
and L'Hernault 2017). The spermatozoa that emerge from the
testes are structurally complete but functionally immature
(Schubert 2016). They acquire motility and fertilisation poten-
tial during their transit through the epididymis, a highly spe-
cialised ductal system where epididymal EVs contribute to
post-testicular sperm maturation (Gervasi and Visconti 2017).
Epididymosomes, a specific subset of EVs found in the epididy-
mal lumen of the epididymis, have been shown to transfer pro-
teins, lipids, and non-coding RNAs to spermatozoa, modulating
their membrane composition and functional properties (Ali
et al. 2023; Barrachina et al. 2022).

EVs also regulate sperm motility by influencing ion channel ac-
tivity and the metabolic state of spermatozoa (Pinto et al. 2023).
The acquisition of motility is essential for spermatozoa to reach
and penetrate the oocyte, and EVs in seminal plasma contain
signalling molecules that enhance sperm energetics and cyto-
skeletal rearrangements required for progressive motility (Han,
Li, et al. 2024; Tamessar et al. 2024; Zhang, Liang, et al. 2024).
Additionally, capacitation, a process that prepares spermatozoa
for the acrosome reaction and fertilisation (Xu et al. 2024), is in-
fluenced by EVs containing cholesterol efflux regulators and en-
zymes that modify sperm membrane fluidity (Hasan et al. 2021;
Travis and Kopf 2002).

The role of EVs extends beyond sperm motility and capaci-
tation to sperm-egg recognition and interaction. During fer-
tilisation, spermatozoa must first penetrate the cumulus cell
layers surrounding the oocyte before binding to the zona pel-
lucida, an extracellular matrix that encases the egg (Lange-
Consiglio et al. 2022). Sperm-derived EVs have been implicated

in facilitating this interaction by transferring zona pellucida-
binding proteins and proteases that help in zona penetration
(Pal et al. 2025; Wang et al. 2022). Furthermore, seminal plasma
EVs also modulate the immune response of the female reproduc-
tive tract to ensure sperm survival and tolerogenic immune con-
ditions for successful fertilisation (Zhang, Greve, et al. 2024).

Emerging studies suggest that defects in EV-mediated signalling
can lead to male infertility (Parra et al. 2023; Xu et al. 2024).
Aberrant composition of EVs in seminal plasma has been asso-
ciated with impaired sperm motility, increased oxidative stress,
and decreased fertilisation potential (Cannarella et al. 2020;
Han, Li, et al. 2024). The use of EV biomarkers for assessing
spermatozoa quality and diagnosing male infertility is a grow-
ing area of interest, offering a non-invasive means of evaluating
reproductive potential (Rana et al. 2024).

4 | Role of EVs in Female Fertility

EVs are also critical in female reproductive processes, particu-
larly in oocyte maturation, follicular development, and embryo
implantation (Machtinger et al. 2021). The female reproduc-
tive tract is a highly dynamic environment that undergoes cy-
clical changes regulated by hormonal fluctuations (Hawkins
and Matzuk 2008). EVs mediate molecular communication
within the follicular (Hasan et al. 2021), oviductal (Dissanayake
et al. 2021), and uterine microenvironments (Godakumara
et al. 2021; Piibor et al. 2024).

Follicular fluid, which surrounds the developing oocyte within
the ovarian follicle, contains EVs secreted by granulosa cells,
theca cells, and the oocyte itself (Lai et al. 2015). These vesi-
cles play an essential role in oocyte competence, which refers to
the ability of an oocyte to undergo successful fertilisation and
embryonic development (Gabry$ et al. 2022). The cargo of fol-
licular EVs includes growth factors, cytokines, and microRNAs
that regulate follicular cell proliferation, oocyte metabolic ac-
tivity, and meiotic progression (Benedetti et al. 2024; Uzbekova
et al. 2020). In particular, EVs contribute to the transfer of small
RNAs involved in epigenetic modifications, which may influ-
ence oocyte developmental potential (Aoki et al. 2024; Martinez
et al. 2018).

After ovulation, the oocyte enters the oviduct, where fertilisation
occurs. The oviductal fluid provides a supportive environment
for sperm capacitation, fertilisation, and early embryo develop-
ment (Ferraz et al. 2019). EVs secreted by oviduct epithelial cells
have been shown to facilitate sperm storage and survival within
the oviduct by preventing premature capacitation (Alcintara-
Neto et al. 2020; Ferraz et al. 2019). These vesicles also con-
tribute to spermatozoa selection by influencing the molecular
composition of the oviductal reservoir where spermatozoa are
retained before fertilisation (Lange-Consiglio et al. 2022).

Following fertilisation, the early embryo undergoes a series of
cleavage divisions while travelling through the oviduct toward
the uterus. During this pre-implantation period, EVs in the
oviductal and uterine fluids provide essential signals that reg-
ulate embryo metabolism, gene expression, and immune toler-
ance (Poh et al. 2022; Segura-ben et al. 2025). The transfer of
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maternal RNAs and proteins via EVs has been suggested to play
a role in embryo quality and implantation success (Es-Haghi
et al. 2019; Leal et al. 2022).

5 | Embryo-Maternal Crosstalk Mediated by EVs

Successful pregnancy requires complex molecular communi-
cation between the developing embryo and the maternal endo-
metrium. This process, known as embryo-maternal crosstalk, is
largely mediated by EVs, which serve as molecular messengers
facilitating bidirectional signalling between the embryo and the
uterine lining.

Prior to implantation, the blastocyst must establish a receptive
environment within the uterus. EVs secreted by trophoblast
cells, the outer layer of the blastocyst, interact with maternal
immune cells and endometrial epithelial cells to promote en-
dometrial receptivity (Godakumara et al. 2021; Godakumara
et al. 2023; Makieva, Giacomini, et al. 2024; Muhandiram
et al. 2023; Poh et al. 2021). These vesicles carry signalling mole-
cules such as cytokines, integrins, and microRNAs that regulate
endometrial remodelling and vascularisation, ensuring ade-
quate blood supply to the implantation site (Fatmous et al. 2022;
Guzewska et al. 2023; Poh et al. 2023).

EVs also play a crucial role in immune regulation during preg-
nancy. The maternal immune system must tolerate the presence
of the semi-allogeneic fetus while maintaining immune surveil-
lance to prevent infections. Trophoblast-derived EVs contribute
to maternal immune tolerance by modulating the activity of im-
mune cells, including T cells, macrophages, and natural killer
cells (Favaro et al. 2021; Wu et al. 2024). These vesicles suppress
inflammatory responses and promote an anti-inflammatory en-
vironment conducive to fetal development.

Dysregulation of EV-mediated communication during implan-
tation has been implicated in pregnancy complications such as
recurrent implantation failure and early pregnancy loss (Sun
et al. 2025; Zhang et al. 2020). Abnormal EV cargo, altered
secretion patterns, and disrupted vesicle uptake by maternal
cells may contribute to implantation failure and placental dys-
function (Makieva, Giacomini, Giacomini, et al. 2024; Segura-
Benitez et al. 2022).

6 | EVsin Placental Function and Fetal
Development

The placenta is a vital organ that facilitates nutrient exchange,
gas exchange, and immune modulation between the mother and
fetus (Gude et al. 2004). EVs derived from placental trophoblasts
have been identified in maternal circulation and play an essen-
tial role in pregnancy maintenance (Kupper and Huppertz 2022;
Tong et al. 2018).

Placental EVs regulate vascular remodelling and angiogene-
sis by transferring pro-angiogenic factors to endothelial cells
(Crongvist et al. 2020). These vesicles contain growth factors
such as vascular endothelial growth factor (VEGF) and placen-
tal growth factor (PIGF), which stimulate the formation of new

blood vessels within the maternal-fetal interface. Proper vascu-
larisation of the placenta is critical for fetal oxygenation and nu-
trient delivery (Feng et al. 2022; Gebara et al. 2021).

EVs also influence metabolic adaptations during pregnancy.
Placenta-derived vesicles carry metabolic enzymes and trans-
porters involved in glucose homeostasis, lipid metabolism,
and fetal nutrient uptake. These vesicles ensure optimal fetal
growth by modulating maternal metabolic pathways (Renaud
et al. 2023; Rosenfeld 2024).

Pregnancy complications such as preeclampsia, gestational di-
abetes, and intrauterine growth restriction have been linked to
altered EV profiles in maternal circulation (Levine et al. 2020;
Ortega et al. 2022). Analysing the composition of placental EVs
may provide valuable insights into pregnancy health and allow
for early diagnosis of gestational disorders (Chaemsaithong
et al. 2023).

7 | Clinical Applications of EVs in Reproductive
Medicine

The clinical applications of EVs in reproductive medicine are
vast, with potential uses in fertility diagnostics (Muraoka
et al. 2024b; Rana et al. 2024), ART enhancement (Fang
et al. 2023), and therapeutic interventions (Xue et al. 2024). One
of the most promising applications is the use of EVs as biomark-
ers for assessing fertility status. Clinicians may be able to predict
sperm quality (Pal et al. 2025), oocyte competence (da Silveira
et al. 2012), and embryo viability (Dissanayake et al. 2021; Es-
Haghi et al. 2019) by analysing the molecular composition of
EVs in seminal plasma, follicular fluid, and uterine secretions.

In assisted reproductive technologies, EVs have been explored as
tools for improving embryo culture conditions (Xue et al. 2024).
Supplementing culture media with EVs derived from reproduc-
tive fluids may enhance embryo development by providing es-
sential growth factors and protective molecules (Leal et al. 2022;
Poh et al. 2023).

8 | Applications of EVs in Livestock Breeding

EVs have significant potential in improving reproductive out-
comes in livestock species such as cattle, pigs, sheep, goats,
and horses breeding programmes (Table 1). The global live-
stock industry relies heavily on assisted reproductive technol-
ogies, including artificial insemination, embryo transfer, and
in vitro fertilisation, to enhance genetic traits and reproduc-
tive efficiency (Gadea et al. 2020; Mikkola et al. 2024; Verma
et al. 2012). Despite advancements in these technologies, fertility
rates remain suboptimal due to limitations in sperm cryopreser-
vation (Donnelly et al. 2001; Tanga et al. 2021), embryo viability
(Erdem et al. 2020; Lopera-Vasquez et al. 2017), and maternal
receptivity (Binelli et al. 2022; Paulson and Comizzoli 2021).
Emerging research suggests that EVs can provide novel solutions
for overcoming these challenges by modulating sperm function
(Mahdavinezhad et al. 2022), embryo-maternal communication
(Hu et al. 2022; Xue et al. 2024), and pregnancy maintenance
(Galli et al. 2024).
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TABLE1 | Potential applications of EVs in livestock breeding.

Potential applications of EVs in
livestock breeding Species In vitro/In vivo Key findings References

EVs as fertility biomarkers Chicken In vitro Smaller EVs in seminal plasma appeared more Cordeiro et al. (2018)
abundant in fertile than in subfertile roosters.
HSP90A was significantly more abundant
in fertile than in subfertile males seminal
plasma EVs. Co-incubation seminal plasma
EVs with sperm showed a higher capacity to
be incorporated into fertile than into subfertile
sperm. Sperm viability and motility were
impacted by the presence of EV from fertile males

Bovine In vitro EVs present in bovine follicular fluid of antral da Silveira et al. (2021)
follicles of similar morphology contain lipids
that may be used as biomarkers associated
with the developmental capability of the
oocyte to develop to the blastocyst stage

Chicken In vitro The seminal plasma EVs was successfully Han et al. (2023)
isolated from 4 different chicken breeds and
miRNA was sequenced. Seminal plasma EV
coupled miRNA have roles in sperm maturation
and regulating the female's immune response
and lipid metabolism, therefore have the
potential to use as biomarkers of fertility

Buffalo In vitro The proteome of seminal plasma exosomes Yu et al. (2023)
differs between seminal plasma associated with
high-motility and low-motility spermatozoa

Boars In vitro Seminal plasma EV-derived miRNAs Chen et al. (2025); Dlamini et al. (2023)
reflect boar sperm quality

Sahiwal cattle In vitro bta-miR-195 in seminal plasma EVs had Chauhan et al. (2024)
80% higher expression in high fertility
bulls compared to low fertility bulls,
suggesting its association fertility status

Stallions In vitro Particle size of seminal plasma EVs collected Barranco et al. (2025)
from good freezability ejaculates were
different from poor freezability ejaculates

(Continues)
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TABLE 1 (Continued)

91309

Potential applications of EVs in
livestock breeding Species

In vitro/In vivo

Key findings

References

Role of EVs in enhancing sperm Boar
function and cryopreservation

Boar

Bovine

Sahiwal cattle bulls

Bovine

Bovine

Stallion

In vitro

In vitro

In vitro

In vitro

In vitro

In vitro

In vitro

Pig prostasome-like vesicles are able,
in vitro, to interact with spermatozoa and
to stimulate the acrosome reaction

Adding boar seminal plasma exosomes to boar
sperm preparations increased their functional
parameters such as sperm motility, prolonged
effective survival time, improved sperm plasma
membrane integrity, increased total antioxidant
capacity activity and decreased malondialdehyde
content. This effect was dose dependent

Follicular fluid derived EVs were able to
modulate the viability, capacitation and
acrosome reaction of bull spermatozoa

Supplementing low fertility bull spermatozoa
with high fertility bull seminal plasma EVs
could enhance their functional characteristics

Oviductal fluid derived EVs carry sperm
interacting proteins such as OVGP1,
ACTB, HSP27, MYH9, MYH14 and
OVGP1 and their abundance change

across menstrual cycle. Therefore, above

protein candidates in oviductal fluid were
identified as modulating sperm functions

EVs from bull semen plasma significantly improve
cryostability of cells by supporting the potentials
of the mitochondrial membrane and protecting
the cytoplasmic membrane of spermatozoa

Equine mesenchymal stem cells
(derived from adipose tissue) derived
EVs enhances stallion sperm motility,
progressive movement and viability

Siciliano et al. (2008)

Du et al. (2016)

Hasan et al. (2021)

Pal et al. (2025)

Lamy et al. (2004)

Kowalczyk and Kordan (2024)

Sawicki et al. (2024)
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TABLE 1 (Continued)

Potential applications of EVs in

livestock breeding Species In vitro/In vivo Key findings References
EVs in improving oocyte maturation Bovine In vitro Exosomes in follicular fluid play important Rodrigues et al. (2019)
and embryo development roles during oocyte maturation to enhance

oocyte function and protect it from stress

Porcine In vitro Oviductal fluid derived EVs (OEC-EVs) in porcine Fang et al. (2023)
significantly improved the concentration and
distribution of cortical granules in oocytes.
Furthermore, OECEVs also increased oocyte
mitochondrial activity, reduced polyspermy
and increased the IVF success rate

Bovine In vitro Follicular phase uterine EVs significantly Piibor et al. (2023)
increased the blastocyst rates of
in vitro produced bovine embryos

Porcine In vitro Enhanced in vitro oocyte maturation in pigs with Han, Zhang, et al. (2024)
follicular fluid exosomes is mediated by MiR-
339-5p regulated ERK1/2 pathway through SFPQ

Equine In vitro Follicular fluid derived EVs significantly Gabrys et al. (2024)
enhanced cumulus expansion in both compacted
and expanded cumulus-oocyte complexes,
while viability increased in compacted
group, but decreased in expanded group

Porcine In vitro EVs derived from porcine uterine fluid during Miura et al. (2024)
the estrous phase carry bioactive molecules like
glutathione, which help protect blastocysts from
oxidative stress and enhance their development

Bovine In vitro Supplementation of the oocyte maturation media Pakniyat et al. (2025)
with follicular and ampullary fluid EVs positively
influenced oocyte quality and enhanced in vitro
maturation, fertilisation rates, and the TNFAIP6,
HAS2, and GDF9 genes expression changes

(Continues)
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> Potential applications of EVs in
livestock breeding Species In vitro/In vivo Key findings References
EVs in improving oocyte maturation Bovine In vitro Exosomes in follicular fluid play important Rodrigues et al. (2019)
and embryo development roles during oocyte maturation to enhance

oocyte function and protect it from stress

Porcine In vitro Oviductal fluid derived EVs (OEC-EVs) in porcine Fang et al. (2023)
significantly improved the concentration and
distribution of cortical granules in oocytes.
Furthermore, OECEVs also increased oocyte
mitochondrial activity, reduced polyspermy
and increased the IVF success rate

Bovine In vitro Follicular phase uterine EVs significantly Piibor et al. (2023)
increased the blastocyst rates of
in vitro produced bovine embryos

Porcine In vitro Enhanced in vitro oocyte maturation in pigs with Han, Zhang, et al. (2024)
follicular fluid exosomes is mediated by MiR-
339-5p regulated ERK1/2 pathway through SFPQ

Equine In vitro Follicular fluid derived EVs significantly Gabrys et al. (2024)
enhanced cumulus expansion in both compacted
and expanded cumulus-oocyte complexes,
while viability increased in compacted
group, but decreased in expanded group

Porcine In vitro EVs derived from porcine uterine fluid during Miura et al. (2024)
the estrous phase carry bioactive molecules like
glutathione, which help protect blastocysts from
oxidative stress and enhance their development

Bovine In vitro Supplementation of the oocyte maturation media Pakniyat et al. (2025)
with follicular and ampullary fluid EVs positively
influenced oocyte quality and enhanced in vitro
maturation, fertilisation rates, and the changes
in TNFAIP6, HAS2, and GDF9 gene expression

EVs in improving the process of Bovine In vitro and Amniotic fluid-derived microvesicles Lange-Consiglio et al. (2020)
in vitro fertilisation and embryo in vivo enhanced the hatching rate of in vitro-
transfer produced embryos and improved pregnancy

outcomes following embryo transfer
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One of the primary applications of EVs in livestock reproduc-
tion is their use as fertility biomarkers. Identifying reliable
biomarkers for spermatozoa quality (Rana et al. 2024), oocyte
competence (Uzbekova et al. 2020), and embryo development
(Dissanayake et al. 2020) is crucial for selecting the most viable
and functional gametes and embryos for assisted reproductive
technologies. Studies have shown that EVs isolated from semi-
nal plasma contain microRNAs and proteins that correlate with
sperm motility, viability, and fertilisation capacity (Barranco
et al. 2019; Pal et al. 2025). Similarly, EVs from follicular fluid
have been found to carry molecular signatures associated
with oocyte maturation and developmental potential (Gabry$
et al. 2022; Hung et al. 2015). Veterinarians and breeders can
make informed decisions regarding breeding strategies and ar-
tificial insemination protocols by analysing the EV profiles in
reproductive fluids.

EVs also have potential applications in sperm preservation
and cryopreservation. Freezing and thawing procedures com-
monly used in artificial insemination can cause structural dam-
age and reduce the viability of spermatozoa. Supplementing
cryopreservation media with EVs derived from epididymal or
seminal plasma has been shown to improve post-thaw sperm
motility and membrane integrity (Rodriguez-martinez and
Roca 2022). These vesicles provide protective effects by stabilis-
ing lipid membranes, reducing oxidative stress, and delivering
key proteins involved in sperm function (Barranco et al. 2025).
Enhancing sperm preservation techniques using EVs could
lead to higher conception rates in artificial insemination pro-
grammes (Sawicki et al. 2024).

In embryo transfer programs and in in vitro fertilisation prac-
tices, EVs can be utilised to improve embryo culture conditions
and implantation success. The early embryo relies on maternal
signals from the oviduct and uterus to regulate gene expression
and developmental processes. Co-culturing embryos with EVs
derived from oviductal and endometrial secretions has been
shown to enhance blastocyst formation rates, reduce oxida-
tive stress, and improve embryo survival (Han et al. 2025; Leal
et al. 2022; Mazzarella et al. 2024; Piibor et al. 2024). These
findings suggest that EVs could be used as bioactive additives in
embryo culture media to mimic the physiological environment
of the reproductive tract.

Another promising application of EVs in livestock reproduc-
tion is their potential use in reproductive immunomodulation.
Pregnancy in mammals involves complex interactions between
the maternal immune system and the developing fetus (Abu-
Raya et al. 2020). Inadequate immune tolerance to the em-
bryo can lead to implantation failure or early pregnancy loss
(Andreescu 2023). EVs secreted by the conceptus and maternal
tissues help regulate immune responses by suppressing pro-
inflammatory cytokines and promoting regulatory T-cell activ-
ity (Abeysinghe et al. 2023; Paktinat et al. 2021). Understanding
how EVs contribute to maternal-fetal immune tolerance could
pave the way for developing therapeutic approaches to prevent
pregnancy complications in livestock.

EVs may also play a role in improving the efficiency of clon-
ing and somatic cell nuclear transfer. Cloning techniques
are often associated with low success rates due to epigenetic

abnormalities and improper reprogramming of the donor nu-
cleus (Gouveia et al. 2020; Srirattana et al. 2022). Emerging
evidence suggests that EVs derived from oocytes and early
embryos contain epigenetic modifiers that may enhance nu-
clear reprogramming (Barrera et al. 2017; Estill et al. 2016).
Researchers may be able to improve the developmental com-
petence of cloned embryos and increase the efficiency of so-
matic cell nuclear transfer by incorporating EVs into cloning
protocols.

9 | Challenges and Limitations in EV Research

Despite the promising applications of EVs in reproductive medi-
cine and livestock production, several challenges and limitations
need to be addressed before their widespread implementation.
One of the primary challenges in EV research is the standard-
isation of isolation and characterisation techniques. Various
methods, including ultracentrifugation, size-exclusion chroma-
tography, and microfluidic-based approaches, are used to iso-
late EVs from biological fluids (Welsh et al. 2024; Yakubovich
et al. 2022). However, differences in isolation protocols can
lead to inconsistencies in vesicle purity, yield, and functional-
ity (Allelein et al. 2021; Ramirez et al. 2018). Developing stan-
dardised methodologies for EV isolation and characterisation is
essential for ensuring reproducibility and comparability across
studies.

Another limitation in EV research is the heterogeneity of ves-
icle populations. EVs are a diverse group of particles with
varying sizes, cargo compositions, and biogenesis pathways.
Distinguishing between exosomes, microvesicles, and apoptotic
bodies remains a challenge due to overlapping size distribu-
tions and shared molecular markers (Allelein et al. 2021; Wang
et al. 2025; Willms et al. 2018). Advances in single-vesicle anal-
ysis techniques (Midekessa et al. 2021), such as high-resolution
flow cytometry (Barranco et al. 2024) and super-resolution mi-
croscopy (Bagci et al. 2022), may provide more precise methods
for characterising EV subtypes.

The functional mechanisms of EVs in reproductive processes
also remain incompletely understood. While studies have
demonstrated the involvement of EVs in sperm maturation, oo-
cyte competence, and embryo—maternal communication, the
exact molecular pathways by which these vesicles exert their
effects require further investigation (Dissanayake et al. 2024;
Hasan et al. 2021; Hung et al. 2015; Muhandiram et al. 2024).
Identifying the specific cargo molecules responsible for EV-
mediated signalling will be crucial for developing targeted ther-
apeutic applications.

In clinical settings, the scalability and cost-effectiveness of EV-
based therapies pose additional challenges (Adlerz et al. 2020;
Ng et al. 2022). Large-scale production of EVs for therapeutic
use requires optimised cell culture conditions and efficient
purification methods (Busatto et al. 2018; Kusuma et al. 2022;
Liagat et al. 2024). Furthermore, regulatory considerations re-
garding the safety, stability, and delivery of EV-based treatments
need to be addressed before they can be integrated into success-
ful reproductive medicine applications and treatments (Wang
et al. 2024).
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10 | Future Directions in Reproductive Biology
and Physiology EV Research

As the field of EV research continues to evolve, several exciting
avenues for future exploration have emerged. One promising
direction is the development of engineered EVs for targeted re-
productive therapies. Researchers can design vesicles with en-
hanced therapeutic properties by modifying EV cargo through
genetic engineering or chemical modifications. For example, EVs
engineered to carry specific microRNAs or proteins involved in
sperm function could be used to treat male infertility. Similarly,
EVs containing pro-angiogenic factors may be utilised to improve
placental vascularisation in cases of recurrent pregnancy loss.

Another important area of research is the use of EVs as drug de-
livery vehicles in reproductive medicine. EVs have inherent bio-
compatibility and the ability to cross biological barriers, making
them ideal carriers for delivering drugs, hormones, or gene-
editing tools to reproductive tissues. Investigating the potential
of EV-based delivery systems for reproductive therapies could
lead to innovative treatments for infertility, endometriosis, and
other reproductive disorders.

EVs also hold promise for advancing non-invasive diagnostics in
reproductive health. The identification of EV-derived biomark-
ers for conditions such as polycystic ovary syndrome, endome-
triosis, and recurrent pregnancy loss could provide clinicians
with novel tools for early detection and personalised treatment
strategies. Liquid biopsy approaches utilising EV analysis may
revolutionise reproductive medicine by enabling real-time mon-
itoring of fertility status and pregnancy health.

In livestock reproduction, EV-based approaches may contrib-
ute to sustainable breeding practices and genetic improvement
programmes. Enhancing reproductive efficiency through EV-
mediated interventions could reduce the environmental impact
of livestock production and improve food security. Further re-
search into the role of EVs in gamete preservation and embryo
transfer could optimise breeding strategies for economically im-
portant animal species.

11 | Conclusions

EVs represent a rapidly expanding field of research with sig-
nificant implications for reproductive biology, clinical fertility
treatments, and livestock reproduction. Their ability to mediate
intercellular communication, regulate reproductive processes,
and serve as biomarkers for fertility assessment highlights their
potential as transformative tools in reproductive medicine.

While challenges remain in standardising isolation techniques,
characterising vesicle heterogeneity, and elucidating functional
mechanisms, ongoing advancements in molecular biology, bio-
engineering, and nanotechnology are poised to address these
limitations. The development of EV-based diagnostics and ther-
apeutics holds great promise for improving reproductive health
outcomes in both humans and animals.

As the scientific community continues to unravel the complex-
ities of EV biology, the integration of vesicle-based approaches

into clinical and agricultural settings will pave the way for in-
novative solutions in fertility management. The coming years
are likely to witness groundbreaking discoveries in EV research,
leading to novel applications that enhance reproductive success
and advance the fields of reproductive medicine and livestock
biotechnology.
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