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A guide to consumer-grade wearables in
cardiovascular clinical care and
population health for non-experts

Check for updates

Alexandra Jamieson1 , Timothy J. A. Chico2, Siana Jones1, Nishi Chaturvedi1, Alun D. Hughes1 &

Michele Orini1,3

Consumer-grade wearables provide an opportunity to understand public health trends, develop risk

stratification tools and monitor interventions. This review introduces the most common wearable

sensors and describes the health parameters that can bemeasured using them.We highlight research

into the validity and accuracy of these measurements and practical considerations for the use of

wearable data. Finally, we provide future perspectives onwearables in cardiovascular clinical practice

and population health research.

Use of consumer-grade wearables has grown considerably in recent years1.
These devices,most commonly in the formof smartwatches, wrist-bands or
rings, enable users to access personalised healthcare data and physical
activity parameters remotely, continuously and in real-time. In the context
of healthcare and population research, wearable technology provides an
opportunity to harness data at scale, understand public health trends,
develop risk stratification tools and monitor interventions.

Some features of consumer-grade wearables have regulatory
board (e.g. United States Food and Drug Administration; US FDA)
approval, however, the majority of biometric parameters are derived
from sensor signals such as photoplethysmography (PPG) and tri-
axial accelerometery and proprietary algorithms which are not
available for public scrutiny. Wearable device software and hardware
are regularly improved in the form of software updates and new
models with an increasing number of features on offer. The pro-
prietary nature and iterative approach in this market makes product
comparison and clinical utility difficult to quantify and track in real-
time. Furthermore, these devices are engineered and marketed pre-
dominantly for individual use and therefore consideration for the
practicalities surrounding data acquisition at scale and analysis
pipelines is required.

This review aims to provide a non-expert guide to practitioners in
clinical care and population health who are considering the use of
consumer-gradewearables in cardiovascular healthcare or research settings,
with a focus on the following: 1) a general introduction to wearable sensors;
2) the health parameters that can be measured using these sensors; 3) the
validity and accuracy of thesemeasurements; 4) practical considerations for
the acquisition and use of wearable data at scale and 5) clinical cardiovas-
cular and population health future perspectives.

What sensors are used in wearables?
While a growing number of sensors can potentially be embedded into
wearables, most of the physiological data in consumer-grade smartwatches
and rings is captured by accelerometery, photoplethysmography (PPG) and
electrocardiography (ECG) sensors (Fig. 1).

Photoplethysmography (PPG)
PPG is a non-invasive optical technique that uses an infrared light
source and a detector at the surface of the skin to measure small
variations in blood volume. The intensity of the light transmitted
through, or reflected from, skin capillaries is proportional to the
blood volume and its light absorption2. In reflectance PPG, the
methodology commonly built into wearables, light is shone from a
light emitting diode (LED) on to the skin, and the amount of light
reflected back is measured using a photodetector positioned close to
the emitting LED3. Wearable technology utilises the PPG signal,
whose shape is analogous to an arterial pulse wave but its unitless (Fig.
1), to estimate heart rate (HR) and HR variability (HRV)4. Other
physiological parameters derived from the PPG include respiratory
rate5, peripheral oxygen saturation6 and, more recently, blood pres-
sure (BP)7,8.

Accelerometery
Accelerometers are sensors that detect andmeasure acceleration forces (the
rate of change in velocity). Tri-axial accelerometers can detect changes in
movement and orientation in three planes (x; medial-lateral, y; cranial-
caudal and Z; anterior-posterior axes) and are widely incorporated into
wearables to estimate body position, and several measures of physical
activity9.
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Electrocardiography (ECG)
The ECG is the gold-standard non-invasive measure of the rhythm of the
heart. A standard 12-lead ECG provides a visual representation of the pro-
pagation of the electrical impulse through the heart during each cardiac cycle.
The variations in the amplitude of the ECG signal over time provide infor-
mation relating to both HR (e.g., fast or slow) and rhythm (e.g., normal or
abnormal). Traditionally, for clinical purposes this method of cardiac mon-
itoring is performed for 10-seconds at rest or can be performed for 24-hours
to several days using portable continuous Holter monitors. With advance-
ments in wearable technology, the recording of short ( ~ 30-second) single-
lead ECG recordings is now feasible in the most recent devices. These mea-
surements tend to be taken between opposite arms via two electrodes in close
proximity to one another, often a positive electrode on the back of a wrist-
worn wearable and a negative electrode positioned on the digital screen, to
create a bipolar ECGsignal similar to lead I of the traditional 12-leadECG10,11.

Additional Sensors
Wearables are now commonly equipped with many more sensors such as
barometers (elevation/altitude), magnetometers (magnetic fields), global
positioning systems (GPS; geolocation) and thermometers (temperature), to
provide more comprehensive functionality.

Electrodermal activity (EDA)
Electrodermal activity (EDA) sensors, also known as galvanic skin response
sensors use electrodes on the skin to measure subtle variations in electrical
conductance. These changes occur as a result of sweat gland activity and are
commonly associated with changes in emotional state. In the context of
wearables, EDA sensors are often used to infer periods of perceived stress12,13.

Bioelectrical Impedance (BioZ)
Body composition (fat mass, fat free mass, body water content and body fat
percentage) can be estimated through the use of bioelectrical impedance
analysis (BioZ). BioZmeasures the body’s resistance to a low-level electrical
current. Traditionally, the integration of this metric with wearable-derived
data has been achieved through the use ofmanufacturer specific compatible
bioimpedance scales which can be synchronised to an individual’s wearable
health dashboard14. More recently, this technology has been integrated into
a consumer-grade smartwatch, enabling individuals to estimate body
composition by taking a measurement at rest14. This is done by placing two
fingers from the opposite hand to the watch on designated smartwatch
button sensors to administer the microcurrent required for BioZ
assessment15. Due to its association with tissue hydration status, BioZ has

also been used in conjunction with the ECG sensor to predict heart failure
decompensation16,17 and has been used as part of predictive algorithms in
implantable devices18.

Gyroscopes
Gyroscopes are sensors that measure angular velocity (gyration) and can
detect very small angular displacements caused by cardiac activity19. Gyro-
scopes are often used in combination with accelerometers in a technique
calledGyrocardiography to record cardiac vibration signals in the chest. This
technique has been developed to provide insights into themechanical aspects
of the cardiac cycle anddetect cardiovasculardiseases suchas atrialfibrillation
(AF) and heart failure using smartphone applications20.

What health parameters can be derived from these
sensors and how accurate are they?
Table 1 provides details about commonly used smartwatch, wrist-band and
ring (Apple, Fitbit, Garmin, Oura, Polar, Samsung, Withings and Whoop)
devices and their biometric features. Table 2 highlights systematic reviews
and meta-analyses that have been performed in each of the biometric
parameters described in this section along with the wearablemanufacturers
that were reviewed in each. This table is detailed but not exhaustive.

A living umbrella review of systematic reviews evaluating the accuracy
of consumer-grade technologies in health measurement can be found
elsewhere21.

Resting heart rate (HR) and HR tracking
HR is modulated by the autonomic nervous system (ANS) and can be
modified by several physiological and environmental factors.HR changes in
response to many physiological and medical stimuli, such as exercise,
anxiety, pregnancy, physical fitness, and cardiovascular and non-
cardiovascular diseases. A chronically elevated resting HR is a strong
independent risk factor for all-cause mortality and for adverse outcomes in
individuals with cardiovascular disease22,23.

The accuracy of PPG estimation of HR has been widely documented
with validation performed against reference ECG measurements. At rest,
wearables are widely considered to measure HR accurately, with mean
absolute errors (AE) in the regionof 2 beats perminute (bpm),mean absolute
percentage errors (MAPE) reported as less than 10% and correlations
between thedevices and referencemethods consistently reported asmoderate
to excellent24–32.

A systematic review of the reliability and validity of commercially
available wearables (Fitbit, Apple Watch, Samsung and Garmin) was

Fig. 1 | Consumer-grade wearable sensor signals.

A schematic representation of three sensor signals

commonly used in consumer-grade wearables: tri-

axial accelerometery (Accel.), photoplethysmography

(PPG) and electrocardiography (ECG).

Tri-axial

Accel. Signal

PPG

Signal

ECG

Signal

Time (seconds)

Time (seconds)

Time (seconds)

R

P
T

Q
S

PR

QT

Y

Z

X

Systolic

peak Diastolic

peak

Diastolic

decay
Systolic

upstroke

Dicrotic

notch

Cycle duration

Steps

Pulse Rate

Heart Rate

https://doi.org/10.1038/s44325-025-00082-6 Review

npj Cardiovascular Health |            (2025) 2:44 2

www.nature.com/npjcardiohealth


Table 1 | Biometric features available in commonly used smartwatch, wrist-band and ring (Apple, Fitbit, Garmin, Oura, Polar, Samsung, Withings andWhoop) wearables

Apple Fitbit Garmin Oura Polar Samsung Withings Whoop

Health metrics

Resting HR Every 5mins Every 1min Every 15 sec Every 5mins Every 1 sec Every 5mins Every 10mins Every 1 sec

HR during activity Every 1 sec Every 1 sec Every 1 sec Every 1 sec Every 1 sec Every 1 sec Every 1 sec Every 1 sec

HR sensor PPG & ECG PPG PPG PPG PPG PPG PPG PPG

HRV ✓

SDNN

✓

RMSSD

✓

RMSSD

SDNN

* selected models

✓

RMSSD

✓

RMSSD

✓

SDNN

✓

SDNN

* selected models

✓

RMSSD

HRV sensor PPG & ECG PPG PPG PPG PPG PPG PPG & ECG PPG

HRV measurements Sleep & at rest Sleep Sleep & Health Snapshot

(informs body battery &

overnight recovery data)

Sleep Sleep & training Sleep & stress tracking Sleep Sleep

(informs baseline

recovery, strain, overall

readiness score)

ECG ✓

* Series 4 &

later models

✓

* Sense & Charge 5

✓

* Venu2+ onwards, Epix Pro

(Gen 2), Fenix 7 pro onwards,

quatix 7 Pro, tactix 7, D2 Mach

1 Pro, Enduro 3

× ✓

* Grit X2 Pro,

Vantage V3

✓

* Galaxy Watch 3,

Galaxy Watch Active 2

& later models

✓

* ScanWatch &

Move ECG

×

ECG recording

duration

30 s on demand 30 s on demand 30 s on demand n/a 30 s on demand 30 s on demand 30 s on demand n/a

ECG reporting Sinus rhythm

Atrial fibrillation

Low or high HR ( < 50

or >120 bpm)

Inconclusive

Poor recording

Sinus rhythm

Atrial Fibrillation

Sinus rhythm

Atrial Fibrillation

n/a Average HR

HRV

Beat to beat interval

Pulse arrival time

Orthostatic test

Sinus rhythm

Atrial Fibrillation

Sinus rhythm

Possible Atrial

Fibrillation

n/a

FDA clearance for AF

detection

✓

ECG & PPG

✓

ECG & PPG

× × × ✓

ECG

✓

ECG

×

SpO2 ✓

Blood Oxygen

* Series 6 &

later models

✓

SpO2 Sensor /

Estimated Oxygen

Variation

* Charge 4 & later

models, Sense &

Versa series

✓

Pulse Ox

(On demand or continuously)

✓

Blood oxygen sensing

* Gen 3

✓

SpO2

* Vantage

✓

Blood oxygen

* Galaxy Watch 3,

Galaxy Watch Active 2

& later models

✓

Oxygen saturation

On demand and sleep

tracking

✓

Blood oxygen saturation

* 4.0

Respiratory rate ✓

Respiratory rate

* Series 4 &

later models

✓

Breathing rate

* Charge 4 & later

models, Sense &

Versa series

✓

Respiration rate

* Venu, Fenix, Forerunner

series

✓

Respiratory rate

* Gen 2 & onwards

✓

Respiration rate

* Vantage

✓

Respiratory rate

* Galaxy Watch 3 &

onwards

✓

Breathing disturbances

✓

Respiratory rate

* 3.0 onwards

Respiratory rate

measurements

Sleep Sleep, rest & activity Sleep, rest & activity Readiness & sleep scores Nightly recharge

Serene guided

breathing exercise

Sleep analysis Irregular breathing

patterns during sleep

Continuously

Temperature ✓

Wrist temperature

* Series 8 &

later models

✓

Skin temperature

variation

* Sense, Versa 3 &

Charge 5

✓

Skin temperature

* Venu3 onwards, Epix Pro

(Gen 2), Fenix 7 pro onwards,

quatix 7 Pro, tactix 7, D2 Mach

1 Pro, Enduro 3

✓

Body temperature

* Gen 3

✓

Nightly skin

temperature

✓

Skin temperature

* Galaxy Watch 5

✓

Body temperature

* Scanwatch 2

✓

Skin temperature

* 3.0 onwards

Stress /

readiness score

× ✓

Stress management

score / daily

readiness score

✓

Stress tracking / body battery

✓

Readiness score /

daytime stress / resilience

✓

Nightly recharge

✓

Stress monitoring

✓

Stress level

✓

Stress score / day strain /

recovery
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Table 1 (continued) | Biometric features available in commonly used smartwatch, wrist-band and ring (Apple, Fitbit, Garmin, Oura, Polar, Samsung, Withings andWhoop)
wearables

Apple Fitbit Garmin Oura Polar Samsung Withings Whoop

Stress/ readiness

score based on

n/a EDA, HRV & sleep HRV, sleep & activity HRV, sleep, recovery

metrics

HRV & sleep HRV & other biometrics HRV HRV & HR data

Blood pressure ×

Compatible with

external BP cuffs

× × × × ✓

* requires periodic

calibration with a

traditional BP cuff

* region dependent

* Galaxy Watch 3,

Galaxy Watch Active 2

& later models

×

Compatible with

external BP cuffs

(Withings BPMConnect)

×

Body composition × ×

* From compatible

smart scales

(Fitbit Aria)

×

* From compatible smart

scales (Garmin Index Scale)

× × ✓

Body fat %, skeletal

muscle, basal

metabolic rate & body

water.

* Galaxy Watch 4 &

onwards

×

*Fromcompatible smart

scales (Withings Body+

and Body Cardio)

×

Energy expenditure ✓

Active & total calories

✓

Active & resting

calories

✓

Total calories

✓

Calories burned

✓

Total calories burned

& calorie tracking for

workouts

✓

Calories burned during

activities & during

the day

✓

Calories burned

✓

Calories burned

Women’s health ✓

Digital diary with

predictions

✓

Digital diary with

predictions

✓

Digital diary with predictions

✓

Digital diary with

predictions

× ✓

Digital diary with

predictions

✓

Digital diary

✓

Digital diary

Activity metrics

Step count ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Distance ✓

via step count & GPS

✓

via step count & GPS

✓

via step count & GPS

✓

via step count

✓

via step count & GPS

✓

via step count & GPS

✓

via step count & GPS

✓

via activity data

Built in GPS ✓

most models

✓

most models

✓

most models

×

location access can be

granted via mobile

phone app

✓

most models

✓

most models

✓

most models

×

location access can be

granted via mobile

phone app

Floors climbed ✓

3m (10 feet)

✓

3m (10 feet)

✓

3m (10 feet)

× ✓

* Vantage & Grit

series

✓

3m (10 feet)

× ×

Auto. activity

recognition

✓ ✓

SmartTrack

✓

Auto Activity Start

× ✓

Automatic Training

Detection

✓

Auto Detect Activity

✓

Automatic Workout

Detection

✓

CRF ✓

VO2max

(Cardio Fitness Level)

✓

Cardio Fitness Score

✓

VO2max

✓

Cardio Capacity

✓

Fitness test for

VO2max

✓

VO2max

✓

Cardio Fitness

✓

Strain Score

CRF estimate

based on

HR & activity data

from outdoor walking

or running

HR & activity data HR&activity data fromoutdoor

activities (walking, running,

cycling)

Anthropometric data &

walking test

HR during specific

activities

During specific

workouts

HR & activity data Workout intensity

(indirect cardiovascular

fitness)

CRF units ml/kg/min ml/kg/min ml/kg/min ml/kg/min ml/kg/min ml/kg/min ml/kg/min Score

Sleep
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performed for the measurement of HR (Table 2)33. A total of 29 studies
examined wearable device HR measurements compared with reference
measures includingECG,Polar chest straps and pulse oximetry.Of the 177
comparisons, 100 (56.5%) were within ±3% measurement error, 44
(24.9%)werebelow -3%measurement error and33 (18.6%)were above 3%
measurement error, with a slight tendency to underestimate HR33.

However, the accuracy of HR measurement in wearables is known to
decline during physical activity. In addition to activity intensity, the activity
type and specifically armmovement during the activity have been shown to
influence the accuracy of HR measurements34–36. We recently observed
excellent accuracy in measuring HR at rest, and during recovery
(MAPE ≤3%), in both Garmin and Fitbit devices, but accuracy worsened
during peak exercise37. MAPE was similar to rest and recovery during peak
exercise, however, the limits of agreement widened due to an increase in the
number of outliers ( ~ 7% for Garmin and ~ 12% for Fitbit)37. Contact
pressure and sweat have also been shown to impact accuracy38.

Heart rate variability (HRV) and pulse rate
variability (PRV)
HRV is ameasure of the variation in the time interval between each successive
heartbeat, specifically thevariation in thedurationof consecutiveR-R intervals
on an ECG. HRV is considered a non-invasive ANSmarker representing the
balance between the sympathetic and parasympathetic branches39. LowHRV
is associated with cardiovascular disease, diabetes mellitus, hypertension,
arrhythmia and all-cause mortality40 and conversely, optimal HRV is asso-
ciatedwith health and resilience41. There are severalHRVparameters that can
bemeasured fromanECGwhicharegroupedprimarily into timedomainand
frequency domain markers42, but more complex markers have been
proposed43. Time-domainmeasurements quantifyHRVover a period of time
(e.g., 2min to 24 h) and include the rootmean square of successive differences
(RMSSD) and the standarddeviation of normal-to-normal intervals (SDNN).
In contrast, frequency domainmetrics measure the signal in various bands of
frequency and include high frequency power and low frequency power.

In the context of wearables, ‘HRV’ measurements may be obtained
using an ECG sensor, PPG sensor or both.Whenmeasured using PPG, the
most appropriate metric to use would be pulse rate variability44,45, which is
derived fromconsecutive pulses recorded in thewrist orfinger andnot from
consecutive R-R intervals on an ECG. Despite presenting some differences
related to the pulse arrival time, i.e., the interval between the R-wave in the
ECG and the onset of the PPG pulse, HRV from ECG and PPG have been
shown to be similar, even in dynamic conditions45. Smartwatches measure
the ECG for a short period of time, typically 30 s, fromwhich onlymeasures
of ultra-short HRV can be derived22,46.

Pulse rate variability has been shown to correlate with HRV during
rest and during autonomic challenges45. According to a recent review,
mainly focusing on measurements derived at rest, the correlation between
ECG andwearable derivedHRV ranged from very good to excellent at rest
and declined progressively as exercise intensity increased (Table 2)47.

In a recent validation study of PPGderivedHRV (RMSSDand SDNN)
using Garmin’s health snapshot, we observed a strong correlation (between
0.82 and 0.89) between Garmin and reference ECG HRV32.

Arrhythmia and AF detection
An arrhythmia refers to an abnormality of the heart’s rhythm in which the
heartmaybeat too slowly, tooquickly or irregularly.AF is themost common
serious arrhythmia, and refers to an irregular heart rhythm in which
uncoordinated electrical activation in the top chambers of the heart (the
atria) can impair cardiac efficiency. Althoughmany people with AF are not
aware of it, AF can also cause disabling symptoms of an awareness of an
unusual heartbeat, breathlessness, dizziness and fatigue. AF affects
approximately 59 million individuals worldwide and is associated with an
increased risk of blood clots and stroke48. Early detectionofAFallows for the
prompt implementation of patient management and treatment such as
medication, or interventions (such as ablation or cardioversion) as well as
risk reduction for the development of AF complications such as stroke andT
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Table 2 | Highlighted publications organised by wearable biometric parameter

First Author

[Reference]

Year Title Wearable Manufacturer

Health metrics

HR

Systematic review/ meta-analysis Chan135 2022 Novel wearable and contactless heart rate, respiratory rate, and oxygen saturation monitoring

devices: a systematic review and meta-analysis.

Apple

Cardiacsense

Everion

Fitbit

Samsung

Wavelet

Systematic review/ meta-analysis Chevance136 2022 Accuracy and precision of energy expenditure, heart rate, and steps measured by combined-

sensing fitbits against reference measures: systematic review and meta-analysis.

Fitbit

Systematic review/ meta-analysis Fuller33 2020 Reliability and validity of commercially available wearable devices for measuring steps, energy

expenditure, and heart rate: systematic review.

Apple

Fitbit

Garmin

Mio

Polar

Samsung

Withings

Xiaomi

Systematic review/ meta-analysis Germini137 2022 Accuracy and acceptability of wrist-wearable activity-tracking devices: systematic review of the

literature.

Apple

Basis

Fitbit

Garmin

Polar

Huawei

Jawbone

Withings

Xiaomi

Systematic review/ meta-analysis Irwin138 2022 Systematic review of Fitbit Charge 2 validation studies for exercise tracking. Apple

Empatica

Fitbit

Honor

Huawei

Polar

Samsung

Wavelet Health

Xiaomi

Systematic review/ meta-analysis Koerber139 2022 Accuracy of heart rate measurement with wrist-worn wearable devices in various skin tones: a

systematic review.

Apple

Fitbit

Garmin

Mio Alpha

Systematic review/ meta-analysis Zhang24 2020 Validity of wrist-worn photoplethysmography devices tomeasure heart rate: a systematic review

and meta-analysis.

Apple

Basis Peak

Empatica

Fitbit

Garmin

Microsoft

Mio

Omron

Philips

Polar

PulseOn

Samsung

Tempo

TomTom

Wavelet

HRV

Systematic review/ meta-analysis Board140 2016 Validity of telemetric-derived measures of heart rate variability: a systematic review. Polar

Suunto

Systematic review/ meta-analysis Dobbs141 2019 TheAccuracyof AcquiringHeartRateVariability fromPortableDevices: ASystematicReviewand

Meta-Analysis.

Polar

Suunto

Systematic review/ meta-analysis Georgiou47 2018 Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review. 4IIII

60beat

BlueLeza

Cardiosport

Carre Technologies

Cositea

Empatica

Garmin

Mad Apparel

Medronic

Mio

Polar

Qardio

Sony

Sunnto

Wahoo Fitness

Whoop
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Table 2 (continued) | Highlighted publications organised by wearable biometric parameter

First Author

[Reference]

Year Title Wearable Manufacturer

ECG/Arrhythmia detection

Systematic review/ meta-analysis Belani142 2021 Accuracy of detecting atrial fibrillation: a systematic review and meta-analysis of wrist-worn

wearable technology.

Apple

Kardiaband

Samsung

Systematic review/ meta-analysis Giebal143 2019 Accuracy of mHealth devices for atrial fibrillation screening: systematic review. Apple

Fitbit

Polar

Systematic review/ meta-analysis Hermans144 2022 Mobile health solutions for atrial fibrillation detection and management: a systematic review. Apple

Empatica

Fitbit

Honor

Huawei

Polar

Samsung

Wavelet Health

Xiaomi

Systematic review/ meta-analysis Koerber139 2022 Accuracy of heart rate measurement with wrist-worn wearable devices in various skin tones: a

systematic review.

Apple

Fitbit

Garmin

Mio Alpha

Systematic review/ meta-analysis Lopez145 2021 Mobile health applications for the detection of atrial fibrillation: a systematic review. Empatica

Honor

Huawei

Wavelet Health

Systematic review/ meta-analysis Nazarian146 2021 Diagnostic accuracy of smartwatches for the detection of cardiac arrhythmia: systematic review

and meta-analysis.

Apple

Empatica

Huawei

Huami

Samsung

Wavelet wristband

SpO2

Systematic review/ meta-analysis Windisch64 2023 Accuracy of the Apple Watch Oxygen Saturation Measurement in Adults: A Systematic Review. Apple

Respiratory Rate

Systematic review/ meta-analysis Chan135 2022 Novel wearable and contactless heart rate, respiratory rate, and oxygen saturation monitoring

devices: a systematic review and meta-analysis.

Apple

Cardiacsense

Everion

Fitbit

Samsung

Wavelet

Stress

Systematic review/ meta-analysis Hickey116 2021 Smart Devices andWearable Technologies to Detect andMonitor Mental Health Conditions and

Stress: A Systematic Review.

Apple

Bodymonitor

Empatica

Polar

Samsung

Blood or pulse pressure

Systematic review/ meta-analysis Islam98 2022 Wearable cuffless blood pressure monitoring devices: a systematic review and meta-analysis. B-pro

Checkme

Freescan

SeismoWatch

T2-Mart

Perspective Schutte95 2024 Wearable cuffless blood pressure tracking: when will they be good enough?

Energy expenditure

Systematic review/ meta-analysis Chevance136 2022 Accuracy and precision of energy expenditure, heart rate, and steps measured by combined-

sensing fitbits against reference measures: systematic review and meta-analysis.

Fitbit

Systematic review/ meta-analysis Evenson147 2015 Systematic review of the validity and reliability of consumer-wearable activity trackers. Fitbit

Jawbone

Systematic review/ meta-analysis Feehan148 2018 Accuracy of fitbit devices: systematic review and narrative syntheses of quantitative data. Fitbit

Systematic review/ meta-analysis Fuller33 2020 Reliability and validity of commercially available wearable devices for measuring steps, energy

expenditure, and heart rate: systematic review.

Apple

Fitbit

Garmin

Mio

Polar

Samsung

Withings

Xiaomi

Systematic review/ meta-analysis Germini137 2022 Accuracy and acceptability of wrist-wearable activity-tracking devices: systematic review of the

literature.

Apple

Basis

Fitbit

Garmin

Polar

Huawei

Jawbone

Withings

Xiaomi
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Table 2 (continued) | Highlighted publications organised by wearable biometric parameter

First Author

[Reference]

Year Title Wearable Manufacturer

Systematic review/ meta-analysis Henriksen149 2020 Measuring physical activity using triaxial wrist worn polar activity trackers: a systematic review. Polar

Systematic review/ meta-analysis Leung150 2022 A meta-analysis of Fitbit devices: same company, different models, different validity evidence. Fitbit

Systematic review/ meta-analysis O’Driscoll151 2020 How well do activity monitors estimate energy expenditure? A systematic review and meta-

analysis of the validity of current technologies.

Apple

Basis

Beurer

Epson

ePulse

Fitbit

Garmin

Jawbone

LifeCheck

Microsoft

Mio

Misft

Nike

Polar

Samsung

SenseWear

TomTom

Vivago

Withings

Activity metrics

Step count & distance covered

Systematic review/ meta-analysis Chevance136 2022 Accuracy and precision of energy expenditure, heart rate, and steps measured by combined-

sensing fitbits against reference measures: systematic review and meta-analysis.

Fitbit

Systematic review/ meta-analysis Evenson147 2015 Systematic review of the validity and reliability of consumer-wearable activity trackers. Fitbit

Jawbone

Systematic review/ meta-analysis Feehan148 2018 Accuracy of fitbit devices: systematic review and narrative syntheses of quantitative data. Fitbit

Systematic review/ meta-analysis Fuller33 2020 Reliability and validity of commercially available wearable devices for measuring steps, energy

expenditure, and heart rate: systematic review.

Apple

Fitbit

Garmin

Mio

Polar

Samsung

Withings

Xiaomi

Systematic review/ meta-analysis Germini137 2022 Accuracy and acceptability of wrist-wearable activity-tracking devices: systematic review of the

literature.

Apple

Basis

Fitbit

Garmin

Polar

Huawei

Jawbone

Withings

Xiaomi

Systematic review/ meta-analysis Henriksen149 2020 Measuring physical activity using triaxial wrist worn polar activity trackers: a systematic review. Polar

Systematic review/ meta-analysis Irwin138 2022 Systematic review of Fitbit Charge 2 validation studies for exercise tracking. Apple

Empatica

Fitbit

Honor

Huawei

Polar

Samsung

Wavelet Health

Xiaomi

Systematic review/ meta-analysis Kenyon152 2013 Validity of pedometers in people with physical disabilities: a systematic review. Yamax Dig-Walker SW

Physical activity (PA)

Systematic review/ meta-analysis Chan135 2022 Reporting adherence, validity and physical activity measures of wearable activity trackers in

medical research: A systematic review.

ActiGraph

Fitbit

Axivity

Systematic review/ meta-analysis Feehan148 2018 Accuracy of fitbit devices: systematic review and narrative syntheses of quantitative data. Fitbit

Systematic review/ meta-analysis Germini137 2022 Accuracy and acceptability of wrist-wearable activity-tracking devices: systematic review of the

literature.

Apple

Basis

Fitbit

Garmin

Polar

Huawei

Jawbone

Withings

Xiaomi

Systematic review/ meta-analysis Henriksen149 2020 Measuring physical activity using triaxial wrist worn polar activity trackers: a systematic review. Polar

Cardiorespiratory fitness

Systematic review/ meta-analysis Molina-Garcia86 2022 Validity of Estimating theMaximal Oxygen Consumption by ConsumerWearables: A Systematic

Review with Meta-analysis and Expert Statement of the INTERLIVE Network.

Garmin

Fitbit

Polar
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heart failure. Wearables can detect AF through both ECG and PPG
sensors49–51. Currently, other arrhythmias (e.g., atrial or ventricular tachy-
cardia) or premature contractions (called ectopic beats) are not usually
detected by consumer-grade smartwatches or rings, despite this may
potentially contribute to improving risk assessment52.

Wrist-worn devices have been shown to have excellent diagnostic
accuracy in AF diagnosis based on a systematic review andmeta-analysis of
28 studies (n = 13,463, areaunder theROCcurveof 0.97 (95%CI: 0.94,0.99);
Table 2)53.

The BASEL wearable study reported that the sensitivity and specificity
forAFdetectionwere 85%and75% for theAppleWatch6, 85%and75%for
the Samsung Galaxy Watch 3, 58% and 75% for the Withings Scanwatch
and 66% and 79% for the Fitbit Sense, respectively54. The author’s reported
that in a clinical setting, manual review of tracings is required in about one-
fourth of cases.

Wearablemodels fromApple,Fitbit, SamsungandWithingshave been
clearedby theUSFDA for pre-diagnosticAFdetection that arenot intended
for clinical decision-making.

Cardiac intervals
Cardiac intervals such as the QT interval, which measures the duration of
ventricular repolarisation, or the PR interval, which measures the duration
of atrial activation, carry important diagnostic and prognostic value (Fig. 1).

Recent studies have shown that cardiac intervals derived from smartwatch
ECGs show moderate to strong correlation with standard medical-grade
ECGs55–57, however, these are not currently measured by consumer-grade
wearables.

It was noted in a 2023 review that only two commercially available
devices (Apple Watch and Withings ScanWatch) had been adequately
compared to 12-lead ECG measurements with respect to QTc
measurements56. In 177 patients (56%), the Withings ScanWatch
automated algorithm was able to automatically measure QTc with a
mean difference of 6.6 ms [Limits of Agreement; LoA: −59, 72 ms]
compared to manual measurements. The authors concluded that the
Withings ScanWatch tends to underestimate the QTc interval in line
with others56,58.

In another study, adequateQTmeasurements were observed in 85%of
patients when the smartwatch was worn in the standard wrist position55.

Respiratory rate
Respiratory rate refers to the number of breaths taken per minute, and like
HR is affected by a wide range of physiological and medical conditions59,60.
Respiratory rate canbe estimatedbywearables through the analysis of subtle
changes in the ECGor PPGsignal that occur due to respiratorymodulation;
including baseline wander of the signal, changes in the amplitude of the
signal and the frequency of the signal5,61.

Table 2 (continued) | Highlighted publications organised by wearable biometric parameter

First Author

[Reference]

Year Title Wearable Manufacturer

Sleep

Scoping review Birrer153 2024 Evaluating reliability in wearable devices for sleep staging. Actical

ActiGraph

Actiwatch

Apple

AW-64

Basis

Empatica

Fitbit

Garmin

GeneActiv

GTX3+

Jawbone

Motionlogger

MyCadian

Oura

Polar

Whoop

Zulu

Systematic review/ meta-analysis Evenson147 2015 Systematic review of the validity and reliability of consumer-wearable activity trackers. Fitbit

Jawbone

Systematic review/ meta-analysis Feehan148 2018 Accuracy of fitbit devices: systematic review and narrative syntheses of quantitative data. Fitbit

Systematic review/ meta-analysis Haghayegh111 2019 Accuracy ofWristband Fitbit Models in Assessing Sleep: Systematic Review andMeta-Analysis. Fitbit

Systematic review/ meta-analysis Imtiaz154 2021 A Systematic Review of Sensing Technologies for Wearable Sleep Staging. Apple

Basis

Fitbit

Microsoft

Oura

Samsung

Whoop

Zulu

Review Rentz155 2021 Deconstructing Commercial Wearable Technology: Contributions toward Accurate and Free-

Living Monitoring of Sleep.

Systematic review/ meta-analysis Schyvens108 2024 Accuracy of Fitbit Charge 4, Garmin Vivosmart 4, and WHOOP Versus Polysomnography:

Systematic Review.

Fitbit

Garmin

Whoop

Systematic review/ meta-analysis Scott156 2020 A systematic review of the accuracy of sleep wearable devices for estimating sleep onset. Actiwatch

Fitbit

GT3X+

Jawbone

Sleepwatch

Somno

Withings

Women’s Health

Systematic review/ meta-analysis Lyzwinski120 2024 Innovative approaches to menstruation and fertility tracking using wearable reproductive health

technology: systematic review.

Ava

Oura
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The accuracy of the respiratory rate estimation during sleep using the
Samsung Galaxy Watch compared to polysomnography has been investi-
gated in 195 individuals with varying degrees of obstructive sleep apnoea
(OSA)62. OSA is a sleep disorder characterised by periods of partial or
complete closure of the airway resulting in reduced and irregular respiratory
rate during sleep. The root mean squared error (RMSE) of the average
overnight and continuous respiratory rate measurements were 1.13 bpm
and 1.62 bpm, respectively, showing a small bias of 0.39 bpm and 0.37 bpm,
respectively62. In participants with normal-to-moderate OSA, average
overnight and continuous respiratory rate measurements were at least 90%
accurate62. For patients with severe OSA, accuracy decreased to 79.5% and
75.8%, respectively62. Recently, Samsung and Apple watches offer the pos-
sibility to detect increased risk for OSA, however little validation data is
currently available.

Pulse oximetry (SpO2)
Oxygen saturation is ameasure of the amount of haemoglobin that is bound
to oxygen compared to how much haemoglobin remains unbound in the
blood. SpO2 refers to the saturation of peripheral oxygen reported as the
percentage of oxygen in the blood. SpO2 values can be observed in indivi-
duals with heart and lung conditions, OSA and at high altitude63. Previously
mostly used only in high-intensity hospital settings, COVID-19 led tomuch
wider use of oximetry in the community, including monitors bought
directly by citizens and patients. SpO2 can be measured using reflectance
PPG in wearables4. For the majority of individuals, a normal SpO2 is
between 95% and 99%.

In a 2023 review, five publications (n = 973) using AppleWatch Series
6 tomeasure SpO2were evaluated (Table 2)

64. When compared tomedical-
grade pulse oximeters, the 95% limits of agreement were reported to be
−2.7% to5.9%SpO2, however, outliers of up to15%were reported.Whether
wearables are suited for remote monitoring in patients with established
conditions that affect their oxygen saturation is yet to be addressed and
further validation in both patients and healthy controls is necessary before
smartwatches are recommended for clinical use65. In a recent study using
Garmin’s health snapshot, we observed frequent underestimation of SpO2

32.

Step count and distance travelled
Step count is a measure of physical activity which can objectively be mea-
sured by counting the number of steps an individual takes in a given period
of time.Thenumberof steps takenperdayhave strong associationswith risk
of chronic disease and mental health66 and are inversely related to obesity,
OSA, gastroesophageal reflux disease and major depressive disorder67. The
length of a walking step correlates to an individual’s height68, however, can
be impacted by age, fitness level and health status.

Step count usingwearables is derived as a composite ofwalkingmotion
detected by the accelerometer and stride length (determined by pre-
programmed height) and has been used as an outcome in clinical trials69.
Distance travelled is commonly calculated from step count or measured
through the activation of the GPS during outdoor activities and is the
primary outcome of established sub-maximal tests of exercise capacity such
as the 6min walk test70.

32 studies of Garmin smartwatches were assessed for step count
validity in a 2019 review71. 16 studieswere found to have good (0.75–0.89) to
excellent ( ≥ 0.90) correlation coefficients with acceptable APE ( < 5% in
laboratory or controlled conditions and <10% in free-living conditions)71.
Distance validity, which was tested in three studies, had lower correlation
coefficients of <0.60 with acceptable APE and both over and under-
estimation was reported71.

In the context of established sub-maximal tests of exercise capacity, we
recently observed that distancemeasured byGarmin and Fitbit through the
activation of GPS was accurate, with as little as 6–8% error during a 6min
walk test if participants walked around a park37. However, error increased to
18–20%whena standard 30m lap protocolwas used. Step countwas amore
accurate measure of distance compared to GPS distance (MAPE: 0.9% [0.4,
2.2%] and 6.8% [3.2, 12.9%] for Garmin and Fitbit, respectively)37.

A 2020 systematic review of wearables (Fitbit, AppleWatch, Samsung
and Garmin) also evaluated the reliability and validity of the measurement
of step count33. From 158 studies, 805 comparisons between wearable
derived step count and reference measures (manual counting or accel-
erometery) were made. Of these, 364 (45.2%) were within ±3% measure-
ment error, 344 (42.7%) were below −3% measurement error and 97
(12.1%) were above 3% measurement error with an overall tendency to
underestimate step count33.

Physical Activity Recognition
Physical activity recognition can refer to the classification process of phy-
siological motion measurements that may occur in a laboratory or free-
living conditions72. Wearables often include a feature whereby the type and
duration of a physical activity is automatically recognised and recorded
without input from the user.

In 2019, a validation study assessed the automatic identification of
physical activity type anddurationusing threeFitbitmodels (Flex 2,AltaHR
andCharge 2) andoneGarminmodel (VivosmartHR)73. The activitieswere
a treadmill walk, treadmill run, embedded run, outdoor walk, outdoor run,
elliptical, bike and swim, each for a duration of 15min. The proportion of
trials in which the activity type was correctly identified was 93% to 97% for
treadmill walking, 93% to 100% for treadmill running, 36% to 62% for
treadmill running when preceded and followed by a walk, 97% to 100% for
outdoor walking, 100% for outdoor running, 3% to 97% for using an
elliptical, 44% to 97% for biking, and 87.5% for swimming73.

Cardiorespiratory Fitness (CRF) and VO2max
Estimation
During exercise, an integrated and coordinated response from the heart,
lungs, cardiovascular system and skeletal muscles is required to meet the
metabolic demands of contracting muscles74. Maximal oxygen consump-
tion (VO2max) is dependent on the ability of the oxygen transport system to
deliver blood and the ability of cells to take up and utilise oxygen in energy
production75. While maximal cardiopulmonary exercise testing (CPET) is
the gold standard for assessing VO2max76, it requires clinical staff, space,
expensive equipment and time and is rarely performed even in medical
assessments.

CRF has been linked to several health-related outcomes, with low
fitness being associated with increased risk of cardiovascular disease77,78,
metabolic syndrome79, cognitive function80 and severe COVID-1981. Con-
currently, increased levels of CRF are widely promoted as cardioprotective
measures in the primary and secondary prevention of cardiovascular and
coronary heart disease82,83 and a useful marker of training effectiveness in
athletic individuals.

Smartwatch estimates of CRF can be estimated using anthropometric
parameters (age, sex, height and weight), PPG-measured HR and HRV at
rest, the relationship between changes in PPG-measured HR and HRV in
relation to estimated workload during physical activity, exercise type or a
combination of these factors using proprietary algorithms84,85.

A systematic review with meta-analysis of 14 studies that assessed the
validity of smartwatch estimation of VO2max using either resting mea-
surements (seated or supine resting HR) or exercise test-based measure-
ments (outdoor running for at least 10min) was performed in 2022 (Table
2)86. In the context of using resting measurements, an overestimation of
VO2max was observed (mean difference [LoA]= 2.17 [−13.07, 17.41] ml/
kg/min, p = 0.020) compared to the reference measurement. In contrast, a
bias close to nil compared to the reference measurement (mean difference
[LoA]= −0.09 [−16.79, 16.61] ml/kg/min, p = 0.910) was observed when
outdoor running exercise measurements were used. However, the studies
included in themeta-analysis were small (mean sample per study of 29) and
based on young (pooled age 24.6 ± 5.7 years) healthy adults, who were
active, recreational runners or soccer players86.

Absolute values and changes over time in VO2max as measured by
Apple or Garmin wearables and CPET have been shown to correlate well
(Pearson’s >0.80) in 48 adults with complex congenital heart disease87.
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However, in line with the findings of the Apple smartwatch validation
study49 and prior work of ours utilising free-living activity88, despite
observing moderate correlations, a large positive bias in smartwatch esti-
mated VO2max has been observed, indicating that wearables often over-
estimate VO2max87.

Wearable estimates of CRF are currently limited to VO2max as an
outcome parameter. In contrast, clinical CPET provides many other valu-
ablemetrics such as anaerobic threshold and oxygen uptake efficiency slope
that contribute to a more comprehensive assessment of CRF and the utili-
sation of oxygen throughout exercise.

Energy expenditure
Energy expenditure is defined as the energy expended, above resting levels,
during purposeful exercise89. Doubly labelled water, is considered the gold-
standard indirect calorimetry assessment of free-living energy
expenditure90, however, is associated with high costs and limited by the
requirement for structured activities in laboratory settings91. Wearables
estimate energy expenditure, often referred to as ‘Calories burned’ or
similar, using anthropomorphic data such as body mass, PPG-measured
HR, physical activity derived fromaccelerometery,GPSor both and exercise
intensity using proprietary algorithms.

Two systematic reviews established that commercially available wear-
ables estimated energy expenditure with insufficient validity33,92. Consistent
with a separate reviewof Fitbit accuracy93, itwas reported thatwearables tend
to underestimate energy expenditure compared to criterion laboratory
measures (Oxycon Mobile, CosMed K4b2, or MetaMax 3B), however, at
higher intensities of activity energy expenditure is overestimated92.

In 2020, it was also reported that no brand of wearable was within ±3%
of measurement error more than 13% of the time33. Underestimation of
energy expenditure was observed inGarminwearables 69% of the time, and
in Withings wearables 74% of the time, respectively. Apple wearables
overestimated energy expenditure 58% of the time and Polar wearables
overestimated energy expenditure 69% of the time, respectively. Despite
showing reasonable median value for accuracy, Fitbit devices under-
estimated energy expenditure 48% of the time and overestimated energy
expenditure 40% of the time33.

Blood Pressure (BP)
BP is the outward force by which blood pushes against the artery walls as it
moves around the body. BP is described as the systolic over the diastolic BP
(maximum over minimum) measured in millimetres of mercury (mmHg).
Hypertension (elevated BP levels) affectmore than 1 billion people globally
and is the leading modifiable risk factor for preventable death94. The most
commonly used method of BP assessment incorporates a cuff sphygmo-
manometer to assess brachial arterial BP level which can be incorporated
into automatic oscillometric devices with a brachial cuff 95.

Some wrist-worn devices (e.g., OmronHeartGuide) incorporate a cuff
to measure BP at the wrist, but limited data on their accuracy is publicly
available.

Cuffless wearables are emerging but often require user calibration
prior to use8. BP measurements can then be derived from the time it
takes for an arterial pulse wave to reach the periphery (pulse transit
time) using ECG or pulse wave analysis using PPG in which the change
in blood volumewith each heart beat is assessed96. The amplitude of the
PPG signal can provide information about the strength of the pulse,
with consistently elevated amplitude in signal being an indication of
hypertension7. The devices reviewed in Table 1 do not measure BP, but
information about cuffless wearables for blood pressure monitoring
can be found elsewhere95,97.

A systematic review and meta-analysis of 16 studies (n = 974) was
performed in 202298. 81% of devices in the analyses used PPG to esti-
mate BP against a reference device. The authors defined devices with a
mean bias of <5 mmHg as valid as a consensus. Eight devices showed a
mean bias of <5 mmHg for SBP and DBP compared with a reference
device, three of which were commercially available (B-Pro,

Somnotouch-NIBP and T2-Mart). Differences were not observed
between the wearables and reference devices for SBP (pooled mean
difference = 3.42 mmHg, 95% CI:−2.17, 9.01) and DBP (pooled mean
difference = 1.16 mmHg, 95% CI: −1.26, 3.58), however, confidence
intervals around the estimates was wide. Recent data have cast doubt
about the accuracy of some these devices99,100 and cuffless-based
technology101, and our own data have shown limited agreement
between cuffless and cuff-based ambulatory BP monitoring102.

Sleep Duration and Stages
Sleep is an essential biological function withmajor roles in recovery, energy
conservation and survival103. There is marked individual variation in the
amount of sleep that an individual will need throughout the life span to
ensure good health104. Objectively measured short and long sleep duration
have been both associated with adverse health outcomes105–107.

The gold-standard assessment of sleep is laboratory-based poly-
somnography in which several parameters including brain waves, HR,
respiratory rate, eyemovement andmuscle activity aremonitored to classify
sleep and wake cycles108. Wearables use a combination of PPG sensors and
accelerometers to detect changes in HR and movement to calculate total
sleep duration and classify sleep stages.

In 2023, a validation study was performed to assess the accuracy of 11
commercially available devices including five wearables (Google Pixel
Watch, Galaxy Watch 5, Fitbit Sense 2, Apple Watch 8 and Oura Ring 3)
compared to laboratory polysomnography in 75 participants109. Three
wearables (Google Pixel Watch, Galaxy Watch 5 and Fitbit Sense 2)
demonstrated moderate agreement with sleep stage classification
(k = 0.4,0.6) and two wearables (Apple Watch 8 and Oura Ring 3) showed
fair agreement (k = 0.2,0.4). The authors reported that wearables generally
overestimate sleep by misclassifying periods of awake stillness as sleep. The
Oura ring showednegligible proportional bias, potentially owing to its use of
additional features beyond actigraphy such as body temperature and cir-
cadian rhythm for sleep staging110.

Fitbit devices were reported to be comparable to polysomnography in
accuracy of detecting sleep phases, with 95% to 96% sensitivity and 58% to
69% specificity in detecting sleep epochs in a 2019 review111. A recent sys-
tematic review of eight studies investigated the accuracy of Fitbit, Garmin
and Whoop in measuring sleep duration and sleep stages versus
polysomnography108. Whoop was reported to have the least disagreement
compared to polysomnography for total sleep time (−1.4 min), light sleep
(−9.6min) anddeep sleep (−9.3min) but the largest disagreement for rapid
eyemovement (REM) sleep (21.0min). The Fitbit andGarmin devices both
showed moderate accuracy in assessing sleep stages and total sleep time
compared to polysomnography108.

Psychological stress
Stress can be defined as a state of worry or mental tension caused by a
challenging situation in life or the environment. Stress activates the
sympathetic nervous system resulting in an increase in HR and a
decrease in HRV112. Conversely, during periods of relaxation and sleep,
a decrease in HR and increase in HRV can be observed113. Chronic
stress, the repeated occurrence of the stress response over a period of
time, is associated with increased risk of cardiovascular disease and
type 2 diabetes mellitus114,115. The integration of stress management
features in wearables is based on HR and HRV analysis and in some,
EDA sensors. HRV analysis in wearables may be accompanied by real-
time prompts to perform breathing activities or relaxation techniques
in periods of detected stress.

Smartwatches were found to more accurately detect periods of psy-
chological stress when utilising HRV and other physiological parameters
such as EDA, respiratory rate and temperature instead of HR alone116.
However, concerns surrounding the reliability of EDAmeasurement due to
motion artifact have been raised117. Similarly, the accuracyof stress detection
has been noted to decline during periods of vigorous movement, also likely
owing to motion artifact116.
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Women’s Health
The monitoring of fertile windows and menstrual cycles have long been
utilised for achieving plannedpregnancy, preventing unplannedpregnancy,
and the identification of irregular or abnormal cycles. Some wearables
measure changes in HRV, body temperature and respiratory rate to detect
and predict menstrual cycle stages including menstruation, the luteal phase
and ovulation118,119.

A recent review of 13 studies found that most devices had high accu-
racy for detecting fertility and were able to differentiate between the luteal
phase, fertile window and menstruation by changes in HR, HRV, tem-
perature and respiratory rate (Table 2)120. In 2019, a study of the Oura ring
reported a sensitivity for ovulation detection of 83.3% (−3 to+2 days) and
menstruation detection of 71.9% to 86.5% (SD 2–4 days) using nocturnal
finger skin temperature119. Compared to menstruation, a rise in HR
(p = 0.001) and temperature (p < 0.001) during the luteal phases and lower
HR (p = 0.02) and temperature (p = 0.05) during ovulation has been
reported using the Oura ring more recently118.

Data acquisition and analysis pipelines
When selecting a wearable device for clinical or research purposes, data
accessibility is a crucial consideration. Prior to wearable device selection, we
would recommend reviewing device specifications to ensure that the mea-
surement parameters of interest (Table 1) are available (at the sampling
frequency required), accessible and exportable in a usable format.

Access to raw data varies by manufacturer and model. While some
devices display several measurement parameters to users, export options
may be limited. No manufacturer currently allows for the export of con-
tinuously recorded raw signals (i.e., PPG, 3D accelerometer, temperature
etc.), except for the ECG, which can often be exported as a series of 30-
second long recordings. Most of the data that can be exported for off-line
analysis consist in aggregate time-series summarising the trend of a phy-
siological parameter with a temporal resolution that typically goes from one
second (e.g., HR) to 15min (e.g., number of steps or respiratory rate for
somebrands) to 1day (e.g., sleepduration).Ofnote, no smartwatchor smart
ring currently allows for the export of beat-to-beat HR time-series. Instead,
instantaneous HR is usually averaged using undetermined filters, resulting
in relatively smooth trends. Physiological parameters from physical activ-
ities recorded by the user (e.g. running,walking, cardio etc.)may include ad-
hoc information (e.g., distance, speed, altitude etc.) with sometimes a better
temporal resolution (e.g., HR provided every second instead of every
minute), or they may be only exportable as summary statistics (e.g., total
number of steps and average HR). As an example, Supplementary Table 1
provides a comprehensive list of parameters that can be exported from a
Garmin smartwatch (VivoActive 4), along with their temporal resolution
and whether they are passively recorded or may need user’s input. Addi-
tionally, some manufacturers have introduced premium or subscription-
based models that may restrict data access.

The format of exported raw data files is another important con-
sideration. Many manufacturers, including Fitbit, Oura and Withings, use
standard file formats such as CSV or TXT, which are relatively easy to
process. However, others, including Garmin, use more complex formats
such as .FITfiles for someof their data export,which requiremore advanced
data processing skills to access.

To support data retrieval and management, open source platforms
such as RADAR-base121, offer infrastructure to facilitate data storage and
processing, and third-party services are becoming available122,123.

Data security and privacy should be considered owing to the sensitive
nature of the personalised health information that these devices collect,
particularly when activatingGPS tracking systems for location information.
To mitigate data security and privacy risks, manufacturer privacy settings
and security policies should be reviewed ahead of device selection.

Clinical Perspective for Cardiovascular Health
Cardiovascular diseases are the leading cause of death worldwide124. To
reduce the enormous burden of cardiovascular diseases and disability125,

progress is required in prevention, diagnosis, treatment and monitoring,
andwearable datamay play a useful role in all of these situations. The ability
to collect data overmonths or years allows approaches that are not currently
possible, however, may also present challenges in terms of the volume of
data collected.

Evidence of the value of wearable data comes from the ability to detect
abnormal heart rhythms, particularlyAF, in peoplewhowould otherwise be
unaware of this condition (and so at higher risk of stroke and other
complications)49,126. Although questions remain about how to manage AF
detected by such approaches, the ability to detect such a common and
potentially devastating condition shows the potential for improved
healthcare.

The addition of the ability to record a short ECG with sufficient
accuracy to be approved as a medical device is now replacing more con-
ventional ways to attempt to detect intermittent abnormal heart rhythms
(such as issuing patients with such devices or recording the ECG for 72 h
hoping to capture an event). Unlike PPG, ECG can only be recorded for
short periods and often triggered by the user and so do not replace other
methods to continually monitor ECG (such as Holter or implanted ECG
recorders).

Arrhythmia canbediagnosed accurately using a single typeofwearable
data (ECG or HR characteristics from PPG). In contrast, other important
cardiovascular diseases (such as heart failure, valvular heart disease, cor-
onary artery disease, stroke) require specialist tests (such as cardiac ultra-
sound, coronary angiogram) to make an accurate diagnosis. However, the
datawearables currently collectmay still be useful.Heart failure andvalvular
heart disease are associatedwith increasing breathlessness on exertion and a
reduced ability to be active127. It is highly likely that patterns of activity,
respiratory rate, oximetry, and HR detected by wearables will change as a
person develops these diseases and recent studies are encouraging16,128.
Research is urgently required to test this potential, which may allow new
approaches to community-based screening or diagnostic programmes.

Most patients who are diagnosed with cardiovascular disease typically
have very limited interaction with healthcare services except when a crisis
occurs (such as cardiac arrest, heart attack or urgent admission with heart
failure). Such crises are often preventable if the signs of potential dete-
rioration can be detected early enough for a change in management.
Wearables hold great potential for such monitoring. For example, patients
discharged after a heart attack are directed to adhere to a structured pro-
gramme of physical activity129, andwearables have the potential to allow the
healthcare system to know if patients are following such advice and target
support to those who need this. People with heart failure suffer frequent
worsening that can lead to life-threatening complications that are often
preceded by weeks or months of increasing weight, reducing physical
activity. These incipient signs of deterioration are likely also to be recog-
nisable in changes inHR, respiratory rate, oximetry and BP.Wearablesmay
therefore allow heart failure services to monitor patients and institute
treatment (such as increasing diuretic therapy) to prevent admissions.

There remain several barriers to achieving the potential of wearables in
healthcare. There is a pressing need for high-quality clinical studies that
demonstrate the clinical scenarios in which providing wearable data
improves outcomes. Data for its own sake is not helpful unless it can lead to
an action that improves the patient’s health and clinicians already suffer
“information overload”. Furthermore, in the health economic context,
interventions need to meet a cost-benefit criteria.

Although consumer wearables are very attractive for introduction in
healthcare due to their low cost and already high ownership levels, reg-
ulatory safeguards make this challenging. If data from wearables is used to
make a clinical decision, then under current regulatory frameworks the
wearable requires approval as a medical device. Most devices do not have
such approvals and so using them in direct healthcare may pose legal risk.

Population Health Perspective
The large-scale collection of health data using consumer-grade wearables
has the potential to address pressing populationhealth challenges, including
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the obesity epidemic, mental health epidemic, and the growing burden of
chronic illnesses and multimorbidity. Wearables provide an objective
continuous stream of data, offering a more comprehensive and possibly
more reliable alternative to traditional population health approaches like
self-reported questionnaires, which are limited by recall bias and infrequent
administration. The widespread uptake of wearables and thus the avail-
ability of vast amounts of remote data may play a pivotal role in advancing
population-based research, answering key health questions and developing
risk stratification tools to better target interventions.

Many cardiovascular diseases are preventable by increasing physical
activity, changing diet, maintaining a healthy weight and lowering BP130.
Wearables are already used by millions of people to monitor their levels of
physical activity. Although total amount of daily activity is known to be
protective, recent evidence shows that even very short bursts of vigorous
activity can provide a substantial reduction in risk131. There is evidence that
tracking physical activity using wearable devices can provide a modest
increase in total amount performed132. However, using such tools as away to
evaluate and refine the effect of more general public health measures (such
as education, improved public transport, or work-place interventions) may
improve the evidence base of how to facilitate healthier behaviours in the
population.

During the COVID-19 pandemic, it was demonstrated via the ZOE
COVID symptom app and Covid Collab Fitbit study that large-scale col-
lection of digital health data was feasible and valuable133,134.

Limitations and risks associated with population level monitoring
usingwearables should also be considered. For example, it’s conceivable that
being monitored continuously might alter clinical relationships which are
based on trust or compromise mental health. Personalised approaches
should be implemented with caution, ensuring that the responsibility or
burden of blame for certain health behaviours is not unfairly positioned
fromsociety to the individual. Furthermore, considerationmust bemade for
the cost associated with the provision of wearables and similarly, selection
bias if study participants have been recruited based on prior device own-
ership or high level of digital literacy as there is a risk of exacerbating health
gradients along the digital divide, and excluding from interventions those
strata that may receive the greatest benefit.

Data Availability
No datasets were generated or analysed during the current study.
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