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Abstract

Type III radio bursts are signatures of the fluxes of near-relativistic electrons ejected during solar flares. These
bursts are frequently observed by spacecraft such as the Parker Solar Probe. It has been traditionally believed that
these electron beams generate Langmuir waves through the two-stream instability, which are then converted into
electromagnetic waves. In this study, we revise that model, by examining how the electron distribution becomes
truncated due to the “time-of-flight” effect, as the beam travels through a randomly inhomogeneous and gently
varying solar wind plasma. Rather than the two-stream instability, this truncation destabilizes the distribution and
leads to the generation of Langmuir waves via a linear instability; we confine our analysis to this linear regime and
do not take into account the backreaction of the generated Langmuir waves on the electron distribution, which is
nonlinear. The instability grows until slower electrons arrive and dampen the waves. Our qualitative analysis
shows that the resulting wave intensity growth and decay closely match the intensity–time profile of observed
type III radio bursts at the fundamental frequency, supporting this modified theory.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Solar coronal radio emission (1993)

1. Introduction

Type III radio bursts are the brightest radio emissions of solar
origin and are signatures of the fluxes of near-relativistic
electrons ejected during solar flares and propagating away from
the Sun. Their rate of occurrence and general characteristics
during Parker Solar Probe (PSP; N. J. Fox et al. 2016) close
encounters with the Sun have been subjects of great interest
(e.g., M. Pulupa et al. 2020, 2025; L. Chen et al. 2021, 2024;
I. C. Jebaraj et al. 2023b; C. P. Sishtla et al. 2023; F. S. Mozer
et al. 2024). In the time frequency spectrogram, they manifest as
emission that drifts from high to low frequencies over a short
period (S. Suzuki & G. A. Dulk 1985).
The process of generating type III solar radio bursts is

widely acknowledged to consist of two steps, as originally
suggested by V. L. Ginzburg & V. V. Zhelezniakov (1958)

seven decades ago. According to their theory, the first step
involves the excitation of Langmuir waves, which is generally
attributed to the beam–plasma instability. The second step
involves the transformation of wave energy from these
electrostatic (ES) waves into electromagnetic (EM) emission
generated at the fundamental frequency and its harmonic. The
fundamental frequency or plasma frequency is given as

( )/= n e m4p e
2

e e , where ne is the electron density and

εe is the permittivity of free space. It is well established that
random density inhomogeneities are ubiquitous in the solar
wind and are present across a wide range of spatial scales
(L. M. Celnikier et al. 1983; P. J. Kellogg & T. S. Horbury
2005; C. H. K. Chen et al. 2013; I. C. Jebaraj et al. 2024).
Taking this into account, it was shown that the major process
transforming ES energy into EM waves around ωp is the direct
partial transformation of Langmuir waves into ordinary EM
waves during scattering on random density inhomogeneities
(A. S. Volokitin & C. Krafft 2018; V. Krasnoselskikh et al.
2019; C. Krafft & P. Savoini 2022). As for the harmonic
emission, it is thought to be generated as a result of the
nonlinear coupling of primarily generated and backscattered/
reflected Langmuir waves (D. B. Melrose 1970; A. J. Willes
et al. 1996; A. Tkachenko et al. 2021).
Recent observations of type III bursts by PSP, such as the

one presented in Figure 1, suggest that they are bursty, with
rapidly varying features across different frequencies, indicat-
ing that these processes are transient and dynamic
(I. C. Jebaraj et al. 2023b, 2023c; C. P. Sishtla et al. 2023;
L. Chen et al. 2024). An example of such a type III burst
observed by the Radio Frequency Spectrometer (RFS;
M. Pulupa et al. 2017), part of the FIELDS instrument suite
(S. D. Bale et al. 2016) on board PSP, is presented in Figure 1.
These bursts are often seen as fundamental–harmonic pairs
(with about 75% probability; I. C. Jebaraj et al. 2023b), but
here we present a purely fundamental emission. It is worth
noting here that many of the bursts registered by PSP are
relatively weak and are likely not observed at large distances
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of the order of 1 au. The ridgeline plot also displays intensity–
time profiles at frequencies from approximately 19 MHz to
1 MHz. At each frequency, the profiles are asymmetric, with
EM waves quickly rising to a peak and then slowly decaying.
Two single-frequency profiles are shown in the right panels,
which are fit with an exponentially modified Gaussian (EMG)

with over 99% accuracy. A detailed description of the fitting
function can be found in Appendix A. This indicates that the
growth time (τr) follows a Gaussian function up to some peak,
then the signal decays (τd) at an exponential rate. Since EM
waves are directly transformed from ES waves in the presence
of density fluctuations, the EM wave profiles reflect the
evolution of the ES wave energy.
This leads to two important observational features that are

not addressed by the widely accepted V. L. Ginzburg &
V. V. Zhelezniakov (1958) model. The first is the well-known
asymmetry of type III time profiles (M. Aubier & A. Boischot
1972). It is not clear to what degree the properties of the source
electron distribution and the growth of the waves contribute to
this asymmetry. Recent observations from PSP (I. C. Jebaraj
et al. 2023b) have shown that the more intense the emission is,
the larger the asymmetry (τr/τd≪ 1). This feature is intact
even when the observer is at much greater distances from the
Sun (∼1.5 au; C. Gerekos et al. 2024), suggesting that the
influence of the source is nonnegligible. The second well-
known feature that does not support the existing model is the
rarity of observing the beam feature. Even though R. P. Lin
et al. (1981) identified the localized beam feature, only a few
follow-up experiments have detected beam features associated
with Langmuir wave generation (R. P. Lin et al. 1981, 1986).
Moreover, particle distribution measurements conducted

during previous missions (e.g., ISEE and STEREO;
K. W. Ogilvie et al. 1977; M. L. Kaiser 2005) have typically
required much longer integration times than wave measure-
ments. Consequently, these missions allowed only rough
correlations between the arrival of energetic particles and the
observed increases in remotely detected radio emissions or
enhanced high-frequency wave activity. However, direct
comparisons between simultaneous observations of energetic
electron distribution dynamics and colocated wave dynamics
were not feasible. This motivates a revision of the existing
theory.
In order to address such behavior, the problem of ES wave

generation must take into account the dynamics of localized
processes at the front of the energetic electron flux. R. P. Lin
et al. (1981) first observed that wave activity develops around
the front of the electron flux. These processes cannot be
described by conventional beam–plasma interaction models or
by spatial boundary problems for stationary processes. The
problem must include the transit-time effects of the beam,
known as the “time-of-flight” phenomenon, which involves
temporal variations of the particle source at each spatial
location. This can be modeled with quasi-linear equations in a
randomly inhomogeneous plasma, where the source term is
crucial for system dynamics.
The idea that the propagation of the beam front may lead to

wave activity in such a way that the beam particles generate
waves, which are then absorbed by the slower part of the
electron distribution, was first proposed by V. Zheleznyakov &
V. Zaitsev (1970) and V. Zaitsev et al. (1974). They
considered how the local ES wave intensity rapidly increases
and then slowly decreases as slower particles arrive and relax

7 MHz

3 MHz

Type III on 25/04/2023 @ 00:18:30 UT

PSP/RFS 

@ 0.74 au

Figure 1. The time evolution of the spectral features of a fundamental type III radio burst observed at various frequencies by PSP/RFS on 2023 April 25, at 00:18:30
UT, is shown in the left panel. The right panels display time series at two frequencies: 7 MHz (top) and 3 MHz (bottom). The circle markers represent the data, which
are fit with an EMG. The fit parameters—namely, the mean (μ), standard deviation (σ), exponential decay (λ), and amplitude r—are provided in the legend. The red
horizontal lines in both the top and bottom panels mark the points beyond which the exponential function does not fit the decay of the signal.

2

The Astrophysical Journal, 990:100 (15pp), 2025 September 10 Krasnoselskikh et al.



toward a plateau distribution. EM emission was then assumed
to follow the evolution of ES Langmuir waves.
Here, we develop a very similar idea, while adding an

important element: the presence of random density fluctuations
that crucially change the characteristics of the instability
and the relaxation process. In order to do this, we aim to study
the spatiotemporal evolution of a system with a localized
source of energetic electrons and the instabilities that arise
as they propagate away from the source. The time-of-flight
mechanism of wave generation is based on a sharp increase
in the electron distribution function, due to the absence of
beam particles with velocities below L

t
, where L is the

distance from the source and t is the arrival time of
energetic particles at the location where instability begins.
We will also take into account the presence of random density
fluctuations using the probabilistic model of beam–plasma
interaction (A. Voshchepynets & V. Krasnoselskikh 2015;
A. Voshchepynets et al. 2015), which accounts for the
broadening of the Landau resonance due to phase velocity
fluctuations of waves in a randomly inhomogeneous plasma,
while keeping the notion of the resonant velocity as the phase
velocity without density fluctuations.

2. Formulation of the Problem

For simplicity, let us consider the process of the ejection of
energetic electrons by a localized point source located at x = 0.
Assuming the presence of a weak magnetic field and
neglecting the perpendicular motions of particles, one can
formulate the problem as one-dimensional. The background
plasma density in our system monotonically decreases from
some initial value ne(x= 0) to zero, occupying the region from
x = 0 to infinity. It decreases according to some predefined
law. Without loss of generality, one can suppose that the
temperature of the plasma is constant. The density and
temperature of the plasma determine the existence of plasma
oscillations at any spatial location. The monotonic variation of
the background plasma density is assumed to be “slow”—i.e.,
its characteristic length is much larger than the wavelength of
the local waves; moreover, it is also much larger than the
characteristic length of the instability development. This
insight allows us to treat the waves locally. An important
characteristic of our system is the presence of random density
fluctuations everywhere. Our aim is to describe the interaction
of local plasma waves with energetic electrons ejected from
the source toward infinity. The injection process begins at the
initial moment t = 0. This system corresponds to the initial
phase of ES wave generation by the flux of the energetic
electrons ejected during a solar flare. In the Ginzburg–
Zheleznyakov-type model, it corresponds to the first step in
the two-step process of generating type III radio bursts. Thus,
the dynamics of the system will be described by the following
set of equations, similar to A. Voshchepynets et al. (2015) and
A. Voshchepynets & V. Krasnoselskikh (2015):

( ) ( ) ( )

( )

+ = +
F
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F
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3

b
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where F is the energetic electrons' distribution function, nb is

the beam density, vmin is the minimum velocity of the energetic

particle distribution (which, however, is supposed to be much

larger than the thermal velocity of the thermal electron

distribution), Wi is an energy density of the Langmuir wave

with frequency ω, and Pω is the probability distribution

function for the wave phase velocity at a given frequency.

Equation (1) describes the interaction of the unstable electron

population with a set of monochromatic waves. Hereafter, we

shall use W instead of Wi when referring to a single

Langmuir wave.
Equations (1) and (2) describe the generation of ES

Langmuir waves and the quasi-linear relaxation of the electron
distribution function due to the actions of these waves on the
particles in the presence of the random density fluctuations.
These fluctuations affect the phase velocity of waves that
fluctuate, as their phase velocity is dependent upon the local
plasma density. A more detailed description of the method of
calculation of this and the derivation of the functional
dependence in the case of a Gaussian distribution of the
density fluctuations is presented in Appendix B. It is worth
noting also that an important part of the description consists of
the presence of the source of electrons described by the term Q
(v, r, t) on the right-hand side of Equation (1). We suppose that
at the initial time t = 0, at point x = 0, there is a source
producing energetic electrons that begins to operate at t = 0
and continues to do so thereafter. We choose the dependence
of the distribution on velocity to be a power law with spectral
index α, which we consider as a parameter. These electrons
begin to propagate toward x> 0. In simulations and observa-
tions, it is suggested that the source is rather a cloud of finite
size, but if the time evolution of the generated wave packets is
significantly smaller than the time of dispersion of the cloud,
one can consider the source to function continuously after
switching on. It is worth noting here that we suppose that vT is
much smaller than even vmin of the energetic population, and
that is why we neglect them in our further consideration.
To proceed to more detailed calculations, one should note

that the distribution function of the energetic electrons at point
x = L at a moment t is found to be as follows:

( )
( )

( )
( )

( )

=

<

F v L t

n v v

v

, ,
, for

0, for

. 4
v

v

v

L

t

L

t

b

b
1

min

min

As shown in the left panel of Figure 2, the distribution
function of the energetic electrons is truncated at a velocity
separating particles that have arrived at the location from
those that have not yet arrived. At point x= L> 0, the plasma
oscillations have a frequency close to ωp(L). In the left panel
of Figure 2, we show the part of the distribution that is
affected by this truncation for different distributions of
injected electrons given by the power-law spectral index α.
Considering that the distribution function at location L
remains the same as at the source, we restrict ourselves to
distances that are not very large, since we do not take into
account the quasi-linear evolution of the distribution function
along its propagation. Rigorously speaking, our study is
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limited by the relaxation length of the beam–plasma
interaction. However, such an approach may be validated
by the majority of observations of energetic electron
distributions, which are known to be of power-law or
double-power-law type. As our aim hereafter is to analyze
the characteristics of the instability associated with time-of-
flight-truncated electron distributions of the power-law type,
where the spectral index is one of the parameters in our study,
we shall retain the power-law index corresponding to the
source distribution.
For the sake of the simplicity and transparency of the

analysis, in the first step of our analysis, we shall use the
Gaussian probability distribution for the variations of the phase
velocity associated with the density fluctuations, as follows:

( )
( )

( )
( )=P V

V

V V

V

1
exp , 5

r
2

2

where ΔV is the width of the distribution, and Vr is the wave

phase velocity in homogeneous plasma. The right panel of

Figure 2 shows the resulting Gaussian Pω(V ) centered at

Vr= 9vT for various ΔV, normalized by Vr.
The increment of the instability for a wave with frequency ω

in the randomly inhomogeneous plasma is given by

( ) ( ) ( )=L t
n

n
P V

F

V
V dV, . 6p0

b

e 0

2

Using the above-determined probability distribution and the
distribution function for energetic electrons, one can find the
following analytical expression for the increment:

( )
( )

( )
( )

/

/
=

+

+
n

n v
V

v

V
P V dV

L

t
P

L

t v

v

L t

1

1
. 7

L t

p
b

e min
2

2 min
1

2

min

min

The resonant velocity for a Langmuir wave in the quasi-
linear theory of homogeneous plasma reads

( )
( )=V v

L

3

2
. 8r T

p

Although the source of high-energy electrons may vary in
space, the growth rate of the instability for a given plasma
frequency and interaction frequency can be calculated locally
at all times. As we discussed earlier, in our analysis, nonlinear
processes are neglected. In the simplified linear approximation,
one can describe the evolution of the generated wave energy
by the following expression:

( ) ( ) ( ) ( )=W L t W L t dt, exp , 9
t

0
0

where W0(L, 0) stands for the noise level of the oscillations,

which is supposed to be a stationary noise level.
The general formalism of the problem is illustrated clearly

in Figure 3, which shows the instability arising from the
truncation of the electron beam at a specific distance L. For a
given value of α, fewer electrons are found at higher
velocities, which would result in the expected velocity
dispersion, due to their different flight times. By considering
electron velocities corresponding to the 10th and 90th
percentiles of the resulting Gaussian velocity distribution
Pω(V ), centered at a fixed velocity Vr, we observe that the
wave growth is highest at Vr but is reduced by damping from
slower electrons at the 10th percentile. Consequently, the wave
intensity peaks exactly at the point where damping begins to
exceed growth. In Figure 3, this occurs at the arrival time of
the electrons at the 10th percentile.

2.1. Qualitative Analysis of the Instability of the “Time-of-
flight Electron Distribution”

Let us begin by determining the conditions under which the

instability can exist. First, we replace L

t
with the “boundary

Figure 2. Illustration of distributions of energetic electrons and phase velocities under varying parameters. The left panel shows the truncated distribution of
energetic electrons at position x = L for different values of the power-law spectral index (α). The right panel displays the Gaussian distribution of phase velocities at
a given L for various widths (ΔV/Vr) described by Equation (5). The Pω(V ) is centered at Vr = 9vT.
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velocity” U. The expression for the increment becomes

( )
( )

( )
( )

( )

=

+

+
n

n v
V

v

V
P V dV

U P U
v

v

U

1

1
. 10

U

p
b

e min
2

2 min
1

2

min

min

The first term in this expression describes standard
Landau damping, as the function is monotonously decreasing.
The second term represents a positive contribution defined by the
steplike jump of the distribution from zero to a finite value.
Taking into account the dependence of the probability distri-
bution on ΔV, one can notice that the positive part of the
expression increases with the decrease of ΔV. Hereafter, we
shall limit our analysis to narrow distributions Pω(U), where
ΔV≪ Vr. The generation of waves due to the instability may
exist under the condition that the second term is larger than the
first one. The necessary condition for this requires that γ should
be positive at its maximum. The position of the maximum should
satisfy the condition

=

d

dU
0.

There are two extrema of the function that correspond to

( ) ( )= ± +U
V V

V
2 4

. 11
r r

2

2

In our problem, only a positive value has physical meaning.
One can show that this maximum increases with the decrease
of ΔV. Taking into account the condition ΔV≪ Vr, one can
find an analytical expression for the increment:

( ) ( )=

n

n

v

V

v

V

v

V
1 . 12max p

b

e

min

r

2
min min

r

It follows that there exists a threshold for the instability to
occur:

( )>V V . 13r

This can be formulated as either: (1) the probability
distribution for the phase velocity should be narrower than
some limit; or (2) the spectral index of the power-law velocity
distribution should be less than some critical value. The
maximum is achieved at a speed value close to the resonant
speed. Let us suppose that the condition ΔV≪ Vr is satisfied
and consider some dynamic features of the increment evolution
under such conditions at a predetermined location x = L.
When (U− Vr)≫ΔV, the increment is always smaller than

the damping determined by the first integral term. However,
the decrement remains very small, as it is proportional to P(U).

Figure 3. The instability of the truncated beam for Gaussian Pω(V ) centered at Vr = 9vT, and α = 4. The top left panel shows the truncated distributions at three
different times. The bottom left panel shows the resulting probability distributions at these times, corresponding to the 10th percentile (t3, blue squares), 90th
percentile (t1, green circles), and the velocity Vr itself (t2, orange marker), which is the 50th percentile. The top right panel presents the growth rates γ(t) obtained by
solving Equation (7), and the bottom right panel shows the wave intensity W(t) obtained using Equation (9).

5

The Astrophysical Journal, 990:100 (15pp), 2025 September 10 Krasnoselskikh et al.



When U approaches Vr at some critical velocity
(Ucrit− Vr)∼ΔV, corresponding to the arrival at point L of
particles with velocities Ucrit and smaller, the increment begins
to dominate. It grows with time and begins to increase rapidly
when the velocity U approaches Vr. We are mostly interested
in the time dependence of the increment at a predefined
location x = L. As the maximum of the increment is achieved
at some moment t0, the major variation around the maximum
will be described by the expression

( )
( )

t t
exp . 14max

0
2

2

Here, τγ may be interpreted as the rising time of the prompt
increase of the increment, but one should note that the time of
increase of the energy in Langmuir waves is determined by the
characteristic rising time τr:

{( ) } ( ). 15r max
1

Since the transformation of Langmuir waves into EM waves

around the fundamental frequency may be treated as having a

very short time delay, it will correspond to the rising time used in

data analysis of the wave energy of EM waves at the fundamental

frequency (see I. C. Jebaraj et al. 2023c). Close to the peak, the

rising time should be approximately the same as the time of

decrease of the increment, but the wave energy still continues to

grow. At this stage, the following description is applicable:

( ) ( )
( )

( ) ( )

=W L t W L
t t

dt

W L
t t

, exp exp

exp erf , 16

t

0 max
0

0
2

2

0 max
0

where ( )erf
t t0 is the error function of the argument ( )t t0 .

At a certain time (t0), the wave intensity begins to decrease, as

the damping integral term overcomes the increment term.
When the lower-velocity particles arrive and the condition

(Vr−U)>ΔV begins to hold, the positive part of the
increment becomes smaller than the damping rate determined
by the first term, and the waves are absorbed by slower
particles. The damping rate could be estimated as follows:

( ) ( )=

n

n

v

V
1 . 17p

b

e

min

r

1

It is interesting to note that the dynamics is described as a
standard exponential decay with a constant damping rate. One
can find that the ratio of the damping rate to the growth rate
may be evaluated as

( )=

V

V 1

. 18
V

V

max r

r

However, the application of this result is rather limited to just
the initial phase of the signal decrease, because, at the stage of
signal decrease, the remotely observed EM waves do not
represent a direct manifestation of the dynamics of Langmuir
waves. The observations are “polluted” by additional effects due
to wave escape from the generation region, propagation, and
scattering of EM waves on inhomogeneities.

3. Numerical Calculations of the Increment Evolution

Hereafter, we supplement our qualitative analysis with more
detailed numerical calculations of the increment, to shed light
on the dependence of the level of density fluctuations and the
fine characteristics of energetic particle distributions. The level
of density fluctuations is supposed to be equal to δn. The
natural hypothesis is that the probability distribution of the
density fluctuations is Gaussian. It is worth noting that if one
has the functional dependence of the probability distribution of
density fluctuations, the probability distribution of the wave
velocity may be found directly by means of the relation and
their corresponding transformations.
Following the analysis described in detail in A. Voshchepynets

et al. (2015) and presented here in Appendix B, the probability
distribution for the wave velocity may be found from the
probability distribution for the density fluctuations:

( )
( )

( ) ( )=P n
d n

dV
P V , 19

as per the conditions of resonance, taking into account that the

wave frequency remains constant along the ray path. The

velocity and density variation are related by the condition
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e

p
T
2

2
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For a Gaussian distribution of density fluctuations, an
expression for the probability distribution of velocities is rather
cumbersome. One can find a detailed derivation in
Appendix B. Previous studies of the beam–plasma interaction
have shown that the instability development is most efficient
for a narrow distribution of the probability distribution for
velocity, which is quite close to a Gaussian distribution. In this
section, we use the probability distribution for the wave phase
velocity corresponding to the Gaussian distribution of density
fluctuations. This will allow us to analyze a wider range of
parameters and carry out an analysis for different values of the
parameter α for the energetic electron distribution function.
Figure 4 presents numerical results for two values of α (4 and

6, based on observations; e.g., S. Krucker et al. 2007) and three
beam velocities Vr= 6 vT, 9 vT, and 12 vT. We computed the
wave growth rates γ(t) and the corresponding wave energy W(t)
for four relative velocity spreads ΔV/Vr= 0.005, 0.01, 0.02, and
0.04. In all calculations, the beam truncation length was fixed at
L= 500, and the parameters ωp, nb, and ne were each set to unity.
The characteristic timescale for beam–plasma interaction is

related to the growth rate increment γ. In homogeneous plasma,
the relaxation time can be estimated as (A. Voshchepynets et al.
2015)

( )t , 21

where ζ is of order 3–10 and Λ is the Coulomb logarithm.

Normalizing the time by γ−1 is therefore reasonable. Setting

π (nb/ne) ωp= 1 in dimensionless units is consistent with this
choice.
The growth rates γ(t) are then normalized per particle by the

factor Vr/vref, with the reference velocity vref fixed at 6 vT. As
expected, beams with higher Vr initiate wave growth earlier, and
the peak values of γ(t) decrease as Vr increases. Steeper electron
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velocity distributions (α= 6) exhibit significantly lower growth

rates compared to shallower distributions (α= 4).
Hereafter, we use the non-Gaussian probability distribution

function of velocity corresponding to a Gaussian distribution

of density fluctuations, in the form

{ }( )( ) ( )

( )
( )

( )

=

+

× +

P V

V V

1

4

erf erf

1 1 erf

1 erf
3 1 1

, 22

n

n

v

V V V

V

3 3 1 1

1

2

3 1

r
2 2

e T
2

r
2

r
2 2

r
2

where =

n

n2 e

, corresponding to the density fluctuation level.

This Pω(V ) is close to a Gaussian distribution on velo-

cities when

n

n

v

V
3 .

e

T

2

r

2

This last limit was used in our qualitative description of the
instability evolution in the previous section. It is worth noting
that when η→ 0, the distribution becomes a Dirac delta
function δ(v− Vr), as it should in a homogeneous plasma.
Figure 5 shows the velocity distribution Pω(V ) for three values
of Vr and four values of η. As previously mentioned, Pω(V )

closely resembles a Gaussian distribution when η is small.
However, three key deviations from Gaussian behavior
become apparent as η and Vr increase: (1) Pω(V ) becomes

Figure 4. The growth (γ(t)) of the instability and the intensityW(t) of the generated waves for α = 4 (top row) and α = 6 (bottom row). Three different Vr are used—
namely, 6vT (left column), 9vT (middle column), and 12vT (right column). Each plot shows the effect of different ΔV/Vr, where ΔV is the width of the Gaussian
Pω(V )). The vertical dashed line indicates the peak amplitude of the wave intensity corresponding to ΔV/Vr = 0.005.
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increasingly asymmetric; (2) the distribution width expands
significantly beyond a Gaussian profile; and (3) the peak of
Pω(V ), expected at the chosen Vr, shifts toward lower
velocities (e.g., at Vr= 6 in the first panel).
These characteristics are clearly reflected in Figure 6, which

presents γ(t) and W(t) for similar numerical parameters as
Figure 4. The peak shift in Pω(V ) results in the corresponding
γ(t) shifting to later times, while the broader Pω(V )

distribution facilitates wave growth across a wider velocity
range. Although the overall trends remain similar to the
Gaussian scenario, the wave amplitudes for α= 4 become
notably large at lower velocities (Vr= 6). This significant
amplitude increase suggests the rising importance of nonlinear
processes under these conditions. Detailed examination of
these nonlinear effects, however, is beyond this paper’s scope
and will be pursued in future research.
Finally, since the non-Gaussian Pω(V ) calculations include

multiple reflections (see Appendix B), we briefly investigate
the impact of single versus multiple reflections from density
humps. The dotted line in Figure 5 shows Pω(V ) for a single-
reflection case at η= 0.01. The difference between single and
multiple reflections is minor for the parameters considered
here, as their ratio is roughly on the order of 10−2.
Nevertheless, the difference becomes more noticeable at
higher values of Vr and for larger η (not shown here).

4. Discussion and Conclusions

The primary characteristics of type III solar radio bursts
include rapid variations in their emission frequency peak over
time, which is determined by the propagation of energetic
electrons ejected from the Sun outward into the solar wind in
the antisunward direction. The decrease in the solar wind
density with distance causes the characteristic emission
frequency to decrease accordingly. The original mechanism
for generating type III bursts was proposed by V. L. Ginzburg
& V. V. Zhelezniakov (1958) and involves two main steps.
Initially, ES Langmuir waves are generated through the beam–
plasma instability. Subsequently, these ES waves undergo
nonlinear transformation into EM waves at fundamental and
harmonic frequencies.
Studies of density fluctuations in the solar wind have

clarified their critical role in generating primary waves and

their subsequent transformation into EM emission. Conse-

quently, describing the instability requires incorporating the

effects of random density fluctuations, which we address using

a probabilistic model of beam–plasma interactions. While it is

widely accepted that primary Langmuir waves arise from the

beam–plasma instability (also known as the bump-on-tail

instability), we propose an alternative mechanism. In our

model, however, the primary instability arises from a truncated

electron distribution formed at the leading edge of the injected

energetic electron flux due to the time-of-flight effect. An

important feature of the distribution functions of the energetic

electrons measured in the solar wind is the absence of any

positive slope (S. Krucker et al. 2007; C. Y. Lorfing et al.

2023), which excludes the possibility of generating waves via

the conventional beam–plasma instability.10 An alternative

mechanism may be provided by the truncated electron
distributions caused by the sharp front of the propagating flux
of the energetic electrons. In this paper, we study the possible
characteristics of such an instability.
The question arises as to how these distributions form and

what determines their characteristics. It is widely accepted that

electron distributions in the solar wind are best described by

kappa functions. Kinetic models of the solar wind trace back to

the pioneering works of J. D. Scudder (1992; J. D. Scudder &

H. Karimabadi 2013) and J. Lemaire and coauthors

(V. Pierrard & J. Lemaire 1996; M. Maksimovic et al. 1997;

J. Lemaire 2010), which incorporate the filtering of the

electron distribution by the ES potential established around the

chromosphere and low corona. Such filtering naturally

truncates the electron distribution, since the positively charged

Sun prevents part of it from escaping into the heliosphere.

Energetic electrons are ejected into interplanetary space during

strong perturbations in active regions, when reconfigurations

of the magnetic and electric fields produce energetic electron

fluxes. It is reasonable to assume that this ejection significantly

alters the kappa-type electron distribution, by depleting its

high-energy tail. Because the tails of kappa distributions are

often well approximated by power laws, analyzing the

Figure 5. Non-Gaussian Pω(V ) for phase velocities given by Equation (3). The three columns correspond to Pω(V ) for three different Vr. Each panel shows the Pω(V )

for four different values of η = δn/2ne, which is the analog of ΔV/Vr in the Gaussian Pω(V ). The dotted line corresponds to the Pω(V ) that considers only a single
reflection given by Equation (B1) only for η = 0.01.

10
The work of C. Y. Lorfing et al. (2023) analyzes spectra obtained at peak

flux. To study the positive slope, the instantaneous spectra must be examined.
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instabilities associated with these escaping tails is certainly

justified.
We have analyzed the instability using a power-law electron

distribution characterized by several different spectral indices

α and various resonant wave velocities Vr. The main

characteristics of this instability are as follows:

1. The instability strengthens for lower (or shallower) α,

due to a slower decrease in particle number at higher

velocities.
2. The instability is stronger for lower velocities, because

the jump in the distribution function is larger.
3. The instability becomes stronger as the probability

distribution of the wave velocity narrows. We have

demonstrated this behavior explicitly for a Gaussian

probability distribution of the wave phase velocity.

Furthermore, when employing a more complex

distribution associated with Gaussian density fluctua-

tions, we have confirmed that the instability is stronger at

lower fluctuation levels, corresponding to narrower

velocity probability distributions. Furthermore, we note

a shift toward lower Vr with increasing fluctuations.
4. The instability is slightly stronger when wave reflections are

few (single-reflection approximation), though the difference

from multiple reflections is relatively minor for small Vr.

These characteristics of the instability of truncated electron

distributions due to the time-of-flight effect naturally explain the

temporal variations in wave amplitude observed at a given

frequency. This applies even in the linear approximation, which

may be valid only for weak bursts. However, the majority of the

bursts registered on board PSP are weak, and many of them may

not be visible at a distance of 1 au. At any given location, there

may exist a spectrum of waves corresponding to different

Figure 6. The growth (γ(t)) of the instability and the intensityW(t) of the generated waves for α = 4 (top row) and α = 6 (bottom row). Three different Vr are used—
namely, 6vT (left column), 9vT (middle column), and 12vT (right column). Each plot shows the effect of different η on the initial Gaussian Pω(V ) chosen for the
evaluation. The vertical dashed line indicates the peak amplitude of the wave intensity corresponding to η = 0.005.
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resonant velocities. The spectrum’s evolution initially exhibits
rapid growth, peaks, then declines due to damping by slower
electrons arriving later. In Figure 7, we illustrate the temporal
evolution of waves corresponding to resonant velocities ranging
from 15 vT to 5 vT. Our analysis remains within a linear
approximation; therefore, certain nonlinear saturation effects are
beyond our current description and will require further study.
Nonetheless, the dynamic features we predict for weaker bursts
agree well with the morphology of type III bursts in observational
data, especially in terms of asymmetry. This is particularly so for
steeper values of α, with the difference being shown in the
bottom panels of Figure 7. These two issues have been discussed
recently by I. C. Jebaraj et al. (2023b), who found that the
asymmetry was only dependent on the intensity of the emission
and there were no particular dependences upon frequency. It is
clear from our results that the asymmetry is a localized feature of
the emission process and is only dependent upon the width of the
distribution (or the level of the density fluctuations). However,
our model has limitations in describing the decay phase of bursts
beyond some level, as the EM wave spectrum at the fundamental
emission frequency is affected by scattering and other propaga-
tion effects (J. L. Steinberg et al. 1971).
In this study, we do not consider nonlinear effects—

particularly the backreaction of waves on particles. Numerical
simulations have shown that these effects are crucial for

the relaxation of the electron distribution function in
randomly inhomogeneous plasmas (C. Krafft et al. 2013, 2015;
A. Voshchepynets & V. Krasnoselskikh 2015; A. Voshchepynets
et al. 2015; C. Krafft & A. S. Volokitin 2016).
The model introduced in this paper highlights an essential

distinction between the linear instabilities underlying type III and
type II radio bursts. While the electron distributions in both types
result from a time-of-flight effect, this term refers to different
processes in each case. In type II bursts, it denotes the spatially
stationary reflected electron population around a curved shock
front, whereas in type III bursts, it describes the nonstationary
electron injection at the leading edge of an energetic electron flux.
Although not extensively explored, the gradient of the thermal

velocity vT with respect to distance from the solar corona provides
important insights into two key aspects: (1) the initiation height of
type III solar radio bursts; and (2) the impact of wave interactions
on the initial power-law electron distribution. The initiation height
is particularly significant, because it serves as a remote sensing
diagnostic for energetic particle releases during solar flares and
other eruptive events (A. Kouloumvakos et al. 2015; J. G. Mitchell
et al. 2025). Specifically, the gradient in vT implies that in the
lower corona—where vT is relatively high—the instability is
primarily driven by electrons with higher energies. Furthermore,
previous studies have shown that beam–plasma relaxation
processes in randomly inhomogeneous plasmas modify not only

Figure 7. Evolution of the spectrum of the Langmuir waves at L = 500 obtained using Equations (7) and (9) for α = 4 andΔV/Vr = 0.02 (top panel). The spectrum
consists of waves with Vr that lie in the range 5–15vT. Bottom panels: temporal evolution of the total wave energy density close to ≃1.05ωp(L), obtained by
integration of the spectrum within the frequency range denoted by the two horizontal lines in the top panel. From left to right: α = 4, α = 6, and α = 8. The different
colors correspond to different ΔV/Vr.
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the slower portion of the electron distribution, as predicted by
classical quasi-linear theory, but also transfer significant wave
energy to higher-energy electrons (C. Krafft et al. 2013;
A. Voshchepynets et al. 2015). This effect is relevant to the
instability discussed here, because it substantially alters the initially
injected electron distribution. Both effects challenge the assump-
tion of a beam-type quasi-monoenergetic electron population
responsible for type III bursts, indicating that the beam
characteristics near the Sun differ considerably from those
observed in situ. A combination of these factors may explain the
observed delays between energetic particle fluxes and type III burst
emissions (J. G. Mitchell et al. 2025) and could also introduce
spectral breaks in near-relativistic electron distributions detected by
spacecraft (S. Krucker et al. 2007; R. D. Strauss et al. 2020;
N. Dresing et al. 2021; I. C. Jebaraj et al. 2023a). These predictions
remain qualitative but establish a foundation for future quantitative
analyses.
In summary, random density fluctuations in the solar wind

significantly modify the conventional two-step generation theory
initially proposed by V. L. Ginzburg & V. V. Zhelezniakov
(1958). The primary revision involves changing the underlying
linear instability: it is neither a bump-on-tail nor a traditional
beam–plasma instability, but rather an instability of truncated
energetic electron distributions caused by the time-of-flight
effect. An additional significant modification involves directly
converting the energy from primarily generated Langmuir waves
into EM waves at plasma frequencies, due to wave reflection off
random density fluctuations (D. E. Hinkel-Lipsker et al. 1992;
V. Krasnoselskikh et al. 2019). As for the generation of the
second harmonic emission, it remains unchanged from the
original V. L. Ginzburg & V. V. Zhelezniakov (1958) model—it
occurs via coupling between primary and reflected Langmuir (or
Z-mode) waves (A. J. Willes et al. 1996; D. B. Melrose 2017;
A. Tkachenko et al. 2021).
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Appendix A
EMG

In this study, similar to I. C. Jebaraj et al. (2023b) and
C. Gerekos et al. (2024), we use an EMG function to fit the

time frequency signals of type III radio emissions. The EMG is
obtained by convolving a Gaussian with mean μ and standard
deviation σ with an exponential decay of rate λ. For a time
variable t, the EMG is defined as

( )

( )

( )µ
=f t e d

1

2
exp

1

2
,

A1

t
t

2

which can be expressed in closed form using the error

function:

( ) ( )

( )

µ

µ

= + +

×
+

f t r t

t

baseline
2
exp

2
2 2

1 erf
2

. A2

2

2

Here, μ and σ determine the position and spread of the
Gaussian peak, λ controls the rate of the exponential tail, r
scales the amplitude, and the baseline provides a vertical
offset.
To understand the EMG quantitatively and why it is

preferred for fitting type III time frequency signals (Figure 1,
right panels), let us consider its two limiting components. First,
a simple Gaussian,

( )
( )

( )
µ

=g t
t

exp
2

, A3
2

2

is perfectly symmetric and decays as ( )( )µ
exp

t

2

2

2 . Its decay

is quadratic in the exponent, meaning that any asymmetry (or

tail) in the data is not captured.
Second, a pure exponential,

( ) ( )=e t e , A4t

decays as ( )texp , which is linear in the exponent. This

produces an inherently skewed function (with a skewness of 2

for a standard exponential) but lacks a natural peak.
The EMG effectively combines these two behaviors by

having a Gaussian-like rise and an exponential fall. Analyti-
cally, the difference is clear—that is, while the Gaussian

decays as
( )µ

exp
t

2

2

2
, the exponential decay is ( )texp .

By mixing these two forms, the EMG accommodates a finite
symmetric rise (characterized by μ and σ) and a gradual
asymmetric decay (governed by λ).
This dual nature can be quantified in practical peak fitting. A

Gaussian fit tends to underestimate the trailing edge, leading to
large systematic residuals in the tail region. An exponential
model, when forced to represent a peaked structure, over-
estimates the signal near the maximum and fails to capture the
proper curvature. In contrast, the EMG fit often yields lower
least-squares residuals, reduced χ2, and higher R2 values,
thereby minimizing the sum-of-squares error.
Furthermore, the parameters of the EMG provide

direct quantitative insight. In particular, the product λσ serves
as an indicator of skewness—a larger λσ means a more
pronounced exponential tail relative to the Gaussian core.
This clear, analytically tractable parameterization makes it
straightforward to distinguish between the quadratic decay of a
Gaussian and the linear decay of an exponential.
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Appendix B
Probability Distribution for Wave Velocity in Randomly

Inhomogeneous Plasma

The lowest-order effects describing wave–particle interaction
take into account the most important process—namely, the
resonant interaction of particles and waves having the same
velocities (i.e., when the phase velocity of the wave is exactly
equal to the particle velocity). The quasi-linear theory for plasma
and the trapping of particles by a finite-amplitude wave are two
limits of this approach. The basic theory is well developed and
applied to different plasma systems in homogeneous plasmas.
However, when the plasma is randomly inhomogeneous and the
phase velocity depends on plasma parameter fluctuations (as is
the case for Langmuir waves in plasma with density fluctuations),
the resonant interaction becomes strongly perturbed, since the
interaction must now account for fluctuations of the wave phase
velocity. In addition, the wave may interact not only with the
particles that would be in resonance in a homogeneous plasma,
but also with other particles as the local velocity varies; thus, at
some intervals, the wave is found to be in resonance with particles
that are locally resonant.
In order to describe this phenomenon, we introduce the notion of

a probability distribution of the wave velocity, for a wave having
frequency ω in a plasma where the average plasma frequency
(when density fluctuations are absent) is ωp0. The most transparent
way to derive the probability distribution is to discretize the spatial
interval into finite but small segments and to calculate the
probability that the wave velocity equals the particle velocity
within a given interval. The size of the interval should satisfy the
following conditions: it should be much larger than the wavelength
of the wave (so that the notion of “phase velocity” is meaningful)
and it should be significantly smaller than the distance over which
the particle distribution function changes appreciably, i.e.,

L
V

10 .
r

We assume that the profiles of velocity and density within
the interval are both monotonic and may be approximated
by straight lines between the endpoints. To evaluate the
probability that the phase velocity is equal to the particle
velocity at the interval

li< x< li+1

(where li and li+1 are the beginning and end points of the interval),
one should suppose that at one end the velocity is larger than the
wave velocity, and at the other it is smaller—i.e.,

( ) ( )< <+ +u u V u umin , max , .i i i i1 1

Since the interval is small and the difference between ui and
ui+1 is small, the probability can be written as

P(uk< V< uj)= P(u> V ) · P(u< V ).

This form holds if one does not take into account the effect
of wave reflection. Let the probability of a single wave
reflection be denoted by Pref. In the limit where the reflection
probability is small, the normalization is written as

( ) ( ) ( )= > + < +P u V P u V P1 . B1ref

This corresponds to the limit when one considers that the
wave reflection occurs only once. In this limit, the probability
for the velocity distribution is presented by the above written
expression. If the reflection probability becomes relatively

large, one must consider multiple reflections. In the limit of an
infinite number of reflections, the total probability that the
wave maintains its initial direction is estimated as
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and, correspondingly, the probability that the wave reverses its

direction is
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. B3ref
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Let us now evaluate these probabilities for a Gaussian
distribution of density fluctuations given by
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n

n
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1
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2

The frequency of the propagating wave does not vary along
the wave path. In an inhomogeneous plasma, it is determined
by
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where k(x) is the local wavevector and δn(x) is the local

density fluctuation. Under the resonant condition for the wave

phase velocity, this relation can be rewritten as
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To determine the integration limits, it is useful to note that
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the condition u< V is satisfied when ne< ne(x). Thus, one can

calculate the probability
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For a Gaussian distribution, one can obtain the distribution
in terms of the incomplete Gamma function (or, equivalently,
in terms of error functions):
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Similarly, the probability that the velocity at the other end
exceeds V is
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which may be written as
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In summary, the probability distribution for V given by the
case of a multiple (infinite) reflections reads as
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i.e.,

An equivalent formulation in terms of error functions has
the following form:
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And, for the reflection probability,
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Thus, the overall probability distribution may also be
written as

Appendix C
Growth and Damping Calculation
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The derivative F

v
(without the multiplier

n

n
p

b

e

) reads:
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v
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Thus, the increment is:
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For the sake of simplicity, let Pω(V ) be Gaussian:
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V
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V
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exp .

r
2

2

To determine the maximum, let us calculate the derivative.
The parameters of our study are α and vmin, and for the
Gaussian Pω(V ), the parameters are Vr andΔV. The variable is

=U
L

t
. After some simple but cumbersome calculations, one

can find
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For the maximum, the derivative should be equal to
zero, thus

( )
=

v

U

U V v

V
0.

min r min

2

The extremal points are determined by

= +U
V V

V
V

V2 4
,1

r r
2

2
2

r

= + +U
V V

V
2 4

.2

r r

2

2

As ΔV2 is supposed to be much less than Vr
2, it may be

written as
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Since U is supposed to be positive, only U2 represents a
valid solution. This value should correspond to the maximum
of the increment. The calculation of the second derivative
confirms it. We suppose that the probability distribution has a
sharp narrow maximum at U= Vr. This allows one to evaluate
the increment at U= Vr:

γ= ν+Γ=

( ) ( )

( )
( )

= ×

+

n

n

v

V
P V dV

U P U
v

v

U

1

1
,

U

p
b

e

min
1

2

min

min

( ) ( )

( )

= + = ×

× +

V
n

n

v

V

v

V

v

V

1

1
. C6

r p
b

e

min

r

2

min

r

min

The necessary condition for the instability to exist in the
limit of the Gaussian distribution for the phase velocity then
follows:

( )>
v

V

v

V

1
, C7

min min

r

which may be rewritten as

( )>V V . C8r
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