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Abstract 
Hydrogen recirculation is a key component in Proton Exchange Membrane Fuel Cell (PEMFC) systems, 

essential for minimizing fuel loss, enhancing efficiency, and supporting water management. This study 

investigates a passive recirculation strategy using an ejector, an energy-efficient device with no moving 

parts, making it suitable for applications where simplicity, reliability, and weight are critical, such as in 

automotive and aerospace sectors. A hybrid computational framework is developed by integrating high-

fidelity Computational Fluid Dynamics (CFD) simulations with a Genetic Algorithm (GA) to optimize 

key ejector parameters, including nozzle radius, exit position, mixing chamber length, and diffuser 

radius. Optimization is performed directly on full CFD simulations using a high-performance 

computing cluster, avoiding surrogate models and ensuring accuracy. The model is validated against 

experimental and theoretical data from the literature. Optimization aims to maximize suction capacity 

based on a commercial 110-cell PEMFC stack rated at 20.4 kW, operating between 0 and 180 A. The 

resulting design achieves stable performance from 48 A upwards, significantly broadening the 

operational range compared to prior ejector configurations. In addition to providing a technical solution 

for fuel cell gas management, this study establishes a transferable optimization methodology that can 

support ejector integration in other clean energy systems. 

 

Keywords: Proton Exchange Membrane Fuel Cells, Hydrogen Recirculation Systems, Ejector 

Optimization, Computational Fluid Dynamics, Genetic Algorithm. 

1 Introduction 
The growing global concerns regarding environmental challenges and the necessity to reduce 

greenhouse gas emissions have led to significant developments in clean energy production technologies. 

In this regard, Proton Exchange Membrane Fuel Cells (PEMFC) have attracted particular attention due 

Manuscript Click here to view linked References
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to their advantages, including high electrochemical efficiency, silent operation, low operating 

temperature, and rapid load response capability [1]. 

To ensure stable operation of PEMFC systems, the input fuel typically exceeds the stoichiometric 

amount required for electrochemical reactions, necessitating fuel recycling. The hydrogen recirculation 

system (HRS) plays a vital role in returning unreacted hydrogen and water vapor to the fuel cell input 

while maintaining optimal humidity levels and preventing anode flooding. This process also enables 

safe management of exhaust gases, as direct hydrogen discharge could pose safety and environmental 

hazards [2]. 

In hydrogen recirculation systems, pumps and ejectors are the most common mechanisms, with ejectors 

gaining particular attention due to their simple structure which comprises of four main parts: primary 

nozzle, suction chamber, mixing chamber, and diffuser [1,3]. Ejectors, operating on Bernoulli's 

principle and momentum transfer [4], offer significant advantages over pumps. Their lack of moving 

parts translates to increased durability, reduced maintenance costs, and quiet operation [3]. 

Ejectors must be designed to ensure adequate suction capability under diverse operating conditions, 

posing significant challenges in their optimal design. Innovative solutions, such as variable geometry 

ejectors [5] and multi-nozzle systems [6], have been proposed to address these issues. However, these 

approaches introduce complexities, including higher structural intricacy, elevated production costs, and 

advanced control requirements. 

Research has shown that ejector performance is strongly influenced by geometric parameters (e.g., 

primary nozzle area ratio, nozzle exit position, mixing chamber length, and diffuser angle) and operating 

conditions [7-10]. While experimental methods have been employed to study these factors [11], they 

are constrained by high costs, time requirements, and limited test scope. Alternatively, CFD has 

emerged as a robust method for modelling and optimizing ejector performance, offering high accuracy, 

efficient computational speed, multi-parameter analysis, and cost-effectiveness. He et al. [12] 

investigated the influence of primary flow nozzle exit area, secondary flow convergence angle, and 

nozzle exit position (NXP) on CO2 ejector performance. Liu et al. [13] conducted CFD simulations on 

transcritical CO2 ejectors in supermarket refrigeration. Li et al. [14] analyzed the impact of mixing 

chamber dimensions and diffuser angle on rectangular CO2 ejector entrainment ratio using a non-

equilibrium CFD model. Liu et al. [15] examined the impact of ejector geometry and operating 

conditions in transcritical CO2 air conditioning systems. Wu et al. [16] performed multi-parameter 

analysis using CFD and orthogonal experiments, identifying nozzle exit diameter as the most significant 

factor. Le Tri et al. [17] focused on optimizing ejector parameters for anode recirculation in high-

performance PEMFC fuel cells. Yan et al. [18] investigated the influence of six crucial geometric 

parameters on ejector performance. Kim et al. [19] proposed a variable multiple ejector system for a 

minibus fuel cell system. Brunner et al. [20] designed an electronically controlled variable flow ejector 
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for the Ballard Mark 9 stack. Pei et al. [21] conducted numerical studies on wide-range operating 

ejectors based on anode pressure drop characteristics in PEMFC systems. Kandakure et al. [22] 

performed comprehensive CFD studies on ejector hydrodynamics. Zhu et al. [23] investigated the 

effects of NXP and mixing section convergence angle on ejector performance. 

Previous research on ejector performance optimization has primarily relied on a case-by-case approach, 

which is limited by the vast design space and complex interactions between ejector components. This 

makes achieving optimal geometry through traditional parametric studies time-consuming and 

inefficient. To address these limitations, researchers have turned to artificial intelligence (AI) methods 

[24-26]. AI excels in optimizing ejector geometry by effectively exploring the multi-dimensional design 

space, modelling complex nonlinearities, avoiding local optima, and significantly reducing the number 

of required evaluations. Liu et al. [27] presented a multi-objective optimization framework for CO2 

ejector systems by combining Artificial Neural Network (ANN) and Non-dominated Sorting Genetic 

Algorithm II (NSGA-II). Pang et al. [28] introduced a comprehensive framework for performance 

prediction and geometry optimization of ejectors in PEMFC systems, combining CFD simulation, 

backpropagation neural network (BPNN), and genetic algorithms. Arabbeiki et al. [1] focused on 

optimizing hydrogen recirculation systems in PEMFC fuel cells using CFD simulation. Maghsoodi et 

al. [29] investigated the impact of four key geometric parameters on ejector performance and developed 

an optimized design using CFD simulation, ANN, and GA. Liu et al. [30] presented a framework for 

optimizing two-phase CO2 ejector performance by combining CFD, ANN, and GA. Palacz et al. [31] 

developed software enabling integration with commercial CFD solvers using two intelligent 

optimization algorithms (genetic and evolutionary algorithms). Palacz et al. [32] employed genetic 

algorithm and homogeneous equilibrium model (HEM) to optimize various ejector parameters. Carrillo 

et al. [33] utilized multi-objective evolutionary algorithm and CFD-based surrogate model for 

optimizing geometric structures of air and CO2 ejectors. Ringstad et al. [34] employed CFD data to 

train a Gaussian Process Regression (GPR) machine learning model and used the combination of 

machine learning model and gradient descent method to identify optimal CO2 ejector geometric 

structures. Li et al. [35] optimized geometric structures of a rectangular CO2 ejector using CFD 

simulation, response surface methodology (RSM), and genetic algorithm. Song et al. [36] proposed an 

RSM-based multi-objective genetic algorithm for optimizing ejector performance in SOFC systems. 

Srisha Rao and Jagadeesh et al. [37] employed vector-evaluated particle swarm multi-objective 

optimization algorithm to optimize ejector design. Gil and Kasperski [38] evaluated ejector cycle 

performance using ethers and fluorinated ethers as refrigerants and focused on their performance 

optimization. 

This study introduces a novel optimization framework for hydrogen ejector design in PEM fuel cells, 

directly coupling high-fidelity CFD simulations in OpenFOAM with a genetic algorithm. In contrast to 

previous work that relies on surrogate models or simplified geometries, this approach performs full-
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order simulations throughout the optimization, accurately capturing complex, compressible flow 

behaviour. Deployed on a high-performance computing cluster, the framework enables multi-parameter 

optimization of ejector geometry and delivers a single design with stable suction performance across a 

wide fuel cell operating range. Beyond PEMFC applications, the methodology is transferable to other 

systems requiring passive recirculation or gas entrainment, offering a generalizable tool for advanced 

ejector design across various clean energy technologies. 

The rest of the paper is structured as follows: the introduction outlines the research motivation and 

background. The methodology begins by describing the studied fuel cell system and its model, followed 

by an explanation of the ejector's numerical model and the optimization process. The results section 

discusses the findings and their validation, and the conclusion highlights the contributions and future 

directions of the study. 

2 Fuel Cell System Description 

This study utilizes Ballard’s fuel cell stack, consisting of 110 cells, with each cell having an active area 

(A) of 285.88 cm². The system configuration and fuel cell stack are similar to those presented by 

Rabbani and Rokni [39], Liso et al. [40], Hosseinzadeh and Rokni [41], and Hosseinzadeh et al. [5]. 

However, the goal is to design an ejector that can maximize the operating range of the anode 

recirculation system, effectively replacing the electric pump across varying operating conditions, from 

low to high current (I). Figure 1 presents the schematic of the system and its components. The operating 

temperature (Tope) ranges from 60 to 70°C. The maximum output power (Ptotal) of this system is 

approximately 20.4 kilowatts. The inlet gas temperature is around 60°C. The fuel inlet pressure is 

adjusted by a pressure regulator according to operating conditions. The stoichiometry of fuel (AnSto) 

and air (CatSto) varies depending on the current flow, with values of 1.6 and 1.8 at higher power levels, 

respectively. This fuel cell employs a water exchange method between the anode and cathode, 

eliminating the need for additional humidification on the anode side. The relative humidity at the 

cathode inlet is approximately 95 percent. A zero-dimensional analytical model for simulating the 

performance of PEMFC has been implemented using Python programming language. The developed 

model estimates cell voltage based on activation, ohmic, and concentration potentials, which can be 

used to generate polarization curves and estimate cell performance under various conditions [42, 43]. 

Additionally, this model simulates water transport through the membrane, considering mechanisms 

such as osmosis, diffusion, and hydraulic permeation [42, 43]. This is a complex and important 

phenomenon that have a big impact on the anode and cathode water content, and consequently on the 

ejector design. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



5 

 

 

Figure 1. The schematic of the Ballard’s fuel cell system configuration and its components (Air and 

hydrogen tank, Humidifier, Pump, Radiator, and Heat Exchanger). 

2.1 Operating conditions of the system  

In this research, the studied ejector is designed to supply the hydrogen required for the fuel cell, in 

accordance with the operational conditions proposed by Ballard [39-41, 5]. The operational conditions 

for the Ballard stack are presented in Table 1, where T1 to T5 represent different operating conditions. 

The final column of Table 1 shows the entrainment ratio, defined as the ratio of the secondary flow's 

mass flow rate to the primary flow's mass flow rate. 

Table 1. Operating conditions for fuel cell stack recommended by manufacturer (Ballard). 

Case 
I  A  Ptotal  AnSto CatSto Tope Pan Pcat  Entrainment ratio 

[A] [cm2] [W] [-] [-] [K] [bar] [bar] [-] 

T1 15 285.8 1414 6.3 5.1 334.15 1.15 1.08 16.34 

T2 30 285.8 2723 3.4 2.4 336.15 1.16 1.10 8.09 

T3 60 285.8 5201 2.2 1.8 339.15 1.31 1.17 4.25 

T4 120 285.8 9794 1.9 1.8 340.15 1.57 1.35 2.83 

T5 180 285.8 14157 1.6 1.8 340.65 1.92 1.58 1.72 

The primary objective of this study is to enhance the entrainment ratio within the system by maximizing 

the secondary flow rate. This is accomplished through the optimal design of an ejector that maximizes 

the operational range of the fuel cell across varying conditions, from low to high current. 

3 Computational Model and Numerical Framework of Ejector: 
A schematic of the ejector is presented in Figure 2. The primary flow comprises pure pressurized 

hydrogen at 25°C, while the secondary flow consists of unreacted hydrogen from the fuel cell mixed 
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with water vapor. The operating temperature of the secondary flow aligns with the fuel cell's operating 

conditions. 

3.1 Computational Domain and Boundary Conditions 

A 2D axisymmetric model has been used to model the ejector, where the x-axis represents the axis of 

symmetry of the model. The geometric configuration depicted in Figure 2 is characterized by the 

following parameters: primary nozzle throat radius (Rth); mixing chamber radius (Rm); diffuser radius 

(Rd); nozzle exit position (Ls); mixing chamber length (Lm); and diffuser length (Ld).  

 

Figure 2. Schematic of the computational domain geometry, illustrating the arrangement and 

dimensions of the suction chamber, mixing chamber, and diffuser. 

The boundary conditions include constant temperature at the primary and secondary inlets. At the 

primary inlet, a mass flow rate boundary condition is imposed for velocity, and a zero-gradient boundary 

condition is applied for pressure. The boundary condition for velocity on the walls is a no-slip condition. 

At the walls, the wall functions are used to estimate the turbulence parameters k, ε and μt [44]. For the 

pressure at the outlet and secondary inlet, a static pressure boundary condition is used. The other 

boundary conditions are of type zero gradient. 

3.2 Governing equations  

The three-dimensional Unsteady Reynolds-averaged Navier–Stokes (URANS) equations are used as 

follows: 

Continuity equation: 𝜕𝜌𝜕𝑡 + 𝜕𝜌𝑢̅𝑖𝜕𝑥𝑖 = 0.0       𝑖 = 1, 2, 3, (1) 

Momentum equation: 𝜕𝜌𝑢̅𝑖𝜕𝑡 + 𝜕(𝜌𝑢̅𝑖𝑢̅𝑗)𝜕𝑥𝑗 − 𝜇Δ2𝑢̅𝑖 + 𝜕(𝑢́𝑖𝑢́𝑗̅̅ ̅̅ ̅)𝜕𝑥𝑗 = − 𝜕𝑃̅𝜕𝑥𝑖 + 𝜌𝑔𝑖 , (2) 

Energy equation: 

𝜕𝜌𝑇̅𝜕𝑡 + 𝜕(𝜌𝑢̅𝑗𝑇̅)𝜕𝑥𝑖 = 𝜕𝜕𝑥𝑗 (𝜆 𝜕𝑇̅𝜕𝑥𝑗) − 𝜕(𝑢́𝑗𝑇́̅̅ ̅̅̅)𝜕𝑥𝑖 − (𝜕(𝑃𝑢̅𝑖)𝜕𝑥𝑖 + 𝜕(𝜌𝐾)𝜕𝑡 + 𝜕(𝜌𝐾𝑢̅𝑖)𝜕𝑥𝑖 ) ( 𝛼1𝐶𝑣1 + 𝛼2𝐶𝑣2) (3) 
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where 𝑢̅𝑖, P, T, t and μ represent the time-averaged velocity components, pressure, temperature, time 

and molecular viscosity, respectively. λ = μ/Pr is the molecular heat transfer coefficient, Pr is the Prandtl 

number. With i = 1, 2, 3 indicates the velocity components in the x, y and z directions, respectively. α1 

and α2 are the phase volume fractions. Cv1 and Cv2 are the specific heat capacities at constant volume 

for the respective phases. 

ρ is the density of the fluid which is determined by the state equation. Here, the perfect gas law is used 

to calculate the density: 

𝜌 = 𝑃𝑀𝑅𝑇 , (4) 

where R is the gas constant and M is the molar mass of the gas. 

The effect of turbulence in URANS equations is calculated through the Reynolds stress tensor term 

(𝑢́𝑖𝑢́𝑗̅̅ ̅̅ ̅) and the turbulent heat flux term (𝑢́𝑗𝑇́̅̅ ̅̅̅). Using the Linear Eddy Viscosity (LEV) approach, these 

two parameters are calculated as follows: 

−𝑢́𝑖𝑢́𝑗̅̅ ̅̅ ̅ = 𝜇𝑡 (𝜕𝜌𝑢̅𝑖𝜕𝑥𝑗 + 𝜕𝜌𝑢̅𝑗𝜕𝑥𝑖 ) − 23 𝛿𝑖𝑗𝑘, (5) 

− 𝑢́𝑗𝑇́̅̅ ̅̅̅ = 𝜇𝑡𝑃𝑟𝑡 𝜕𝑇̅𝜕𝑥𝑗        𝑖 = 1, 2, 3, (6) 

Where δij is the Kronecker delta (𝛿𝑖𝑗 = (0  𝑖𝑓 𝑖 ≠ 𝑗;   1  𝑖𝑓 𝑖 = 𝑗)), Prt is the turbulent Prandtl number. 

μt is the turbulent viscosity which is calculated by the turbulence model. In this study, the k-ε RNG 

turbulence model is used. In this turbulence model, μt is calculated by solving the transport equations 

of turbulent kinetic energy (k) and its rate of dissipation (ε) as shown below: 𝜕(𝜌𝑘)𝜕𝑡 + 𝜕(𝜌𝑘𝑢̅𝑖)𝜕𝑥𝑗 = 𝜕𝜕𝑥𝑗 [(𝜇 + 𝜇𝑡𝜎𝑘) 𝜕𝑘𝜕𝑥𝑗] + 𝜇𝑡𝑆2 − 𝜌𝜀, (7) 𝜕(𝜌𝜀)𝜕𝑡 + 𝜕(𝜌𝜖𝑢̅𝑖)𝜕𝑥𝑗 = 𝜕𝜕𝑥𝑗 [(𝜇 + 𝜇𝑡𝜎𝑘) 𝜕𝜀𝜕𝑥𝑗] + 𝐶𝜀1 𝜀𝑘  𝜇𝑡𝑆2 − 𝐶𝜀2′ 𝜌 𝜀2𝑘 ,  (8) 

𝜇𝑡 = 𝐶𝜇 𝑘2𝜀 ,          (9) 

where, 

𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗     ;      𝑆𝑖𝑗 = 12 (𝜕𝑢̅̅ ̅̅ 𝑖𝜕𝑥𝑗 + 𝜕𝑢̅̅ ̅̅ 𝑗𝜕𝑥𝑖) ; 𝐶𝜀2′ = 1.68 + 0.085𝜆3(1−𝜆 4.38⁄ )1+0.012𝜆3 ;        𝜆 = 𝑘𝜀 𝑆. (10) 

σk and σε are the turbulent Prandtl numbers for the turbulent kinetic energy transport equation and its 

dissipation rate equation and are equal to 1.0 and 1.3, respectively. cε1 and cε2 are model constants and 

are equal to 1.44 and 1.92, respectively. The other constants are as follows: 𝐶𝜇 = 0.09   ;    𝜎𝑘 = 0.72    ;    𝜎𝜀 = 0.72. 
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3.3 Numerical method 

The open-source computational fluid dynamics code OpenFOAM version 9 based on the finite volume 

method has been used for the simulations. The governing equations are solved by the standard 

compressibleInterFoam solver, which is a solver for two compressible, non-isothermal and immiscible 

fluids that utilizes a volume of fluid (VOF) phase-fraction based interface capturing approach. 

The solver uses the PIMPLE (merged PISO-SIMPLE) algorithm for pressure-momentum coupling. 

This algorithm leverages the strengths of both PISO and SIMPLE methods for pressure-velocity 

coupling, ensuring robustness in handling transient flows with large time steps. The time derivatives 

are discretized by the implicit first order accurate Euler scheme. The Gauss linear method is adopted 

for the gradient interpolation. The Gauss limited linear schemes have been used to discretize for all the 

convective terms. The Laplacian terms are discretized using limited Gauss linear corrected schemes. 

The iterative solver for symmetric and asymmetric matrices which uses a symGaussSeidel smoother to 

converge the solution is applied for the pressure and phase volume fractions field with a tolerance of 

10e-6. While the stabilized preconditioned (bi-) conjugate gradient method, for both symmetric and 

asymmetric matrices, with diagonal incomplete LU (DILU) preconditioner is applied for U, T, k, and ε 

with a tolerance of 10e-6. Preconditioned conjugate gradient (PCG) with Simplified Diagonal-based 

Incomplete Cholesky (DIC) preconditioner is used to solve the density field with a tolerance of 10e−5 

at each time step.  

All simulations were conducted on a high-performance computing system (the Viking cluster). The 

cluster comprises 134 standard compute nodes, each equipped with two AMD EPYC 3 7643 processors 

(48 cores each), totalling 12,864 CPU cores. Each standard compute node features 512 GB of memory. 

For each simulation case, parallel computations were performed exclusively on the cluster's CPU 

resources, leveraging the multi-core architecture of the AMD EPYC processors to accelerate the 

simulation process. 

4 Optimization Process 

4.1 Genetic Algorithms 

In this study, a Genetic Algorithm (GA) was employed to optimize the geometry of the ejector. The GA 

is an advanced optimization technique inspired by the principles of natural selection and genetics [45]. 

GAs have been widely applied across diverse fields such as engineering, computer science, economics, 

and biology. They are particularly noted for their ability to explore large and intricate search spaces, 

making them invaluable for solving problems where conventional optimization methods are inadequate 

[46]. The flowchart illustrating the implementation of the genetic algorithm in this research is presented 

in Figure 3. 
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Figure 3. Genetic algorithm flowchart. 

In a genetic algorithm, each candidate solution is represented as a chromosome (or individual), serving 

as the foundation for the optimization process. The initial population was randomly generated within 

the upper and lower bounds of the design variables, subject to the constraints of the problem. These 

constraints are detailed in the following section. Subsequently, the selected variables are evaluated using 

the fitness function, which quantifies the quality of each solution. The details of this evaluation process 

are elaborated in the following section. 

The quality of each individual is assessed, which quantifies its suitability as a solution to the problem. 

Individuals with higher fitness scores are preferentially selected for reproduction through various 

selection mechanisms. In this study, roulette wheel selection was employed as the method for parent 
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selection. This technique assigns selection probabilities to individuals proportionate to their fitness 

levels, with individuals of higher fitness occupying larger segments of the roulette wheel, thereby 

increasing their chances of being selected.  

The selected parents underwent recombination using the continuous crossover method to generate 

offspring. In this approach, each gene in the offspring was calculated as a linear combination of the 

corresponding gene values from the parents, enabling effective exploration of the search space and 

increasing the likelihood of discovering optimal solutions (Figure 4a). To maintain genetic diversity 

and prevent premature convergence, a continuous mutation technique was employed. This method 

introduces a small random variation for a random gene, preserving population diversity and reducing 

the risk of the algorithm becoming trapped in local optima (Figure 4b). The range of variation for the 

selected variable is defined as ±C% of its upper (up) and lower (lb) bounds. Preliminary experiments 

showed that a value of C=10% yielded a good trade-off between diversity and convergence speed in 

this specific problem. 

 

Figure 4. Operations of (a) continuous crossover and (b) continuous mutation from parent selection to 

offspring generation. 

This iterative process—comprising evaluation, selection, crossover, and mutation—continues until a 

specified termination criterion is satisfied. The stopping criterion for the genetic algorithm was defined 

based on two conditions: the maximum number of objective function evaluations or the convergence 

trend in the objective function values. The algorithm continued its execution until either the maximum 

number of evaluations was reached, or no significant improvement was observed in the best solution or 

the average fitness of the population. This dual-criterion approach ensured that the algorithm converged 

to a satisfactory solution while minimizing computational time and avoiding unnecessary exploration.  
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4.2 Fitness Function 

The fitness function comprises three primary components, as illustrated in Figure 5. The process begins 

with geometry design and meshing, utilizing the geometric parameters defined during the optimization 

procedure. Subsequently, initial conditions and boundary conditions are established based on the 

problem specifications in the numerical model. Finally, the numerical model of the ejector, implemented 

using the open-source OpenFOAM framework, performs an accurate simulation of the fluid flow. The 

output results, including the suction value at the secondary flow location, are then transmitted to the 

optimization algorithm for evaluation. To facilitate synchronization between the CFD model and the 

optimization algorithm, a custom code was developed in the Python programming environment, 

ensuring seamless integration of these components throughout the optimization process. 

 

Figure 5. Flowchart of the fitness function for use in the genetic algorithm. 

4.3 Defining the Optimization Problem 

The optimization objective focuses on maximizing the ejector's suction capacity across a broad current 

range through optimal geometric configuration. The objective function F(X) is mathematically 

expressed as: 

max F(X) = ṁs, (11) 

 

where X = [Rth, Rm, Rd, Ls, Lm, Ld] represents the design variables shown in Figure 2. 

Success criteria involve comparing the genetic algorithm-derived optimal solution's suction flow rate 

against target values specified in Table 1, with achievement or exceedance indicating sufficient ejector 

capacity for fuel cell gas recirculation. 

In addition to the ejector geometric parameters determined in the optimization process, there is a need 

to precisely define the operating conditions for both the ejector and fuel cell systems. The operating 

conditions of the ejector include the pressure and temperature of the secondary flow, the mass flow rate 
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of the primary flow, the outlet pressure, and the properties of the working fluid, which are consistent 

with the operating conditions of the fuel cell. The fuel cell model parameters include operating 

temperatures, pressures, Relative Humidity (RH), and stoichiometric hydrogen ratio, which determine 

the water vapor and excess hydrogen output quantities specific to each case study.  

In this study, considering the existing manufacturing constraints of the ejector and the operational 

conditions outlined in Table 1, the minimum primary nozzle throat radius (Rmin) was calculated to be 

0.2 mm. Given the available computational resources, the upper bound of Rth was set to 3.5Rmin. 

Furthermore, the values for Rm and Rd were examined, ranging from 2.5 to 15 times and 2.5 to 35 times 

the Rmin, respectively. A review of the literature indicated that various optimal dimensional ratios, 

expressed as length-to-radius ratios, have been proposed for different sections of the ejector. To 

thoroughly encompass these proposals, this research explored a broad range of these ratios. The values 

of Lm and Ld were investigated from 3 to 60 times and 5 to 18 times their respective radii, respectively. 

Additionally, the Ls was set to a maximum of 35 times the Rmin. These values were established as the 

upper and lower bounds for the design variables. 

5 Results and discussion 

5.1 Validation of the fuel cell 

The analytical fuel cell model was validated with the data presented in Table 1, obtained from the 

Ballard Power Systems fuel cell stack. The comparison between experimental data (symbols) and 

analytical results (solid line) in Figure 6 shows excellent agreement, confirming the model's accuracy. 

 

Figure 6. Comparison of polarization curves for different fuel cell temperatures. Symbols represent 

Ballard's fuel cell stack data, while the solid line depicts the analytical model results. 
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5.2 Validation of the Ejector 

To validate the CFD numerical model, theoretical data from Marsano et al. [47] was used, in this work 

they designed an anode-based ejector recirculation system for hybrid solid oxide fuel cell (SOFC) 

applications. The ejector geometry was optimized based on specified operating conditions including 

primary mass flow rate, secondary flow pressures, temperatures, and gas compositions, as detailed in 

Table 2. Under these conditions, their design achieved a secondary mass flow rate of 0.0677 kg/s and 

an entrainment ratio of 7.20. Here, given that the pressure value at the primary flow inlet is specified, a 

total pressure boundary condition is applied to the pressure term, while a zero-gradient boundary 

condition is applied to the velocity term. Subsequently, the mass flow rates at both the primary and 

secondary flow locations are analysed for validation purposes.  

Table 2. Design point values of ejector  

Parameter Marsano et al. [47] Present study (CFD) 
Primary flow composition (molar, %) CH4 (100) CH4 (100) 

Secondary flow composition (molar, %) H2 (0.39); CO (4.19); H2O; 
(43.96); CO2 (51.46) 

Average value of 
compositions 

Primary mass flow rate (kg s-1) 0.0094 0.0092 

Secondary mass flow rate (kg s-1) 0.0677 0.0676 

Primary flow pressure (bar) 10.06 10.06 

Secondary flow pressure (bar) 3.8 3.8 

Outlet pressure (bar) 3.6 3.6 

Primary flow Temperature (K) 673 673 

Secondary flow Temperature (K) 1280 1280 

A structured mesh with cubic elements has been utilized for the grid generation. Following a sensitivity 

analysis on the mesh, 10 elements were employed in the radial direction for the primary flow region, 

and 12 cells were used for the secondary flow region. In the longitudinal direction of the channel, a total 

of 139 cells were implemented. Figure 7 illustrates the results of the mass flow rate of the secondary 

flow recorded throughout the analysis, compared to the data from Marsano et al. [47]. As observed, the 

value of the secondary flow was calculated to be approximately 0.0676 kg/s. Due to some fluctuations 

in the data, an average value was taken within the time interval of 0.04 sec to 0.05 sec. This meshing 

also led to an estimation of the mass flow rate of about 0.0092 kg/s, which shows a very good agreement 

with the reported value. 
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Figure 7. Comparison of Marsano et al. [47] data with results from the present numerical model for 

mass flow rate at the secondary flow inlet. 

5.3 Genetic algorithm 

The genetic algorithm implemented in this study utilized an initial population composed of 50 

individuals. From this population, 34 offspring were generated through the crossover process, while 16 

offspring were produced via mutation. Since the whole process is stochastic, it is essential to run the 

algorithm multiple times to ensure the results have statistical relevance. To visualize the results and 

facilitate statistical analysis, box and whisker plots were employed. This type of plot is a useful tool for 

analyzing the results of genetic algorithms clearly illustrating the stability, dispersion and optimality of 

the results. 

To examine the optimization process in each analysis, Figure 8 presents a sample of the Box Plots for 

different generations from the analysis for case T3. Analysis of the Box Plot for successive generations 

of the genetic algorithm shows significant dispersion in the results of the first generation, evident from 

the large box and long whiskers in the plot. This high diversity in the initial population is desirable from 

a genetic algorithm perspective as it enables searching through a broader solution space. From the 

second generation onwards, a gradual and distinct improvement trend can be observed through the 

decreasing size of boxes (IQR), movement of medians towards better values, and reduction in the 

number of outliers. This trend indicates the gradual convergence of the population towards optimal 

solutions. From the eighth generation onwards, changes become minimal, which can be observed from 

the stability in box sizes, median positions, and significant reduction in outliers. This stability indicates 

that the algorithm has reached a steady convergence point. 
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Figure 8. Box Plots displaying the distribution of data for each generation in case T3, illustrating the 

median, quartiles, and outliers within the dataset. 

The appropriate convergence speed, occurring within about eight generations, demonstrates the proper 

performance of crossover and mutation operators. This also indicates the success of the parent selection 

strategy and elitism in the algorithm. The gradual reduction in variance, observable through the 

shrinking boxes, along with continuous improvement in medians, shows that the algorithm has managed 

to establish an appropriate balance between exploration of the search space and exploitation of good 

solutions, reaching a stable and acceptable convergence. 

In this study, the algorithm was executed 30 times, which allows for a robust assessment of the outcomes 

and enhances the reliability of the findings. Figure 9 illustrates the distribution of results from 30 

optimization runs for cases T3. In the presented graph, points represent the outlier value obtained in a 

genetic algorithm execution. 
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Figure 9. Box and whisker plot showing the results of 30 optimization runs for case T3. 

Analysis of the box plot reveals that the GA demonstrated satisfactory performance over 30 executions. 

The mean objective function value of 0.00044 and median of 0.00045 are relatively close, indicating a 

symmetric distribution of results. The small standard deviation (0.00003) compared to the mean 

suggests low data dispersion around the average and highlights the algorithm's stability in producing 

consistent results. The Interquartile Range (IQR), calculated as the difference between the third quartile 

(0.00046) and first quartile (0.00044), equals 0.00002. This small range confirms that the central 50% 

of the data is concentrated in a narrow interval, reinforcing the algorithm's reliability and 

reproducibility. In this dataset, 4 outliers are observed, including one at the maximum value of 0.00051. 

The presence of an outlier at the highest observed value is particularly beneficial in optimization 

problems, as it represents a superior solution achieved in at least one execution. The remaining outliers, 

which are significantly lower than the interquartile range, can be attributed to the stochastic nature of 

the genetic algorithm and occasional convergence to suboptimal solutions. However, the low number 

of such deviations suggests that the algorithm successfully converged to desirable and consistent results 

in most cases. The concentration of most data points in the upper region of the plot and near the best 

solution demonstrates that the algorithm frequently identified high-quality solutions. This consistency 

is a key advantage in optimization, as it reflects the algorithm's strong capability in navigating the search 

space effectively and avoiding poor local optima. Overall, based on the statistical metrics and result 

distribution, the designed GA has performed well in terms of stability, reproducibility, and its ability to 

achieve optimal solutions, with at least one run reaching the highest observed performance. 
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5.4 Optimized ejector design using CFD and genetic algorithm 

In the present study, all the cases of Table 1 were investigated to design an optimal ejector for the fuel 

cell. The results indicate that it is not possible to achieve a design that has adequate suction capability 

for the 15 and 30 A cases. Further investigations for the 60, 120 and 180 A cases resulted in a design 

that has sufficient suction capability according to the values in Table 1 and can effectively remove all 

excess gases from the fuel cell. However, the optimized geometries for the 120 and 180 A cases lead to 

the identification of high radii for the nozzle, which reduces the suction capability at lower currents. 

Hence, the 60 A case was selected for optimization. Table 3 shows the optimal geometric dimensions 

of the ejector identified by the genetic algorithm for the T3 case. In addition, the final column of Table 

3 provides the estimated bubble ratio. 

Table 3. Predicted dimensions of the ejector using the genetic algorithm method. 

Case 
Ls 

[mm] 
Lm 

[mm] 
Ld 

[mm] 
Rth 

[mm] 
Rm 

[mm] 
Rd 

[mm] 
Suction 
[kg/s] 

Entrainment ratio 

[-] 
T3 0.28 16.0 45.45 0.23 1.5 5.09 0.0005133 7.45 

 

From a practical perspective, it is essential to select a specific fuel cell that addresses the problem at 

hand. To achieve this, one design is chosen as the optimal configuration for each scenario, and the 

suction capabilities of other configurations (as detailed in Table 1) are assessed in relation to the selected 

design. Figure 10 presents the profiles of secondary flow rates suctioned by the chosen optimal ejector 

as a function of current. It also illustrates the design points representing the suction requirements 

necessary for the ejector. Additionally, the figure depicts the three-dimensional geometries of the T3 

design. As shown in the figure 10, comparing the T3 design with the design points, which represent 

target performance values, at low currents (below 48 A), the T3 design exhibits no suction capability, 

as indicated by the dashed line. However, there is a sharp increase in performance at approximately 45-

60 A, where the secondary flow rate rises dramatically to around 0.0005 kg/s. Beyond this point, the T3 

design shows a steady, nearly linear increase in secondary flow rate, reaching approximately 0.00065 

kg/s at 120 A and ultimately achieving its maximum performance of about 0.00078 kg/s at 180 A, which 

significantly exceeds the required design points. When comparing these findings with Hosseinzadeh et 

al. [5], the T3 design shows improvements. While Hosseinzadeh et al. [5] encountered operational 

constraints below 60 A, with their system being unable to generate suction below 50 A, the T3 design 

pushes this lower operational limit even further down to 48 A. However, once operational, the T3 design 

demonstrates superior performance in the high-current range, particularly above 85 A, where it achieves 

significantly higher secondary flow rates than the previous research. This represents a marked 

improvement over Hosseinzadeh's configuration, which barely met minimum acceptable performance 

thresholds at 85 A. Based on the comprehensive performance analysis, Design T5 has been selected as 
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the final optimized ejector configuration due to its effective suction capabilities across the entire 

required current range, addressing the limitations observed in previous designs. 

 

Figure 10. Profiles of the secondary flow rates extracted by the selected optimal ejector, accompanied 

by the corresponding design points. 

Figure 11 illustrates the pressure distribution profile along the x-axis of the ejector for I=60  [A], 

accompanied by a close-up view of the mixing chamber. The numerical results capture the key flow 

characteristics, including the sharp drop in pressure near x = 0.02 m, which indicates the presence of a 

shock due to flow expansion. This phenomenon is followed by a region of relatively stable pressure at 

approximately 1.1 bar, corresponding to the mixing and stabilization zone of the ejector. Toward the 

outlet (x>0.033 m), the pressure gradually recovers, reaching around 1.3  bar, representing the 

recompression zone. The results demonstrate that the numerical model accurately captures the complex 

pressure variations along the ejector, including the shock phenomenon and pressure recovery. This 

highlights the model's capability to effectively simulate the ejector's dynamic behaviour and validate its 

physical performance under the given operating conditions. 

 

Figure 11. Pressure distribution profile along the x-axis of the ejector for I = 60 A, with a close-up 

view of the mixing chamber area. 
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Figure 12 presents the numerical results of velocity and temperature distributions for the ejector with I 

= 60 A. In the velocity contour (Fig. 12a), following the principles of compressible flow and 

conservation of mass, the flow behaviour demonstrates a significant acceleration near the throat region 

(x ≈ 0.02 m), with velocities reaching up to 1919 m/s. According to the ideal gas law, this acceleration 

corresponds precisely to the pressure drop observed in Figure 11, consistent with Bernoulli's principle 

in compressible flows. Velocity gradually decreases in the diffuser due to the conservation of mass and 

momentum within the expanding cross-section. The temperature distribution (Fig. 12b) exhibits a 

corresponding pattern, following the energy equation and flow relationships, with a minimum 

temperature of approximately 166 K occurring in the throat region where the flow acceleration is 

maximum. The temperature gradually increases along the diffuser section as the primary flow mixes 

with the secondary flow and pressure recovers. These results further validate the numerical model's 

capability to accurately capture complex flow phenomena, particularly in the shock region where rapid 

changes in flow properties occur. 

 

Figure 12. Contour plots of (a) velocity magnitude and (b) temperature distribution within the ejector 

at an operating current of 60 A. 

6 Conclusion 

This study developed an advanced optimization framework for the design of ejectors in hydrogen 

recirculation systems (HRS) for Proton Exchange Membrane Fuel Cells (PEMFC). By directly 

integrating computational fluid dynamics (CFD) simulations with a genetic algorithm (GA), the 

framework effectively addressed the limitations of conventional surrogate-based methods. The 

proposed approach enabled the comprehensive exploration of key geometric parameters, including 

position and radius of the nozzle, mixing chamber dimensions, and diffuser length. Validation against 

experimental data confirmed the reliability and accuracy of the proposed CFD model. 

Based on a comprehensive performance analysis, Design T3 (60 A) demonstrates significant 

improvements compared to previous designs, although it cannot cover the entire required current range. 
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It shows remarkably high secondary flow rates at medium to high currents (48-180 A), exceeding the 

required values by nearly two-fold. However, it fails to provide any suction below 48 A. This represents 

an improvement over the work of Hosseinzadeh et al. [5], who could only achieve operation down to 

60 A with their dual ejector design. Nevertheless, the challenge of designing a single ejector to cover 

the entire current range remains unresolved. 

The integration of CFD and GA represents a scalable and efficient methodology for ejector 

optimization, offering significant cost and time savings while maintaining high accuracy. The findings 

provide a foundation for future research into advanced hydrogen recirculation technologies and their 

role in enhancing the efficiency and sustainability of clean energy systems. Future work will focus on 

further refining the optimization process, exploring additional operational parameters, and expanding 

the application of this framework to other fuel cell configurations. And moving from simulation to 

hardware, we will transition from computational models to empirical validation, developing a precision-

engineered prototype to validate theoretical insights and demonstrate practical feasibility. 
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Tables: 
 

 

 

Table 1. Operating conditions for fuel cell stack recommended by manufacturer (Ballard). 

Case 
I  A  Ptotal  AnSto CatSto Tope Pan Pcat  Entrainment ratio 

[A] [cm2] [W] [-] [-] [K] [bar] [bar] [-] 

T1 15 285.8 1414 6.3 5.1 334.15 1.15 1.08 16.34 

T2 30 285.8 2723 3.4 2.4 336.15 1.16 1.10 8.09 

T3 60 285.8 5201 2.2 1.8 339.15 1.31 1.17 4.25 

T4 120 285.8 9794 1.9 1.8 340.15 1.57 1.35 2.83 

T5 180 285.8 14157 1.6 1.8 340.65 1.92 1.58 1.72 

 

 

 

 

 

Table 2. Design point values of ejector  

Parameter Marsano et al. [47] Present study (CFD) 
Primary flow composition (molar, %) CH4 (100) CH4 (100) 

Secondary flow composition (molar, %) H2 (0.39); CO (4.19); H2O; 
(43.96); CO2 (51.46) 

Average value of 
compositions 

Primary mass flow rate (kg s-1) 0.0094 0.0092 

Secondary mass flow rate (kg s-1) 0.0677 0.0676 

Primary flow pressure (bar) 10.06 10.06 

Secondary flow pressure (bar) 3.8 3.8 

Outlet pressure (bar) 3.6 3.6 

Primary flow Temperature (K) 673 673 

Secondary flow Temperature (K) 1280 1280 

 

 

 

 

 

Table 3. Predicted dimensions of the ejector using the genetic algorithm method. 

Case 

Ls 

[mm] 

Lm 

[mm] 

Ld 

[mm] 

Rth 

[mm] 

Rm 

[mm] 

Rd 

[mm] 

Suction 
[kg/s] 

Entrainment ratio 

[-] 
T3 0.28 16.0 45.45 0.23 1.5 5.09 0.0005133 7.45 
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Figure 1. The schematic of the Ballard’s fuel cell system configuration and its components (Air and 

hydrogen tank, Humidifier, Pump, Radiator, and Heat Exchanger). 

 

 

 

 

Figure 2. Schematic of the computational domain geometry, illustrating the arrangement and 

dimensions of the suction chamber, mixing chamber, and diffuser. 
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Figure 3. Genetic algorithm flowchart. 

 

 

 



 

Figure 4. Operations of (a) continuous crossover and (b) continuous mutation from parent selection to 

offspring generation. 

 

 

 

 

 

Figure 5. Flowchart of the fitness function for use in the genetic algorithm. 

 

 



 

Figure 6. Comparison of polarization curves for different fuel cell temperatures. Symbols represent 

Ballard's fuel cell stack data, while the solid line depicts the analytical model results. 

 

 

 

 

Figure 7. Comparison of Marsano et al. [47] data with results from the present numerical model for 

mass flow rate at the secondary flow inlet. 

 

 

 



 

Figure 8. Box Plots displaying the distribution of data for each generation in case T3, illustrating the 

median, quartiles, and outliers within the dataset. 

 

 

 

Figure 9. Box and whisker plot showing the results of 30 optimization runs for case T3. 

 

 



 

Figure 10. Profiles of the secondary flow rates extracted by the selected optimal ejector, accompanied 

by the corresponding design points. 

 

 

 

Figure 11. Pressure distribution profile along the x-axis of the ejector for I = 60 A, with a close-up view 

of the mixing chamber area. 

 

 

 

 

 



 

Figure 12. Contour plots of (a) velocity magnitude and (b) temperature distribution within the ejector 

at an operating current of 60 A. 
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