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A B S T R A C T

Driven by artificial intelligence technologies, geospatial representation learning has become a new trend to 
better understand urban systems. Points of Interest (POI), as the current mainstream data in urban studies, plays 
an important role in these methods to discover urban characteristics. Existing studies on POI representation 
learning focus on spatial and type information, but overlook heterogeneous semantic interaction between POIs as 
well as hierarchical associations among types. To tackle these two problems, we propose a novel approach, called 
POI Dual Context Aware Neural Network (DCA) for learning POI representations by jointly embedding both 
spatial context and type context. For the spatial context of POIs, we introduce a distance decay effect constrained 
graph attention network as an encoder of DCA, which takes the heterogeneous semantic interaction and spatial 
proximity of POIs into account. For the type context of POIs, we propose a type hierarchical aggregation neural 
network architecture for DCA, and design a type infomax optimization objective following contrastive learning 
mechanism. The superiority of DCA is demonstrated in three geographic mapping tasks, including urban function 
mapping, region popularity mapping, and housing price mapping. This study provides a new insight to mine deep 
information from POIs, contributing to a better understanding of urban systems. The source code is released at 
http://github.com/quan-qin/DCA.

1. Introduction

In recent years, there has been a concerted effort to reveal urban 
spatial and semantic characteristics to understand complex urban sys
tems. Amid these efforts, geospatial representation learning has 
emerged as a new way of understanding urban systems from the 
perspective of GeoAI (Chen et al., 2025; Janowicz et al., 2020; Mai et al., 
2024). Geospatial representation learning employs low-dimensional, 
compact, and informative embeddings to represent the spatial and se
mantic information of geospatial features, aiming to better characterize 
urban physical and social spaces and aid in the understanding of urban 
systems. In practice, geospatial representation learning has informed 
decision making or catalyzed novel downstream analytics (Liu & Bil
jecki, 2022; Wang & Biljecki, 2022; Xiao et al., 2024), and helped solve 
geographic mapping tasks within cities, e.g., urban function, crime 
prediction, traffic prediction, and housing price mapping (Huang et al., 

2023; Zhang et al., 2023c).
Against the backdrop of ubiquitous urban big data, numerous studies 

have leveraged GeoAI techniques to provide comprehensive insights 
into urban systems by learning geospatial representations, e.g., trajec
tories (Zhang et al., 2024b), building footprints (Yan et al., 2019), street 
views (Cao et al., 2025), and points of interest (POIs) (Huang et al., 
2022; Wang et al., 2024). Among them, POIs refer to any geographic 
entity that can be of interest to people, e.g., schools, parks, and banks. 
Being a mainstream data source in current urban studies (Andrade et al., 
2020), POI data contributes to a better understanding of the intricate 
interlinkages between people and places (Psyllidis et al., 2022). POI data 
is commonly utilized both independently for urban studies and as an 
effective supplementary dataset to complement other data sources. This 
can be attributed to the meaningful urban representations that can be, to 
some extent, delineated by the information entailed from POIs (Huang 
et al., 2023). Consequently, there is a pressing need for a more effective 
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representation learning approach specifically focus on POIs. Beyond 
feature engineering and traditional rule-based methods, e.g., using fre
quency density or kernel density of POI types (Su et al., 2021), POI 
representation learning can effectively mine potential spatial and se
mantic information of POIs and express them with more meaningful 
distributed embedding vectors, and further contributes to computing 
and reasoning spatial phenomena and principles.

Learning on POI representations tries to capture the spatial distri
bution pattern or semantic association characteristics to derive POI 
representations. The previous studies on POI representations focused on 
the spatial distribution characteristics of POIs, and usually constructed 
POI type sequences according to the spatial structure of POIs, and 
combined with natural language processing technologies to model the 
textual context of type sequence, i.e., spatial context of POIs. For 
instance, Yao et al. (2017) introduced Word2Vec model to learn the 
representation of POI types, which captures the spatial co-occurrence 
pattern of POI type sequences constructed by greedy algorithm. Niu 
and Silva (2021) used K-nearest-neighbors method to sample POI se
quences and combined with Doc2Vec model to learn the representation 
of POI types, and Qin et al. (2022a) enhanced the spatial information in 
POI representations by capturing multi-spatial distribution patterns of 
POIs. However, the sequential spatial relationship modeling method has 
inherent limitations, that is, the complex spatial context of POIs does not 
strictly adhere to the 1-D linear structure as the context in natural lan
guage, leading to the loss of a significant amount of POI spatial context 
information. As an improvement, the construction of 1-D linear struc
ture spatial context can be extended to 2-D considering multi-connection 
in the planar context, which is consistent with the actual spatial rela
tionship of POIs. Consequently, a graph-based method for modeling POI 
spatial relationships has emerged. Xu et al. (2022) modeled the POI 
spatial relationship into a graph based on Delaunay Triangulation (DT) 
network, and introduced graph convolutional network (GCN) to encode 
POI graph. The above studies rely on the inherent encoding capacity of 
deep learning models to learn spatial features. Some studies have further 
attempted to capture more abstract and higher-level spatial features tied 
to POIs. In practice, Bai et al. (2023) captured spatial dependencies by 
contrasting POIs with remote sensing imageries. Zhao et al. (2023)
performed soft graph editing on POI graphs followed by graph similarity 
contrastive learning to capture region-level spatial distribution patterns 
of POIs. Li et al. (2023) employed contrastive learning to capture the 
spatial proximity of POIs at regional scale. Huang et al. (2023) proposed 
HGI to capture the hierarchical spatial relationships among POI-region- 
city, leading to more comprehensive spatial information.

Distinct from the above that focus on spatial information of POIs, 
some studies emphasize type information for a more nuanced charac
terization of POI representations. Huang et al. (2022) employed the 
Laplacian eigenmaps (LE) algorithm to preserve hierarchical type in
formation by reducing the semantic distance between POI type em
beddings on first- and second-level type, and Yao et al. (2023) similarly 
applied LE algorithm to enhance the POI type embeddings by aligning 
multi-temporal semantics. Some other studies have explored combining 
POI type information with the powerful capabilities of large language 
models (LLMs) to derive POI embeddings. For instance, pre-trained 
BERT models were employed to generate embeddings for POI types 
(Zhang et al., 2021) and POI names (Zhang et al., 2023a). While using 
pre-trained LLM can conveniently provide embeddings for POI repre
sentations, the covariate shift issue unavoidably results in a semantic 
gap between geographic semantics and natural language semantics.

Recent studies on POI representation learning endeavor to derive 
POI embeddings based on type and spatial information, but they face 
two major challenges. (1) Regarding the spatial information, existing 
studies typically employ graph convolution-based message passing for 
POIs, assuming uniform importance across POIs within the spatial 
context, while overlooking the heterogeneous semantic influences 
among POIs. (2) Regarding the type information, most existing studies 
focuses solely on a fixed type level, always using second-level type 

information for POI representations due to the scarcity of information on 
first-level and the relative superfluous nature of third-level type infor
mation (Hu et al., 2020; Xu et al., 2022). Consequently, valuable in
formation from POI internal type hierarchies is lost, which serves as a 
primary motivation for this study.

Given the shortcomings of the existing studies, in this study, we focus 
on POI representation learning and propose a novel POI representation 
learning approach called POI Dual Context Aware Neural Network 
(DCA) to tackle the aforementioned challenges. DCA employs the Graph 
Attention Network (GAT) (Veličković et al., 2018) to sense the spatial 
structure of POIs (i.e., spatial context) and simultaneously leverages a 
contrastive learning mechanism to capture the type hierarchy of POIs (i. 
e., the type context defined in this study). DCA regards the POI type 
context as self-supervised signals to guide the network to delicately 
sculpt on the POI embedding shaped by spatial context information. 
Through this design, DCA sophisticatedly shapes informative and 
discriminative POI representation embeddings by jointly embedding 
both spatial context and type context. The proposed DCA can be further 
extended to various downstream geographic mapping tasks within cit
ies. Overall, the contributions of this work are two-fold: 

• For the spatial context, we introduce a distance decay effect con
strained GAT, which takes the heterogeneous semantic interaction 
and spatial proximity of POIs into account.

• For the type context, we propose a type hierarchical aggregation 
neural network architecture and design a type infomax optimization 
objective following contrastive learning mechanism.

The remainder of this paper is organized as follows. Section 2 elab
orates on the overall architecture and design details of DCA, and in
troduces its application in a typical geographic task. Section 3 describes 
the study area and data, as well as experimental results and relevant 
analyses. In Section 4, we conduct additional exploratory analysis on 
POIs, and discuss both the limitations and potential of the DCA 
approach. Finally, the paper ends with conclusion and future work in 
Section 5.

2. Methodology

2.1. Overview

This study focuses on developing a general-purpose POI represen
tation learning model toward geographic mapping. Fig. 1 presents the 
framework overview. For the first stage, we propose a POI representa
tion learning model built upon the theories of contrastive learning and 
graph theory, which shapes the POI representations by spatial context 
and type context. The second stage is to utilize POI representations for 
the further three geographic mapping tasks, namely urban function 
mapping, housing price mapping, and region popularity mapping.

2.2. POI representation learning with DCA

The intuition behind DCA is to jointly embed the external spatial 
structure and internal type hierarchy of POIs, enabling the awareness of 
spatial and type contexts for POI representations. An overview of DCA is 
shown in the Fig. 2. The architecture consists of three main modules: (1) 
a shared graph encoder, implemented as a distance decay-constrained 
GAT, which senses spatial context by encoding a spatial context pre
served POI graph; (2) a parameter-free type aggregator, which preserves 
type context by gradually aggregating POI representations along the 
type hierarchy; (3) a contrastive learning module, which senses type 
context by maximizing the mutual information (MI) between the POI 
embeddings across type hierarchies. The encoder and aggregator 
together form the type hierarchical aggregation neural network 
responsible for forward propagation, while the contrastive learning 
module serves to guide backpropagation. In this way, POI embeddings 
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are jointly shaped by both spatial context and type context during 
training process, leading to informative and discriminative 
representations.

2.2.1. Sensing spatial context with GAT
The spatial context of POIs reflects the spatial autocorrelation under 

the First Law of Geography, which emphasizes that nearby POIs tend to 
present similar features, and this is crucial to shape POI representations, 
especially when considering the semantic nuances of POIs of the same 

type. As the raw POI data provides geographical location of each POI but 
lacks the explicit information about spatial interconnections between 
POIs, our initial step is to model the spatial contextual relationships of 
POIs. To this end, we model POIs into a spatial relationship explicit 
graph structure based on their geographical locations, which is defined 
as a weighted undirected POI graph G = (V ,E ). V = {pi}

NG
i=1 denotes 

vertexes (i.e., POI nodes) in the graph with X =

{

t→i

}NG

i=1
∈ RNG×F being 

Fig. 1. Framework overview.

Fig. 2. An overview of DCA.
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the corresponding node feature matrix for describing POI information 
on type-wise, E = {ei}

MG
i=1 denotes edges (i.e., pair-wise POI spatial 

context) with E =

{

e→i

}MG

i=1
∈ R2×MG being the edge index matrix, and 

WG = {wi}
MG
i=1 ∈ RMG being the corresponding edge weight matrix, 

where NG = |V | and MG = |E | represent the number of vertexes and 
edges in G, respectively. The construction of the POI graph from POIs is 
illustrated in Fig. 3.

The construction of the graph structure mainly considers the spatial 
proximity between POIs to express the spatial context of each POI. Due 
to its merits (e.g., maximizing the minimum angle), the Delaunay 
Triangulation (DT) algorithm can assist in establishing rich spatial dis
tribution information for POI graph (Kong et al., 2024; Xu et al., 2022; 
Yan et al., 2017). We unitize DT to construct the POI spatial adjacency to 
form E . DT connects POIs into a triangular network based on their 
spatial distribution. The spatial adjacency of POIs in the geographic 
space is thus transformed into the neighborhood of each vertex in the 
graph. The more details could be found in Xu et al. (2022) with respect 
to DT-based POI spatial context graph construction. WG describes 
spatially explicit constraint on message passing between nodes on POI 
graph, with edge weights used to treat information derived from 
disparate POIs within spatial contexts differently. Following the prin
ciple of distance decay effect, which emphasizes that the intensity of 
spatial interaction weakens as distance increases, edge weights can be 
naturally defined using a distance-based function that assigns higher 
weights to closely located POIs and lower weights to those farther apart. 
Given an edge connecting two POIs i and j in the graph G, its edge weight 
wij is defined as follows: 

wij = log
(
(C + Lρ)

/(
C + lρij

))
⋅μ (1) 

where L is diagonal length of the minimum bounding rectangle of all the 
POIs, ρ is an inverse distance factor,μ is a factor to differentiate cross- 
region edges (assigned a small value μcross to reflect the weaker spatial 
interaction across regions) and intra-region edges (assigned a larger 
value μintra to enforce spatial interaction within the same region), C is a 
constant to avoid infinity, μcross, μintra, C and ρ are set as 0.4, 1, 1 and 1.5 
respectively, the above hyperparameters are set in reference to Huang 
et al. (2023). lij is the haversine distance between i and j. The final 
weight wij is transformed by a linear scaling to [0, 1].

Along this line, we construct a POI graph covering the whole study 
area to serve as an input to the graph neural network (GNN), employing 
GNN to learn the spatial context information of the POIs. Existing GNN 
models generally treat all neighbor nodes (e.g., GCN) equally, but are 

unable to distinguish semantics between two POIs with the same spatial 
context. However, some types in the spatial context of POIs are more 
important than others in most cases, except for POIs with closer dis
tances considered by distance decay weighting. The self-attention 
mechanism of the GAT provides a plausible solution to model hetero
geneous semantic interactions (i.e., message passing processes) between 
POIs. Therefore, our encoder in the DCA is a one-layer GAT model 
ϕp : RF→RFʹ, and leverage self-attention mechanism to take the hetero
geneous semantic influence between POIs into account, so that POI 
embeddings are delineated by sensing its type information and spatial 
context information.

Fig. 4 illustrates the encoding process of GAT. Given input graph 

node features, i.e., POI type embeddings X =

{

t→i

}NG

i=1
, t→i ∈ RF that 

describe type representations of POIs, the output POI embeddings that 
describe each individual POI representation, which convey its own type 
information and type information of the context and pass through GAT 

ϕp are denoted as P =

{

p→i

}n

i=1
, p→i ∈ RFʹ. The self-attention α of GAT ϕp 

is defined by a shared attention mechanism φ : RF × RF→R. We intro
duce the distance decay effect to constrain the attention mechanism φ 
during model training, so that the model can better learn nuanced dif
ferences in spatial proximity, and prevent attention from over-relying on 
information of partial POIs. The distance decay effect constrained self- 
attention weights αij between given POI nodes i and j is expressed as 
the attention mechanism φ between the two nodes normalized by the 
softmax function. 

αij = σα

(

wij⋅φ
(

Wα t→i,Wα t→j

))

(2) 

where wij is the weight of distance decay effect defined in Equation (1), 
Wα ∈ RFʹ×F is a learnable shared linear transformation that applies to all 
nodes, F represent dimension of the initial POI embeddings and Fʹ 

represent dimension of the output POI embeddings of GAT ϕp, σα is a 
softmax to normalize attention weights, softmax(⋅) = exp(⋅)/

∑
exp(⋅). 

Attention mechanism is a one-layer feedforward neural network, i.e., 

φ
(

Wα t→i,Wα t→j

)

= σφ

(

a→T
[

Wα t→i

⃦
⃦
⃦
⃦Wα t→j

])

, where a→∈ R2Fʹ is a 

learnable weight vector for φ, σφ is a LeakyReLU nonlinearity, 
LeakyReLU(⋅) = max(0.2⋅, ⋅), •T represents transposition, and ‖ is 
feature-wise concatenation operation.

We extend the distance decay effect constrained attention mecha
nism to a multi-head attention mechanism, averaging the spatial context 

Fig. 3. The construction of the POI graph.
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information aggregated by all attention heads to update the information 
of each node to stabilize the self-attention training process. Thus, for the 
POI node update of K independent attention mechanisms, the output 

feature of node i is expressed as t→
ʹ
i = σp

(

1
K
∑K

k=1
∑

j∈C i
αk

ijW
k
α t→j

)

, where 

C i is a spatial context set (i.e., 1-hop neighbors) of node i in the POI 
graph (including i), attention weight αk

ij comes from k-th attention 
mechanism φk, and σp is a ReLU nonlinearity, ReLU(⋅) = max(0, ⋅). 
Finally, we add a residual connection, which results in the encoding 
process of ϕp for output embedding p→i: 

ϕp

(

t→i

)

= t→
ʹ
i + t→i (3) 

Each POI embedding is updated by integrating its type information 
and spatial context information based on multi-head self-attention 
mechanism of GAT ϕp. Multi-head self-attention mechanism reflects the 
heterogeneous semantic interaction of POIs from multiple different 
perspectives (multi-independent attention heads), and is constrained by 
distance decay effect. At this point, the GAT ϕp can take the distance 
decay effect and the heterogeneous semantic interaction of POIs into 
account to sense POI spatial context.

2.2.2. Generating POI embeddings via DCA forward propagation
The previous section described how GAT in DCA encodes POI spatial 

context information to shape POI embeddings. However, the POI tax
onomy usually consists of three type levels, namely the first-level, sec
ond-level, and third-level. The POI embeddings are shaped by spatial 
context information on a single type level, which ignores type context, i. 
e., the hierarchical correlations between types inherent in the POI tax
onomy. Type context can provide a view of the intrinsic type hierarchy 
of POIs to complement the spatial context, and is crucial for finer se
mantic shaping of POI embedding. It is natural to assume that embed
dings between the first ~ second-level or second ~ third-level with 
hierarchical affiliations should be interdependent. In order to establish 
the semantic interdependence in response to type context, we design a 
type hierarchical aggregation neural network architecture. In the 

forward propagation process of this network, the type information of 
POI embeddings is aggregated in a bottom-up way, and the structural 
relationship of type information between POI embeddings on the three 
type levels is established. Fig. 5 illustrates the hierarchical aggregation 
of type information from POI embeddings, for instance, the type 
embedding of third-level type “Enterprise” is aggregated by the POI 
embeddings of second-level type “Company” and “Factory”, and the 
type embedding of second-level type “Company” also conveys the type 
information of POI embeddings of third-level type “Medical Company” 
and “Mining Company”.

As a start of the DCA forward propagation, we randomly initialize 

type embedding Xf =

{

t→
f
i

}NG

i=1 
on first-level on type-wise. Then, we can 

generate POI embeddings Pf on first-level on node-wise through GAT 
encoder, the POI embedding on first-level of POI i can be calculated as 

p→f
i = ϕp

(

t→
f
i

)

. The next step is to aggregate POI embeddings on first- 

level, depending on the hierarchical relationships between first ~ sec

ond-level, and generate type embeddings Xs =

{

t→
s
i

}NG

i=1 
on second-level 

on type-wise with an aggregator. For the aggregation function, we 
employ element-wise average pooling that conforms to permutation 
invariance, aligning with the absence of any inherent order relationship 
within the type hierarchy. Let l and ĺ ∈ {f, s, t} represent the type levels 
of the previous and next hierarchical levels, respectively. This aggre
gation function can be formalized as follows. 

AGG
(
Pl) = σa

⎛

⎜
⎝

1
⃒
⃒
⃒N

ĺ
j

⃒
⃒
⃒

∑

j∈N ĺ
j

p→l
i

⎞

⎟
⎠ (4) 

where σa is a sigmoid nonlinearity. N ĺ
j represents the set of POIs 

belonging to type j on ĺ -level.
Given the POI embeddings belonging to the second-level type j, we 

aggregate POI embeddings on first-level that share the same second- 
level type to calculate their common type embedding t→

s
j on second 

level as Xs = AGG
(
Pf).

Fig. 4. Illustration of spatial context-constrained message passing with GAT encoder.
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Thus, the type embeddings Xs on second-level convey the informa
tion from all POI embeddings belonging to first-level types it subsumes. 
In other words, Xs convey the information of all type embeddings of its 
first-level types and the type embeddings of the POIs in its spatial 
context. Subsequently, the type embeddings Xs are fed to GAT ϕp to 

generate the POI embedding Ps on second-level, i.e., p→s
i = ϕp

(

t→
s
i

)

.

In the subsequent step, we apply the aggregation function to derive 
the type embeddings Xt on third-level from the POI embeddings on 
second-level in the same way. Then, the calculation of type embeddings 
on third-level is conducted as Xt = AGG(Pm). Finally, with the help of 
GAT, the spatial context information of POI is injected into type em
beddings on third-level to generate POI embeddings Pt on third-level, i. 

e., p→t
i = ϕp

(

t→
t
i

)

.

In the forward propagation process of DCA, due to the fixed nature of 
spatial relationships among POIs, we employ a shared-weight GAT 
encoder, along with E and WG, to calculate POI embeddings on three 
type levels. Thus far, we have gradually obtained POI embeddings on 
three type levels along DCA forward propagation. POI embeddings on 
first-level serve as the bottom layer of information propagation, 
providing local type information, while POI embeddings on third-level 
serve as the top layer for information propagation, conveying global 
type information. Throughout the forward propagation in DCA, GAT 
encoder constrains information flow between POIs, establishing se
mantic interdependence among POI embeddings on node-wise (i.e., 
spatial context). Simultaneously, the aggregator constrains unidirec
tional information flow between type hierarchies of POIs, establishing 
semantic interdependence among POI embeddings on type hierarchy- 
wise (i.e., type context).

2.2.3. Sensing type context with type infomax
We obtain POI embedding on three type-levels through the forward 

propagation of DCA. However, the bottom-up aggregation strategy 
employed by DCA solely senses unidirectional hierarchical relationships 
among the POI embeddings on three type-levels, resulting in the uni
directional type context awareness of POI embeddings rather than 
bidirectional. In other words, the POI embeddings of higher type level 
convey the type information of the lower type level, but not vice versa. 
In this context, there is a need for an explicit constraint to sense bidi
rectional hierarchical relationships (i.e., type context), encouraging the 

entire network to focus on type context information of POI types during 
the process of encoding spatial context information. To this end, type 
context of POIs is regarded as self-supervised signals to define a mean
ingful optimization objective to guide DCA training.

In principle, there should be stronger interdependence among POI 
embeddings within the type context. For instance, POI embeddings on 
second-level belong to the same third-level types should have a closer 
semantic connection. In view of this, we employ MI to measure the 
interdependence between type hierarchies, and follow the insights from 
deep graph infomax (DGI) (Veličković et al., 2019) and hierarchical 
graph infomax (HGI) (Huang et al., 2023) which both capture the 
structural relationship by maximizing the MI between the local infor
mation representations and global information representations. Intui
tively, we choose POI embeddings on second-level as the final output 
POI representation embeddings, thus POI embeddings on third-level and 
first-level are naturally regarded as local type information representa
tions and global type information representations. Subsequently, the 
optimization objective of DCA can be designed as a second-level-centric 
type infomax to capture the type hierarchical relationships of POIs (i.e., 
type context), which maximizing the MI between POI embeddings on 
first ~ second-level and second ~ third-level. And, a contrastive 
learning mechanism is adopted to prevent feature collapse issues. The 
mechanism behind second-level-centric type infomax for sensing type 
context is to constrain the information flow between POI embeddings on 
first ~ second ~ third level, by maximizing the MI between POI em
beddings that belong to some type context, and minimizing the MI be
tween POI embeddings from different type contexts.

As the POI embeddings on three type levels are obtained by DCA 
forward propagation, negative sampling is further implemented to fetch 
positive and negative samples for calculating type infomax loss. Spe
cifically, given a POI pk with embedding on second-level p→s

k, any POI 
embeddings on third-level that subsumes the second-level type of pk are 
positive samples, while the others are regarded as negative samples to 
p→s

k. Similarly, we build the positive and negative samples on first-level 
to p→s

k. The entire negative sampling is completed by traversing all POI 
embeddings on second-level. The optimization of DCA model can be 
expressed mathematically as minimizing the following objectives: 

Fig. 5. Illustration of type context-constrained information aggregation with aggregator.
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L fs = −

⎛

⎝1
n
∑NP

k=1

∑nk

i=1
log
(

D fs

(

p→f
i , p→s

k

)

+ ∊
)

+
1
ñ
∑NP

k=1

∑ñk

i=1
log
(

1

− D fs

(

p̃
→f

i , p→s
k

)

+ ∊
)
⎞

⎠ (5) 

L st = −

⎛

⎝1
n
∑NP

k=1

∑nk

i=1
log
(

D st

(

p→t
i , p→s

k

)

+ ∊
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where L fs and L st respectively represent the loss functions on positive 
and negative samples between first ~ second-level and second ~ third- 
level, nk and ñk are the number of positive and negative samples cor
responding to pk, NP is the total number of POIs, n =

∑N
k=1nk and ñ =

∑N
k=1ñk are the total number of positive and negative samples, p→f

i and 

p̃
→f

i are positive and negative samples on the first-level to pk respectively, 

p→t
i and p̃

→t

i are positive and negative samples on the third-level to pk 

respectively, ∊ is a small positive constant. D fs : RF×F→R and D st :

RF×F→R are discriminator, which are employed as a proxy for maxi
mizing the type hierarchy MI between first ~ second-level and second ~ 
third-level respectively. D fs and D st can be calculated by a bilinear 
scoring function referred to a discriminator scoring used in Veličković 
et al. (2019), i.e., D (u, v) = σD

(
uTWD v

)
, where σD is a sigmoid 

nonlinearity and WD is a learnable scoring matrix.
By combining L fs and L st, we obtain the optimization objective of 

DCA for sensing type context. As L fs and L st respectively guide the 
modeling of interdependencies first ~ second-level and second ~ third- 
level, A trade-off emerges in POI embeddings (second-level) between 
emphasizing local (first-level) and global (third-level) type information 
during representation learning. We set λ as the weight for the joint losses 
to balance this trade-off. Considering that L fs and L st share the GAT 
encoder in DCA, we employ the GradNorm technique (Chen et al., 
2018), an effective gradient normalization technique in multi-task 
learning. GradNorm technique is utilized to search the optimal bal
ance point dynamically, so that parameters of the shared GAT encoder 
can converge to a robust state which is useful across all losses. The λ is 
dynamically adjusted during each iteration in the model training process 
based on the l 2 norm of the gradients of the shared GAT encoder, rather 
than using a fixed λ for the entire training stage, remedying the gradient 
domination issue of GAT ϕp. The final optimization objective (loss 
function) of DCA is as follows: 

L = λfsL fs + λstL st (7) 

where λfs and λst( > 0) are learnable weights for L fs, L st, which are 
dynamically adjusted by GradNorm technique during the model training 
process.

Since L st encourages the model to capture global type features that 
represent general commonalities among POI embeddings on second- 
level and L fs encourages the model to focus on local type features, 
the joint loss L with the second-level-centric type infomax objective can 
guide both local (first-level) and global (third-level) type information to 
flow adaptively into POI embeddings on second-level at a similar rate 
constrained by GradNorm. Under the guidance of L , GAT encoder ϕp is 
constrained to pay attention to type context while encoding spatial 
context information. Specifically, the gradients from backpropagation 
encourage increasing attention to positive samples while decreasing 
attention to negative samples in self-attention training, and further in
fluence the information flows of POI embeddings between global and 
local type information. As illustrated in Fig. 6, DCA pushes away POI 
embeddings for different contexts (i.e., belong to different third-level 
types or subsume different first-level types), as well as pulls closer POI 
embeddings with same type context. With regard to POI embeddings 
with same third-level types but different first-level types or same first- 
level types but different third-level types, DCA pushes them away and 
pulls them closer synchronously, and falls them to the adaptive balance 
point with the help of GradNorm. Hence, POI embeddings on second- 
level are sculpted from both the global (third-level) and local (first- 
level) perspectives result in sensing type context. At last, POI embed
dings on second-level shaped by both type context and spatial context 
jointly, and output as the final dual context aware POI representation 
embeddings.

2.3. Fine-tuning for geographic mapping

Since the DCA is trained in a self-supervised manner, the learned POI 
representations are generic and task-agnostic. Therefore, we select 
several representative geographic mapping tasks, including urban 
function, region popularity, and housing price mapping, which play a 
pivotal role in urban planning and management (Gu et al., 2025; Hou 
et al., 2024; Manvi et al., 2024; Qin et al., 2022b; Zhang et al., 2024a), to 
evaluate the effectiveness of the learned representations.

The first step is to acquire region embeddings by aggregating POI 
embeddings within the region. While more sophisticated aggregation 
architectures such as multi-head attention-based POI aggregation 
(Huang et al., 2023) are likely to be more appropriate for aggregation 
functions, we limit our focus to the aspect of POI representation 
learning, and employ a simple element-wise average pooling to generate 
region embeddings for ease of comparison with baselines. For the 

Fig. 6. Illustration of sensing type context with type infomax.
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embedding of region rj, it can be calculated by the following: 

r→j =
1

⃒
⃒N rj

⃒
⃒

∑

i∈N rj

p→i (8) 

where N rj is the set of POIs fall in rj.
Region representations derived from the aggregation of generic POI 

representations can be competent for region scale downstream tasks, 
with an additional classifier or regressor accepting the task corre
sponding labels of regions for supervised learning. We follow the 
adapter-based delta-tuning paradigm (Ding et al., 2023) and employ a 
multilayer perceptron (MLP) ϕz : RFʹ→RFd as a task head tailored to 
specific tasks, where Fʹ is the dimensions of region embeddings and Fd is 
the dimensions of output. We freeze the parameters of a pre-trained DCA 
and finetune the task head to adapt to specific geographic mapping 
tasks.

3. Experiment and results

3.1. Experimental setting

3.1.1. Study area and data
We chose the fifth ring road area of Beijing, China, a mature urban 

area, to verify the effectiveness of DCA. Five datasets are involved in this 
study. The spatial distribution of POIs and urban regions are shown in 
Fig. 7. 

• POI data are harvested from the API of Amap (a.k.a. Gaode Map, 
https://lbs.amap.com) in 2018. POI is vector point data, comprises 
several fields, including longitude, latitude, first-level type, second- 
level type, and third-level type. There is a POI type taxonomy tree 
(https://lbs.amap.com/api/webservice/download) to connect first 
~ second ~ third-level, which consist of 12 third-level types, 100 

second-level types and 872 first-level types. 208,929 POIs are ob
tained after data cleaning, including removing duplicate POIs, 
eliminating POIs with missing fields. A POI graph with 208,929 
vertexes and 935,841 edges is constructed using DT, serves as the 
input of DCA.

• Essential urban land use categories (EULUC) data (Gong et al., 2020) 
is a dataset of urban land functional use in China in 2018, produced 
based on high-resolution images, mobile-phone locating-request 
data, POIs and nighttime light images. Labels on level I of EULUC are 
used as the ground truth to subsequent function mapping: residen
tial, commercial, industrial, transportation, public management and 
service. A total of 2,553 samples serves as the input of MLP.

• Housing price data are collected from Lianjia (https://lianjia.com/). 
A total of 150,516 price data are average pooling to each region to 
serve as the ground truth for housing price mapping.

• Check-in data are collected from Weibo (https://weibo.com/). 
Referencing (Li et al., 2024; Zhang et al., 2023b), a total of 1,003,960 
geotagged check-in data are aggregated within each region serve as 
the ground truth for region popularity mapping.

3.1.2. Evaluation metrics
In the context of evaluating the effectiveness of DCA, well- 

established evaluation metrics are adopted to gauge the performance 
of DCA on different geographic mapping tasks. Specifically, referring to 
(Xu et al., 2022; Zhang et al., 2023b), we treat urban function mapping 
as a multi-class classification problem and select the evaluation metrics 
below: overall accuracy (OA), kappa coefficient (Kappa), and macro- 
averaged F1 score (MacF1). We treat housing price mapping and re
gion popularity mapping as regression problems and select the following 
evaluation metrics: mean absolute error (MAE), root mean squared error 
(RMSE), and coefficient of determination (R2). Those metrics are defined 
as follows (the symbols ↑ and ↓ denote that higher and lower values are 
better performance, respectively). 

Fig. 7. The spatial distribution of (a) POIs in the study area colored by their third-level types, (b) Urban regions with EULUC functional labels.
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• OA ↑: OA = TP+TN
TP+TN+FP+FN which measures the proportion of correct 

predictions relative to the ground truth.
• Kappa ↑: Kappa = OA− Pe

1− Pe 
which measures the consistency between the 

overall classification results and the ground truth
• MacF1 ↑: MacF1 = 1

k
∑k

i=1Fi
1 which measures the average perfor

mance of the model across all classes.
• MAE ↓: MAE = 1

n
∑n

i=1
⃒
⃒yi − ŷi

⃒
⃒ which measures the average absolute 

difference between predictions and ground truth.

• RMSE ↓: RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(
yi − ŷi

)2
√

which measures the standard 
deviation of prediction errors.

• R2 ↑: R2 = 1 −

∑n
i=1(yi − ŷ i)

2

∑n
i=1(yi − y)

2 which evaluates goodness-of-fit of the 

model.

where TP, TN, FP, and FN denote true positive, true negative, false 
positive, and false negative, respectively, Pe =
(TP+FN)(TP+FP)+(FP+TN)(FN+TN)

(TP+TN+FP+FN)
2 , Fi

1 = 2⋅Precision•Rrecall
Precision+Recall , Precision = TP

TP+FP, 

Recall = TP
TP+FN, k is the number of function categories. n is the size of 

testing set, yi and ŷi are prediction and ground truth of sample i, and y is 
the average of the ground truth.

3.1.3. Baseline models
Several well-accepted (stable) models ranging from classical to state- 

of-the-art are used as the baselines to compare with the proposed DCA. 
For the implementation of the baselines, we follow the convention of 
previous studies and only involve the second-level of POIs. Note that the 
baselines only involve the generation of region embeddings, and MLP 
task head with the same architecture are used for the geographic map
ping task to be consistent with DCA. 

• GCN (Xu et al., 2022): This is a supervised model for the end-to-end 
geographic mapping task which learns spatial context information of 
POIs. It is trained by an unsupervised task of node classification in 
this work, and used as the representation learning model, but not for 
urban function mapping. This ensures consistency with DCA to 
facilitate performance comparison. For the setup, we employ a one- 
layer GCN, and the dimension of the output layer set to 64. It is 
trained on the DT-based POI graph same as DCA.

• Word2Vec (CBOW architecture) (Yao et al., 2017): This model first 
samples the textual sequence of POIs using a greedy algorithm, and 
learns bidirectional spatial context information of POIs. The output 
layer dimension is set to 64.

• Latent Dirichlet Allocation (LDA) (Liu et al., 2017): This method is a 
topic model which infers the probability distribution among zones- 
functional topics (i.e., clusters of second-level types)-POIs. The 
topic distribution for each zone generated by LDA is regarded as a 
zone representation for downstream tasks. The output dimension of 
the zone embeddings is set to 64.

• Term Frequency-Inverse Document Frequency (TFIDF) (Liu et al., 
2020): This model encodes urban functional zones based on the 
frequency distribution of POI types. Since TFIDF cannot actively set a 
dimension, the dimension of zone embeddings matches the number 
of second-level types.

3.2. Generating POI embeddings

3.2.1. Implementation details
We instantiate a DCA model with the tuned hyperparameter com

bination {d = 64, h=4} (cf. Section 3.3.3 for the hyperparameter tun
ing), and deploy it on a single NVIDIA Quadro RTX 8000 GPU for 
training. We adopt an Adam optimizer with an initial learning rate of 1 
× 10-3, and use a gradient clipping technique (constrain the l 2 norm of 
the gradients no more than 0.9) to accelerate model training. We use a 

linear learning rate warmup technique in the first 20 epochs (training 
iterations) to stabilize the model training. We train the model for a 
maximum of 200 epochs w/o early stopping strategy, and the model 
with the lowest loss in all training epochs is retrieved as the trained 
model, and the corresponding output embeddings on second-level are 
retrieved as the final POI embeddings.

3.2.2. Visualization analysis of POI embedding space
Mapping POI embeddings to a 2-D space facilitates the visualization 

of embedding space, and analyzing its semantic lay out in the embed
ding space. We adopt the t-distributed stochastic neighbor embedding 
(t-SNE), an effective non-linear dimension reduction algorithm which is 
generally better than other algorithms (e.g., principal component anal
ysis) for high dimensionality (Liu et al., 2020; van der Maaten and 
Hinton, 2008). As illustrated in Fig. 8, the embeddings of each indi
vidual POI are mapped to a 2-D space, where colors are rendered ac
cording to their third-level types. Fig. 8 (a) depicts the spatial context 
aware POI embeddings derived from GCN. The embedding layout from 
GCN is completely determined by the second-level type information of 
POIs itself and its spatial context information, which indicates that the 
more similar the spatial context of the POIs (including itself) is, the 
closer the distance is in the embedding space. The actual embedding 
layout from GCN exhibits a noticeable clustering pattern, wherein POI 
embeddings of the same type generally tend to converge to each other. 
Moreover, the distribution of POI embeddings belonging to the same 
type does not strictly cluster solely based on their type information, 
which reflects the semantic meaning of the corresponding spatial 
context of each unique POI. Fig. 8 (b) depicts the dual context aware POI 
embeddings derived from DCA, whose embedding layout is affected by 
both the spatial and type contexts, which indicates that the similar the 
spatial contexts and type contexts between POIs are, the closer they are 
in the embedding space. The embedding layout of Fig. 8 (a) and (b) 
reflects the Third Law of Geography, i.e., the more similar the envi
ronment of POIs is, the more similar the features are.

It is obvious that spatial context aware POI embeddings exhibit a 
relatively more scattered and dispersed distribution. Dual context aware 
POI embeddings illustrate the similar layout to spatial context aware 
POI embeddings, but distinct isolation boundaries among different 
embedding clusters. This aligns with the expected results, as DCA learns 
POI embeddings by jointly embedding both spatial context and type 
context, making them more informative and discriminative. Conversely, 
forcibly pulling closer the embeddings belonging to the same third-level 
type by injecting type context information may potentially destroy the 
spatial context semantic meaning of the original POI embeddings.

We randomly sample different rectangular regions from clusters on 
two third-level types in the POI embedding space derived from DCA. As 
illustrated in Fig. 9, we extract POIs from the four regions of the POI 
embedding space, forming corresponding sets of POIs denoted as S a, 
S b, S c and S d. These POI sets serve as a probe to analyze the influence 
of both type information and spatial context information in the shaping 
process of POI embeddings. The proportion of second-level types in first- 
order spatial context (i.e., 1-hop neighbors, as DCA utilizes a one-layer 
GAT encoder to sense spatial context) of all POIs within each POI set 
are calculated. The bar chart in Fig. 9 depicts the top 10 second-level 
types for each POI set in terms of the type statistics of the spatial context. 
Interestingly, we find that S a, S b, S c and S d are all sets purely of a 
single type, i.e., the semantics of POI embeddings is consistent with the 
actual POI type semantics, indicating a powerful encoding capability of 
DCA for the intrinsic type information of POIs. The spatial context type 
statistics indicates to a certain extent which context types primarily 
influence the embeddings of the sampled POI sets, given that the mes
sage passing between POIs relies on the spatial context of POIs. The 
results of spatial context type statistics in Fig. 9 demonstrate a general 
consistency between the layout of POI embeddings and their spatial 
context, that S a, S b, S c and S d exhibit similar dominant third-level 
types both in the ambient of their embedding space and their spatial 
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context. In addition, it can be found that the semantic layout and spatial 
context of some POI embeddings are not entirely consistent. For 
instance, in the case of S a representing the second-level type “Research 
Institution”, and its spatial context includes a high proportion of second- 
level type “Residential Area”, but their distributions in the embedding 
space are not close. A reasonable explanation is that the information in 
POI embeddings is synchronously determined by spatial context and 
actual POI attention. Even if there are more edge connections between 
the two types of POI nodes, DCA can constrain the message passing 
between them by reducing attention, leading to differences between 
semantic layout and spatial context.

3.3. Performance of geographic mapping tasks

3.3.1. Implementation details
To finetune the trained DCA for different geographic mapping tasks, 

the task head is deployed as a shallow MLP network ϕz with a hidden 
layer of 128 neurons (with 1D-batchnorm and ReLU nonlinearity), and a 
final affine transformation layer. MLP ϕz is optimized by minimizing 
cross-entropy loss for urban function mapping and mean squared error 
loss for housing price mapping and region popularity mapping, with 
stochastic gradient descent (SGD) used as the optimizer. Before training, 
we exclude regions with sparse POIs (less than 10 POIs) from the study, 
and the remaining data are randomly split into training, validation, and 
test sets in a ratio of 6:2:2 for model training and evaluation. In the 
training stage, we set the learning rate to 5 × 10-3, and the model was 
trained in minibatch mode with the batch size of 32 for 200 epochs. All 
geographic mapping experiments (including training, validation, testing 
processes and dataset random shuffling) are repeated 10 times with 
unfixed random seeds for reliability.

3.3.2. Comparison with baselines
We report the performance of the DCA and baselines on the test set 

on three geographic mapping tasks, as shown in Table 1. We observe 

that LDA and TFIDF perform poorly on these geographic mapping tasks 
because both solely consider the frequency distribution features of POIs. 
Contrary to our expectations, TFIDF with naïvely modeling frequency 
distribution feature did not exhibit the worst performance on urban 
function mapping. This could be attributed to the fact that the POI 
features extracted based on frequency in the production of EULUC data 
(i.e., total number and proportion of each type of POIs within each re
gion) which makes TFIDF easier to capture the correlation between POIs 
and urban functions. Different from LDA and TFIDF, which are non- 
representation learning statistical language models, other models take 
POI spatial context into account and achieve considerable performance. 
This suggests that POI representations that introduce spatial context 
information will be more efficient. The performance of Word2Vec is 
inferior to DCA and GCN, because it lacks the description information of 
the uniqueness of POIs, and the sequential structure input of Word2Vec 
is challenged to describe the actual complex spatial context of POIs, 
resulting in Word2Vec learning POI type embeddings at a rough level.

As expected, DCA achieves the optimal performance, outperforming 
GCN, which all employ the GNN architecture. On one hand, DCA in
herits the powerful encoding capability of GAT, and on the other hand, 
DCA injects crucial type context information to POI embeddings. In 
addition, the effectiveness of POI embeddings derived from the DCA can 
also be supported by combining the visualization results of DCA and 
GCN (cf. Fig. 8). Additionally, we provide a spatial visualization of 
geographic mapping performance across all regions in Fig. 10. We did 
not include zoomed-in views of selected areas, as this might uninten
tionally introduce selective emphasis. The global perspective intuitively 
reveals that the prediction errors of all models are spatially uniform, 
without exhibiting systematic spatial bias.

3.3.3. Parameter sensitivity analysis
We tune the hyperparameters of DCA on a preset hyperparameter 

space on urban function mapping to investigate the sensitivity of our 
proposed DCA to its hyperparameters. The two important hyper

Fig. 8. POI 2-D embedding space by t-SNE is derived from (a) a learned GCN model, (b) a learned DCA model. The POIs are colored by their third-level types. There is 
no specific meaning to the two axes (i.e., t-SNE 1 and t-SNE 2) of the POI embedding space.
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parameters of DCA are the dimension of the POI embeddings (d) and the 
number of attention heads (h) of the GAT encoder. We use a grid search 
method to tune d ∈ {6,32,64} and h ∈ {1,2,4} (higher values not re
ported due to GPU memory limitations). All 9 combinations in the 
Cartesian product of the two parameter sets are tested. To illustrate the 
sensitivity to each hyperparameter, we report the performance trends by 
varying one while keeping the other fixed at its optimal value. The re
sults are presented in Fig. 11.

We observe that setting d to 16 results in poor performance, which 
can be attributed to the dimension of embeddings is too low to express 

sufficient POI information. It can be found that the marginal returns 
diminish during the increase of d, and the best performance is achieved 
when d = 64. Regarding h, the best performance is attained with h = 4, 
primarily due to the increased number of attention heads leads to higher 
expressiveness of the model. In view of this, it is suggesting that a merit 
of DCA is insensitive to different hyperparameter settings.

3.3.4. Ablation study
We conduct ablation experiments over a number of key components 

of DCA in order to investigate their impacts on model performance. We 

Fig. 9. Local statistics on second-level of the POI embedding space. The horizontal coordinate of the bar chart corresponds to second-level types, and the vertical 
coordinate indicates the proportion of POI types within its set. The color of the bar chart is rendered according to third-level types.

Table 1 
Performance of geographic mapping tasks.

Model Urban function Housing price Region popularity

OA↑ Kappa↑ MacF1↑ MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑

DCA 0.7268 0.5112 0.6016 13439.34 17234.82 0.441 210.65 331.58 0.411
GCN 0.6842 0.4869 0.5804 14421.65 18412.44 0.312 252.08 375.30 0.322
Word2Vec 0.6578 0.4477 0.5567 16017.65 19245.62 0.228 267.41 397.86 0.209
LDA 0.5950 0.3983 0.5191 17044.05 20964.35 0.175 306.90 528.78 0.147
TFIDF 0.6031 0.4124 0.5316 17862.87 22185.63 0.123 451.42 624.24 0.118
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Fig. 10. The spatial distribution of geographic mapping performance.
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employ the following DCA variants. 

(1) w/o L st: it drops the second ~ third-level type infomax 
component, i.e., drops L st from L (Equation (7) by setting the 
fixed values λst = 0, λfs = 1 in L for the whole model training 
stage (in this case, the GradNorm technique is dropped together).

(2) w/o L fs: it drops the first ~ second-level type infomax compo
nent, i.e., drops L fs from L (Equation (7) by setting the fixed 
values λfs = 0, λst = 1 in L for the whole model training stage (in 
this case, the GradNorm technique is dropped together).

(3) w/o DDW: it drops distance decay weighting, i.e., drops wij from 
Equation (2).

(4) DCA-GCN: it replaces GAT encoder with one-layer GCN to access 
the impact of the GAT encoder.

(5) DCA-add: it fuses POI embeddings on tree type level using 
element-wise addition operation to result the final POI embed
dings, rather than POI embeddings on second-level.

(6) DCA-concat: it fuses POI embeddings on tree type level using 
feature-wise concatenation operation to result the final POI em
beddings, rather than POI embeddings on second-level.

From Table 2, it is evident that the performance of w/o L st surpasses 
that of w/o L fs on different geographic mapping tasks. Due to the 
bottom-up aggregation strategy, second-level type information is 
derived from first-level types. A reasonable inference is that the local 
information supervised by L fs contributes more significantly to the 
learning of POI embeddings, while the global information supervised by 
L st plays a relatively weaker auxiliary role. The performance difference 
between DCA and w/o DDW serves to decouple the impact of the dis
tance decay effect on model performance, providing empirical evidence 
that incorporating this effect can regularize the graph attention mech
anism to perform geographically meaningful message passing between 
POIs, thereby facilitating the learning of valuable geographic informa
tion. The observed performance decline in DCA-GCN compared to DCA 

highlights the importance of modeling heterogeneity in semantic in
teractions, as graph attention-based message passing in DCA allows for 
modeling of varying semantic significance of POIs within their spatial 
context, whereas graph convolution-based message passing in DCA-GCN 
assumes uniform importance across POIs within the spatial context. 
However, DCA-GCN still outperforms the baseline GCN on these 
geographic mapping tasks (cf. Table 1), indicating that the performance 
of DCA is not solely dependent on the spatial context, and type context 
information remains crucial. DCA-add and DCA-concat is slightly worse 
than DCA, which can be reasonably attribute to the type context-aware 
loss function of DCA enables POI embeddings on second-level to convey 
information of first- and third-level, so that the feature fusion makes the 
information of POI embedding too redundant. All ablations show infe
rior performance compared to DCA, which indicates each component 
plays a pivotal role to the superiority of our DCA model.

4. Discussion

4.1. POI semantic interaction analysis

Since the strength of message passing between POIs in DCA depends 
on the multi-head self-attention, we can reveal the semantic interaction 
process of POIs through the attention mechanism. The attention weights 
serve to quantify the strength of semantic interaction between POIs. To 
be specific, the attention weights are extracted by averaging all GAT 
attention heads, and retrieved to be used as POI semantic interactions.

We visualize the attention between all POIs in Fig. 12. Fig. 12 (a) 
renders the semantic interaction map of POIs (spatial visualization of the 
attention between POIs, which is distributed along the edges of POI 
graph), and it can be observed that the semantic interaction among POIs 
is evenly distributed in space. Note that due to the statistical attention of 
self-loops (i.e., attention to oneself), the origin–destination points 
overlap in space and are not displayed. In Fig. 12 (b), we find that the 
attention strength among different POIs follows a long-tail distribution, 

Fig. 11. Parameter sensitivity analysis results for the POI representation dimension d, and the number of attention heads h.

Table 2 
Results of the ablation experiments on geographic mapping tasks.

Model Urban function Housing price Region popularity

OA↑ Kappa↑ MacF1↑ MAE↓ RMSE↓ R2↑ MAE↓ RMSE↓ R2↑

DCA 0.7268 0.5112 0.6016 13439.34 17234.82 0.441 210.65 331.58 0.411
w/o L st 0.7137 0.4947 0.5892 13774.44 17813.43 0.405 218.73 347.52 0.401
w/o L fs 0.7102 0.4898 0.5830 13852.84 17987.82 0.397 227.48 366.14 0.389
w/o DDW 0.7114 0.5026 0.5893 13536.34 17478.26 0.429 223.54 354.32 0.390
DCA-GCN 0.7149 0.4997 0.5895 13606.71 17583.60 0.425 217.61 344.68 0.404
DCA-add 0.7044 0.4805 0.5803 13633.79 17604.21 0.418 226.97 359.07 0.385
DCA-concat 0.7103 0.4932 0.5902 13551.62 17438.04 0.436 220.03 346.52 0.396
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indicating that a small number of edges obtained a large amount of 
attention. In other words, only a small portion of POIs exhibit relatively 
significant role in message passing, while most POIs have limited se
mantic interaction.

We observe differences in attention weights across types on second- 
level, as shown in Fig. 12 (c). The heatmap represents the mean atten
tion between POI types, while the bar chart shows the sum attention 
between each type and all types. The heatmap illustrates that some types 
are more likely to semantically interact with certain types. The diagonal 
of the heatmap indicates that all POI types are more focused on their 
own types, which means that POI tend to retain their own type infor
mation during semantic interaction. The bar chart explains that certain 
POI types aggregate more attention in the message passing process along 
the POI graph, indicating a tendency to semantically interact with their 

spatial context and disseminate their own information and receive 
contextual information. This suggests that POI attention is related to 
each unique POI and its type, rather than being relevant to spatial 
distribution.

4.2. Limitations and potential

There are some limitations to the application and designing of DCA 
model. Although the DCA model adopts the homogeneous graph, a well- 
accepted approach in the literature, to establish the spatial context, this 
approach may impose certain limitations on the spatial context aware
ness of POI representations. Since this study focuses on sensing the dual 
context of POIs jointly, DCA adopts a one-layer GAT that solely considers 
first-order spatial context. While deeper GNNs can capture higher-order 

Fig. 12. The POI attention distribution. (a) POI semantic interaction map: the spatial distribution of attention between individual POIs along the DT network, (b) the 
statistical distribution of POI attention, (c) the statistical distribution of attention on second-level, the heat map represents pair-wise attention between POI types (the 
tick labels of the two axes are the same), and the bar chart represents the total attention obtained by each type.
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spatial dependencies, they also introduce more trainable parameters, 
making it challenging to decouple the performance changes brought by 
expanded spatial context from those resulting from increased model 
complexity. In light of this, a more in-depth exploration of high-order 
spatial contexts for POIs is a worthwhile direction for future work. As 
a natural choice, aggregation function (Equation (4) applies the average 
pooling to the DCA forward propagation, whereas any sophisticated 
aggregation function conforms to permutation invariance can serve as 
an alternative to average pooling aggregation function, e.g., self- 
attention mechanism (Vaswani et al., 2017), leading to flexible model 
variants. Furthermore, specific limitations with respect to type infomax 
deserve attention. POI data from different sources often adopt incon
sistent type taxonomies, leading to variations in type granularity and 
hierarchical structure. This could limit the effectiveness of type infomax 
in learning hierarchical type information. DCA employ random negative 
sampling in the current implementation of type infomax. While it is 
simple and effective, it may result in easy negatives that provide limited 
learning signals. A promising direction for improvement lies in intro
ducing hard negative sampling, e.g., selecting semantically similar yet 
type hierarchically inconsistent POIs, as the fact of that using hard 
negatives can benefit contrastive representation learning (Robinson 
et al., 2021). However, this also raises challenges in defining the 
boundary between hard negatives and positives, especially in POI type 
taxonomy where semantic similarity and hierarchical type structures 
may overlap or be ambiguous, warranting further investigation to 
improve the model. It is promising to explore more advanced DCA 
variants by overcoming the above limitations in future work.

On the other hand, DCA has significant potential for different 
application scenarios beyond the scope of this work. Firstly, DCA learns 
POI representation embeddings does not involve the modifiable area 
unit problem. The learned POI embeddings can be mapped to urban 
regions of different scales to adapt to corresponding tasks, e.g., blocks, 
traffic analysis zones, census units, and building footprints. Moreover, 
since DCA is a self-supervised representation learning model, it is not 
bound by the supervision signal of any particular task that leads to 
generic POI representations. Therefore, we believe that DCA can be well- 
suited for a broader range of downstream tasks, such as POI recom
mendation (Cui et al., 2022), location matching (Mousset et al., 2020), 
population density mapping (Huang et al., 2023), crime prediction 
(Zhang et al., 2023c), and traffic speed forecasting (Zhang et al., 2023d). 
Considering that DCA learns representation of each unique POI, it is 
necessary to consider whether there is some explicit correlation between 
the task and POIs before further applying DCA to various downstream 
tasks. In addition, if the type taxonomy of some POI data does not define 
three levels, but two levels (e.g., POIs come from Baidu Map with only 
the first level and second level), the network architecture and loss 
function of DCA can be simply adjusted to adapt to the two levels. 
Another possible solution is to try POI name as the bottom type level and 
apply the DCA model. Additionally, as DCA adopts inductive learning 
GAT encoder. Compared with GCN, it can be easily generalized and 
applied to new POI data (POI graphs of different cities or local regions), 
as long as the POIs share the same type taxonomy. In light of the above, 
the proposed DCA model holds substantial potential for widespread 
applications. Given the ubiquity and accessibility of POI data, DCA ex
hibits promising prospects which could be extended or transferred to a 
broader spectrum of POI-related scenarios.

5. Conclusions

In this study, we proposed a novel POI representation learning 
approach DCA, to learn POI representations in a self-supervised manner. 
To the best of our knowledge, DCA pioneers in learning POI represen
tations by jointly embedding the external spatial structure and the in
ternal type hierarchy of POIs. We evaluated the DCA on three typical 
geographic mapping tasks, and the results outperforms all baseline 
models. We also visually analyzed the layout of POI embeddings, and 

conducted parameter sensitivity analysis and ablation analysis for DCA. 
The experimental results all demonstrate the robustness and superiority 
of DCA. This study provides a new insight to mine deep information 
from static POIs, and enhance our understanding of urban system.

In the future, we consider exploring the capabilities of DCA across 
various geographic mapping with different city scales. We believe that 
the POI graph plays a crucial role in facilitating message passing be
tween POIs. Introducing blocking effect which from tangible or intan
gible geographical objects (e.g., rivers, roads, and administrative 
boundary) to constrain POI graph construction will enhance spatial 
context awareness of POIs. Furthermore, multi-modal data fusion will be 
considered so that the POI embedding is not limited to endogenetic 
spatial and type context awareness, such as incorporating temporal 
context awareness, leading to more comprehensive POI embeddings for 
describing urban information.
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