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Abstract

Next location prediction is a critical task in human mobility mod-

eling, with broad applications in personalized recommendation,

urban planning, and location-based services. Recently, researchers

have used prompt-based large language models (LLMs) to improve

next location prediction with pre-trained knowledge. However,

they face inherent challenges in bridging the gap between textual

prompts for semantic contextual understanding and human mobil-

ity data for transition pattern modeling. In this paper, we introduce

SILO, a framework designed for Semantic Integration in LOcation

prediction via LLMs. We first construct a hybrid semantic space that

seamlessly integrates ID-based embeddings, text-derived semantics,

and auxiliary contextual information, enabling comprehensive mod-

eling of sequential mobility patterns alongside contextual nuances.

We then propose user-centric prompts that specify the prediction

task for LLMs while embedding user context within a special token.

Further, we utilize LLMs as the prediction backbone to process

both user-specific prompts and hybrid ID-context embeddings of

location sequences. To enhance predictive performance, we finally

introduce a dual-logits strategy, combining sequential transition

logits with user profile-guided semantic preference logits. Exten-

sive experiments on two large-scale real-world mobility datasets

demonstrate that SILO significantly outperforms state-of-the-art

baselines, validating its effectiveness in modeling complex mobility

patterns through semantic integration using LLMs.

CCS Concepts

• Information systems → Spatial-temporal systems; Data

mining.
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1 Introduction

Human mobility modeling has become a fundamental research

topic due to its wide-ranging applications. Understanding human

mobility patterns holds the key to a wide range of applications,

from traffic and urban planning [3, 6, 18, 42] to location-based

services [2, 14, 16, 37, 43]. Despite the surge of large-scale mobility

datasets, accurately predicting the next location remains elusive.

This complexity arises from the dynamic interplay of sequential

behaviors, evolving user preferences, and contextual factors that

are often subtle yet significant.

Traditional deep approaches have attempted to untangle this web

through sequential models like Recurrent Neural Networks (RNNs)

[22, 41, 44] and Transformer architectures [30, 35, 40], which excel

at capturing mobility transitions (see Figure 1a). However, these

models often treat user trajectories as mere sequences of discrete

IDs, overlooking the rich semantic context embedded in human

movementsÐthe very essence that makes a journey meaningful.

The emergence of Large Language Models (LLMs) opens new

avenues for bridging this gap. Researchers have experimented with

two main paradigms: prompt engineering and embedding integra-

tion. The former reframes next location prediction as a text gen-

eration task, feeding mobility records as prompts into pre-trained

LLMs [1, 8, 17, 34] (see Figure 1b). While innovative, this method

struggles to reconcile the inherent differences between natural lan-

guage and symbolic mobility data. A more refined approach, the

embedding integration paradigm (see Figure 1c), attempts to bridge

https://doi.org/10.1145/3711896.3737129
https://doi.org/10.1145/3711896.3737129
https://doi.org/10.1145/3711896.3737129
https://doi.org/10.5281/zenodo.15489696
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Figure 1: Comparison of various location prediction paradigms.

this gap by incorporating learnable ID-based embeddings while

still leveraging LLMs for sequence processing [10, 21, 25]. This ap-

proach enhances accuracy, but it still relies on numeric IDs that are

randomly initialized and trained on comparatively small datasets.

Unlike natural language tokens in LLMs, which acquire rich se-

mantics during large-scale pre-training, these newly introduced

IDs are often trained only based on co-occurrence patterns and

lack inherent semantics. As a result, such methods still primarily

function as sequence learners rather than utilizing LLMs’ semantic

understanding capabilities.

These limitations underscore a fundamental challenge in LLM-

driven mobility modeling: how to effectively integrate struc-

tured mobility transitions with the rich semantics inherent

in human movements? As illustrated above, neither deep se-

quence models nor existing LLM-based methods can effectively

unify sequential mobility patterns with rich semantic reasoning.

An ideal approach should not only preserve the structured transi-

tion modeling strengths of deep sequence architectures but also

harness LLMs’ powerful contextual understanding.

In this paper, we introduce SILO, a novel framework that harmo-

nizes the structured world of mobility data with the rich semantic

landscapes navigated by LLMs (see Figure 1d). SILO creates a hy-

brid semantic space through the ID-Context Mixer, which combines

ID-based embeddings, textual semantics, and additional contextual

information. Central to our approach is user-centric prompts, which

specify the prediction task for LLM and embed user context within

a special token. This design enables our model to trace past behav-

iors and anticipate future actions with contextual awareness. We

then utilize an LLM as the prediction backbone to process both

user-specific prompts and hybrid ID-context embeddings of activ-

ity location sequences. Finally, we propose a dual-logits strategy

that merges sequential transition logits (computed via Decoder)

with semantic preference logits (computed via User-Location Se-

mantic Matching), allowing SILO to capture both population-level

mobility trends and individual behavioral nuances, thus balancing

generalization with personalization.

Our main contributions are summarized as follows:

• We propose SILO, an LLM-based framework that integrates

context-based and ID-based semantics with user-specific

behavioral patterns for predicting the next location. This es-

tablishes a new paradigm for location prediction using LLMs,

bridging the gap between sequence transition modeling and

semantic integration.

• We construct a hybrid semantic space that combines ID-

based embeddings, context-based semantics, and auxiliary

contextual information. This fusion enables comprehensive

modeling of sequential mobility patterns and rich contex-

tual semantics. Additionally, we introduce user-centric

prompts for dynamically encoding evolving user prefer-

ences into a specialized LLM token, facilitating personalized

and context-aware location prediction.

• We design a dual-logits strategy that integrates sequential

transition logits with user profile-guided semantic prefer-

ence logits, improving location prediction accuracy by cap-

turing both individual-level nuances and shared behavioral

patterns.

• We conduct comprehensive evaluations on two real-world

mobility datasets, demonstrating that SILO significantly out-

performs state-of-the-art baselines, showcasing notable im-

provements in prediction accuracy. Our codes are available

at https://github.com/AIMUrban/SILO.

2 Related Work

In this section, we focus on recent developments in next location

prediction methods and the emerging role of LLMs in this domain.

2.1 Next Location Prediction Using Machine
Learning

Early approaches to location prediction focused on mining spatial-

temporal patterns from human mobility data using statistical mod-

els [5, 15, 28] and sequence modeling techniques [4, 9, 19, 20]. With

the advent of deep learning, models such as RNNs [7, 39] and Long

Short-Term Memory Networks (LSTMs) [23, 29, 33] became widely

used for capturing short-term and long-range sequential depen-

dencies in mobility data. In addition to recurrent architectures,

Convolutional Neural Networks (CNNs) have also been explored

for mobility prediction. Convolutional models [24, 36] mainly cap-

ture local spatial-temporal correlations in mobility data, providing

https://github.com/AIMUrban/SILO
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an alternative to recurrent structures with improved parallelization

and efficiency. More recently, Transformer-based architectures have

been introduced, which achieve state-of-the-art prediction perfor-

mance through adaptive attention mechanisms and multi-context

integration [12, 26, 30, 40].

Despite these advancements, most existing methods rely heavily

on the intrinsic properties of human mobility data while neglect-

ing external semantic information. Pre-trained knowledge from

LLMs, which naturally resides in a different semantic vector space,

remains largely underutilized. This gap between the mobility em-

bedding space and the semantic vector space limits the ability of

current models to leverage rich contextual semantics, ultimately

constraining their accuracy and generalization capabilities for next

location prediction.

2.2 Next Location Prediction Using LLMs

Recent work has explored the use of LLMs for next location pre-

diction, taking advantage of their semantic reasoning and con-

textual processing capabilities. These efforts generally fall into

two paradigms: (1) Prompt Engineering: Early attempts [8, 34]

frame mobility prediction as text completion tasks via designed

templates. While demonstrating the feasibility of mapping mobility

sequences into a textual format, these zero-shot approaches suffer

from the inherent mismatch between natural language inputs and

trajectory data, leading to suboptimal performance. (2) Embed-

ding Integration: More recent approaches [10, 25] inject learnable

ID-based embeddings into LLMs and fine-tune the model partially.

While this improves accuracy by exploiting the LLM’s sequence-

processing capacity, it effectively turns the LLM into a high-capacity

RNN/Transformer that still relies heavily on ID tokens rather than

rich language understanding and knowledge distillation.

A plausible factor for this limitation is the lack of semantic

grounding in mobility-specific identifiers. Unlike natural language

tokens whose embeddings are refined on massive corpora, mobility

numeric IDs (e.g., loc_11, user_42) are introduced only during fine-

tuning on relatively small datasets. Consequently, the model may

learn transition probabilities but struggles to capture the behavioral

intent behind movements.

In this context, our work seeks to combine the strengths of previ-

ous paradigms. ID-based spatiotemporal embeddings excel at mod-

eling transition patterns, whereas context-based representations

tap into the LLM’s vast pre-trained knowledge encoded in LLMs.

To integrate these complementary perspectives effectively, we em-

ploy LLMs as the predictive backbone, enabling a natural fusion of

multiple semantic sources to enhance next location prediction.

3 Problem Statement

Definition 1 (Trajectory). Given a user 𝑢, a mobility record

is represented as a spatial-temporal tuple (𝑙, 𝑡), where 𝑙 denotes the
visited location and 𝑡 is the corresponding timestamp. A sequence of

such records over time forms the user’s trajectory 𝑇𝑢 .

Definition 2 (Activity Seqence). Given a user trajectory 𝑇𝑢 ,

we extract all significant activity locations where the user stays beyond

a threshold duration (e.g., 60 minutes) to form an activity sequence

𝑆𝑢 . This sequence focuses on user activities rather than intermediate

route details.
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Figure 2: The framework of SILO: (a) ID-Context Mixer for

hybrid representation learning, (b) User-Centric Prompts for

evolving preferences capturing, (c) LLM-Based Prediction

Backbone, and (d) User-Location Semantic Matching.

Definition 3 (Next Location Prediction). Given a user’s ac-

tivity sequence 𝑆𝑢𝑖 = {(𝑙𝑛−𝑚+1, 𝑡𝑛−𝑚+1), · · · , (𝑙𝑛, 𝑡𝑛)} over a specific
time window, the goal is to predict the next activity location 𝑙𝑛+1
at the upcoming time step. This task is formulated based solely on

sequential mobility data, i.e., users’ spatial-temporal tuples.

4 Methodology

The framework for SILO is illustrated in Figure 2, which consists

of four key components:

(a) ID-Context Mixer for Hybrid Representation Learning.

We integrate ID-based embeddings and context-based semantics to

construct unified representations of location and time. The hybrid

representations capture both transition patterns and contextual

semantic information.

(b) User-Centric Prompts for Evolving Preferences Cap-

turing. We design user-centric prompts to dynamically encode

evolving user preferences into a special LLM token ([UserEmb]).

This mechanism allows the model to capture both long-term be-

havioral trends and short-term contextual shifts, enhancing its

adaptability to user-specific mobility patterns.

(c) LLM-Based Prediction Backbone.We employ an LLM as

the backbone to process both user-specific prompts and activity

sequences. The LLM models sequential transition patterns and

evolving user preferences, generating the first set of logits, referred

to as sequential transition logits.

(d) User-Location Semantic Matching. To model user-specific

preferences for location semantics, we introduce profile-specific

expert modules guided by the semantic representation of evolving
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user behaviors. This component generates the second set of logits,

noted as semantic preference logits, capturing high-level shared user

mobility preferences.

Finally, the next location prediction is obtained using the dual-

logits strategy, which combines sequential transition logits and

semantic preference logits. This strategy enables the model to simul-

taneously consider both individual-level nuances and population-

level behavioral patterns, leading to more accurate and context-

aware location predictions.

4.1 ID-Context Mixer for Hybrid
Representation Learning

We first construct unified representations of location and time by

leveraging both context-based and ID-based embeddings, along

with pre-defined location category information. On the one hand,

ID-based embeddings capture direct spatiotemporal patterns, fo-

cusing on transition dynamics. On the other hand, context-based

embeddings enrich these representations with semantic insights

derived from LLMs. Additionally, we incorporate category-level

semantics to capture location-specific nuances grounded in user

activity patterns. By fusing these complementary embeddings, our

model not only benefits from the explicit identifiers of locations and

times but also gains a richer semantic understanding, ultimately

leading to more accurate predictions.

4.1.1 Conetxt-based Location and Time Embeddings. For context-

based location embeddings, we derive textual descriptions for each

location based on historical visit frequencies over different time seg-

ments. This design captures subtle user-location interactions from a

textual semantic perspective, leveraging the representational power

of pre-trained LLMs to enrich the location semantic information.

First, to better capture daily and weekly patterns, we partition

each day into four time segments: morning (6:00ś12:00), afternoon

(12:00ś18:00), evening (18:00ś24:00), and night (0:00ś6:00). This seg-

mentation aligns with typical human activity patterns andmitigates

data sparsity. Over a week, time segments are ordered sequentially

from łSunday morningž to łSaturday nightž, with the time index

ranging from 0 to 27. Next, we compute how often each location is

visited during these time segments and convert the statistics into

a textual description D𝑙 (see Appendix Section A.1 for implemen-

tation details). We then feed it into a frozen LLM and apply mean

pooling on the final-layer outputs, followed by a linear transforma-

tion, to obtain the semantic embedding e𝑡𝑒𝑥𝑡
𝑙

∈ R
𝑑𝑙𝑙𝑚 , where 𝑑𝑙𝑙𝑚

denotes the LLM’s default dimension. The process is as follows:

H𝑙 = Frozen-LLM(D𝑙 ), e𝑡𝑒𝑥𝑡
𝑙

= 𝐿𝑖𝑛𝑒𝑎𝑟 (Mean-Pooling(H𝑙 )), (1)

whereH𝑙 represents the hidden states of a given descriptionD𝑙 after

passing through the frozen LLM. The function 𝐿𝑖𝑛𝑒𝑎𝑟 (·) projects
the mean-pooled embedding from the hidden space into the token

embedding space.

Meanwhile, we generate a textual-semantic time embedding

by combining the day of the week with the time segment (e.g.,

łSunday morningž) and feed this description D𝑡 into the frozen

LLM to obtain e𝑡𝑒𝑥𝑡𝑡 ∈ R
𝑑𝑙𝑙𝑚 ,

H𝑡 = Frozen-LLM(D𝑡 ), e𝑡𝑒𝑥𝑡𝑡 = 𝐿𝑖𝑛𝑒𝑎𝑟 (Mean-Pooling(H𝑡 )) . (2)

4.1.2 ID-based Location and Time Embeddings. While context-

based embeddings provide rich semantic insights, we also employ

ID-based embeddings to capture discrete identifiers for each loca-

tion and time. This approach ensures that the model has a direct

pattern learning of every unique location or time, which can be

useful for representing transitions in sequential data. Formally, we

use standard embedding operations,

e𝑖𝑑
𝑙

= 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑙), e𝑖𝑑𝑡 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑡), (3)

where 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(·) is a randomly initialized embedding layer. The

term e𝑖𝑑
𝑙

∈ R
𝑑𝑙 and e𝑖𝑑𝑡 ∈ R

𝑑𝑡 represent the ID-based vectorized em-

beddings of location and time, respectively, with 𝑑𝑙 and 𝑑𝑡 denoting

their corresponding dimensions.

4.1.3 ID-Context Mixer. We concatenate the ID-based embeddings

and context-based embeddings and pass them through a dense

layer to enhance their combined representation. This process is

formalized as:

e𝑙 = LeakyReLU(W𝑙 · (e𝑖𝑑𝑙 ⊕ e𝑡𝑒𝑥𝑡
𝑙

) + 𝑏𝑙 ),

e𝑡 = LeakyReLU(W𝑡 · (e𝑖𝑑𝑡 ⊕ e𝑡𝑒𝑥𝑡𝑡 ) + 𝑏𝑡 ),
(4)

where ⊕ denotes the concatenation operation.W𝑙 ∈ R
𝑑𝑙𝑙𝑚×(𝑑𝑙+𝑑𝑙𝑙𝑚 ) ,

W𝑡 ∈ R
𝑑𝑙𝑙𝑚×(𝑑𝑡+𝑑𝑙𝑙𝑚 ) and 𝑏𝑙 , 𝑏𝑡 ∈ R

𝑑𝑙𝑙𝑚 represent learnable pa-

rameters, and LeakyReLU is the activation function.

4.1.4 Location Category Prototypes Addition. Recall that we con-

structed a context-based semantic embedding e𝑡𝑒𝑥𝑡
𝑙

for locations

based on the textual descriptionD𝑙 in Section 4.1.1. However, differ-

ent locations hold varying meanings depending on the user and the

temporal context. For example, a location may represent a łWorkž

area for one group of users during weekday mornings, as it includes

office spaces they frequently visit. In contrast, the same location

could represent an łEntertainmentž zone for another group of users

in the evening, as it might also contain popular restaurants or the-

aters. Failure to incorporate this variability limits the model’s ability

to adapt to real-world user activity patterns.

To account for this, we introduce auxiliary location category

embeddings that reflect user activity semantics and integrate them

with the original location embeddings. These auxiliary embeddings

allow the model to dynamically enrich the location representations,

adjusting for differences in how various user groups perceive and

interact with a given location over time. Based on prior work [25]

and domain knowledge, we first construct a description pool with

𝑀𝑐 location prototypical categories from the perspective of tem-

poral activity patterns. We then use a frozen LLM to extract the

semantic vectors E𝑐𝑎𝑡 ∈ R
𝑀𝑐×𝑑𝑙𝑙𝑚 for each category. The entire

process is formalized as follows:

H𝑐𝑎𝑡 = Frozen-LLM(D𝑐𝑎𝑡 ), E𝑐𝑎𝑡 = Mean-Pooling(H𝑐𝑎𝑡 ), (5)

where D𝑐𝑎𝑡 is the category name and its description. The detailed

procedure for this operation is provided in Appendix Section A.2.

To dynamically assign category semantics to each location, we

compute the correlation between location embeddings and category
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embeddings using a cross-attention mechanism,

Q = (e𝑙 )T ·W𝑞 + 𝑏𝑞,
K = E𝑐𝑎𝑡 ·W𝑘 + 𝑏𝑘 ,
V = E𝑐𝑎𝑡 ·W𝑣 + 𝑏𝑣,

e𝑐𝑎𝑡
𝑙

= softmax(QKT/
√
𝑑)V,

(6)

where W𝑞 , W𝑣 , and W𝑘 ∈ R
𝑑𝑙𝑙𝑚×𝑑𝑙𝑙𝑚 are learnable projection

matrices. 𝑏𝑞 , 𝑏𝑘 , and 𝑏𝑣 ∈ R
1×𝑑𝑙𝑙𝑚 are bias terms.

In the end, we add location category embeddings to the initial

location embeddings. The unified representation of location and

time for a mobility record, denoted as e𝑚𝑟 , is computed as follows:

e𝑙 = e𝑙 + 𝑒𝑐𝑎𝑡
𝑙

, e𝑚𝑟 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (W · (e𝑙 ⊕ e𝑡 ) + 𝑏), (7)

where W ∈ R
𝑑𝑙𝑙𝑚×2·𝑑𝑙𝑙𝑚 and 𝑏 ∈ R

𝑑𝑙𝑙𝑚 are learnable parameters.

Given an activity sequence, we concatenate each mobility record,

e𝑚𝑟 , into a single matrix E𝑠𝑒𝑞 ∈ R
(𝑛−𝑚+1)×𝑑𝑙𝑙𝑚 .

4.2 User-Centric Prompts for Evolving
Preferences Capturing

Intuitively, users usually exhibit diverse and evolving preferences

that a single ID-based user embedding may fail to capture. To ad-

dress this limitation, we design a user-centric prompt that not

only specifies the prediction task for LLM but also embeds a user’s

context-dependent information into a special token. Since LLM

effectively integrates and prioritizes relevant context, this token

encodes each individual’s historical activities and contextual cues,

thus representing a dynamic user preference. By leveraging this

design, LLM can produce more accurate predictions that consider

evolving user preferences.

4.2.1 Prompt Design. Traditional prompts in prior works are typ-

ically static, serving only to specify the prediction task and re-

maining unchanged across different sequences, which may fail to

account for the evolving nature of user behavior and contextual

variations. We advance this concept by proposing a user-centric

prompt tailored to reflect an individual’s historical habits and con-

textual information. Our prompt guides the model to dynamically

summarize a user’s historical behaviors (i.e., <User Desc>) and con-

textual information from the sequence to be predicted, into a special

token (i.e., [UserEmb]). This token represents both long-term user

preferences and short-term sequence-specific semantics, enabling

the model to capture evolving user preferences across different

sequences.

For example, for a user with ID 42, the prompt template is:

Prompt: Your task is to predict the next activity location for

user_42, based on the given activity sequence.

Additional requirements:

1. Incorporate the frequency data of this user’s historical activity

times, and summarize it into one word along with the following

sequence.

The frequency data of user_42 is: {<User Desc>}.

The sequence is: <Insert E𝑠𝑒𝑞 >

The summarized word is: ‘[UserEmb]’.

Here, <Insert> is a placeholder for inserting the activity sequence

embedding E𝑠𝑒𝑞 . We likewise use a frozen LLM to encode each

user description <User Desc> and refine it with a dense layer. An

illustrative <User Desc> is shown as follows:

‘Sunday morning’: 0.002,

‘Sunday afternoon’: 0.014,

···

‘Saturday night’: 0.007

The above user description outlines how frequently the user

appears within the historical data. When combined with the se-

quence to be predicted, such historical information provides valu-

able insights into the user’s potential activity patterns, effectively

capturing a dynamic user preference.

4.2.2 Prompt Encoding. Once the prompt is finalized, it is tok-

enized, resulting in token embeddings, which serve as one part of

the input to the LLM,

Eprompt = Token-Embedding(Tokenize (Prompt)), (8)

where 𝑇𝑜𝑘𝑒𝑛-𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(·) represents the pre-trained token em-

bedding layer of LLM, and 𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (·) denotes the tokenization
process. In the token embedding space, the special token [UserEmb]

is highlighted in yellow in Figure 2.

4.3 LLM-Based Prediction Backbone

We illustrate how to form the input of the LLM, and how to extract

key hidden states and obtain the sequential transition logits.

4.3.1 LLM’s Input Embeddings. The LLM input is prepared by in-

serting the sequence embedding E𝑠𝑒𝑞 into the user prompt embed-

ding E𝑝𝑟𝑜𝑚𝑝𝑡 at the designated position <Insert>, as shown in the

prompt template. The LLM processes this input to generate H𝑓 𝑖𝑛𝑎𝑙 ,

the final layer’s hidden states, which have the same shape as the

input. We use GPT [27] as the backbone LLM and apply Low-Rank

Adaptation (LoRA) [13], which introduces lightweight trainable

matrices to enable effective fine-tuning while keeping most of the

original parameters frozen.

4.3.2 Extraction in Hidden States. Due to the LLM’s attentionmech-

anisms and deep contextual encoding capabilities, the hidden states

provide a rich representation of both the input prompt and the

activity sequence. We next extract the hidden states correspond-

ing to the special token [UserEmb] and the last position of the

sequence from H𝑓 𝑖𝑛𝑎𝑙 . These states encode both the user’s dynamic

preferences and the sequential patterns. Specifically, the state at

[UserEmb] is denoted by h𝑡𝑒𝑥𝑡𝑢 ∈ R
𝑑𝑙𝑙𝑚 , encapsulating the user’s

evolving preference based on the prompt context (e.g., <User Desc>)

and the sequence. Meanwhile, the last position of the sequence in

hidden state H𝑓 𝑖𝑛𝑎𝑙 , denoted as h𝑛 , captures sequential patterns.

4.3.3 Logits based on Sequential Transitions. To capture the cu-

mulative influence of sequential patterns, we combine h𝑛 with the

ID-based user embedding e𝑖𝑑𝑢 ∈ R
𝑑𝑢 , and feed the concatenation

into an MLP decoder to generate the next location logits:

𝐿𝑜𝑔𝑖𝑡𝑠1 = 𝑀𝐿𝑃 (h𝑛 ⊕ e𝑖𝑑𝑢 ), (9)

where 𝐿𝑜𝑔𝑖𝑡𝑠1 ∈ R
| P | refers to the prediction scores over all can-

didate locations P. The MLP consists of two linear layers with

LeakyReLU activation in between.
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4.4 User-Location Semantic Matching

After undergoing deep encoding and attention mechanisms in the

LLM, the special token [UserEmb] encapsulates both the historical

information embedded in <User Desc> and the transition patterns

of the sequences. This token serves as a dynamic representation of

a user’s evolving preference. However, its high specificity to indi-

vidual users and sequences makes direct location prediction chal-

lenging. To address this, we align [UserEmb] with profile-specific

experts, grouping users into broader behavioral patterns. This ab-

straction facilitates prediction by capturing shared mobility trends

while maintaining user- and sequence-specific nuances, ultimately

enhancing both generalization and prediction accuracy.

4.4.1 User Group Profile Prototypes Construction and Representa-

tion. To capture diverse user mobility patterns, we define𝑀𝑢 user

group profiles based on temporal behavioral patterns [10, 31] and

expert-defined categorizations. These profiles capture broad user

mobility characteristics, such as łEarly Birds, who are active in the

morning on weekdays, shifting to the afternoon on weekends.ž, and

łNight Owls, who are active at nightÐwhether for work, study, or

leisureÐacross both weekdays and weekends.ž. By incorporating

these profiles, the model aligns user activities with time-sensitive

preferences (e.g., weekdays vs. weekends), improving generaliza-

tion while preserving individual-level nuances via [UserEmb]. Fol-

lowing a similar process as in Section 4.1.4, we construct a profile

description pool and extract the semantic vector for each user group

profile using a frozen LLM, denoted as E𝑝𝑟𝑜 ∈ R
𝑀𝑢×𝑑𝑙𝑙𝑚 . Formally,

H𝑝𝑟𝑜 = Frozen-LLM(D𝑝𝑟𝑜 ), E𝑝𝑟𝑜 = Mean-Pooling(H𝑝𝑟𝑜 ), (10)

where D𝑝𝑟𝑜 is the profile name along with its description, and a

dense layer is applied to refine E𝑝𝑟𝑜 before the gating network. The

detailed procedure is provided in Appendix Section A.3.

4.4.2 User-Specific Group Profile Learning. To adaptively assign

profile features to each user, we introduce a gating mechanism

that dynamically adjusts contributions from profile-specific experts.

Each expert is trained to specialize in modeling preferences for

location categories under a specific profile. By weighting these

experts based on a user’s semantic vector h𝑡𝑒𝑥𝑡𝑢 , the model tailors

predictions to both user- and sequence-specific contexts.

Since profile vectors and h𝑡𝑒𝑥𝑡𝑢 reside in the same embedding

space (both derived from LLM’s hidden states), we compute profile-

expert weights using a cosine similarity-based gating network:

𝑔(h𝑡𝑒𝑥𝑡𝑢 , E𝑝𝑟𝑜 ) = softmax

(

h𝑡𝑒𝑥𝑡𝑢 · (E𝑝𝑟𝑜 )T

∥h𝑡𝑒𝑥𝑡𝑢 ∥ · ∥E𝑝𝑟𝑜 ∥

)

, (11)

where the output 𝑔(h𝑡𝑒𝑥𝑡𝑢 , E𝑝𝑟𝑜 ) ∈ R
𝑀𝑢 is used to indicate each

profile expert’s relative importance.

4.4.3 Logits based on User-Location Matching. Each expert 𝑓 (·) is
implemented as a feedforward network (FFN) with its own set of

learnable parameters, enabling it to focus on the preferences for

location category information E𝑐𝑎𝑡
𝑙

within its respective user group.

The logits for location prediction using the user-location matching

module are computed as:

𝐿𝑜𝑔𝑖𝑡𝑠2 = 𝑔(h𝑡𝑒𝑥𝑡𝑢 , E𝑝𝑟𝑜 )
𝑀𝑢
∑︁

𝑚𝑢=1

𝑓 (E𝑝𝑟𝑜𝑚𝑢
) (E𝑐𝑎𝑡

𝑙
)T, (12)

where 𝐿𝑜𝑔𝑖𝑡𝑠2 ∈ R
| P | , and for the entire location set P, the location

category embeddings e𝑐𝑎𝑡
𝑙

are aggregated into E𝑐𝑎𝑡
𝑙

∈ R
| P |×𝑑𝑙𝑙𝑚 .

4.5 Training Objective

The task of next location prediction is formulated as a classification

problem over the entire location set P, leveraging a dual-logits

strategy that integrates both 𝐿𝑜𝑔𝑖𝑡𝑠1 and 𝐿𝑜𝑔𝑖𝑡𝑠2 for enhanced pre-

dictive performance. For a given user 𝑢 and their activity sequence

𝑆𝑢𝑖 , we compute the probability distribution over all possible loca-

tions for the next activity location 𝑙𝑛+1. The predicted probability

for each location 𝑗 is computed as:

𝑃 (𝑙𝑛+1) 𝑗 = softmax(𝐿𝑜𝑔𝑖𝑡𝑠1 + 𝐿𝑜𝑔𝑖𝑡𝑠2) 𝑗 , (13)

where 𝐿𝑜𝑔𝑖𝑡𝑠1 captures sequential patterns in the user’s activity

history (Section 4.3.3) and 𝐿𝑜𝑔𝑖𝑡𝑠2 models the user-specific shared

preferences for location categories (Section 4.4.3).

The training objective is tominimize themulti-class cross-entropy

loss, defined as:

L𝑆𝑢
𝑖
= −

| P |
∑︁

𝑗=1

𝑃 (𝑙𝑛+1) 𝑗 log𝑃 (𝑙𝑛+1) 𝑗 , (14)

where 𝑃 (𝑙𝑛+1) 𝑗 represents the ground truth in one-hot encoding,

with 𝑃 (𝑙𝑛+1) 𝑗 = 1 if the next activity location corresponds to the

𝑗-th location. Meanwhile, 𝑃 (𝑙𝑛+1) 𝑗 denotes the model’s predicted

probability for activity location 𝑗 .

5 Experiments

5.1 Experiment Setup

5.1.1 Datasets. We utilize public human mobility datasets from

two metropolitan areas [38], referred to as Metropolitan A (10,000

users, 22,383 activity locations and 2,320,997 records) and Metropol-

itan B (8,000 users, 13,869 activity locations and 1,436,346 records).

The datasets have been gridded and anonymized to ensure privacy.

We apply a temporal split, using the first 80% of the data (e.g., the

first 48 days in a 60-day dataset) for training and the remaining 20%

(e.g., the last 12 days) for testing.

5.1.2 Baselines. We compare SILO with the following baselines:

• Statistical Methods: 1-MMC [9], FPMC [28].

• Deep Learning Methods: DeepMove [7], Flashback [39],

GETNext [40], C-MHSA [12], CSLSL [31], MCLP [30].

• LLM-Based Methods: LLM-Mob [34], Mobility-LLM [10],

NextLocLLM [25].

Detailed descriptions of these methods are available in Appendix

Section A.4.

5.1.3 Evaluation Metrics. We employ the following metrics to as-

sess the performance of various methods: (1) Accuracy (Acc@K)

measures the proportion of times that the correct next location

appears within top-K predicted candidates. (2)Mean Reciprocal

Rank (MRR) computes the average reciprocal of the rank at which

the correct location is found among the predicted candidates.

5.1.4 Model Settings. We train the model for 15 epochs using the

Adam optimizer, with a learning rate of 5𝑒−4 and an L2 penalty

of 1𝑒−5. We determine model parameters via a grid search with

an adaptive step size strategy. The embedding dimensions are set
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Table 1: The performance of all methods for next location prediction, where the best and second performing results are

represented in bold and underlined, respectively.

Methods
Metropolitan A Metropolitan B

Acc@1 Acc@3 Acc@5 Acc@10 MRR Acc@1 Acc@3 Acc@5 Acc@10 MRR

1-MMC 15.16 26.68 31.75 38.32 22.68 16.31 28.49 34.49 42.59 24.60

FPMC 17.35 32.77 39.34 47.64 27.81 18.48 34.34 41.29 50.18 29.33

DeepMove 18.48 35.09 42.34 50.89 29.56 20.28 36.78 43.43 51.92 31.31

Flashback 18.26 36.09 44.33 54.21 30.33 19.51 37.15 45.03 55.02 31.49

GETNext 19.91 37.18 44.68 54.52 31.68 20.69 39.08 47.03 56.92 33.03

C-MHSA 19.73 37.80 45.68 55.10 31.74 20.81 39.14 47.42 57.84 33.25

CSLSL 21.28 39.10 45.42 51.54 32.14 22.65 41.45 48.88 57.80 34.86

MCLP 20.58 39.65 47.74 57.32 33.06 21.84 41.41 49.76 59.78 34.75

LLM-Mob 20.54 39.11 45.64 52.64 - 21.73 41.38 48.56 56.26 -

Mobility-LLM 20.87 40.49 49.22 59.28 33.78 22.93 42.91 51.02 60.36 35.79

NextLocLLM 22.25 40.97 48.12 56.42 34.23 23.06 43.01 51.09 60.51 36.04

SILO 23.79 43.86 51.71 60.78 36.58 24.85 45.75 54.09 63.62 38.22

as follows: 𝑑𝑙 = 128, 𝑑𝑡 = 128, and 𝑑𝑢 = 768, while the remaining

dimensions follow the default LLM hidden size configuration.

5.2 Performance Comparison

Table 1 presents the overall performance of SILO compared to

baseline methods on the two metropolitan datasets. Each model

runs five times, and the mean performance metrics are reported.

• Traditional statistical models (1-MMC and FPMC) exhibit

significantly lower performance than deep learning-based

approaches, as they struggle to capture complex mobility pat-

terns, highlighting the limitations of Markovian assumptions

in modeling long-range dependencies.

• Deep sequence models (DeepMove, Flashback, GETNext,

C-MHSA, CSLSL, and MLCP) achieve competitive results

but remain inferior to LLM-based methods. These models

effectively capture long-term sequential dependencies via re-

current or attention-based architectures. However, they rely

primarily on ID-based transition semantics, making it diffi-

cult to integrate external context-based semantic knowledge.

As a result, their improvements remain incremental. Notably,

MCLP performs better than other deep sequence models in

mid-to-high-range predictions (Acc@5 and Acc@10), likely

due to its multi-context learning mechanism, which captures

user preferences and temporal regularities, thereby refining

ranked predictions.

• LLM-based approaches (LLM-Mob, Mobility-LLM, and Next-

LocLLM) exhibit stronger generalization but remain con-

strained by ID-based representations. LLM-Mob highlights

the potential of pre-trained LLMs in mobility prediction,

but its zero-shot setting leads to weaker results. Moreover,

LLM-Mob cannot inherently rank all candidate locations,

since it formulates next location prediction as a text gen-

eration task, limiting its effectiveness in scenarios where a

complete ranked prediction list is required. NextLocLLM and

Mobility-LLM improve performance by incorporating learn-

able ID-based embeddings, yet they still suffer from a lack

Table 2: Ablation study on the Metropolitan B data.

Variant Acc@1 Acc@5 Acc@10 MRR

w/o Context-based 23.08 51.99 61.93 36.38

w/o ID-based 21.78 46.13 53.60 33.09

w/o 𝐿𝑜𝑔𝑖𝑡𝑠2 23.08 49.86 58.79 35.54

w/o Prompt 23.70 52.96 62.25 37.02

w/o LLM 22.12 49.47 56.49 34.33

SILO 24.85 54.09 63.62 38.22

of alignment between mobility sequences and LLMs’ textual

context understanding capabilities, limiting their ability to

fully leverage external knowledge.

• SILO achieves the best performance among all, consistently

outperforming all baselines across all evaluation metrics.

Specifically, SILO improves Acc@1 by 6.92% and MRR by

6.42% over the best baseline on Metropolitan A, and by 7.76%

and 6.86%, respectively, on Metropolitan B. The paired t-

test results confirm that these improvements are statistically

significant, with 𝑝 < 0.01, demonstrating the effectiveness

of SILO’s bi-semantic modeling. By integrating ID-based

and context-based semantics, SILO enhances LLM-driven

mobility prediction through hybrid semantic integration,

user-centric prompts, and the dual-logits strategy, enabling

more effective reasoning over both mobility transitions and

contextual semantics.

5.3 Ablation Study

To evaluate the contribution of each component to the overall

performance, we conduct an ablation study (see Table 2) by testing

the following model variants:

• w/o Context-based: We remove context-based semantics, re-

lying only on ID-based embeddings. The results indicate that
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Table 3: Comparative analysis of different LLMs on the Metropolitan B data.

Model Epoch Time (s) GPU Mem. (GB) Best Epoch Acc@1 Acc@3 Acc@5 Acc@10 MRR

GPT-2-124M ∼ 89 6.94 15 24.85 45.75 54.09 63.62 38.22

Llama 3.2-1B ∼ 278 14.26 7 22.90 43.64 51.99 61.34 36.14

Phi-2-2.7B ∼ 328 15.97 8 23.39 44.23 52.76 62.34 36.74

Llama 3.2-3B ∼ 469 17.51 6 22.67 43.97 52.52 61.64 36.08

Llama 2-7B ∼ 632 22.64 5 22.69 43.73 52.23 61.25 35.94
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Figure 3: Effect of the ID-based embedding dimensions.

textual semantics provide valuable contextual knowledge for

mobility modeling when using LLMs.

• w/o ID-based: We remove ID-based embeddings, relying solely

on context-based representations. The performance degradation

suggests that ID-based embeddings play a crucial role in captur-

ing mobility transitions, as they inherently encode structured

movement patterns.

• w/o 𝐿𝑜𝑔𝑖𝑡𝑠2: We remove the module of user-location semantic

matching, using only 𝐿𝑜𝑔𝑖𝑡𝑠1 for prediction. The results con-

firm that removing this module, which captures shared mobility

trends, primarily degrades mid-to-high-range accuracy (Acc@5

and Acc@10), while having a smaller impact on Acc@1.

• w/o Prompt: We eliminate the user-centric prompt module, re-

placing [UserEmb] with standard mean pooling over the input

sequence in hidden states. The results indicate that removing

prompts weakens the model’s ability to incorporate historical

user behaviors with activity sequences through evolving user

preferences. Notably, profile experts still provide reasonable im-

provements, but their full potential is not realized without user-

centric prompts.

• w/o LLM: We substitute the LLM-based prediction backbone

with a standard Transformer architecture. The results reveal that

deep sequence models remain insufficient to fully incorporate

the rich semantic knowledge provided by LLMs, as they do not

naturally share a vector space between sequential transitions and

semantic embeddings. This highlights the unique role of LLMs

in bridging structured mobility representations with external

semantic information.

5.4 Comparison of Different LLMs

To explore the impact of different LLM backbones on next location

prediction, we compare multiple open-source LLMs under the same

experimental setup. We apply LoRA to enhance training efficiency.

All experiments are conducted on AMD EPYC 7742 64-core Proces-

sor CPUs and NVIDIA A100 GPUs. We evaluate GPT-2-124M [27],

Llama 3.2-1B, Phi-2-2.7B [11], Llama 3.2-3B, and Llama 2-7B [32].

To ensure stable convergence and prevent overfitting, we employ

an early stopping mechanism.

Our evaluation considers both predictive performance and com-

putational efficiency, such as training time per epoch, and GPU

memory consumption, as shown in Table 3. The results reveal a

diminishing return in performance improvement as model size in-

creases, leading to a clear trade-off between model complexity and

computational efficiency. Larger models (Llama 3.2-3B and Llama

2-7B) require more memory and longer training times provide only

marginal gains. The second-best Phi-2 requires nearly 3.7× the

training time per epoch compared to GPT-2, yet fails to surpass it

in key metrics like Acc@1 and MRR.

Conversely, GPT-2 achieves the best efficiency-performance bal-

ance, converging in only 15 epochs with minimal GPU memory

(6.94GB) while attaining the highest Acc@1 (24.85) and MRR (38.22).

Based on these findings, we adopt GPT-2 as the backbone model

for SILO, as it offers the most practical balance between accuracy,

efficiency, and resource constraints.

5.5 Parameter Sensitivity Analysis

Because context-based information inherits the LLM’s dimension,

we focus on analyzing the sensitivity of ID-based embedding di-

mensions: location (𝑑𝑙 ), time (𝑑𝑡 ), and user (𝑑𝑢 ). Figure 3 shows

that performance remains stable across different location embed-

ding dimensions, with 𝑑𝑙 = 128 providing a slight advantage by

balancing expressiveness and efficiency. Time embedding perfor-

mance is also stable; we select 𝑑𝑡 = 128 for its competitive results

and computational efficiency. Higher-dimensional user embeddings

consistently improve performance, indicating that complex user
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mobility patterns benefit from richer representations. Therefore,

we choose 𝑑𝑢 = 768 for improved personalization.

5.6 Few-shot Study

We follow the protocol in Mobility-LLM by training on only the

first 5% of the Metropolitan B training set to simulate a few-shot

scenario. As reported in Table 4, SILO consistently outperforms

both DL- and LLM-based baselines under limited supervision.

Table 4: Few-shot performance on the Metropolitan B data.

Method Acc@1 Acc@5 Acc@10 MRR

GETNext 6.66 18.53 26.97 13.35

CSLSL 8.67 17.17 21.62 13.23

MCLP 8.74 20.02 26.28 14.66

Mobility-LLM 12.27 21.45 23.33 16.67

NextLocLLM 6.87 13.68 17.66 10.75

SILO 13.94 24.38 25.37 19.05

These results indicate that, compared to approaches that rely on

randomly initialized symbolic IDs, integrating textual semantics

grounded in pre-trained knowledge enables SILO to leverage the

semantic understanding capabilities of LLMs, thereby enhancing

prediction accuracy under limited data conditions.

5.7 Showcases of User-Location Semantic
Mapping

To better understand how SILO leverages expert specialization for

personalized prediction, we conduct two case studies. Figure 4a

reveals that users are dynamically assigned to different combina-

tions of experts, reflecting the model’s ability to adapt to diverse

individual mobility patterns. Some users rely heavily on a single ex-

pert, while others show more distributed weights, indicating mixed

behaviors.

Moreover, Figure 4b analyzes the location category attention of

two experts over the top-5 predicted locations for a representative

user. The results show that each expert develops distinct semantic

preferences, some focusing on daily routine categories, others on

leisure-related ones, demonstrating their specialization in modeling

different aspects of human mobility.

These observations confirm that SILO effectively leverages ex-

pert specialization not only to personalize predictions but also

to generalize across common mobility trends shared among user

groups.

6 Conclusion

In this paper, we propose SILO, a novel framework for next loca-

tion prediction that leverages Large Language Models to integrate

multiple levels of semantic information. We first construct a hybrid

semantic space by combining ID-based and context-based embed-

dings with auxiliary contextual information, enabling it to jointly

capture sequential mobility transitions and high-level semantic

nuances. We then employ user-centric prompts, embedding user

context within a special token, to specify the prediction task for

large language models. Using LLMs as the prediction backbone, we
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Figure 4: Visualization of expert routing and semantic pref-

erences in user-location mapping.

process these user-specific prompts alongside hybrid ID-context

embeddings of location sequences. Finally, we improve prediction

accuracy through a dual-logits strategy that combines sequential

transition logits with semantic preference logits. Extensive experi-

ments on real-world mobility datasets demonstrate that SILO con-

sistently outperforms state-of-the-art methods, highlighting the

advantages of semantic integration in mobility prediction.

Our findings suggest that incorporating structured mobility pat-

terns and contextual semantics can improve next location predic-

tion, providing a new perspective on leveraging LLMs for spatiotem-

poral modeling. Future work may explore more efficient adaptation

of LLMs to mobility tasks, as well as strategies to enhance person-

alization and interpretability in user trajectory modeling.
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A Appendix

A.1 Location Description

This example illustrates a location description where, in the absence

of historical data, the visit frequency for all time segments is set

to 0. The time segments are sequentially ordered from łSunday

morningž to łSaturday nightž, with indices ranging from 0 to 27.

All frequencies are rounded to three decimal places.
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Given the historical visitation data of a location in JSON format,

where each key indicates a specific time period (e.g., Sunday

morning), and each value represents how frequently the location

is visited during that time.

{‘Sunday morning’: 0.072, ‘Sunday afternoon’: 0.064,

‘Sunday evening’: 0.080, ‘Sunday night’: 0.040,

‘Monday morning’: 0.048, ‘Monday afternoon’: 0.040,

‘Monday evening’: 0.040, ‘Monday night’: 0.032,

‘Tuesday morning’: 0.048, ‘Tuesday afternoon’: 0.008,

‘Tuesday evening’: 0.040, ‘Tuesday night’: 0.024,

‘Wednesday morning’: 0.024, ‘Wednesday afternoon’: 0.040,

‘Wednesday evening’: 0.040, ‘Wednesday night’: 0.000,

‘Thursday morning’: 0.032, ‘Thursday afternoon’: 0.032,

‘Thursday evening’: 0.024, ‘Thursday night’: 0.024,

‘Friday morning’: 0.032, ‘Friday afternoon’: 0.024,

‘Friday evening’: 0.040, ‘Friday night’: 0.016,

‘Saturday morning’: 0.016, ‘Saturday afternoon’: 0.024,

‘Saturday evening’: 0.048, ‘Saturday night’: 0.048}.

Please summarize this location.

A.2 Generating Semantic Vectors for
Pre-defined Location Categories

To generate the semantic vector for each location category, we input

the category name along with its description into the LLM. Based on

prior studies [25] and expert definitions, we define𝑀𝑐 = 9 location

categories (see Table 7), ensuring a structured representation of

mobility semantics.

For example, we provide the sentence: łResidential: Locations

where people typically spend weekday mornings and evenings, with

longer stays on weekends.ž. After processing this text via LLM, we

extract the hidden state of the last layer corresponding to the input.

To generate a compact semantic representation, we apply mean

pooling over the hidden states, resulting in the final category em-

bedding 𝑒𝑐𝑎𝑡 . Note that all category embeddings are generated

as a preprocessing step, adding no runtime overhead during

model training and inference.

A.3 Generating Semantic Vectors for
Pre-defined User Group Profiles

To generate the semantic embedding for each user group profile,

we input the profile name along with its description into the LLM.

Based on prior work [31] and domain knowledge, we define𝑀𝑢 = 6

user prototypical group profiles (see Table 6) to cover the main

behavioral patterns present in our data.

For example, the input sentence for a specific user group pro-

file is: łNight Owl: Users who are active at nightÐwhether for work,

study, or leisureÐacross both weekdays and weekends.ž. The model

processes this input, extracting the hidden state of the last layer

corresponding to the provided text. To generate a compact and

meaningful representation, we apply mean pooling over the hidden

states, resulting in the final profile embedding 𝑒𝑝𝑟𝑜 . Note that all

profile embeddings are generated as a preprocessing step,

adding no runtime overhead during model training and in-

ference.

A.4 Baselines Description

To evaluate the effectiveness of SILO, we compare it with a di-

verse set of baselines spanning statistical models, deep learning

approaches, and recent LLM-based methods:

• 1-MMC [9]: A first-order Markov model that predicts the

next location based on the last visited location.

• FPMC [28]: A personalized Markov chain model that inte-

grates sequential patterns with user-specific preferences via

factorization.

• DeepMove [7]: A RNN-based model that captures mobility

transitions with an attention mechanism to emphasize key

historical locations.

• Flashback [39]: Enhances RNN-based modeling by dynam-

ically weighting past check-ins using spatial and temporal

decay functions.

• GETNext [40]: A graph-enhanced model that learns spa-

tiotemporal dependencies by modeling location transitions

as a graph structure.

• C-MHSA [12]: Introduces context-aware multi-head self-

attention mechanisms for sequential modeling.

• CSLSL [31]: Introduces causal sequence modeling with a

multi-task consistency constraint, explicitly structuring the

łwhen → what→ wherež decision process.

• MCLP [30]: A transformer-based multi-context location pre-

diction framework that integrates user preferences, temporal

regularities, and sequential transitions for mobility predic-

tion.

• LLM-Mob [34]: Applies pre-trained LLMs directly to mobil-

ity data by formulating location prediction as a sequence-to-

text prompt-based task.

• Mobility-LLM [10]: Leverages LLMs with a visiting inten-

tion memory network and human travel preference for mo-

bility pattern extraction.

• NextLocLLM [25]: Incorporates LLMs with enhanced POI

embeddings to improve next location prediction.

A.5 Few-shot Learning Results

Under a 10% training data setting, SILO continues to outperform

baselines, confirming its generalization ability in few-shot scenar-

ios.

Table 5: Few-shot performance on Metropolitan B with 10%

training data.

Method Acc@1 Acc@5 Acc@10 MRR

GETNext 12.86 27.78 34.64 20.33

CSLSL 14.34 28.88 35.19 21.58

MCLP 13.76 30.77 38.84 22.17

Mobility-LLM 15.32 32.19 34.76 22.62

NextLocLLM 12.53 27.96 35.33 20.30

SILO 16.58 35.19 37.41 24.51
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Table 6: Predefined user group profile and its descriptions.

User Profile Detail Description

Night Owl Users who are active at nightÐwhether for work, study, or leisureÐacross both weekdays and weekends.

Early Bird Users who are active in the morning on weekdays, shifting to the afternoon on weekends.

Evening Enthusiast Users who are most active during the evening, often showing a significant increase on weekends.

Weekday Regular Users who consistently engage in morning and evening activities on weekdays, with reduced activity on weekends.

Daytime Dweller Users who remain primarily active during the afternoon across all days.

All-Day Active Users who are frequently active throughout the day, from morning to evening, reflecting a busy schedule.

Table 7: Predefined location category and its description.

Location Category Detail Description

Residential Locations where people typically spend weekday mornings and evenings, with longer stays on weekends.

Work Locations primarily active during weekday mornings and afternoons, with limited activity on weekends.

Leisure/Recreation Locations often visited on weekday afternoons, extending into mornings and evenings on weekends.

Entertainment Locations frequently attended on Friday evenings and weekend nights, with fewer weekday morning visits.

Shopping/Commercial Locations often visited during weekday afternoons and evenings, shifting to weekend mornings and afternoons.

Education Locations attended mainly during weekday mornings and afternoons, with little to no presence on weekends.

Healthcare Locations usually visited on weekday mornings and afternoons, with occasional visits on weekend mornings.

Transportation Locations busier on weekday mornings and evenings, with more varied patterns on weekends.

Public/Social Locations visited across all periods on both weekdays and weekends, though intensity varies.
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