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ABSTRACT 
The emerging field of geo-foundation models (GeoFM) has the 
potential to reshape GeoAI and spatial data science research, edu
cation, and practice. In this work, we motivate and define the 
term and put it into its historic context within GeoAI and spatial 
data science more broadly. Next, we review core datasets, models, 
and benchmarks. Based on this overview of the state-of-the-art, 
we introduce key research challenges for future GeoFM research, 
such as GeoAI scaling laws, geo-alignment of AI, truly multimodal 
GeoFM, and so on. Finally, we discuss potential risks of GeoFM 
research and outline the road ahead with a specific focus on the 
increasing role of international large-scale collaborations and the 
future of GeoAI and spatial data science education.

ARTICLE HISTORY 
Received 30 July 2025 
Accepted 30 July 2025 

KEYWORDS 
GeoAI; foundation models; 
spatially explicit machine 
learning; AI alignment   

1. Introducing geo-foundation models

In a nutshell, foundation models are large and highly versatile AI models pre-trained 
on massive datasets that can be easily adapted to a wide range of downstream tasks 
across domain boundaries. Each of these terms is key here, so let us comment on 
them briefly. (1) Interestingly, model size is not just another hyperparameter that influ
ences accuracy. Instead, it gives rise to emerging properties that only manifest once 
models grow beyond a certain (relative) size. For instance, according to Wei et al. 
(2022), chain of thought reasoning only emerges past approximately 100B parameters.1

However, model size (e.g., parameter count) is not the only aspect where size matters. 
AI scaling laws, for example, empirically study how model performance improves in 
relation to parameter count, training data size, and required computing resources 
(Kaplan et al. 2020). (2) Until very recently, models were trained with a specific task in 
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mind, e.g., land cover classification. In contrast, the same foundation model may be 
utilized across multiple tasks. For instance, such a versatile model can classify land 
cover in imagery, segment scenes, describe them in natural language, and suggest 
data engineering and analytical pipelines to process the now classified data further. 
(3) Finally, a key characteristic of foundation models is their adaptability. Today, these 
models perform on par with many prior single-purpose models with little fine-tuning 
and minimal (task-specific) training data (Brown et al. 2020). This adaptability is due to 
foundation models being pre-trained on massive amounts of highly heterogeneous 
data, even across modalities. Once these models are able to generalize and learn more 
abstract, relational patterns, they can be fine-tuned to a plethora of downstream tasks 
with little effort or even employed directly for novel tasks via few-shot learning or 
even zero-shot learning.

Given that foundation models (Bommasani et al. 2021) are, to some degree, task- 
agnostic, why do we need geo-foundation models (GeoFM) at all, and what exactly are 
they or will they be? First, foundation models can only generalize within the scope of 
their training data. While they have been trained on vast amounts of images, text, tabu
lar data, and other forms of directly Web-accessible data, they have not been exposed 
to the same degree to geospatial vector data (Mai et al. 2024a, 2024b), let alone multi- 
spectral remote sensing imagery (Cong et al. 2022; Fuller et al. 2023; Guo et al. 2024), 
time series data, or NetCDF-style array data more generally. Consequently, one would 
not expect (general-purpose) foundation models such as large language models (LLM) 
or text-to-image models to predict the next Atlantic Hurricane season. Second, many 
geospatial tasks are highly specific and require types of reasoning beyond the current 
abilities of state-of-the-art foundation models. To give a concrete example, current LLM 
and text-to-image models still struggle greatly with simple topological relations and 
reasoning (e.g., Ji et al. in this issue; Cohn and Blackwell 2024). Third, geography is 
inherently local/regional or contextual. It is shaped by the interplay of humans and the 
environment, as well as cultural, societal, and political factors that determine what is 
desirable or even true. Hence, models need to take space and time into account when 
determining a proper answer. To give a well-known example, answers about the varied 
and contested borders of the Kashmir region depend on who asks and when. 
Interestingly, this difficulty of representing and reasoning in the presence of spatial and 
temporal scopes extends beyond the models themselves but also affects their data 
backbones, e.g., geo-knowledge graphs (Cai et al. 2021, Zhang et al. 2025a in this 
issue). While pluralistic models are under development, current foundation models can
not handle different perspectives, contradicting data, nuanced cultural norms, and var
ied spatiotemporal scopes well (Janowicz, 2023; Sorensen et al. 2024).

Given these three motivating factors, GeoFM can be defined as follows: Geo-foun
dational models are foundation models specifically trained on heterogeneous spatiotem
poral data, capable of reliably performing advanced spatiotemporal reasoning, and 
designed to incorporate spatial, temporal, and other contextual factors into their output 
to support a wide range of (geo)spatial downstream tasks in geography and neighboring 
disciplines that benefit from a spatial or geographic perspective.
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2. From GeoAI to GeoFM

Over the past years, geographical artificial intelligence (GeoAI) has established itself as 
a rapidly growing subfield of spatial data science and geographic information science. 
Hence, before we explore the role geo-foundation models will play in the future and 
how they will advance GeoAI research, it is worth taking a step back to revisit the 
value proposition of GeoAI (Janowicz et al. 2020).

Simply put, GeoAI advances along two major dimensions: (1) it applies novel meth
ods and technologies from the broader AI and machine learning community to geo
graphic and geospatial research questions and (2) it feeds its own, novel theoretical 
and methodological contributions back to the broader AI community, e.g., by develop
ing methods for spatial representation learning (Mai et al. 2022; Cepeda et al. 2023; 
Yu et al. 2024; Mai et al. 2024b; Chen et al. 2025c) applicable to a wide range of use 
cases in domains such as biodiversity studies (Cole et al. 2023; Mai et al. 2023b), health 
(Zhang et al. 2025b), transportation (Cai et al. 2020; Zhang et al. 2022; Rao et al. 2023), 
disaster mitigation (Sui et al. 2024; Li et al. 2025a; Chen et al. 2025b), sustainability 
(Wu et al. 2024), urban sensing (Huang et al. 2023), and so forth.

A common example of GeoAI research would be the work on detecting building 
footprints from remotely sensed imagery or predicting traffic flow. In the past, 
researchers would customize (neural) models for these singular tasks and train them 
on geography-specific datasets. Such workflows also made it relatively easy to clarify 
the research contributions of such work, as many of the developed models would be 
spatially explicit, i.e., they encode location explicitly instead of treating them as just 
yet another attribute. To give a simple example, location embeddings can be trained 
separately and concatenated with the embeddings representing learned building foot
prints, land classes, and so on (Mac Aodha et al. 2019; Yan et al. 2019; Mai et al. 2020).

With the advent of AlexNet (Krizhevsky et al. 2012) and ResNet (He et al. 2016) and 
related deep learning architectures, these GeoAI workflows have shifted rapidly. 
Instead of custom-tailored models trained from scratch, one would rather utilize a pre- 
trained model as a feature extractor by removing its output layer and integrating the 
remaining model into the task-specific neural architecture by feeding it into new 
layers. Such transfer learning dramatically speeds up training and improves model 
accuracy as the new model has already learned many rich and more abstract patterns, 
which only need to be adapted to the task at hand. Although modern foundation 
models were not yet on the horizon in the early 2010s, it was already clear that the 
era of custom, single-purpose models was slowly giving way to workflows developed 
around reuse and transferability. This shift raises a key question for GeoAI research: 
how can we distinguish progress driven by GeoAI-specific innovation from improvements 
mostly gained through the application of transfer learning (and related methods) from 
general-purpose models?

With the advent of foundation models in 2017,2 this question is becoming more 
urgent than ever. Although not initially developed for this purpose, foundation mod
els, such as LLM, are now widely used for a multitude of tasks and use cases within 
GeoAI research and applications. The successful combination of few-shot, prompt 
engineering, and transfer-learning methods on top of powerful general-purpose mod
els raises the old question again: is spatial really special? Geo-foundation models may 
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offer one potential answer, especially if they follow the second part of the GeoAI def
inition introduced above, namely, if they contribute back to the broader AI and 
machine learning community.

Just as LLMs encode the syntax, semantics, and pragmatics of human language, GeoFM 
could encode the language of space, i.e., the place-agnostic properties that define geography 
– spatial dependence and heterogeneity (Anselin,1988) and its related concepts such as scale, 
adjacency, spatial and temporal scopes, and so on.

Of course, this is a challenging endeavor, for instance, because it raises serious con
cerns about the global representation of local geography (Liu et al. 2025a). Still, early 
models, including SatMAE (Cong et al. 2022), Prithvi (Jakubik et al. 2023), or AllenAI’s 
Satlas3 point towards a potential path.

3. Current models, benchmarks, and datasets

Here we provide a brief overview of existing GeoFM and GeoAI models as well as core 
datasets and benchmarks for evaluating these models.

3.1. Geo-Foundation models

Geo-foundation models are still a new and rapidly evolving research field. Based on 
the role FMs or GeoFMs play in each study, we can roughly classify the existing 
GeoFM-related research into the following categories: 1) adapting existing FMs on 
geospatial tasks via prompt engineering and task-specific fine-tuning; 2) developing 
advanced LLM agent frameworks for geospatial tasks; and 3) developing novel geo- 
foundation models via geo-aware model training and fine-tuning.

Most of the existing GeoFM-related research, including most papers in this issue 
(Gong et al. 2024; Hsu et al. 2024; Ji et al. 2025; Chen et al. 2025a; Zhang et al. 2025c), 
falls into the first category – FM adaptation and evaluation on geospatial tasks via 
prompt engineering and task-specific fine-tuning. As a critical component of GeoFM 
research, these studies can be seen as the first step to explore and investigate the 
advantages and disadvantages of existing FMs when applied to various geospatial 
tasks. So far, we have seen many successes across multiple tasks, including sustainabil
ity index prediction (Manvi et al. 2024), place name and location description recogni
tion (Hu et al. 2023; Mai et al. 2024a), image geolocalization (Haas et al. 2024; Zhou 
et al. 2024b), vessel trajectory prediction (Chen et al.; in this issue), map reading and 
question answering (Zhang et al.; in this issue), geometry-based spatial reasoning (Ji 
et al.; in this issue), building function identification (Gong et al.; in this issue), remote 
sensing image object detection and instance segmentation (Osco et al. 2023; Zhang 
et al. 2024a) and (Hsu et al.; in this issue), and so on.

Despite the above successes, many studies acknowledge the limitations of current 
FMs in handling a range of geospatial tasks—particularly those involving novel data 
modalities that are not yet supported, such as geospatial vector data and network 
data (Manvi et al. 2024; Mai et al. 2024a; Ji et al. 2025). One solution to bypass these 
limitations is to utilize LLMs as agents that can synthesize geospatial processing work
flows using existing geospatial toolsets, which corresponds to the second category of 
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GeoFM research. Until now, many agenetic frameworks have been developed to lever
age multiple general-purpose FMs or GeoFMs for various types of geospatial tasks, 
including various remote sensing tasks (e.g., RSAgent (Xu et al. 2024)), spatial- 
reasoning question answering (e.g., Spatial-RAG (Yu et al. 2025)), spatial analysis (e.g., 
Autonomous GIS (Li and Ning, 2023), GeoGPT (Zhang et al. 2024e)), historical map 
understanding (e.g., PEACE (Huang et al. 2025)), map symbol editing (e.g., MapGPT 
(Zhang et al. 2024c)), map style transfer (e.g., CartoAgent (Wang et al. 2025; in this 
issue)), spatial optimization problem (e.g., RegionDefiner (Feng and Cao, 2024; in this 
issue)), spatial cognition and routing (e.g., Hybrid Mind (Yang et al.; in this issue)), geo
spatial image superresolution (e.g., 4KAgent (Zuo et al. 2025)), among others.

Other than these two research directions, another promising direction is to develop 
new task-agnostic geo-foundation models (GeoFMs) by using existing or novel pre- 
training objectives. Since most GeoFMs are developed based on existing neural archi
tectures such as language models, vision transformers, segmentation decoders, etc., 
we further classify the current GeoFMs in four categories based on the data modalities 
they support and their application scenarios: geospatial language foundation models, 
geospatial vision foundation models, geospatial graph foundation models, and geo
spatial multimodal foundation models.

Geospatial language foundation models are developed by fine-tuning general- 
purpose LLMs on geo-referenced text corpora to support various purely language 
tasks such as geographic entity recognition, spatial relation extraction, geographic 
question answering, etc. Examples include K2 (Deng et al. 2023) and BB-GeoGPT 
(Zhang et al. 2024d).

Compared with geospatial language foundation models, there are relatively more 
papers on geospatial vision foundation models (vision GeoFMs), especially for remote 
sensing foundation models such as SatMAE (Cong et al. 2022), SatMAEþþ (Noman 
et al. 2024), S2MAE (Li et al. 2024c), SpectralGPT (Hong et al. 2024), CROMA (Fuller 
et al. 2023), SkySense (Guo et al. 2024), Prithvi (Jakubik et al. 2023), among others. 
Other than these vision GeoFMs that are pretrained based on the masked autoencoder 
(MOE) objective, there are other vision generative GeoFMs which are pretrained on 
diffusion-based objectives such as DiffusionSat (Khanna et al. 2024) and CRS-Diff (Tang 
et al. 2024). Note that although many of these vision GeoFMs claim to be able to han
dle multi-modal data (e.g., SpectralGPT, CROMA, and SkySense), they usually refer to 
the ability of handling various types of remote sensing (RS) images, including optical 
multispectral RS imagery, optical hyperspectral RS imagery, Synthetic Aperture Radar 
(SAR), thermal infrared (TIR) imagery, LiDAR (Light Detection and Ranging) imagery, 
panchromatic imagery, etc, which can be considered as subcategories of vision data. 
Thus, we still classify them as vision GeoFMs instead of multimodal GeoFMs.

Geospatial graph foundation models are among the new types of GeoFMs recently 
developed to handle geospatial relational data such as large-scale geographic know
ledge graphs (Zhu, 2024), spatial-social networks, and so forth. One promising example 
is Google’s Population Dynamic Foundation Model (PDFM)(Agarwal et al. 2024), which 
is a large-scale graph neural network-based GeoFM that is able to handle places (e.g., 
zipcodes and counties), different place characteristics (e.g., Google search trend, busi
ness data, weather and climate data), and their geospatial relations (e.g., topological 
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relations). PDFM can be used on multiple geospatial tasks that can not be done by 
other GeoFMs, such as population health outcome forecasting, vector-based superre
solution and imputation, etc. Another example in this vein is Garner (Zhou et al. 
2024a), a road network representation learning model based on a multi-view graph 
learning process. They used street view images to enrich the information of road net
works, and the learned road representations are proven to be useful in tasks such as 
road function classification and average speed estimation.

Multimodal GeoFMs can handle multiple geospatial data modalities such as geo
tagged text, geospatial vector data, geospatial imagery, geospatial network data, etc. 
The most popular types are vision-language GeoFMs. Examples include EarthGPT 
(Zhang et al. 2024b), RemoteCLIP (Liu et al. 2024), GeoChat (Kuckreja et al. 2024), 
SkyEyeGPT (Zhan et al. 2025), GRAFT (Mall et al. 2024), MapReader (Zhang et al.; in this 
issue), etc. Other than vision-language GeoFMs, we also see other types of multimodal 
GeoFMs. For instance, to jointly consider both geospatial imagery and their location 
metadata, we have multiple vision-location GeoFMs, including CSP (Mai et al. 2023a), 
SatCLIP (Klemmer et al. 2023), GeoCLIP (Cepeda et al. 2023), RANGE (Dhakal et al. 
2025), and GAIR (Liu et al. 2025b). In addition, Balsebre et al. (2024) used 
OpenStreetMap to pre-train an early version of CityFM which learns representations 
for multiple types of geographic objects that can be applied to different analyses, 
such as average speed estimation on road segments, functions of individual buildings, 
and population density in different regions.

3.2. Benchmarks and datasets

Multiple benchmarks have been developed to evaluate these GeoFMs. These bench
marks, most of which are designed for remote sensing vision and vision-language 
foundation models, include GEO-Bench (Lacoste et al. 2023), PANGAEA (Marsocci et al. 
2024), and VRSBench (Li et al. 2024b). In addition to these remote sensing-centric 
benchmarks, TorchSpatial (Wu et al. 2024) has been designed as a benchmark for 
vision-location GeoFMs and geographic bias quantification. MapEval (Dihan et al. 
2024), MapQA (Chang et al. 2022), and POI-QA (Han et al. 2025) are map and POI 
question answering datasets designed for vision-language GeoFMs. Yang et al. (2025) 
have developed a benchmark to evaluate the spatial cognition abilities of LLMs. 
Finally, GeoGrid-Bench (Jiang et al. 2025) is a multimodal grid-based geospatial bench
mark designed for climate vision-language FMs.

4. Key research challenges in geo-foundation models

Despite this sizeable early literature on GeoFM, many challenges still remain to be 
solved. This section outlines several key challenges. However, it is worth noting that 
this list is not meant to be complete or even representative; instead, we encourage 
the community to keep discussing along these and other directions.
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4.1. Forms of geo-foundation models

GeoFMs are emerging in two main forms: generative models like LLMs and representation 
models that produce embeddings for downstream tasks. On the utilization side, the prevailing 
trend favors generative LLMs, largely due to their intuitive natural language interface and ver
satility in answering almost any question that can be phrased as natural language. In contrast, 
representation models provide superior performance on quantitative prediction tasks, such as 
assessing population health risks with PDFM, which can be challenging for LLMs (Mai et al. 
2024a). In a way, the design is task-dependent, e.g., generative solutions seem to be more 
plausible if we pursue an agent knowledgeable about geospatial literature, while representa
tion models could be more suitable if we pursue better numerical outcomes for e.g., predic
tions of population dynamics. In this regard, questions remain: should we pursue one of these 
paths for different types of tasks, or should they be combined to gain the advantages of both?

From another angle, we also observe that there are three major ways of realizing GeoFM 
or using generalist FM to tackle geospatial tasks. First, a large portion of research explored 
effective means of prompting general-purpose FMs to perform geospatial tasks, e.g., Huang 
et al. (2024); Hu et al. (2023), (Wang et al. 2025; in this issue, Ji et al.; in this issue, and Chen 
et al.; in this issue). In such processes, the injection of geospatial domain knowledge is usually 
a key to make general-purpose FMs spatially aware. Second, a growing number of studies 
finetuned general-purpose FMs as GeoFMs, e.g., Manvi et al. (2024), (Zhang et al.; in this 
issue). Third, a few studies also developed GeoFM from scratch, mainly in remote sensing, 
e.g., Cong et al. (2022); Hong et al. (2024), with large-scale geospatial datasets. For now, it is 
unclear whether one of the paths is preferred to approach the vision of generally capable 
GeoFM so that the research community could consolidate our efforts, or if this is task- 
dependent, and, hence, varying paths should be taken for different types of tasks.

4.2. Truly multimodal GeoFM

It is widely acknowledged that multimodal data fusion is crucial for developing GeoFMs. This 
is due to the complementary nature of geospatial data, e.g., remote sensing captures phys
ical surface properties, while points of interest reflect socioeconomic functions afforded by 
urban spaces. However, building effective multimodal GeoFMs requires aligning data not 
only semantically (e.g., matching vector shapes of rivers with their image representations) 
but also through spatiotemporal relationships. This involves reasoning about proximity, con
tainment, connectivity, and temporal sequences across diverse modalities. Designing archi
tectures that can jointly process such heterogeneous data, scale to large datasets, and 
accomplish effective cross-modality alignment remains a major open challenge. This is espe
cially true for mode changes between model inputs and model outputs, which is very com
mon in GIS data processing and analysis. It is worth noting that we are interested in models 
that are truly able to perform these operations (e.g., from rasters to vectors) latently, not sim
ply by scripting.

4.3. The human dimension of GeoFM

A further critical challenge lies in reconciling the (seemingly) objective, quantitative 
nature of GeoFM with the subjective and complex human experience of geographic and 
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urban spaces. Although FM show promise for analyzing physical and (collective) socioe
conomic systems, the human dimension is not often included in pre-training. A funda
mental question is whether those subjective and complex human experiences should 
become part of GeoFM. To this end, it is increasingly recognized that considering the 
human dimension is pivotal to developing data-driven solutions for tackling geospatial 
and urban challenges that, ultimately, are for and about humans (Janowicz, 2023; Liu 
et al. 2023; Birkin et al. 2025; Yue et al. 2025). The representation and reasoning of social 
space, which encompasses how different people experience their environment, form 
community bonds, and develop a unique attachment to a location, therefore becomes 
an unresolved hurdle for GeoFMs. We often portray current times as data-rich and us as 
drowning in data, but this is a very biased view. While there is plenty of (near-real-time) 
data about some geographic areas and data layers, we are starving for data from less 
represented areas or attributes that are less often recorded. As will be discussed below, 
this raises concerns about GeoFM misrepresenting geography, be it by introducing bias 
or by learning representations that do not align with those of groups or societies. Finally, 
so far we have argued about the role of human conceptualizations and experiences from 
a static perspective; however, representations of geographic space shift across space, 
time, and culture (Shi et al. 2025), and we need GeoFM to account for these changes.

4.4. Incorporating spatial priors

To enhance spatial awareness and better adapt to the nature of geospatial data, it is 
widely recognized that spatial priors should ideally be incorporated into the pre-training 
of GeoFM (Mai et al. 2024a). Among different types of spatial priors, the modeling of 
spatial proximity is perhaps the most common approach. This can be implemented in 
various ways, such as using location encoding (Klemmer et al. 2023; Mai et al. 2023a) or 
graph learning processes that smooth over neighborhoods (Huang et al. 2023; Agarwal 
et al. 2024). The similarity of geographic environments (configuration) has also been 
used to capture higher-order semantic similarity beyond spatial proximity (Zhou et al. 
2024a). However, it remains unclear whether such spatial priors are adequate and robust 
across diverse geographic contexts and tasks – it is even possible that the modeling of 
spatial priors could compromise effectiveness, e.g., through over-smoothing. It is also 
uncertain whether other useful forms of spatial prior are underexplored. Moreover, those 
priors change across scale, resolution, modality, and so forth, and it is presently not 
clear how to best handle those. For instance, should they be explicitly engineered or 
implicitly learned? From a technical viewpoint, each type of spatial prior can be incorpo
rated into pre-training in multiple ways, and the development of robust and effective 
technical solutions is actively being pursued. Finally, going one step further, we expect 
to see growing interest in the integration of spatiotemporal priors. Similar arguments 
can be made about evaluation and loss functions (Wiedemann et al. 2025).

4.5. Future datasets, benchmarks, and scaling laws

Another continual quest for advancing GeoFMs is to fill the gap in pre-training datasets 
and evaluation benchmarks. Although dedicated pre-training datasets are emerging, 
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such as the language-focused BB-GeoSFT (Zhang et al. 2024d) and the multimodal 
ChatEarthNet (Yuan et al. 2025), they remain modest in scale compared to general- 
purpose corpora like LAION-5B (Schuhmann et al. 2022). This scale difference may be 
acceptable for models developed by fine-tuning generalist FMs, but it presents a signifi
cant bottleneck for training powerful, spatially-native (open) models from scratch.

A critical frontier is the creation of large-scale, multimodal geospatial datasets that 
fuse diverse sources like remote sensing imagery, street view imagery, points of inter
est, and human trajectories. The primary challenge extends beyond sheer scale – it 
lies in ensuring robust semantic, spatial, and temporal (Zhao et al. 2025) alignment 
across these heterogeneous modalities. The development of such large-scale and 
multimodal datasets is intrinsically linked to the quest for more comprehensive bench
marks. We need evaluation frameworks that move beyond simple GeoQA or classifica
tion to rigorously assess a model’s capacity for complex, real-world tasks, such as 
dynamic urban analysis, cross-modal geographic retrieval, and human-environment 
interaction modeling. Without co-evolving our data and benchmarks, the true poten
tial of GeoFMs will remain constrained.

Unfortunately, however, recent findings in AI scaling laws suggest a potential 
bottleneck for future GeoFM. Hoffmann et al. (2022) argue that many present (general- 
purpose) foundation models have scaled in parameter size without also scaling pro
portionally in training token size. This imbalance may be even more troublesome for 
GeoFM. Geographic data is not independent and identically distributed; instead, it 
may exhibit strong spatial autocorrelation. As a result, more data, e.g., denser samples, 
do not translate to more information (content). While empirical GeoAI scaling laws 
have yet to be established, the proper ratio between model size and required geo- 
data may be even more challenging compared to general-purpose FM. Clearly, a lot of 
work remains to be done.

4.6. Geography according to foundation models

We have already hinted at several challenges at the intersection of technology and soci
ety, and more concretely at issues of representation. While we see great potential for 
GeoFMs, these models also introduce significant ethical concerns relating to bias, fair
ness, trust, and so on (Janowicz, 2023; Li et al. 2024a). One very interesting and underex
plored aspect revolves around the question of how (geo)-foundation models represent 
geographic space, to what degree these representations differ from human cognition, 
and whether this may cause misalignment (Russell, 2019) in AI systems. Hence, for the 
years ahead, it is crucial to ask what Geography looks like according to ChatGPT.

As GeoAI systems become more autonomous, these agentic AI will act on or inform 
decisions about the physical world. Hence, it is essential to align their actions with 
societal goals, values, and norms. For many reasons, such goals are often not reflected 
in training data. Simply put, data is, by definition, from the past. For instance, while it 
is (still) true that a majority of industry leaders are male, we do not want GenAI mod
els to exclusively or disproportionately represent male leadership when asked to 
depict an office scene or give career advice. In a geographic context, similar issues 
arise: just because a region has historically been underrepresented or economically 
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disadvantaged, should not marginalize it in future AI output. This is also true for direct 
(text-to-image) depiction of the space around us. Prior work has shown that current 
foundation models may form strong geographic defaults (Liu et al. 2025a), which may 
cement certain geographic perspectives at the cost of others. Consequently, without 
understanding what future GeoFM models will know, using them for decision support 
or data-driven policy may lead to unexpected or unintended outcomes. Finally, most 
present work on AI alignment does not account for regional, e.g., cultural, differences. 
However, as geographers, we know that the aforementioned societal goals, values, 
and norms vary greatly across geographic space and time – without any being inher
ently superior to others. This calls for pluralistic alignment (Sorensen et al. 2024) 
approaches and, more specifically, for novel geo-alignment research.

5. The road ahead

Now that we have outlined key research challenges and their potential ethical implica
tions, it is worth closing with a broader look ahead.

5.1. Competition, collaboration, convergence

Many noteworthy contributions to the recent GeoAI and Spatial Data Science literature 
have already been authored by international and interdisciplinary teams. Given the rapid 
increases in model size, required training data size, necessary compute, and potential for 
harm, the next major breakthroughs may be too big for single teams or even universities 
alone. In other domains, e.g., astrophysics, it is common to (try to) reach a community- 
wide consensus and author joint decadal surveys (National Academies of Sciences, 
Engineering, and Medicine et al. 2021) to establish overarching objectives, pathways, and 
roadmaps to showcase strategic unity to decision makers and funding agencies. In our 
field, we do not yet have such a tradition despite some noteworthy counterexamples with 
long-lasting impact, such as the National Center for Geographic Information and Analysis 
(NCGIA), established in 1988, or some of the specialist meetings organized over the past 
decade.4 As researchers who are often involved in stiff competition to get our results out 
months (or even just weeks) before others do, we will have to learn to better blend com
petition and collaboration. In the near future – e.g., in the area of autonomous, agentic 
GeoMachina systems (Janowicz et al. 2020; Li et al. 2025b) – we will be forced to decide 
whether the potential cost of progress along some dimensions is worth the risk (Jonas, 
1984). Going one step further, we may require convergence approaches similar to those 
promoted by the National Science Foundation’s (NSF) Convergence Accelerator to rally 
government agencies, industry, non-governmental organizations (NGOs), and universities 
behind common goals and rapidly prototype potential solutions.

5.2. Education and training

With (geo-)foundation models advancing rapidly and agentic GIS agents already on 
the horizon, we will have to rethink how we train future talent and which skills will 
matter. In 2019, we argued that such agentic GeoMachina systems will be able to 
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replace junior GIS analysts by 2030 (Janowicz et al. 2020) – it seems we may get there 
before. Today, LLM-based chatbots and early autonomous GIS systems (Li et al. 2025b) 
can retrieve data, suggest the correct data analysis steps, and geovisualize the results 
for many basic GIS needs. Many tasks that have taken considerable human expertise 
and work will become fully automated within the next 2-5 years. This, of course, has 
advantages such as opening up GIS analysis to the masses, revolutionizing education, 
and cost savings, but also many disadvantages that are not yet well understood. From 
politicians and futurologists to core AI researchers, it is fair to say that we all mis
judged the effects of AI on the workforce.

Until very recently, society bet that AI (often confused with robotics) would replace 
jobs such as truck drivers, warehouse workers, cashiers, and even (super) models long 
before it would replace creative jobs (Frey and Osborne, 2017). Occupations such as 
photographers, computer programmers, database administrators, film and video edi
tors, graphic designers, and scientists would be safe for the decades ahead. In fact, 
(Frey and Osborne, 2017, p. 48) close by arguing that ‘[ … ] computerisation [will be] 
principally confined to low-skill and low-wage occupations. Our findings thus imply that 
as technology races ahead, low-skill workers will reallocate to tasks that are non- 
susceptible to computerisation – i.e., tasks requiring creative and social intelligence.’ For 
years, this was also a very convenient stance from a marketing perspective: AI will free 
us from monotonic work so we can focus on highly creative and intellectually 
demanding work. It seems highly unlikely somebody would make such claims in 2025. 
In fact, it’s those (product) photographers, graphic designers, programmers, writers, 
and copy editors who are among the most affected by the rise of generative AI. To 
what extent current AI systems are truly creative is up for debate,5 but their effect on 
creative work is already widely felt. Hence, as a community, we need to understand 
how the GIS and spatial data science job market will change and what skills our stu
dents will require in the future. For example, there are many social intelligence skills 
involved in spatial data science, but we typically do not highlight them in our classes 
or textbooks. More generally, AI’s long-term impact on education and training is still 
underexplored (Kasneci et al. 2023; Latif et al. 2023).

Intuitively, one could expect a decline in skills among (GIScience) students as well 
as a drop in confidence. Just as the widespread use of digital navigation systems has 
impacted our spatial memory (Dahmani and Bohbot, 2020), habitual use of GenAI/FM 
may reduce spatial thinking more broadly. While most of us spend less than 
30 minutes handling navigation systems per day, we may interact more frequently 
with various AI analysts and tools in the near future. Now, giving up some of our skills 
is not a first; however, in this case, it is happening at a speed not seen before and by 
systems not truly designed for autonomous tasks. Thus, skills that help us better inter
act with such agents, critically think about their outputs, align AI with societal goals, 
and so on, will increase in importance.

6. Summary and conclusions

In this work, we presented perspectives on the emerging study of geo-foundation 
models. We motivated and defined the term, put it into its historical context within 
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GeoAI and spatial data science more broadly, and reviewed core datasets, models, and 
benchmarks. Next, we proposed key research challenges for future GeoFM research, 
such as GeoAI scaling laws, geo-alignment of AI, truly multimodal GeoFM, and so on, 
and motivated them based on current research trends within the GeoAI community. 
We identified potential risks and outlined the road ahead by discussing potential 
impacts on education and the increasing need for broad international collaboration. 
We believe that current and next-generation geo-foundation models will be defining 
steps for the future of GeoAI and spatial data science, and hope that our community’s 
contributions will fuel progress beyond our own research field, all while balancing 
innovation and responsibility.

Notes

1. The exact count depends on the model architecture and does not matter here. Emergence is 
defined from the moment chain of thought begins to consistently outperform standard 
prompting.

2. If we take the seminal paper by Vaswani et al. (2017) as the (somewhat arbitrary) earliest 
starting point.

3. https://satlas.allen.ai/.
4. See Goodchild et al. (2025) for a recent example describing the outcomes of such a 

meeting.
5. The same argument can be made about intelligence in general and Searle’s Chinese Room 

counterargument.
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