UNIVERSITY OF LEEDS

This is a repository copy of Generalized Methodology for Determining Numerical Features
of Hardware Floating-Point Matrix Multipliers: Part I.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/231310/

Version: Accepted Version

Proceedings Paper:

Khattak, F. A. and Mikaitis, M. orcid.org/0000-0001-8706-1436 (Accepted: 2025)
Generalized Methodology for Determining Numerical Features of Hardware Floating-Point
Matrix Multipliers: Part I. In: 29th Annual IEEE High Performance Extreme Computing.
29th Annual IEEE High Performance Extreme Computing, 15 Sep 2025 IEEE. (In Press)

This is an author produced version of a proceedings paper accepted for publication in 29th
Annual IEEE High Performance Extreme Computing, made available under the terms of
the Creative Commons Attribution License (CC-BY), which permits unrestricted use,
distribution and reproduction in any medium, provided the original work is properly cited.

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

| university consortium eprints@whiterose.ac.uk
WA Universities of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/231310/
https://eprints.whiterose.ac.uk/

Generalized Methodology for Determining
Numerical Features of Hardware Floating-Point
Matrix Multipliers: Part I

Faizan A. Khattak and Mantas Mikaitis
School of Computer Science, University of Leeds, Leeds, UK

Abstract—Numerical features of matrix multiplier hardware
units in NVIDIA and AMD data centre GPUs have recently
been studied. Features such as rounding, normalisation, and
internal precision of the accumulators are of interest. In this
paper, we extend the methodology for analysing those features, to
consumer-grade NVIDIA GPUs by implementing an architecture-
independent test scheme for various input and output precision
formats. Unlike current approaches, the proposed test vector
generation method neither performs an exhaustive search nor re-
lies on hard-coded constants that are device-specific, yet remains
applicable to a wide range of mixed-precision formats. We have
applied the scheme to the RTX-3060 (Ampere architecture), and
Ada RTX-1000 (Ada Lovelace architecture) graphics cards and
determined numerical features of matrix multipliers for binary16,
TensorFloat32, and bfloat16 input floating point formats and bi-
nary16 and binary32 IEEE 754 output formats. Our methodology
allowed us to determine that the numerical features of RTX-3060,
a consumer-grade GPU, are identical to those of the A100, a data
centre GPU. We do not expect our code to require any changes
for performing analysis of matrix multipliers on newer NVIDIA
GPUs, Hopper or Blackwell, and their future successors, and
any input/output format combination, including the latest 8-bit
floating-point formats.

I. INTRODUCTION

As the demand for greater computational efficiency in ma-
chine learning continues to rise, low-precision arithmetic has
emerged as a key method for training neural networks faster.
Recent advancements have pushed precision levels down to
as low as 4 bits on modern GPUs [1, 2]. Majority of modern
GPUs are equipped with dedicated matrix multiplication units,
designed to accelerate linear algebra operations—particularly
dense matrix multiplication, which is central to both training
and inference in deep learning workloads. These units also
support low-precision arithmetic, thereby enabling significant
throughput improvements. However, 4+ and X operations im-
plemented within them typically do not conform to the IEEE
754 standard [3], and their numerical behaviour is seldom
documented and differs between architectures. IEEE 754 re-
duction operations are implementation-defined [3, Sec. 9.4].
The goal of this work is to characterise the numerical features
of these matrix multipliers. The characterisation not only
supports the standardisation efforts of the IEEE P3109 working
group for floating-point arithmetic in machine learning [4] but
also benefits scientific computing community that traditionally
relies on IEEE 754 binary64 hardware, by helping them
interpret differences in results computed on various platforms.

Previously, Hickmann and Bradford [5] have reported
various numerical features extracted via hard-coded test
vectors, thereby estimating the features of NVIDIA
V100 tensor cores, a term used by NVIDIA for
referring to matrix multipliers. Building upon their work,
Fasi, Higham, Mikaitis, and Pranesh [6] have analysed
additional features, such as the number of extra bits for
carries in the intermediate accumulator and monotonicity of
the dot product, by adopting a similar strategy of generating
test vectors via constant parameters selected for each case
of input and output precision format. They have reported
features of matrix multipliers of the V100, T4, and A100
GPUs based on the Volta, Turing and Ampere architectures
of NVIDIA for a variety of floating point formats, such as
binaryl6, bfloatl6, TensorFloat32, binary32, and binary64.
Li et al. [7] have subsequently applied the techniques
on the AMD and NVIDIA H100 GPUs, and proposed a
partially generalized test vector generation scheme which
can be applied to various input and output floating-point
precision formats. However, due to limited number of
features considered, the proposed algorithms, specifically
for determining fused-multiply-accumulate (FMA) width
therein, seem to be inapplicable to all GPU architectures [7].
Finally, the satisfiability modulo theories (SMT) based work
conducted by Valpey et al. [8] performs an exhaustive or close
to it search through the input space to determine features
of matrix multipliers of NVIDIA GPUs. We demonstrate
algorithms that can determine many numerical features
efficiently without needing to traverse the large input space
of floating-point numbers that methods based on SMT need
to do; for instance Valpey et al. [8] reported that it took six
hours to determine a test vector for the number of extra carry
bits in the Ampere architecture but still failed to converge.

The software released circa 1982, Paranoia', made for
testing machines’ arithmetic behaviour before IEEE 754 stan-
dardisation, inspired this work.

Our contributions are as follows.

1) Previous studies have focused on data centre GPUs
whereas this work targets consumer-grade GPUs,

2) the proposed approach supports varying input and output
precision parameters, making it readily applicable to
many available input-output format combinations,

Uhttps://www.arithmazium.org/paranoia/aaapara_toc.html

3) this work highlights internal dependencies among nu-
merical feature tests and presents an example demon-
strating how one numerical feature test can influence
the tests for others,

4) the proposed test vector generation model is
architecture-agnostic and thus applicable across
different GPU architectures—unlike the approach of
Li et al. [7], which, despite partial generalization,
is applicable to Ampere but may not apply to Volta
architecture without manual code changes, and

5) we determine the relationship between the numerical
features of consumer-grade GPUs and those of data
centre GPUs based on the same architectures.

II. MODEL, PARAMETERS AND NUMERICAL FEATURES
A. Model for Test Vector Generation

Matrix multiplication on the latest NVIDIA GPUs performs
matrix-multiply accumulate operation

D= AB+C € R™*", (1)

where A € R™** B € R¥*", For large matrices, multipli-
cation is accomplished by partitioning the given matrices into
smaller-sized sub-matrices which are called files. Computa-
tions from tiles are aggregated to produce the final result. Each
tile may be computed by several tensor cores, which operate
on even smaller blocks. In order to examine the numerical
behaviour of these matrix multipliers that work at the tile level,
an analysis of a single element of D is sufficient. Therefore,
an element of D at ¢th row and jth column can be represented
as

k
dij =Y aiebej + cij. 2
=1

We do not need to refer to separate elements in D, so we have
k k
d= Zalbl +c= Zrl + ¢, where r; := a;b;. (3)
=1 =1
B. Definitions

We define FMA width following Li et al. [7], as the
minimum number of multiply-accumulate operations in (3)
before rounding and normalisation of the accumulator, to
the output floating-point format, is applied, and we denote
it with Npya. This parallel fashion FMA is also termed
as block FMA [9]. Block FMAs may perform accumulation
in higher precision than the output format. Therefore these
units increase not only performance but may also increase
accuracy, because of the precision growth due to carry bits
and single normalisation at the end of sum of length &k [10].
In a block FMA, the final conversion to the output format
may be deferred until all k£ products are added. The number
of input and output format significand bits are denoted by
Din and poyy, respectively [3]. It is reminded that the scope
of definition of p,, is limited to binary32 and binary64
floating-point formats because element-wise multiplication for
binary16, TensorFloat32, and bfloat16 block FMAs in Volta

and Ampere takes place at least in binary32 precision, and
thereafter rounding is applied to cast to lower precision if
required [6]. Therefore we have po,t > 2pi, but the tests
given below are applicable t0 pout > (Pin + Necb.max) Where
Necb.max 1S defined as the maximum number of extra carry
bits (see (6)). We define extra carry bits as additional bits
that support carry propagation across successive additions in
(3) without requiring immediate normalisation after each step.
For instance, consider the addition 1.01 + 1.00 = 10.01,
where the result is left denormalized. This intermediate re-
sult is then added to another number: 10.01 4+ 1.01 =
11.10. Only after the full accumulation is the result normal-
ized to: 1.11 (with the exponent appropriately adjusted). This
behavior—of deferring normalisation and preserving carry
information without reducing precision—is what we refer to
as having an extra carry bit. If an implementation produces
1.01 + 1.00 = 10.01 but normalizes and rounds the result to
1.00 before passing it to the next addition then zero extra carry
bits are available in the accumulator’s precision.

C. Scope of Numerical Features

The scope of this paper encompasses a broad range of
numerical features, many of which have been investigated in
prior research, however only for data centre GPUs. First, the
support for subnormal numbers in both input and output is
examined. Next, the size of the accumulator is determined by
identifying the number of additional bits allocated for aligning
significands, as well as those reserved to accommodate carries
generated during the accumulation process. In addition, the
FMA width is determined for inputs in various floating-point
precision formats using an iterative algorithm. Moreover, the
rounding mode is examined for outputs in binary16, bfloat16,
TensorFloat32, and binary32 precision formats, including sce-
narios where results from two different block FMA operations
are accumulated. Finally, the dependencies among numerical
features are highlighted using an example algorithm that
produces correct results only when the extra bits for carries
and significand alignment are determined beforehand.

III. GENERATION OF TEST VECTORS

We formulate expressions for the generation of each test
vector or a series of test vectors needed to reveal a particular
numerical feature of matrix multiply hardware units. The
number of precision bits in the input and output formats is
the input to expression forming rules. This feature can help
apply these tests in any input and output floating point formats
that are available now or may become available in the future.

A. Subnormal Support

Subnormal number support for both input and output can
be verified using simple test cases, as shown by Fasi et al. [6].
Since prior works [5—7] agree on subnormal support in data
centre GPUs, our motivation for revisiting this feature is to
assess whether consumer-grade GPUs offer similar support.
Accordingly, we reapply the test methods from [5-7] to
selected consumer GPUs.

B. Rounding Modes

This section addresses the rounding mode of each addition
operation in (3) as well as the final rounding to output pre-
cision. The standard [3] rounding modes are RoundToNearest
(RN), RoundTowardsZero (RZ), RoundUp (RU), RoundDown
(RD). Fasi et al. [6], have generated test vectors that indicated
RZ as the rounding mode in addition in several block MMA
designs, and Valpey et al. [8] have built on their work to
demonstrate that block FMAs do not provide results consistent
with any of the standard rounding modes for subtraction. In
the former, the example test provided for the V100 GPU is
2+ (3 x 2722), which is reported to result in 2 (and similarly,
—2 on the negative axis), and is concluded to be consistent
with RZ rounding mode for adding two positive numbers.
Valpey et al. [8] additionally used 2 — 27%! to demonstrate
that —24! is not preserved in the alignment step, consistent
with the behaviour of RU for subtraction. Combining Fasi et
al. [6] result and their new test with subtraction they were
able to conclude that block FMAs do not correspond to any
standard rounding mode, consistent with bit truncation.

It is important to define truncation precisely as one can
truncate in the significand alignment step or after the addition
result is obtained with or without extra bits. We rely on the
model assumed in [5] where the alignment step is expected to
be followed either by truncation or rounding before accumu-
lation has begun. Once addition is performed within a block
FMA, another truncation or rounding is performed to output
the accumulated results in output precision. To determine if
there is any intermediate rounding post alignment, we need to
know the number of extra alignment bits, which we denote
by Neab. With nea, known and Nyya > 2, we suggest
c = :|:2J, =Ty = i(Q*:DoutJrj*neab + 2*Pout+j*neab*1)_
The output d must be 27, 4(27 4 27 Poutti+2=nean) f97
2_pout+j+2_neab7 _Qj}, and {2]'7 _(23' + 2_pout+j+2_neab)}
if signficand bits beyond the output precision are truncated,
rounded via RN with ties-to-even (RNE), RU, and RD, respec-
tively. This is applicable for ne,p, = 0 and 1. For neap, > 1,
more sophisticated tests are needed.

To determine the final rounding mode applied to the output
of a block FMA, ie., t{c+ 11 + -+ 4+ "Npya + Where t{-}
denotes the rounding operation, we assume Npya > 3. This
assumption is required when ne,, = 0. For the case neap =
1, it is sufficient that Ngya > 2, while for ne,p, > 1, the
weaker condition Nyya > 1 is acceptable. For simplicity, we
assume ne,p = 0 because we are not sure if all modern GPUs
allocate extra alignment bits in their matrix multiplier units.
Then we propose ¢ = #(27 4 27 PousTi+l 4 9=Pous+i+2) and
ry=T9g =173 = j:(2j). These input vectors are such that they
can prevent intermediate truncation or rounding as none of the
bits gets beyond the output precision—instead extra carry bits
are utilized. Since normalisation is delayed until a complete
block FMA operation has been performed, we must have d =
:|:(2j+2), i(2j+2+2_pout+j+3)’ {2j+2+2_pout+j+3’ _247‘-&-2}’
and {2912 —(2/+2 4 27Poutti+3)} for truncation, RNE, RU,
and RD rounding modes, respectively.

C. Features of the Accumulator

Since the scope of this paper does not include the order
in which features should be determined, we therefore rely on
certain assumptions from earlier work in this area.

1) Bits for Significand Alignment: To reveal the number
of extra bits allocated in the alignment of significands in the
accumulator, we propose setting ¢ = 27, j € Ny, and applying
the following tests:

e choose a;,b; i € {1,2} such that ;-1 5 = 27 PouttJ,
Assuming products are exact when they leave multiplication
units, if the resulting d = 27 + 27 Pourt1+J this implies the
presence of at least an extra bit in the alignment. This test
assumes no normalisation after a single binary operation, i.e.,
addition involving two terms.

e with 71 = 27Pow*/ and 7;¢q0 43 = 2P+~ and under
the assumption of alignment of significands w.r.t. the largest
exponent, we must still have d = 27 427 Poutti+1 if two extra
bits are utilized in the significands’ alignment.

e to detect me,, extra bits in alignment, we suggest
Tie{l,....ncab—1} — 2 Pou =i and Ti€{neabsNeab+1} =
2 Pouttl=meabti If . < Npya and we have d = 27 +
2~ Pousti+1 " this indicates nea, extra bits are present. This
test assumes rounding is performed after a complete block
FMA operation. The final result remains invariant under any
rounding mode post normalisation because all bits beyond the
last bit in the output precision are zero.

In these tests, we assume that when significands are aligned,
the bits beyond the last extra bit, the (pout + Meab)th bit, are
truncated without any types of rounding. Instead rounding is
applied only once when all terms within a single block FMA
have been accumulated. The parameters r should be chosen
such that the target product values used in the tests can be
accurately represented in the output precision.

2) Normalisation: In compliance with IEEE 754, normal-
ization is applied after each addition operation. However,
in the matrix multiplier units, present in graphics card of
various vendors, this is not the case for various input precision
formats [5-7]. Multiple extra bits are reported to exist [6]
when significands are aligned in floating point arithmetic for
addition or subtraction, and also to accommodate carries in
such multi-term addition to prevent the need for immediate
normalization. Therefore, there is mutual connection between
the need for normalisation and the presence of these extra
bits—otherwise internal accumulator would overflow, which
would deem the floating-point computation incorrect. Hence in
determining whether immediate or late normalisation occurs,
we perform a test that takes into account all possible cases of
extra carry and alignment bits. Before we proceed, we define
eab and ecb to denote the presence of extra alignment and
extra carry bits, respectively where each can take on a value
0 or 1 irrespective of the number of bits present. On the basis
of {ech, eab}, we can have 4 possible cases:

o {0,x} Irrespective of whether there are alignment bits,
when there are no extra carry bits, immediate normalisa-
tion must take place after each addition.

o {1,0} The mere presence of extra bits present to accom-
modate carries implies that immediate normalisation after
every binary operation may not take place. To test this, we
set ¢ = 2 — 27 Powetl gy o gy = 27Peurtl In case of
immediate normalization, we must have d = 2 assuming
addends are aligned w.r.t. the largest exponent.

o {11} With ¢ = 1 — 2Pt ¢ > 3, ricg0 =
27 Pourtt | 9=Pour we must have d = 1 + 27 Pour¥t jf
normalisation is immediate with RZ/RD/RNE/truncation
as rounding modes and d = 1 4 27 Pout+t | 2= Pout+2 for
the case of RU; otherwise d = 1 4 2 Pout+t 9—Pout+1
The ¢ > 3 helps create a separation of at least one
bit between LSB and the consecutive ones in c to help
generate carry in the MSB.

3) Carry Bits: The number of extra bits needed in the
accumulator to support carries is dependent upon the FMA
size and the inner product normalisation algorithm. If each
binary addition is followed by immediate normalisation, then
no extra carry bits are needed—according to our definition of
extra carry bits, which aligns with the definition used in [6].
To determine the number of extra carry bits, we propose a
test that is unaffected by the presence of extra alignment bits,
as there is no explicit dependency. While such a dependency
could arise depending on how test vectors are constructed,
our proposed method remains free from it as outlined in
Algorithm 1. Additionally, we address the dependency on
FMA size—since it dictates how many extra carry bits are
required—Dby iteratively increasing the shared dimension of
both A and B, i.e., k from 2 until it exceeds the FMA size.
Once k exceeds Nppa, the condition of the if statement
becomes true because the absolute value of d is no longer equal
to the absolute of sum of ¢ and 7;cy;, ... 1} due to independent
normalisation and rounding in each block FMA operation.
Hence, the proposed algorithm resolves the dependency of the
FMA size by iteratively increasing the shared dimension of
input matrices k.

For determining the number of extra bits allocated to propa-
gate carries from one addition to another without intermediate
normalisation, we require 1s in the MSBs as well as in the
LSBs to detect the carry bits, while simultaneously keeping
track of whether the LSB has been utilized instead of being
truncated. During accumulation, if n carries occur in the
MSBs, the same number of carries must be generated in the
region of LSBs. This is because, after normalisation, the result
will be right-shifted by the same number of bits used to
support the carries. Therefore, carry detection is performed
using the last bit in the updated LSB after the precision has
been reduced, and it has to be 1 from the carry in the LSBs
before the final normalisation. Although such an algorithm is
feasible, its output depends on the rounding mode. Therefore,
the FMA detection iterative algorithm breaks the while loop
once k exceeds the FMA size. In the meantime, the ne.1, kept
on detecting the number of carries with the help of second if
statement by the relation

Nech = [logy(k(2 — 277 1)) |,)

Algorithm 1: Iterative approach for determining the
number of extra carry bits and Nppa -

Output: Nyma, Nech;

Nechb = 07 k= 2;
while true do
7“16{1 =0, 1 =%£1, rp =427 Pout+1,

+(1+42- pom+1)

call matrix multiplier;
if |d] # |c+ Y., ri| then

‘ NFMA < (k — 1), break;
end
Tief1, . k—1} = 2 — 2Pt g = 97 Poutl,
c=2 -9 Pin+1 + Z Ing(k 1 92— pm,ﬁ»z
call matrix multiplier;
ifd=(c+ Zle r;) then

| Nech = [loga(k(2 — 27Pmtl))|;
end
k<« (k+1)

end

where the term 2 — 27Pin 1 ig the closest value below 2 in
the accumulator’s internal precision with input precision piy,
ensuring the MSBs contain the longest run of 1s to maximize
carries with the fewest added terms. We assume that each
product term is exactly representable as the product of two
operands in the input precision.

D. FMA Size

In determining the FMA size of a GPU matrix multiplier
unit (or a tensor core in NVIDIA GPUs), we have to rely on
the assumption that precision is preserved within a single block
FMA operation, with rounding and/or normalisation deferred
until the final result [7, 9]. The iterative algorithm presented
by Li et al. [7] appears to have a typographical error, as its
behaviour does not align with the reference implementation
provided on the FPTalk24 website [11]. The implementa-
tion employs two non-zero products, whereas the pseudo-
code in [7] relies on only one non-zero product term—this
discrepancy seems to be an error. Moreover, the provided
algorithm (both in [7] and its implementation code in [11])
implicitly assumes that the accumulator retains an extra bit
during significand alignment and no such variant for the
alternative case is provided. This assumption, however, does
not hold for the NVIDIA V100 GPU, which does not employ
any extra bits for significand alignment, in contrast to the A100
and T4 architectures [6]. Consequently, the algorithm in [7]
is not applicable to the V100 and similar GPUs, as explicitly
stated therein. It also gives an impression that FMA size is
only linked to extra alignment bits whereas, in reality it also
depends upon the extra bits allocated to accommodate carries,
which we have shown below.

The Algorithm 1 also returns the FMA size along with
the number of extra carry bits irrespective of whether extra
alignment bits are present. Therefore, the proposed algorithm

is applicable to GPUs with and without extra alignment bits,
e.g. A100 and AMD employ extra alignment bits, and V100 do
not. Moreover, it can also detect an FMA size as small as one.
This is possible because when the Algorithm 1 satisfiability
condition is not true at £ = 2, the FMA size must be
k—1 = 1. Otherwise, k is incremented until the condition fails
and the algorithm outputs Npva = k — 1. The satisfiability
condition holds as long as computation takes place within a
single-block FMA and fails when normalisation and rounding
become independent across different blocks. For example, if
the FMA size is 4 and k = 6, then ¢ + Z?:l r; is computed,
normalised, and rounded within one block FMA, whereas
r5 + 76 1s computed in the next block, which returns a result
d not equal to ¢ + 2?21 ;. The proposed approach remains
valid under any rounding mode applied after normalisation,
which makes it reliable. Note, we assume that the elements in
each input vectors or matrices are distributed across multiple
block FMAs in the same order as they are in the provided vec-
tors or matrices. For instance, [@qNpya+1s-- - Q(q+1)Npia |
and [bgNpya+1s-- -5 O(g+1)Nena| @re given to the gth
block FMA, while |a(g1)Nppat1s---> a(q+2)NFMA} and
[B(g+1) Npaga+1s - - - s D(g+2)Nenia | 10 the (¢4 1)th block FMA,
and so on. This assumption is reasonable in the context of
matrix multiplication, as it enables simplified and efficient
multiplication.

E. Rounding Mode in Compiling Results of Multiple Block
FMAs (RM-MBFMA)

Within a single block FMA operation, it is known from [5,
6] that truncation (or RZ) is typically employed when the
output is in binary32, while RNE is used in binary16 and bi-
nary64 output modes. However, the rounding behavior during
the aggregation of results from two distinct block FMAs in a
same sub-matrix or a tile requires further investigation. Hence,
we suggest setting ¢ = (1 + 27Peuwt) and ry, 11 =
+(27Pout 427 Poue=1) 1y = (0 Vk # (Npypa + 1). The output
must be d = £(1 + 27Pouet) = {d(1 4 27Pouct2)},
d = {(1 4 27Peuet2) (1 4 27Pouet)} and d = {(1 +
27Pouttl) (1 427Poutt2)} for RZ/truncation, RNE, RU, and
RD rounding modes, respectively.

F. Normalisation Procedure & Order of Addition between Two
Block FMAs

The warp matrix multiply accumulate (WMMA), a CUDA
API to utilize tensor cores on NVIDIA GPUs, supports fixed
tile sizes where the sizes depend upon the input data types
and GPU architecture [14]. For matrices with dimension larger
than these supported fixed size matrices, multiple WMMA
operations are called to cover the entire input matrix. However,
within the supported fixed-sized tiles, an inner product may
not be computed via a single block FMA operation, instead
multiple block FMA operations are performed to compute a
single dot product. Therefore, if the shared dimension of the
supported fixed sized tiles is denoted with kg, there must be
ko/N¥ma = k. > 1, where k, is an integer, block FMA
operations to compute every inner product within a tile. Let

us consider a case where the shared dimension of A, i.e., k, is
equal to the shared dimension between tile multiplication i.e.
k = kg. Then we can write (3) as

d=c+Ti+To+ ..., 4Ty, (5)

where Ty = Zf]:v(?j’*l) Npnpat1Ti- We are interested in the
order of addition operations between these terms. Since our
experimental results, provided below, and also those reported
in [7] for NVIDIA GPUs, consistently yield k, = 2, we focus
on this case and propose a simple test. Assign 27, —27 and
2 Pout=3+7 to ¢, T} and T, respectively, where j € Ny. We
must have d = 27Pout=3%J (0, and 0 for (c + T3) + T, ¢+
(T1+T3) and (c+T5)+7T; ordering, respectively. Between the
two cases yielding d = 0, the input values can be permuted
among ¢, 11, and T» to determine which ordering corresponds
to each of the identical outcomes.

IV. RESULTS

Here we present the features available on RTX 3060 and
Ada 1000 consumer-grade GPUs, as determined by our pro-
posed generalised testing methodology.

A. Subnormal Support

Support for subnormal numbers both in input and output
in above mentioned precision formats is available on both
graphics cards. This complies with previous results of A100
from the Ampere family.

B. Rounding Mode in a Block FMA (RM-BFMA)

Binary32 output mode uses truncation instead of RNE,
whereas RNE is the default rounding mode for binary16 output
precision.

C. Accumulator Features

1) Extra Alignment Bits: In the binary32 output mode,
results from both cards show that an extra bit is present when
the significands are aligned during addition. This indicates
that the internal datapath for handling the significands of the
addends is 25 bits wide, same as what was reported by [6] for
the A100.

2) Extra Carry Bits: With an FMA size of Ngya, akin to
(4), at most

Necb.max = Llog2<NFMA(2 - 2_pm+1))J (6)

can be detected according to our definition of extra carry bits
(see Sec. II-B). It is also worth noting that while more extra
carry bits may exist in matrix multiplier hardware units, de-
tecting them would require a larger FMA size. For both cards,
Algorithm 1 detected 3 extra carry bits in both graphics cards
for binaryl6 and bfloatl6 input, whereas for TensorFloat32
format as the input format, only 2 extra carry bits are detected.
These results are consistent with the determined FMA size
via (6). The number of extra alignment and carry bits present
suggests that the accumulator width, denoted in the format
{Nech, 24, Nean }, 1s at least {3, 24, 1} for binary16 and bfloat16
as the input formats with the output as binary32, and {2,24,1}
for TensorFloat32 as the input format, with binary32 as the
output format.

TABLE I
NUMERICAL FEATURES OF MATRIX MULTIPLIERS IN CONSUMER-GRADE NVIDIA GPUs

Tnput format Device (- Suppcs)gbnogﬁlsllppo — Neab | Mecb | LNorm | Npma | RM-BFMA | RM-MBFMA
binary16 [3] RTX 3060 v v 1 >3 X 8 Truncate Truncate
y Ada 1000 4 4 1 >3 X 8 Truncate Truncate
bfloatl6 [12] RTX-3060 v v 1 >3 X 8 Truncate Truncate
Ada 1000 4 4 1 >3 X 8 Truncate Truncate
RTX 3060 v v 1 > 2 X 4 Truncate Truncate
TensorFloat32 [13] Ada 1000 v v 1 >2 X 4 Truncate Truncate

Note: The above results are for binary32 output. Binary16 output uses RN for both RM-BFMA and RM-MBFMA.
Neab (Number of Extra Alignment Bits), nec, (Number of Extra Carry Bits) & I.Norm (Immediate normalisation)

3) Normalisation: Running the test proposed for the case
{eab,ecb} = {1,1} suggests that no immediate normalisation
occurs within a single-block FMA operation on either the RTX
3060 or Adal000 graphics card.

D. FMA Size and Related Properties

With ey, = 1, the FMA size Npya—which depends only
on the input precision—is found to be 8 for binaryl6 and
bfloat16, and 4 for TensorFloat32, yielding k, = ko/Npma =
2 for all formats. This implies that two block FMA operations
are used to compute each inner product between tiles from
matrices A and B. The test indicates that the addition order
among ¢, Ty, and T, follows (¢ + T7) + T». When combining
results from separate block FMAs, the rounding mode (RM-
MBFMA) is truncation for binary32 output, and RNE for
binary16 output.

V. CONCLUSION

We have proposed a numerical feature testing approach for
the dedicated matrix-multiplier units available on many recent
GPUs. The proposed methodology can be applied to multiple
input and output format combinations and is architecture
independent. Unlike previous attempts, the proposed approach
considers the dependencies among numerical features to lift
this architecture dependency. As a test case, we applied this
methodology to characterize the numerical features of tensor
cores on two consumer-grade NVIDIA GPUs—the RTX 3060
and the Ada 1000—using binaryl6, bfloatl6, and Tensor-
Float32 input precision formats. The consumer-grade GPU
based on the Ampere architecture shows identical features as
that of the data centre GPU A100 except that RTX 3060 does
not support binary64 in tensor cores.

In Part II, we plan to publish a comprehensive set of
numerical features for matrix multipliers across GPUs from
various vendors to facilitate cross-platform analysis and en-
hance portability. Moreover, this analysis will be extended
to cover all available input precision formats, providing a
user-friendly testing approach applicable to GPUs ranging
from consumer-grade models to those featured in the TOP500
supercomputers. The code for this work is made available on
GitHub? and it includes CUDA code for generating the results
in Table I and MATLAB experiments with several simulated
models of block FMA units.

Zhttps://github.com/faiziktk/IEEE_HPEC2025_block_FMA _tests

VI. ACKNOWLEDGMENT

We are grateful to Massimiliano Fasi for the insightful
comments, which greatly improved the quality of this paper.
Both authors are funded by the EPSRC grant “Informing
Future Numerical Standards by Determining Features of Non-
Standard Mathematical Hardware” with the project reference
151: https://gtr.ukri.org/projects 7ref=151.

REFERENCES
[1] NVIDIA, “NVIDIA Blackwell architecture technical
brief,” 2025. [Online]. Available: https://resources.nvidia.com/

en-us-blackwell-architecture

[2] AMD, “Datasheet: AMD instrinct MI355X GPU,” 2025. [Online].
Available: https://www.amd.com/content/dam/amd/en/documents/
instinct-tech-docs/product-briefs/amd- instinct-mi355x- gpu-brochure.
pdf

[3] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019 (re-
vision of IEEE Std 754-2008). Piscataway, NJ, USA: Institute of
Electrical and Electronics Engineers, Jul. 2019.

[4] 1. W. Group, “Interim report on binary floating-point formats for machine
learning,” https://github.com/P3109/Public/tree/main, Jul. 2025, version
3.0.3.

[5] B. Hickmann and D. Bradford, “Experimental analysis of matrix multi-
plication functional units,” in 2019 IEEE 26th Symposium on Computer
Arithmetic (ARITH), 2019, pp. 116-119.

[6] M. Fasi, N. J. Higham, M. Mikaitis, and S. Pranesh, “Numerical behavior
of NVIDIA tensor cores,” PeerJ Computer Science, vol. 7, p. €330, 2021.

[71 X. Li, A. Li, B. Fang, K. Swirydowicz, I. Laguna, and G. Gopalakr-
ishnan, “FTTN: Feature-targeted testing for numerical properties of
NVIDIA & AMD matrix accelerators,” in 2024 IEEE 24th International
Symposium on Cluster, Cloud and Internet Computing (CCGrid), 2024,
pp. 39-46.

[8] B. Valpey, X. Li, S. Pai, and G. Gopalakrishnan, “An SMT formalization
of mixed-precision matrix multiplication,” in NASA Formal Methods.
Cham: Springer Nature Switzerland, 2025, pp. 360-379.

[9] P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh, “Mixed

precision block fused multiply-add: Error analysis and application to

GPU tensor cores,” STIAM Journal on Scientific Computing, vol. 42, no. 3,

pp. C124-C141, 2020.

M. Mikaitis, “Monotonicity of multi-term floating-point adders,” IEEE

Trans. Comput., vol. 73, no. 6, pp. 1531-1543, Feb. 2024.

X. Li, “Artifact for FTTN,” Feb. 2024. [Online]. Available: https:

//doi.org/10.5281/zenodo.10673370

Intel Corporation, “BFLOAT16—hardware numerics defini-

tion,” Available at https://software.intel.com/en-us/download/

bfloat16-hardware-numerics-definition (accessed 15 July 2020),

Nov. 2018, white paper. Document number 338302-001US.

NVIDIA, “NVIDIA A100 tensor core GPU architecture,” Available

at https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/

nvidia-ampere-architecture- whitepaper.pdf (accessed 15 July 2020), pp.
vi+76, 2020, NVIDIA whitepaper v1.0.

, “CUDA C++ programming guide,” 2025. [Online].

Available: https://docs.nvidia.com/cuda/pdf/CUDA_C\ _Programming

_Guide.pdf

[10]

(11]

[12]

[13]

[14]

