
This is a repository copy of Generalized Methodology for Determining Numerical Features
of Hardware Floating-Point Matrix Multipliers: Part I.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/231310/

Version: Accepted Version

Proceedings Paper:
Khattak, F. A. and Mikaitis, M. orcid.org/0000-0001-8706-1436 (Accepted: 2025)
Generalized Methodology for Determining Numerical Features of Hardware Floating-Point
Matrix Multipliers: Part I. In: 29th Annual IEEE High Performance Extreme Computing.
29th Annual IEEE High Performance Extreme Computing, 15 Sep 2025 IEEE. (In Press)

This is an author produced version of a proceedings paper accepted for publication in 29th
Annual IEEE High Performance Extreme Computing, made available under the terms of
the Creative Commons Attribution License (CC-BY), which permits unrestricted use,
distribution and reproduction in any medium, provided the original work is properly cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/231310/
https://eprints.whiterose.ac.uk/

Generalized Methodology for Determining

Numerical Features of Hardware Floating-Point

Matrix Multipliers: Part I

Faizan A. Khattak and Mantas Mikaitis

School of Computer Science, University of Leeds, Leeds, UK

AbstractÐNumerical features of matrix multiplier hardware
units in NVIDIA and AMD data centre GPUs have recently
been studied. Features such as rounding, normalisation, and
internal precision of the accumulators are of interest. In this
paper, we extend the methodology for analysing those features, to
consumer-grade NVIDIA GPUs by implementing an architecture-
independent test scheme for various input and output precision
formats. Unlike current approaches, the proposed test vector
generation method neither performs an exhaustive search nor re-
lies on hard-coded constants that are device-specific, yet remains
applicable to a wide range of mixed-precision formats. We have
applied the scheme to the RTX-3060 (Ampere architecture), and
Ada RTX-1000 (Ada Lovelace architecture) graphics cards and
determined numerical features of matrix multipliers for binary16,
TensorFloat32, and bfloat16 input floating point formats and bi-
nary16 and binary32 IEEE 754 output formats. Our methodology
allowed us to determine that the numerical features of RTX-3060,
a consumer-grade GPU, are identical to those of the A100, a data
centre GPU. We do not expect our code to require any changes
for performing analysis of matrix multipliers on newer NVIDIA
GPUs, Hopper or Blackwell, and their future successors, and
any input/output format combination, including the latest 8-bit
floating-point formats.

I. INTRODUCTION

As the demand for greater computational efficiency in ma-

chine learning continues to rise, low-precision arithmetic has

emerged as a key method for training neural networks faster.

Recent advancements have pushed precision levels down to

as low as 4 bits on modern GPUs [1, 2]. Majority of modern

GPUs are equipped with dedicated matrix multiplication units,

designed to accelerate linear algebra operationsÐparticularly

dense matrix multiplication, which is central to both training

and inference in deep learning workloads. These units also

support low-precision arithmetic, thereby enabling significant

throughput improvements. However, + and × operations im-

plemented within them typically do not conform to the IEEE

754 standard [3], and their numerical behaviour is seldom

documented and differs between architectures. IEEE 754 re-

duction operations are implementation-defined [3, Sec. 9.4].

The goal of this work is to characterise the numerical features

of these matrix multipliers. The characterisation not only

supports the standardisation efforts of the IEEE P3109 working

group for floating-point arithmetic in machine learning [4] but

also benefits scientific computing community that traditionally

relies on IEEE 754 binary64 hardware, by helping them

interpret differences in results computed on various platforms.

Previously, Hickmann and Bradford [5] have reported

various numerical features extracted via hard-coded test

vectors, thereby estimating the features of NVIDIA

V100 tensor cores, a term used by NVIDIA for

referring to matrix multipliers. Building upon their work,

Fasi, Higham, Mikaitis, and Pranesh [6] have analysed

additional features, such as the number of extra bits for

carries in the intermediate accumulator and monotonicity of

the dot product, by adopting a similar strategy of generating

test vectors via constant parameters selected for each case

of input and output precision format. They have reported

features of matrix multipliers of the V100, T4, and A100

GPUs based on the Volta, Turing and Ampere architectures

of NVIDIA for a variety of floating point formats, such as

binary16, bfloat16, TensorFloat32, binary32, and binary64.

Li et al. [7] have subsequently applied the techniques

on the AMD and NVIDIA H100 GPUs, and proposed a

partially generalized test vector generation scheme which

can be applied to various input and output floating-point

precision formats. However, due to limited number of

features considered, the proposed algorithms, specifically

for determining fused-multiply-accumulate (FMA) width

therein, seem to be inapplicable to all GPU architectures [7].

Finally, the satisfiability modulo theories (SMT) based work

conducted by Valpey et al. [8] performs an exhaustive or close

to it search through the input space to determine features

of matrix multipliers of NVIDIA GPUs. We demonstrate

algorithms that can determine many numerical features

efficiently without needing to traverse the large input space

of floating-point numbers that methods based on SMT need

to do; for instance Valpey et al. [8] reported that it took six

hours to determine a test vector for the number of extra carry

bits in the Ampere architecture but still failed to converge.

The software released circa 1982, Paranoia1, made for

testing machines’ arithmetic behaviour before IEEE 754 stan-

dardisation, inspired this work.

Our contributions are as follows.

1) Previous studies have focused on data centre GPUs

whereas this work targets consumer-grade GPUs,

2) the proposed approach supports varying input and output

precision parameters, making it readily applicable to

many available input-output format combinations,

1https://www.arithmazium.org/paranoia/aaapara toc.html

3) this work highlights internal dependencies among nu-

merical feature tests and presents an example demon-

strating how one numerical feature test can influence

the tests for others,

4) the proposed test vector generation model is

architecture-agnostic and thus applicable across

different GPU architecturesÐunlike the approach of

Li et al. [7], which, despite partial generalization,

is applicable to Ampere but may not apply to Volta

architecture without manual code changes, and

5) we determine the relationship between the numerical

features of consumer-grade GPUs and those of data

centre GPUs based on the same architectures.

II. MODEL, PARAMETERS AND NUMERICAL FEATURES

A. Model for Test Vector Generation

Matrix multiplication on the latest NVIDIA GPUs performs

matrix-multiply accumulate operation

D = AB + C ∈ R
m×n, (1)

where A ∈ R
m×k, B ∈ R

k×n. For large matrices, multipli-

cation is accomplished by partitioning the given matrices into

smaller-sized sub-matrices which are called tiles. Computa-

tions from tiles are aggregated to produce the final result. Each

tile may be computed by several tensor cores, which operate

on even smaller blocks. In order to examine the numerical

behaviour of these matrix multipliers that work at the tile level,

an analysis of a single element of D is sufficient. Therefore,

an element of D at ith row and jth column can be represented

as

dij =

k
∑

ℓ=1

aiℓbℓj + cij . (2)

We do not need to refer to separate elements in D, so we have

d =
k

∑

l=1

albl + c =
k

∑

l=1

rl + c, where rl := albl. (3)

B. Definitions

We define FMA width following Li et al. [7], as the

minimum number of multiply-accumulate operations in (3)

before rounding and normalisation of the accumulator, to

the output floating-point format, is applied, and we denote

it with NFMA. This parallel fashion FMA is also termed

as block FMA [9]. Block FMAs may perform accumulation

in higher precision than the output format. Therefore these

units increase not only performance but may also increase

accuracy, because of the precision growth due to carry bits

and single normalisation at the end of sum of length k [10].

In a block FMA, the final conversion to the output format

may be deferred until all k products are added. The number

of input and output format significand bits are denoted by

pin and pout, respectively [3]. It is reminded that the scope

of definition of pout is limited to binary32 and binary64

floating-point formats because element-wise multiplication for

binary16, TensorFloat32, and bfloat16 block FMAs in Volta

and Ampere takes place at least in binary32 precision, and

thereafter rounding is applied to cast to lower precision if

required [6]. Therefore we have pout > 2pin but the tests

given below are applicable to pout > (pin + necb.max) where

necb.max is defined as the maximum number of extra carry

bits (see (6)). We define extra carry bits as additional bits

that support carry propagation across successive additions in

(3) without requiring immediate normalisation after each step.

For instance, consider the addition 1.01 + 1.00 = 10.01,
where the result is left denormalized. This intermediate re-

sult is then added to another number: 10.01 + 1.01 =
11.10. Only after the full accumulation is the result normal-

ized to: 1.11 (with the exponent appropriately adjusted). This

behaviorÐof deferring normalisation and preserving carry

information without reducing precisionÐis what we refer to

as having an extra carry bit. If an implementation produces

1.01 + 1.00 = 10.01 but normalizes and rounds the result to

1.00 before passing it to the next addition then zero extra carry

bits are available in the accumulator’s precision.

C. Scope of Numerical Features

The scope of this paper encompasses a broad range of

numerical features, many of which have been investigated in

prior research, however only for data centre GPUs. First, the

support for subnormal numbers in both input and output is

examined. Next, the size of the accumulator is determined by

identifying the number of additional bits allocated for aligning

significands, as well as those reserved to accommodate carries

generated during the accumulation process. In addition, the

FMA width is determined for inputs in various floating-point

precision formats using an iterative algorithm. Moreover, the

rounding mode is examined for outputs in binary16, bfloat16,

TensorFloat32, and binary32 precision formats, including sce-

narios where results from two different block FMA operations

are accumulated. Finally, the dependencies among numerical

features are highlighted using an example algorithm that

produces correct results only when the extra bits for carries

and significand alignment are determined beforehand.

III. GENERATION OF TEST VECTORS

We formulate expressions for the generation of each test

vector or a series of test vectors needed to reveal a particular

numerical feature of matrix multiply hardware units. The

number of precision bits in the input and output formats is

the input to expression forming rules. This feature can help

apply these tests in any input and output floating point formats

that are available now or may become available in the future.

A. Subnormal Support

Subnormal number support for both input and output can

be verified using simple test cases, as shown by Fasi et al. [6].

Since prior works [5±7] agree on subnormal support in data

centre GPUs, our motivation for revisiting this feature is to

assess whether consumer-grade GPUs offer similar support.

Accordingly, we reapply the test methods from [5±7] to

selected consumer GPUs.

B. Rounding Modes

This section addresses the rounding mode of each addition

operation in (3) as well as the final rounding to output pre-

cision. The standard [3] rounding modes are RoundToNearest

(RN), RoundTowardsZero (RZ), RoundUp (RU), RoundDown

(RD). Fasi et al. [6], have generated test vectors that indicated

RZ as the rounding mode in addition in several block MMA

designs, and Valpey et al. [8] have built on their work to

demonstrate that block FMAs do not provide results consistent

with any of the standard rounding modes for subtraction. In

the former, the example test provided for the V100 GPU is

2+(34 ×2−22), which is reported to result in 2 (and similarly,

−2 on the negative axis), and is concluded to be consistent

with RZ rounding mode for adding two positive numbers.

Valpey et al. [8] additionally used 2 − 2−41 to demonstrate

that −241 is not preserved in the alignment step, consistent

with the behaviour of RU for subtraction. Combining Fasi et

al. [6] result and their new test with subtraction they were

able to conclude that block FMAs do not correspond to any

standard rounding mode, consistent with bit truncation.

It is important to define truncation precisely as one can

truncate in the significand alignment step or after the addition

result is obtained with or without extra bits. We rely on the

model assumed in [5] where the alignment step is expected to

be followed either by truncation or rounding before accumu-

lation has begun. Once addition is performed within a block

FMA, another truncation or rounding is performed to output

the accumulated results in output precision. To determine if

there is any intermediate rounding post alignment, we need to

know the number of extra alignment bits, which we denote

by neab. With neab known and NFMA ≥ 2, we suggest

c = ±2j , r1 = r2 = ±(2−pout+j−neab + 2−pout+j−neab−1).
The output d must be ±2j ,±(2j + 2−pout+j+2−neab), {2j +
2−pout+j+2−neab ,−2j}, and {2j ,−(2j + 2−pout+j+2−neab)}
if signficand bits beyond the output precision are truncated,

rounded via RN with ties-to-even (RNE), RU, and RD, respec-

tively. This is applicable for neab = 0 and 1. For neab > 1,

more sophisticated tests are needed.

To determine the final rounding mode applied to the output

of a block FMA, i.e., r{c + r1 + · · · + rNFMA
} where r{·}

denotes the rounding operation, we assume NFMA ≥ 3. This

assumption is required when neab = 0. For the case neab =
1, it is sufficient that NFMA ≥ 2, while for neab > 1, the

weaker condition NFMA ≥ 1 is acceptable. For simplicity, we

assume neab = 0 because we are not sure if all modern GPUs

allocate extra alignment bits in their matrix multiplier units.

Then we propose c = ±(2j + 2−pout+j+1 + 2−pout+j+2) and

r1 = r2 = r3 = ±(2j). These input vectors are such that they

can prevent intermediate truncation or rounding as none of the

bits gets beyond the output precisionÐinstead extra carry bits

are utilized. Since normalisation is delayed until a complete

block FMA operation has been performed, we must have d =
±(2j+2), ±(2j+2+2−pout+j+3), {2j+2+2−pout+j+3,−2j+2},
and {2j+2,−(2j+2 + 2−pout+j+3)} for truncation, RNE, RU,

and RD rounding modes, respectively.

C. Features of the Accumulator

Since the scope of this paper does not include the order

in which features should be determined, we therefore rely on

certain assumptions from earlier work in this area.

1) Bits for Significand Alignment: To reveal the number

of extra bits allocated in the alignment of significands in the

accumulator, we propose setting c = 2j , j ∈ N0, and applying

the following tests:

• choose ai, bi i ∈ {1, 2} such that ri=1,2 = 2−pout+j .

Assuming products are exact when they leave multiplication

units, if the resulting d = 2j + 2−pout+1+j , this implies the

presence of at least an extra bit in the alignment. This test

assumes no normalisation after a single binary operation, i.e.,

addition involving two terms.

• with r1 = 2−pout+j and ri∈{2,3} = 2−pout+j−1, and under

the assumption of alignment of significands w.r.t. the largest

exponent, we must still have d = 2j+2−pout+j+1 if two extra

bits are utilized in the significands’ alignment.

• to detect neab extra bits in alignment, we suggest

ri∈{1,...,neab−1} = 2−pout−i+j+1 and ri∈{neab,neab+1} =
2−pout+1−neab+j . If neab < NFMA and we have d = 2j +
2−pout+j+1, this indicates neab extra bits are present. This

test assumes rounding is performed after a complete block

FMA operation. The final result remains invariant under any

rounding mode post normalisation because all bits beyond the

last bit in the output precision are zero.

In these tests, we assume that when significands are aligned,

the bits beyond the last extra bit, the (pout + neab)th bit, are

truncated without any types of rounding. Instead rounding is

applied only once when all terms within a single block FMA

have been accumulated. The parameters r should be chosen

such that the target product values used in the tests can be

accurately represented in the output precision.

2) Normalisation: In compliance with IEEE 754, normal-

ization is applied after each addition operation. However,

in the matrix multiplier units, present in graphics card of

various vendors, this is not the case for various input precision

formats [5±7]. Multiple extra bits are reported to exist [6]

when significands are aligned in floating point arithmetic for

addition or subtraction, and also to accommodate carries in

such multi-term addition to prevent the need for immediate

normalization. Therefore, there is mutual connection between

the need for normalisation and the presence of these extra

bitsÐotherwise internal accumulator would overflow, which

would deem the floating-point computation incorrect. Hence in

determining whether immediate or late normalisation occurs,

we perform a test that takes into account all possible cases of

extra carry and alignment bits. Before we proceed, we define

eab and ecb to denote the presence of extra alignment and

extra carry bits, respectively where each can take on a value

0 or 1 irrespective of the number of bits present. On the basis

of {ecb, eab}, we can have 4 possible cases:

• {0, ∗} Irrespective of whether there are alignment bits,

when there are no extra carry bits, immediate normalisa-

tion must take place after each addition.

• {1, 0} The mere presence of extra bits present to accom-

modate carries implies that immediate normalisation after

every binary operation may not take place. To test this, we

set c = 2− 2−pout+1, ri∈{1,2,3} = 2−pout+1. In case of

immediate normalization, we must have d = 2 assuming

addends are aligned w.r.t. the largest exponent.

• {1, 1} With c = 1 − 2−pout+t, t ≥ 3, ri∈{1,2} =
2−pout+t + 2−pout , we must have d = 1 + 2−pout+t if

normalisation is immediate with RZ/RD/RNE/truncation

as rounding modes and d = 1+ 2−pout+t + 2−pout+2 for

the case of RU; otherwise d = 1+ 2−pout+t + 2−pout+1.

The t ≥ 3 helps create a separation of at least one

bit between LSB and the consecutive ones in c to help

generate carry in the MSB.

3) Carry Bits: The number of extra bits needed in the

accumulator to support carries is dependent upon the FMA

size and the inner product normalisation algorithm. If each

binary addition is followed by immediate normalisation, then

no extra carry bits are neededÐaccording to our definition of

extra carry bits, which aligns with the definition used in [6].

To determine the number of extra carry bits, we propose a

test that is unaffected by the presence of extra alignment bits,

as there is no explicit dependency. While such a dependency

could arise depending on how test vectors are constructed,

our proposed method remains free from it as outlined in

Algorithm 1. Additionally, we address the dependency on

FMA sizeÐsince it dictates how many extra carry bits are

requiredÐby iteratively increasing the shared dimension of

both A and B, i.e., k from 2 until it exceeds the FMA size.

Once k exceeds NFMA, the condition of the if statement

becomes true because the absolute value of d is no longer equal

to the absolute of sum of c and ri∈{1,...,k} due to independent

normalisation and rounding in each block FMA operation.

Hence, the proposed algorithm resolves the dependency of the

FMA size by iteratively increasing the shared dimension of

input matrices k.

For determining the number of extra bits allocated to propa-

gate carries from one addition to another without intermediate

normalisation, we require 1s in the MSBs as well as in the

LSBs to detect the carry bits, while simultaneously keeping

track of whether the LSB has been utilized instead of being

truncated. During accumulation, if n carries occur in the

MSBs, the same number of carries must be generated in the

region of LSBs. This is because, after normalisation, the result

will be right-shifted by the same number of bits used to

support the carries. Therefore, carry detection is performed

using the last bit in the updated LSB after the precision has

been reduced, and it has to be 1 from the carry in the LSBs

before the final normalisation. Although such an algorithm is

feasible, its output depends on the rounding mode. Therefore,

the FMA detection iterative algorithm breaks the while loop

once k exceeds the FMA size. In the meantime, the necb kept

on detecting the number of carries with the help of second if

statement by the relation

necb =
⌊

log2(k(2− 2−pin+1))
⌋

, (4)

Algorithm 1: Iterative approach for determining the

number of extra carry bits and NFMA.

Output: NFMA, necb;

necb = 0, k = 2;

while true do

ri∈{1,...,k} = 0, r1 = ±1, rk = ±2−pout+1;

c = ±(1 + 2−pout+1);
call matrix multiplier;

if |d| ≠ |c+
∑k

i=1 ri| then

NFMA ← (k − 1), break;

end

ri∈{1,...,k−1} = 2− 2−pin+1, rk = 2−pout+1;

c = 2− 2−pin+1 +
∑⌈log2(k)⌉

i=1 2−pout+i, ;

call matrix multiplier;

if d = (c+
∑k

i=1 ri) then

necb = ⌊log2(k(2− 2−pin+1))⌋;
end

k ← (k + 1)
end

where the term 2 − 2−pin+1 is the closest value below 2 in

the accumulator’s internal precision with input precision pin,

ensuring the MSBs contain the longest run of 1s to maximize

carries with the fewest added terms. We assume that each

product term is exactly representable as the product of two

operands in the input precision.

D. FMA Size

In determining the FMA size of a GPU matrix multiplier

unit (or a tensor core in NVIDIA GPUs), we have to rely on

the assumption that precision is preserved within a single block

FMA operation, with rounding and/or normalisation deferred

until the final result [7, 9]. The iterative algorithm presented

by Li et al. [7] appears to have a typographical error, as its

behaviour does not align with the reference implementation

provided on the FPTalk24 website [11]. The implementa-

tion employs two non-zero products, whereas the pseudo-

code in [7] relies on only one non-zero product termÐthis

discrepancy seems to be an error. Moreover, the provided

algorithm (both in [7] and its implementation code in [11])

implicitly assumes that the accumulator retains an extra bit

during significand alignment and no such variant for the

alternative case is provided. This assumption, however, does

not hold for the NVIDIA V100 GPU, which does not employ

any extra bits for significand alignment, in contrast to the A100

and T4 architectures [6]. Consequently, the algorithm in [7]

is not applicable to the V100 and similar GPUs, as explicitly

stated therein. It also gives an impression that FMA size is

only linked to extra alignment bits whereas, in reality it also

depends upon the extra bits allocated to accommodate carries,

which we have shown below.

The Algorithm 1 also returns the FMA size along with

the number of extra carry bits irrespective of whether extra

alignment bits are present. Therefore, the proposed algorithm

is applicable to GPUs with and without extra alignment bits,

e.g. A100 and AMD employ extra alignment bits, and V100 do

not. Moreover, it can also detect an FMA size as small as one.

This is possible because when the Algorithm 1 satisfiability

condition is not true at k = 2, the FMA size must be

k−1 = 1. Otherwise, k is incremented until the condition fails

and the algorithm outputs NFMA = k − 1. The satisfiability

condition holds as long as computation takes place within a

single-block FMA and fails when normalisation and rounding

become independent across different blocks. For example, if

the FMA size is 4 and k = 6, then c+
∑4

i=1 ri is computed,

normalised, and rounded within one block FMA, whereas

r5 + r6 is computed in the next block, which returns a result

d not equal to c +
∑6

i=1 ri. The proposed approach remains

valid under any rounding mode applied after normalisation,

which makes it reliable. Note, we assume that the elements in

each input vectors or matrices are distributed across multiple

block FMAs in the same order as they are in the provided vec-

tors or matrices. For instance,
[

aqNFMA+1, . . . , a(q+1)NFMA

]

and
[

bqNFMA+1, . . . , b(q+1)NFMA

]

are given to the qth

block FMA, while
[

a(q+1)NFMA+1, . . . , a(q+2)NFMA

]

and
[

b(q+1)NFMA+1, . . . , b(q+2)NFMA

]

to the (q+1)th block FMA,

and so on. This assumption is reasonable in the context of

matrix multiplication, as it enables simplified and efficient

multiplication.

E. Rounding Mode in Compiling Results of Multiple Block

FMAs (RM-MBFMA)

Within a single block FMA operation, it is known from [5,

6] that truncation (or RZ) is typically employed when the

output is in binary32, while RNE is used in binary16 and bi-

nary64 output modes. However, the rounding behavior during

the aggregation of results from two distinct block FMAs in a

same sub-matrix or a tile requires further investigation. Hence,

we suggest setting c = ±(1 + 2−pout+1) and rNFMA+1 =
±(2−pout +2−pout−1), rk = 0 ∀k ̸= (NFMA + 1). The output

must be d = ±(1 + 2−pout+1), d = {±(1 + 2−pout+2)},
d = {(1 + 2−pout+2),−(1 + 2−pout+1)}, and d = {(1 +
2−pout+1),−(1+2−pout+2)} for RZ/truncation, RNE, RU, and

RD rounding modes, respectively.

F. Normalisation Procedure & Order of Addition between Two

Block FMAs

The warp matrix multiply accumulate (WMMA), a CUDA

API to utilize tensor cores on NVIDIA GPUs, supports fixed

tile sizes where the sizes depend upon the input data types

and GPU architecture [14]. For matrices with dimension larger

than these supported fixed size matrices, multiple WMMA

operations are called to cover the entire input matrix. However,

within the supported fixed-sized tiles, an inner product may

not be computed via a single block FMA operation, instead

multiple block FMA operations are performed to compute a

single dot product. Therefore, if the shared dimension of the

supported fixed sized tiles is denoted with k0, there must be

k0/NFMA = kr ≥ 1, where kr is an integer, block FMA

operations to compute every inner product within a tile. Let

us consider a case where the shared dimension of A, i.e., k, is

equal to the shared dimension between tile multiplication i.e.

k = k0. Then we can write (3) as

d = c+ T1 + T2 + . . . ,+Tkr
, (5)

where Tℓ =
∑ℓNFMA

i=(ℓ−1)NFMA+1 ri. We are interested in the

order of addition operations between these terms. Since our

experimental results, provided below, and also those reported

in [7] for NVIDIA GPUs, consistently yield kr = 2, we focus

on this case and propose a simple test. Assign 2j ,−2j and

2−pout−3+j to c, T1 and T2, respectively, where j ∈ N0. We

must have d = 2−pout−3+j , 0, and 0 for (c + T1) + T2, c +
(T1+T2) and (c+T2)+T1 ordering, respectively. Between the

two cases yielding d = 0, the input values can be permuted

among c, T1, and T2 to determine which ordering corresponds

to each of the identical outcomes.

IV. RESULTS

Here we present the features available on RTX 3060 and

Ada 1000 consumer-grade GPUs, as determined by our pro-

posed generalised testing methodology.

A. Subnormal Support

Support for subnormal numbers both in input and output

in above mentioned precision formats is available on both

graphics cards. This complies with previous results of A100

from the Ampere family.

B. Rounding Mode in a Block FMA (RM-BFMA)

Binary32 output mode uses truncation instead of RNE,

whereas RNE is the default rounding mode for binary16 output

precision.

C. Accumulator Features

1) Extra Alignment Bits: In the binary32 output mode,

results from both cards show that an extra bit is present when

the significands are aligned during addition. This indicates

that the internal datapath for handling the significands of the

addends is 25 bits wide, same as what was reported by [6] for

the A100.
2) Extra Carry Bits: With an FMA size of NFMA, akin to

(4), at most

necb.max = ⌊log2(NFMA(2− 2−pin+1))⌋ (6)

can be detected according to our definition of extra carry bits

(see Sec. II-B). It is also worth noting that while more extra

carry bits may exist in matrix multiplier hardware units, de-

tecting them would require a larger FMA size. For both cards,

Algorithm 1 detected 3 extra carry bits in both graphics cards

for binary16 and bfloat16 input, whereas for TensorFloat32

format as the input format, only 2 extra carry bits are detected.

These results are consistent with the determined FMA size

via (6). The number of extra alignment and carry bits present

suggests that the accumulator width, denoted in the format

{necb, 24, neab}, is at least {3, 24, 1} for binary16 and bfloat16

as the input formats with the output as binary32, and {2, 24, 1}
for TensorFloat32 as the input format, with binary32 as the

output format.

TABLE I
NUMERICAL FEATURES OF MATRIX MULTIPLIERS IN CONSUMER-GRADE NVIDIA GPUS

Input format Device
Subnormal

neab necb I.Norm NFMA RM-BFMA RM-MBFMA
In Support Out Support

binary16 [3]
RTX 3060 ✓ ✓ 1 ≥ 3 ✗ 8 Truncate Truncate
Ada 1000 ✓ ✓ 1 ≥ 3 ✗ 8 Truncate Truncate

bfloat16 [12]
RTX-3060 ✓ ✓ 1 ≥ 3 ✗ 8 Truncate Truncate
Ada 1000 ✓ ✓ 1 ≥ 3 ✗ 8 Truncate Truncate

TensorFloat32 [13]
RTX 3060 ✓ ✓ 1 ≥ 2 ✗ 4 Truncate Truncate
Ada 1000 ✓ ✓ 1 ≥ 2 ✗ 4 Truncate Truncate

Note: The above results are for binary32 output. Binary16 output uses RN for both RM-BFMA and RM-MBFMA.
neab (Number of Extra Alignment Bits), necb (Number of Extra Carry Bits) & I.Norm (Immediate normalisation)

3) Normalisation: Running the test proposed for the case

{eab, ecb} = {1, 1} suggests that no immediate normalisation

occurs within a single-block FMA operation on either the RTX

3060 or Ada1000 graphics card.

D. FMA Size and Related Properties

With eab = 1, the FMA size NFMAÐwhich depends only

on the input precisionÐis found to be 8 for binary16 and

bfloat16, and 4 for TensorFloat32, yielding kr = k0/NFMA =
2 for all formats. This implies that two block FMA operations

are used to compute each inner product between tiles from

matrices A and B. The test indicates that the addition order

among c, T1, and T2 follows (c+ T1) + T2. When combining

results from separate block FMAs, the rounding mode (RM-

MBFMA) is truncation for binary32 output, and RNE for

binary16 output.

V. CONCLUSION

We have proposed a numerical feature testing approach for

the dedicated matrix-multiplier units available on many recent

GPUs. The proposed methodology can be applied to multiple

input and output format combinations and is architecture

independent. Unlike previous attempts, the proposed approach

considers the dependencies among numerical features to lift

this architecture dependency. As a test case, we applied this

methodology to characterize the numerical features of tensor

cores on two consumer-grade NVIDIA GPUsÐthe RTX 3060

and the Ada 1000Ðusing binary16, bfloat16, and Tensor-

Float32 input precision formats. The consumer-grade GPU

based on the Ampere architecture shows identical features as

that of the data centre GPU A100 except that RTX 3060 does

not support binary64 in tensor cores.

In Part II, we plan to publish a comprehensive set of

numerical features for matrix multipliers across GPUs from

various vendors to facilitate cross-platform analysis and en-

hance portability. Moreover, this analysis will be extended

to cover all available input precision formats, providing a

user-friendly testing approach applicable to GPUs ranging

from consumer-grade models to those featured in the TOP500

supercomputers. The code for this work is made available on

GitHub2 and it includes CUDA code for generating the results

in Table I and MATLAB experiments with several simulated

models of block FMA units.

2https://github.com/faiziktk/IEEE HPEC2025 block FMA tests

VI. ACKNOWLEDGMENT

We are grateful to Massimiliano Fasi for the insightful

comments, which greatly improved the quality of this paper.

Both authors are funded by the EPSRC grant ªInforming

Future Numerical Standards by Determining Features of Non-

Standard Mathematical Hardwareº with the project reference

151: https://gtr.ukri.org/projects?ref=151.

REFERENCES

[1] NVIDIA, ªNVIDIA Blackwell architecture technical
brief,º 2025. [Online]. Available: https://resources.nvidia.com/
en-us-blackwell-architecture

[2] AMD, ªDatasheet: AMD instrinct MI355X GPU,º 2025. [Online].
Available: https://www.amd.com/content/dam/amd/en/documents/
instinct-tech-docs/product-briefs/amd-instinct-mi355x-gpu-brochure.
pdf

[3] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019 (re-

vision of IEEE Std 754-2008). Piscataway, NJ, USA: Institute of
Electrical and Electronics Engineers, Jul. 2019.

[4] I. W. Group, ªInterim report on binary floating-point formats for machine
learning,º https://github.com/P3109/Public/tree/main, Jul. 2025, version
3.0.3.

[5] B. Hickmann and D. Bradford, ªExperimental analysis of matrix multi-
plication functional units,º in 2019 IEEE 26th Symposium on Computer

Arithmetic (ARITH), 2019, pp. 116±119.
[6] M. Fasi, N. J. Higham, M. Mikaitis, and S. Pranesh, ªNumerical behavior

of NVIDIA tensor cores,º PeerJ Computer Science, vol. 7, p. e330, 2021.
[7] X. Li, A. Li, B. Fang, K. Swirydowicz, I. Laguna, and G. Gopalakr-

ishnan, ªFTTN: Feature-targeted testing for numerical properties of
NVIDIA & AMD matrix accelerators,º in 2024 IEEE 24th International

Symposium on Cluster, Cloud and Internet Computing (CCGrid), 2024,
pp. 39±46.

[8] B. Valpey, X. Li, S. Pai, and G. Gopalakrishnan, ªAn SMT formalization
of mixed-precision matrix multiplication,º in NASA Formal Methods.
Cham: Springer Nature Switzerland, 2025, pp. 360±379.

[9] P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh, ªMixed
precision block fused multiply-add: Error analysis and application to
GPU tensor cores,º SIAM Journal on Scientific Computing, vol. 42, no. 3,
pp. C124±C141, 2020.

[10] M. Mikaitis, ªMonotonicity of multi-term floating-point adders,º IEEE

Trans. Comput., vol. 73, no. 6, pp. 1531±1543, Feb. 2024.
[11] X. Li, ªArtifact for FTTN,º Feb. 2024. [Online]. Available: https:

//doi.org/10.5281/zenodo.10673370
[12] Intel Corporation, ªBFLOAT16Ðhardware numerics defini-

tion,º Available at https://software.intel.com/en-us/download/
bfloat16-hardware-numerics-definition (accessed 15 July 2020),
Nov. 2018, white paper. Document number 338302-001US.

[13] NVIDIA, ªNVIDIA A100 tensor core GPU architecture,º Available
at https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/
nvidia-ampere-architecture-whitepaper.pdf (accessed 15 July 2020), pp.
vi+76, 2020, NVIDIA whitepaper v1.0.

[14] ÐÐ, ªCUDA C++ programming guide,º 2025. [Online].
Available: https://docs.nvidia.com/cuda/pdf/CUDA\ C\ Programming\

Guide.pdf

