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Abstract
Spatio-temporal patterns in rainfall are evidence of sub-daily scale inter-
actions in convection in the West African Sahel. Radial normalization of
two-dimensional conditional probability maps reveals a ring-like structure in
rainfall probabilities surrounding previous rainfall, in both satellite observa-
tions and regional climate models. These results support a growing body of
evidence that scale interactions in tropical convection can provide predictability
on short timescales. Additionally, a km-scale model is shown to represent the
spatio-temporal structure of the patterns better compared with the same model
at 25 km with parameterized convection. These evaluations indicate the poten-
tial for creation or enhancement of statistical prediction tools using model data
alongside observations. The mechanism for the patterns is investigated in the
km-scale model output, and associations are explored with both convectively
generated gravity waves and evaporatively driven cold pools. The area inside the
ring-like structure, where the probability of new convection is lower, is associ-
ated with a cold and divergent anomaly characteristic of a cold pool. Amplitudes
of anomalous mid-level ascent prior to the pattern forming correlate well with
amplitudes of the radially normalized probabilities three hours later, suggestive
of potential wave-driven enhancement of rainfall probability.

K E Y W O R D S

climate, convection, interactions, modeling, precipitation, Sahel, scale

1 INTRODUCTION

The skill of global climate and weather models in predict-
ing both the mean and transient characteristics of tropical
rainfall continues to be constrained by the representation
of convective processes with distinct characteristic scales,
both temporal and spatial (Bony et al., 2015; Cronin &
Wing, 2017; Shepherd, 2014; Steiner et al., 2018; Stephan

et al., 2021; Stevens & Bony, 2013). Deep atmospheric
convection, which generates strong vertical motion in
cumulus towers on horizontal scales (1 km) and smaller,
interacts with the surrounding atmosphere via larger-scale
coherent structures such as waves, vortices, and density
currents. These larger structures can reach the mesoscale,
and can then enhance or suppress further convection
at these scales. The interaction is clearly two-way and
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complex, with associated timescales for each of the upscale
and downscale components.

Under certain conditions, convection organizes
into mesoscale convective systems (MCS). Reviews of
MCS dynamics include those of Houze Jr. (2004) and
more recently Schumacher and Rasmussen (2020).
Through multiple mechanisms, MCS can alter the sur-
rounding dynamic and thermodynamic environment. A
synoptic-scale environment containing one or more orga-
nized features is then strongly inhomogeneous, and so the
probability distribution of otherwise spatially stochastic
triggering of new convection can be constrained. More
simply, existing convection can enhance or suppress
future convection in the vicinity. Two example mecha-
nisms that have been observed to affect both propagation
and environmental initiation are convectively generated
gravity waves (CGGW) and low-level cold pools resulting
from evaporative cooling. The former have been shown to
support “gregarious convection”, which is observed over
the ocean as the multi-scale clustering of clouds (Lane
et al., 2001; Lin et al., 1998; Mapes, 1993). Cold pools also
play an important role in initiation, by mechanical lifting
of air parcels to the point of triggering (Droegemeier &
Wilhelmson, 1987; Tompkins, 2001) and through thermo-
dynamic effects (Haerter, 2019; Torri et al., 2015; Trzeciak
et al., 2017). The phenomenon of convection determin-
ing its own spatial patterns is commonly referred to as
self-organization. Convective organization has been the
subject of extensive research and review (Mapes, 1993;
Moncrieff, 2010; Muller et al., 2022; Stevens, 2005). Under-
standing how two patterns of rainfall are connected in time
through self-organizing mechanisms offers a potential
measure of predictability as well as a means of evaluating
the physical realism of model processes.

Prediction of convective rainfall requires an under-
standing of the organizing dynamics, including those
of initiation. An example of triggering associated with
mesoscale convergence occurs at the low-level gust front
of a cold pool or the meeting of multiple cold-pool fronts.
Maurer et al. (2017) used a convection-permitting model
and found that 35% of initiations of deep convection
in the Sahel were triggered by mesoscale convergence
at cold-pool gust fronts. These afternoon initiations
produce the organized systems that go on to provide
nocturnal rainfall. Vizy and Cook (2018) also used a
convection-permitting model, in which nocturnal rainfall
is most likely sourced from non-orographically initiated
MCS. Instead, their proposed initiation mechanisms
are a mixture of synoptic-scale moisture gradients and
mesoscale circulations.

Land surface feedbacks constrain spatial distributions
of the initiation, tracks, and intensity of MCS in the
Sahel. In particular, soil moisture is negatively correlated

with subsequent MCS tracks and initiation (Klein &
Taylor, 2020; Taylor et al., 2011a, 2011b). Gradients of
soil moisture can generate density-driven flows, which
enhance convection at the edges between wetter and dryer
regions (Garcia-Carreras et al., 2011; Taylor et al., 2010).
These effects lead to negatively correlated rainfall loca-
tions from one day to the next, as the previous day’s rain
wets the soil, suppressing both new convection and the
passage of upstream storms. Birch et al. (2013) present
a case study where a gravity wave generated by an MCS
initiated further convection upon propagating over favor-
able soil moisture conditions. In this case, convergence
was present at the synoptic scale, but the trigger was a
combination of mesoscale features.

Spatial patterns in rainfall have practical use in
forecasting, as does knowledge of the processes the pat-
terns result from. As part of the Nowcasting FLood
Impacts of Convective storms in the Sahel (NFLICS)
project (Anderson et al., n.d.; Cole et al., 2022), past obser-
vations of MCS convection have been used to build a now-
casting tool that uses a database of location-conditioned
probabilities to calculate likelihood maps of near-term
future convective activity, based on the current pattern.
Methods using proxy observations of soil moisture also
show skill in nowcasting the tracks of MCS (Taylor
et al., 2022). Other statistical methods have used previous
days’ rain to predict a day ahead, and this has been shown
to outperform a global ensemble in West Africa (Vogel
et al., 2021). The skill of the approach is mainly in predict-
ing propagating features, such as MCS and easterly waves
(Rasheeda Satheesh et al., 2023; Vogel et al., 2021).

Statistical patterns can also be used to evaluate the
extent to which a model has convective memory. Con-
vective memory is defined by Colin et al. (2019) as “the
dependence of convective behavior on its own history”.
In many traditional closure-based parameterizations,
memory on convective scales is impossible, given the diag-
nostic treatment of both the triggering and maintenance
of convection. In these regimes, the effects of convection
on later convection are only ever felt via changes to the
large-scale state variables; the interactions of subgrid-scale
processes are absent. By going to higher resolutions, mod-
els can begin to resolve memory-carrying features, such as
cold-pool gust fronts, explicitly. However, there have also
been efforts to develop cold-pool schemes using subgrid
and cross-column prognostic variables and equations,
which can be coupled to convective diagnosis (Freitas
et al., 2024; Grandpeix & Lafore, 2010; Rio et al., 2009;
Rooney et al., 2022).

Rainfall in West Africa, and across the Tropics more
broadly, is inherently unpredictable at a 1–7 day lead time
(Keane et al., 2025). At the same time, near-term infor-
mation about rainfall is critical to local livelihoods and
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flood vulnerability. There is therefore a need to quantify
spatio-temporal patterns in rainfall better at shorter,
sub-daily timescales. These sub-daily patterns can then be
used to evaluate models, assess their value for short-range
prediction, and understand better the associated physical
processes and how model errors may relate to these. This
study identifies novel spatio-temporal patterns of rain-
fall that provide predictability on the sub-daily timescale.
We show these patterns exist in both observations and a
climate model, and link them to well-studied dynamical
processes. We present examples of using the patterns for
novel model evaluation, comparing the results from obser-
vations with those from a regional climate model with both
explicit convection and parameterized convection. In the
next section, we discuss the data used and the methods
of pattern construction. Then we present results relating
rainfall to rainfall at a later time, and then those relat-
ing rainfall to other model fields at a later time. The latter
relationships are chosen to explore associations between
time-lagged patterns in rainfall and mechanisms of con-
vective initiation, gravity waves and cold pools. We then
finish with a discussion of sensitivities of the method in the
context of storm life cycles and the potential applications
of quantifying these patterns, such as the development or
improvement of nowcasting tools.

2 METHODS

2.1 Data

The model data used in this study are from the Improving
Model Processes for African Climate (IMPALA) project
(Stratton et al., 2018). We use two custom configurations
of the Met Office Unified Model, one with explicit con-
vection at 4.5-km resolution (CP4), and another with
parameterized convection at 25 km (P25). In June, July,
and August (JJA) in West Africa, P25 has a seasonal dry
bias relative to satellite retrievals of rainfall. CP4 has a
smaller but still negative seasonal bias and a higher fre-
quency of higher rain rates, but produces too much rain
over steep terrain. CP4 also has a better representation of
land-based MCS over the region, particularly of long-lived
and fast-moving storms (Crook et al., 2019). See Stratton
et al. (2018) for more detail on general rainfall biases and
Crook et al. (2019) for details of MCS represenation.

We perform analysis on data from 1998 to 2006 for
June–September inclusive. This gives us nine years of
120-day seasons, giving a total of 1080 days of data for
both CP4 and P25. The model fields used are hourly rain-
fall rates and three-hourly winds, temperature, and pres-
sure tendency (omega). All variables are instantaneous.
We compare the models with satellite-based retrievals

of rainfall rate from Global Precipitation Measurements
(GPM) Integrated Multi-satellitE Retrievals (IMERG) ver-
sion 6 (Hou et al., 2014), which are on a 0.1◦ grid that
approximates a 10-km resolution in the analysis domain.

The analysis domain here is in two parts, a parent
and a sub-domain. The parent domain is from 16◦W–16◦E
and 2◦N–26◦N, which encompasses the majority of the
land surface of tropical West Africa and some adjacent
ocean. It is worth remembering throughout that UTC is
approximately LST in this domain, given the importance
of diurnal cycles for convective rainfall. The sub-domain
is the Western Sahel from 8◦W–8◦E and 10◦N–18◦N. This
sub-domain was chosen to be entirely continental, to min-
imize coastal effects, and to minimize the presence of
significant orography. A higher proportion of the largest
and longest-lived systems also develop in the chosen
sub-domain (Lafore et al., 2017). These large systems pro-
duce the most intense updrafts and rainfall and are often
active through the night. The parent domain is 8◦ larger
in all directions than the sub-domain, with a common
center at (0◦, 14◦N). The parent domain includes both the
south and west coasts of tropical West Africa as well as
both inland and coastal areas of significant orography, the
implications of which are discussed later.

2.2 Lagged cross-correlations

Cross-correlations were calculated between the
sub-domain high rainfall locations at time t0 and the
parent-domain convective rainfall locations at t1. High
here refers to rainfall above the t0 99th percentile for the
sub-domain, relative to the respective climatology of the
data source. At t1, a threshold of 2 mm/h is chosen simply
as a representative rain rate for convection. Using per-
centiles at t0 samples similar numbers of t0 events in each
data source. At t1, the primary concern is the differences
between the models and between models and observa-
tions. Figure 1a shows how the t0 thresholds change
through the diurnal cycle in the sub-domain and Figure 1b
shows how much rain > 2 mm/h one might expect in
the parent domain for each model throughout the day.
By using a fixed t1 threshold, we clearly keep the diurnal
cycle biases of the models in the results, highlighting their
leading-order impact on the timing of the development of
spatial structure.

Cross-correlations were also calculated between high
rainfall at t0 and anomalies of temperature, horizontal
winds, and omega at t1. The anomalies are defined as devi-
ations from the 10-year grid cell mean for a given time of
day and pentad. All cross-correlations were calculated for
a range of t0 and t1 values, but for clarity the choice was
made to restrict the majority of the discussion to the results
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4 of 15 BASSFORD et al.

F I G U R E 1 Mean diurnal cycles of the thresholds used to define t0 rain event and t1 convective rain locations. (a) The sub-domain 99th
percentile rainfall values at all possible t0 for CP4, P25, and IMERG. (b) The percentile corresponding to 2 mm/h at all possible t1 for CP4,
P25, and IMERG. [Colour figure can be viewed at wileyonlinelibrary.com]

of cross-correlations with a fixed t0 of 6Z (Z indicates Coor-
dinated Universal Time or UTC), for which signals were
strongest. The evolution of the patterns with increasing
lag time (i.e., by advancing t1) then gives patterns in rain-
fall throughout the day relative to rainfall locations at
6Z. The highest rainfall at 6Z is often found in long-lived
nocturnal MCS.

First, the rainfall field (in mm/h) is passed through
a Heaviside function to create a binary array that is one
where rainfall is above the threshold and zero elsewhere.
This is done separately for the parent and sub-domain
with their respective thresholds. For t1 temperature
and wind anomalies, the Heaviside is not applied. The
cross-correlation is then calculated using the standard
“signal.correlate” method in the signal-processing library
from the open-source SciPy Python package. We make
use of the built-in fast Fourier transform (FFT) option to
speed up the calculation. We also use the built-in option
to trim the edges of the full cross-correlation to the size of
the parent domain, keeping the center the same. Because
the sub-domain and parent domain have a common cen-
ter, the center of the resulting cross-correlation represents
the location of a t0 event, which will be labeled as the ori-
gin. An example is illustrated in Figure 2 for a single day
of data with (t0, t1) = (6Z, 15Z).

For a start time t0, a set of cross-correlations is
calculated for each lag time t1 − t0. Dividing each
cross-correlation by the total number of rain events in the
t0 domain gives a conditional probability map. This map
shows the probability of rain at (x, y, t1), given high rainfall
at (0, 0, t0). This calculation is repeated for each day in the
June, July, August, September (JJAS) period of each year
from 1998 to 2006, giving a total of 1080 cross-correlations

for each lag time. Taking point means over all 1080 cases
gives one final set of probabilities for each lag time. In the
following results, t0 = 6Z in all cases.

The distance of maximum probability from the average
t0 rain location for a given radial direction can be found
by transforming into polar coordinates (r, 𝜃) and normal-
izing the correlation values in each of 2𝜋∕𝛼 sectors of a
domain-wide circle around the origin, for a small angle 𝛼.
This shows, for each 𝜃 independently, where on the radius
the highest probabilities are located. This approach high-
lights radial structures when changes in the intensity of
the signal with angle make the patterns otherwise harder
to perceive. In this case, 𝛼 = 0.5◦ is used and the values are
normalized in [0, 1]. We are then able to identify whether
coherent radial structure exists, in which the higher val-
ues of probability in a given direction are found at similar
distances from the t0 rain location.

3 RESULTS

3.1 Lagged rainfall to rainfall
cross-correlation

Figure 3 shows the mean conditional probability maps
between sub-domain rainfall at 6Z and the parent domain
at three-hourly intervals. All three datasets show an area of
high probability propagating in a west–southwest (WSW)
direction. This direction is known to be the dominant
climatological propagation direction for Sahelian squall
lines (Crook et al., 2019; Mathon et al., 2002; Tulich &
Kiladis, 2012). By visual inspection, the shape and prop-
agation of these areas in the CP4 map are more similar
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BASSFORD et al. 5 of 15

F I G U R E 2 An example of a probability map derived from cross-correlation (c) for a single day with t0 = 6Z and t1= 15Z. Locations
with rainfall over the thresholds are shaded blue in (a) and (b). The sub-domain (a) is shown in (b) by the red rectangle. [Colour figure can be
viewed at wileyonlinelibrary.com]

F I G U R E 3 Probability of rain > 2 mm at t1, surrounding the mean 99th percentile 6Z rain location, with t1 = 9Z, 12Z, 15Z, 18Z for
CP4, P25, and IMERG. See Section 2.2 for the calculation method. [Colour figure can be viewed at wileyonlinelibrary.com]

to those in observations than those in P25. The P25 map
also shows an additional east–northeast (ENE) moving
feature, which is not consistent with known climatologies.
These model differences are consistent with previous work
comparing organized convective rainfall in CP4 and P25
(Crook et al., 2019). In both CP4 and IMERG probability
maps, there are stationary features associated with orogra-
phy to the southeast (SE) for+6 to+12. The feature is likely
associated with climatological orographic rainfall in the

Jos Plateau, approximately (10N, 8E), and the mountains
of northwestern Cameroon and southwestern Nigeria.

In Figure 4, differences in spatial maximum proba-
bility are due to a combination of model rainfall biases
and resolution. Probabilities are generally higher in the
IMERG map at all lag times than for both models. By using
a fixed threshold at t1, the time evolution of the mean
probability follows closely the diurnal cycle of the 2 mm/h
percentile shown in Figure 1. However, the evolution of
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6 of 15 BASSFORD et al.

F I G U R E 4 Maximum, mean, and standard deviations of the probabilities (P) in Figure 3. [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 5 Results of radially normalizing the probability maps in Figure 3. For a given direction, the highest and lowest probabilities
are represented in pale blue and brown, respectively. See Section 2.2 for calculation details. [Colour figure can be viewed at
wileyonlinelibrary.com]

the spatial variability in CP4 probabilities is also closer to
observations. The improved mean diurnal cycle is a known
advantage of convection-permitting simulations more gen-
erally (Birch et al., 2014; Stratton et al., 2018).

Figure 5 shows the same data as Figure 3, but each
probability map has been normalized radially using the

method described previously. The result is a coherent
ring-like structure of higher values around the t0 location
of convection. The rings are of similar size for all data
sources, with an average radius of 600 km at a lag of +12
hours. Considering the ring as growing with time, the
average propagation speed is approximately 14 m ⋅ s−1.
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BASSFORD et al. 7 of 15

F I G U R E 6 Mean CP4 cross-correlation of 6Z rainfall locations over the threshold with t1 = 12Z 925-hPa temperature anomalies in K
(black contours) and 925-hPa horizontal wind anomalies (arrows). Blue shading shows the top 20% of the radially normalized rainfall
probabilities at t1 = 15Z. [Colour figure can be viewed at wileyonlinelibrary.com]

This is faster than the modal range of MCS propagation
in both models and observations, which ranges from
4–12 m ⋅ s−1 depending on the model or observations (see
fig. 6a of Crook et al., 2019). However, 14 m ⋅ s−1 is well
inside the observed spread. Patterns in Figure 5 for CP4
and IMERG are more similar, particularly up until +9 h.
A tight range of radii for the highest values of the radially
normalized probabilities is common to all at lag +12. For
CP4 and IMERG, there are clear local minima close to and
west of the origin, and the pattern becomes much noisier
to the east. The pattern in P25 at +12 is generally more
zonally symmetric, including in the central minimum.

3.2 Investigating physical mechanisms
In testing for organizing mechanisms, we will therefore
continue to use data from the CP4 model, based on
its better agreement with IMERG in Figures 3 and 5,
whilst remaining aware of the temporal differences seen
in Figure 4. Since the rings in Figure 5 have some radial
thickness, we assume a range of propagation speeds exist
in the associated mechanisms. The speed of ring “growth”
can be used to begin to determine which parts of the pat-
tern are potentially associated with cold pools and which
with waves. We can first use a cross-correlation of 6Z rain-
fall with t1 temperature and wind anomalies to determine
the likely location of cold-pool gust fronts.

Figure 6 shows the nine-season mean cross-correlation
of 6Z high rainfall locations with t1 = 12Z temperature

(contours) and meridional wind anomalies (arrows) at
925 hPa. Overlaid in blue are the values of the highest
20% of the radially normalized probabilities for three lag
hours later at t1 = 15Z. This is done to make t1 = 12Z
the pre-rain environment. Again the origin represents the
location of the 6Z high rainfall. The temperature and wind
cross-correlation values have been divided by the num-
ber of high rain points at t0: this gives an estimate for the
mean magnitudes of the anomalies. At 12Z, there is an
elliptically shaped mesoscale cold anomaly centered just
westward of the intense rainfall location six hours prior.
The majority of high values in the 15Z radially normal-
ized probabilities are found at the edge of the cold anomaly
between the −0.5 K and 0 K contours. The wind anomalies
near the origin show a component of divergent flow out-
ward from the earlier rain location, except to the east. In
many places there is convergence of the wind anomalies
where we find high values of the radially normalized prob-
abilities three hours later. The western part of the pattern is
reminiscent of cold outflow-driven lifting ahead of a prop-
agating MCS. To the north, however, a propagating storm
does not explain the ring location, so we will next examine
just a cross-section of the pattern.

Figure 7 shows a north–south cross-section of Figure 6.
Overlaid now are all the values of the radially normal-
ized probabilities on that cross-section for t1 = 15Z. The
cross-section is chosen to mostly exclude the propagating
“MCS” itself and focus instead on the surrounding
environment. The maximum magnitude of the wind
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F I G U R E 7 A north–south cross-section through x = 0 of Figure 6, and the same for the 15Z CP4 radially normalized rainfall
probabilities. Note that only the meridional components of the wind anomalies are shown. [Colour figure can be viewed at
wileyonlinelibrary.com]

anomalies coincident with negative temperature anoma-
lies in this cross-section is < 1 m ⋅ s−1. If this speed were
maintained, it would give a radius of < 100 km (or 1◦) in
12 hours. This is a conservative estimate, since not every
event used to construct the average will have a strong cold
pool, bringing down the average magnitude of the anoma-
lies. Using instead the JJAS composite cold-pool front
speed of 6.5 m ⋅ s−1 in Provod et al. (2016) gives an esti-
mated radius of < 300 km (or 3◦) in 12 hours. The sections
of the rings to the north and south extend as far as 600 km
from the average 6Z rain point. These more distant corre-
lations are more likely the result of faster cold-pool gusts
or gravity waves, as seen in Birch et al. (2013). Meridional
asymmetry is present in both the temperature and wind
anomalies. The mean cold anomaly extends further north
than it does south, potentially because a given expanding
pool of cold air at a given temperature will be more nega-
tively anomalous in the warmer north. These asymmetries
could also be due to contrasting boundary-layer character-
istics that favor more or less cold-pool propagation.

Next, we search the same cross-sections for the pres-
ence of wave-like signals in anomalies of vertical motion.
Figure 8 shows two latitude–height sections of the mean
cross-correlation of 6Z rainfall with omega and merid-
ional wind anomalies between 925 and 100 hPa, where
t1 = 9Z (left) and 21Z (right). At 9Z, positive/negative
omega anomalies (descending/ascending air) dominate
the lower/upper column in the area surrounding the
6Z rain event. 12 hours later, at 21Z, a region of weak
descent extends northward from the 6Z rain location

approximately 6◦, and up to ∼ 600 hPa with ascent above.
The vertical structure to the north is similar to that associ-
ated with stratiform heating (Houze Jr., 2004; Schumacher
et al., 2004; Schumacher & Houze, 2006), with upper-level
ascent and lower-level descent. Combined with the deep
ascent seen to the south, this would be the expected con-
tribution to the signal from a southwesterly propagating
MCS with a trailing stratiform region. Figure 9 is another
cross-section, this time of the 12Z 500-hPa omega anomaly
cross-correlations alongside the subsequent 15Z radially
normalized probabilities. The amplitudes of the two are
clearly out of phase to distances of 6–7◦.

4 DISCUSSION

4.1 Summary of results

A coherent ring-like pattern of higher conditional prob-
abilities of rainfall around earlier rainfall is accentuated
by normalizing radially. The rings have a scale of ∼
1000 km at a lag time of t0+ 9–12 hours and include a
region of high probability to the west of the earlier rain-
fall, indicative of MCS propagation. The patterns calcu-
lated from a model with explicit convection show spatial
and diurnal cycle characteristics more similar to those
in observations, compared with a model with parame-
terized convection. We present statistical indications that
convective memory may contribute to improved diurnal
cycles—an improvement noted in previous studies of
convection-permitting models.
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BASSFORD et al. 9 of 15

F I G U R E 8 A latitude–height cross-section through x = 0 of the mean CP4 rainfall and omega anomaly cross-correlation with t0 = 6Z
and t1 = 9Z and 21Z. On both panels the ±0.1 Pa ⋅ s−1 contours are shown for t1 = 9Z. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 9
A north–south cross-section
through x = 0 of the CP4
rainfall and omega anomaly
cross-correlation (red) with t0,
t1 = 6Z, 12Z. In blue is the
cross-section of the CP4 radially
normalized probabilities for t1

= 15Z. [Colour figure can be
viewed at
wileyonlinelibrary.com]

The mechanisms for coherent patterns are explored
in the convection-permitting model, and we find pat-
terns in the dynamics with features common to cold
pools and gravity waves. Cold pools are identified by
anomalously cold and divergent regions at time t1, around
where convective rainfall occurred at time t0. At the
edge of these regions, anomalous convergence leads to
an enhancement of the radially normalized probabilities,
particularly in the western half of the coherent pattern.
Cross-sections through composite cross-correlations of
rainfall with vertical motion show that 12Z anomalies in
500-hPa ascent are anti-correlated with 6Z, rain locations

but correlated in a region 2–6◦ away. This ascent is
co-located with the peaks in a similar cross-section of the
radially normalized probabilities.

4.2 Start time sensitivity and storm life
cycles

As mentioned in Section 2, the choice of start time used
in the cross-correlations (CC) was dictated by which
produced the strongest correlations not attributable to
stationary features such as coasts and orography. However,
this is not to say that starting at other times does not
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F I G U R E 10 Sections of
probability maps at t0 + 9 h for t0 in
0,14Z. Only the northward direction
from the mean t0 rainfall location is
shown for simplicity. Meridional
distance northward from the origin
is shown by the y-axis. The lower
x-axis shows t0 and the upper x-axis
is the corresponding t1 = t0 + 9 h.
[Colour figure can be viewed at
wileyonlinelibrary.com]

produce coherent patterns. To quantify the sensitivity of
the method to start time, we can calculate the mean CC
for the full range of t0, all with a fixed lag time. Taking
one-dimensional cross-sections of the resulting arrays and
stacking them along a common axis shows us the distri-
bution of conditional probabilities in (t0,D) space, where
D is the distance from the mean t0 rain point as in the
figures in Section 3.

The (t0,D) space plot gives us information about both
the amount and the speeds at which t0 rain enhances t1
rain in the surrounding area. Figure 10 shows such a plot
for northward cross-sections of CC with t0 from 0 to 14Z,
all with a fixed lag of 9 h. As such, the corresponding t1
are from 9Z on the same day to 23Z. We can interpret this
under the assumption that higher probability results from
some propagating response of the atmosphere to t0 rainfall
after 9 h. For example, a significant correlation at 5◦ north
corresponds to some propagating feature that travels at
∼ 17 m ⋅ s−1. We see the strongest correlation at distances
requiring speeds between ∼ 5 and 20 m ⋅ s−1 when t0 is
5–8Z, and only up to ∼ 10 m ⋅ s−1 for t0 of 12–14Z. All these
speeds can be achieved by cold-pool gust fronts (Provod
et al., 2016) or gravity waves, other than the first baroclinic
mode, which is much faster.

Fast moving gust fronts and large-amplitude gravity
waves are generated by large buoyancy perturbations in
MCS. The slower speeds for afternoon t0 could be the
result of local clustering of new afternoon initiations
around surface features (Garcia-Carreras et al., 2011) or
enhancement by slower gust fronts generated in smaller
storms (Meyer & Haerter, 2020). The afternoon boundary

layer is less stable, and so does not allow for as fast a
propagation of waves along its top as could be possible
at night or in the early morning. At 5–8Z, the likelihood
of initiation of new isolated convection and subsequent
generation of CCGW is low (Fink et al., 2017). We assume
that any intense rainfall at these times is from existing
MCS that have been maintained through the night. The
impact of the collapse of MCS in the morning on the
subsequent afternoon initiations could be a potential
explanation for the significance of the 5–8Z choice of t0.
Similarly to how initiation is associated with CCGW, col-
lapse should also generate similar waves, but with the
opposite phase. Storm collapse will also be associated
with mesoscale subsidence, low-level evaporative cooling,
and soil-moisture feedbacks. All these arguments support
suppression of convection in storm collapse regions, with
enhanced convection at the interface with the surround-
ing environment. These long-lived nocturnal storms are
more common in the chosen sub-domain than further to
the south (Lafore et al., 2017).

If a very intense MCS can maintain itself until diurnal
heating peaks again, then the storm can survive multiple
days (Lafore et al., 2017). If not, then the storm weakens
and decays. Figure 11 shows the time evolution of a merid-
ional mean of CP4 rainfall probability maps in Figure 3. We
see that the rainfall probability decays through the morn-
ing, but then reappears later in the afternoon. The sys-
tem appears to have continued to “propagate” westward,
despite producing little to no rainfall for a period of time.
This is suggestive of MCS decay and regeneration along the
same track (Lafore et al., 2017; Laing et al., 2008, 2011).

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.70041 by U
niversity O

f L
eeds B

rotherton, W
iley O

nline L
ibrary on [28/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


BASSFORD et al. 11 of 15

F I G U R E 11 Meridional mean of CP4
probability maps in Figure 3, but for hourly t1

up to 23Z. t0 = 6Z. [Colour figure can be
viewed at wileyonlinelibrary.com]

Another interesting and relevant conceptual discus-
sion is the existence of a relationship between storm life-
times, diurnal cycles, and the growth of the ring pattern.
The role of rotation in dampening tropospheric perturba-
tions is determined by the Rossby radius (Ro), which is
of the order of ∼ 10, 000 km at 13◦N. When considering
the depth of the entire troposphere, rotational effects are
insignificant on the scale of the patterns in our results,
which are ∼ 1000 km at most. However, consider an exter-
nal Rossby radius 𝜆R, defined as

𝜆R =
√

gHΔ𝜃∕𝜃0

f
, (1)

where g is gravitational acceleration, H is the initial depth
of the cold pool, Δ𝜃∕𝜃0 is the temperature perturbation,
and f the Coriolis parameter. This defines a limit on the
scale of the cold pool over timescales of ∼ 1∕f . With trop-
ical scale f ∼ 10−5 s−1 and cold-pool characteristic scales
of H ∼ 103 m, Δ𝜃 ∼ 3 K, and 𝜃0 ∼ 300 K, the value of 𝜆R
is ∼ 106 m. At latitudes 10–18◦N, the 1∕f timescale ranges
between approximately 11 and 6 hours. Although tempera-
tures recover rapidly in the interiors, the edges of large cold
pools from MCS may survive longer (Tompkins, 2001),
up to and beyond the 1∕f timescale. The time elapsed
between 6Z and peak diurnal heating is close to 1∕f for
those latitudes where nocturnal MCS are common, and
the size order of the ringlike pattern in rainfall enhance-
ment at 9–12 h is similar to the above calculation of 𝜆R.
The variation of this inertial scale with f over the domain
could also explain the “thickness” of the contributions to
the composite ring pattern that result from boundary-layer
interactions such as cold-pool-driven moisture conver-
gence and lifting.

4.3 Adaptability of the method

There is nuance to the potential conversion of these
results to a statistical forecasting tool, since the probabil-
ities shown are multiply conditional on the chosen times,
locations, thresholds, and domain used to calculate them.
The current method also only uses 99th percentile t0
rainfall locations and says nothing about the relationship
between location and intensity for t0 and/or t1. Surpassing
a given threshold of rainfall might result from different
mechanisms over higher terrain, for example. We should
also remember that the threshold for t0 is not fixed here
and instead changes with time of day. The rainfall prob-
ability maps in these results are analogous to a composite
of binary arrays around the most intense rainfall loca-
tions in the sub-domain at t0. This could easily be adapted
to include magnitudes in both t0 and t1 rainfall inten-
sity above a given threshold, but would likely require
some normalization relative to the time of day to remove
the dominant diurnal signal. Including magnitude gives
greater weight to the most intense rainfall events, but also
adds another condition to the probability map.

The interaction of local rainfall responses and seasonal
climatology is one of the main themes of investigation in
tropical-scale interactions. In the current method, areas
of high climatological mean rainfall appear as “smudged”
stationary features at t1. This is because we chose to retain
information about the climatological rainfall patterns as
well as local links to previous rainfall. An event does not
need to be anomalous to be impactful and vice versa.
Given the stochastic nature of convection and the inher-
ent difficulties in modeling its intensity on a local scale,
probability of any amount of convective rain is arguably
more interpretable and more useful for users of this kind
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of information. Also, from a scientific perspective, we are
interested in any rainfall with a meaningful physical con-
nection to convection. For this, the actual instantaneous
rate and not the anomalous rate is required. For example,
a negative anomaly could still be strongly convective, but
just less so than the mean and vice versa. A focus only
on large local positive anomalies therefore restricts the
sample of convective events.

A simple prediction tool conceivable with this method
is one where a forecaster inputs the location of a
storm at t0 within a given sub-domain S, retrieves a t1
cross-correlation between S and its wider environment
from a large store of observational data and model rain-
fall analysis, and maps likelihoods of rainfall over a chosen
threshold at t1 given the storm’s current location. Meth-
ods of this kind offer advantages over simply tracking or
propagating existing features in the domain, as they incor-
porate information about potential interaction at distance.
Crucially, this includes the relationship between existing,
and new convection which tracking alone cannot capture.
Of course, the robustness of such a tool requires great care
and is beyond the scope of this study. A similar tool has
already been developed by the NFLICS project (Anderson
et al., n.d.), but here we show the potential to enhance the
physical understanding of patterns using high-resolution
model data alongside satellite rainfall retrievals.

While the computational simplicity of the method
in this article has its merits, it is conceivable that pat-
terns such as these could be learned with more complex
machine-learning techniques with higher dimensional
inputs. For example, using convolutional methods for spa-
tial rainfall pattern learning (e.g., Badrinath et al., 2023)
could yield similar results to ours, since convolutions
are mathematically similar to cross-correlation. Deep
learning is used increasingly for nowcasting, with models
trained using satellite data (e.g., MetNet: Andrychowicz
et al., 2023). However, training these models with the
existing observational record alone is not ideal, due to
the non-stationary nature of the climate system, both
within that period and more generally (Palmer, 1999).
A potential solution is to use km-scale model data to fill
the sample space better. However, this requires continued
evaluation of the realism of model patterns and processes;
our results are an example of a pattern-based evaluation.
There are also developments in hybrid approaches that
combine machine learning with physical models (Das
et al., 2024; Kashinath et al., 2021). Future analysis could
also use methods for diagnosing cold pools explicitly from
km-scale model data (e.g., Drager & Van Heever, 2017)
and, supported with datasets of rainfall and identified
cold pools in observations (Hoeller et al., 2024; Kirsch
et al., 2024; Provod et al., 2016), use these to again predict
patterns of rainfall enhancement by previous rain.

Waves and cold pools are ubiquitous and universal fea-
tures of atmospheric convection, and as such the relation-
ships shown in our results should be relevant across other
tropical domains where convection dominates climatolog-
ical rainfall. Similar methods could be used to explore
patterns in other domains or examine the behavior of other
models and their processes. For example, Mapes (2024)
shows frequency composites of observed cold cloud objects
in a South American domain, and the inferred spatial
pattern of self-enhancement/suppression is both elliptical
and dependent on the diurnal cycle. The application of
the method to model fields of quantities not observable
by remote sensing also presents interesting possibilities.
However, the patterns produced are sensitive to model pro-
cess representations, such as the parameterization of con-
vection, and the question of whether pattern mechanisms
are common between observations and models remains an
important consideration.

5 CONCLUSIONS

Our results demonstrate that lagged cross-correlations can
uncover coherent structures of enhanced convective rain-
fall probability around early-morning rainfall events in the
West African Sahel. These patterns appear in both observa-
tions and regional climate model simulations. Notably, the
convection-permitting model reproduces these patterns
with greater fidelity in terms of magnitude and timing,
aligning more closely with satellite observations than its
parameterized counterpart. The closer similarity of the
observed and explicit model’s pattern likely stems from an
improved representation of the diurnal cycle, better repre-
sentation of MCS and their life cycles, and increased sen-
sitivity of convection to previous convection via spatially
resolved nonlinear interactions such as with cold-pool gust
fronts and convectively generated gravity waves.

Given the inherent unpredictability of rainfall at daily
timescales in tropical regions such as the Sahel (Keane
et al., 2025), there is a clear need to exploit sub-daily
patterns and mechanisms to develop and evaluate mod-
els and tools that provide early warnings to vulnera-
ble populations. This approach will become increasingly
critical, as both daily and sub-daily extremes are pro-
jected to intensify in the future (Biasutti, 2019; Fitzpatrick
et al., 2020; Kendon et al., 2019; Taylor et al., 2017). We
expect that these efforts could be enhanced by the use
of more sophisticated statistical methods than used in
this article, or with machine learning. We highlight that
km-scale models produce spatiotemporal patterns similar
to observations, which lends credence to using the existing
large volumes of model data to supplement and enhance
statistical forecasts or machine-learning training datasets.
Additionally, improved spatiotemporal characteristics of
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model rainfall at km-scale resolutions increases confi-
dence that model processes can be evaluated with respect
to observed rainfall patterns. For coarser resolutions,
parameterizations need to represent either the spatial
statistics or the underlying drivers. Process evaluation
remains fundamental for improving forecast accuracy and
constraining uncertainty in modeling of future changes.
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