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ABSTRACT1

Spatio-temporal patterns in rainfall are evidence of sub-daily scale interactions in convection in the West African Sahel. Radial2

normalization of 2D conditional probability maps reveals a ring-like structure in rainfall probabilities surrounding previous rain-3

fall, in both satellite observations and in regional climate models. These results support a growing body of evidence that scale4

interactions in tropical convection can provide predictability on short timescales. Additionally, a km-scale model is shown to bet-5

ter represent the spatio-temporal structure of the patterns compared to the same model at 25km with parameterized convection.6

These evaluations indicate the potential for creation or enhancement of statistical prediction tools using model data alongside7

observations. The mechanism for the patterns is investigated in the km-scale model output, and associations are explored with8

both convectively generated gravity waves and evaporatively driven cold-pools. The area inside the ring-like structure, where9

probabilities of new convection are lower, is associated with a cold and divergent anomaly characteristic of a cold-pool. Ampli-10

tudes of anomalous mid-level ascent prior to the pattern forming correlate well with amplitudes of the radially normalized11

probabilities three hours later, suggestive of potential wave-driven enhancement of rainfall probability.12
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1 INTRODUCTION13

The skill of global climate and weather models in predicting both the mean and transient characteristics of tropical rainfall14

continues to be constrained by the representation of convective processes with distinct characteristic scales both temporal and15

spatial.1,2,3,4,5,6. Deep atmospheric convection, which generates strong vertical motion in cumulus towers on horizontal scales16

O(1km) and smaller, interacts with the surrounding atmosphere via larger-scale coherent structures such as waves, vortices,17

and density currents. These larger structures can reach the mesoscale, and can then enhance or suppress further convection at18

these scales. The interaction is clearly two-way and complex, with associated timescales for each of the upscale and downscale19

components.20

Under certain conditions, convection organizes into mesoscale convective systems (MCS). Reviews of MCS dynamics include21

those of Houze7 and more recently Schumacher and Rasmussen8. Through multiple mechanisms, MCS can alter the surround-22

ing dynamic and thermodynamic environment. A synoptic-scale environment containing one or more organized features is then23

strongly inhomogeneous, and so the probability distribution of otherwise spatially stochastic triggering of new convection can24

be constrained. More simply, existing convection can enhance or suppress future convection in the vicinity. Two example mech-25

anisms that have been observed to affect both propagation and environmental initiation are convectively generated gravity waves26

(CGGW) and low-level cold pools resulting from evaporative cooling. The former has been shown to support ‘gregarious con-27

vection’, which is observed over the ocean as the multi-scale clustering of clouds9,10,11. Cold pools also play an important role28

in initiation, by mechanical lifting of air parcels to the point of triggering12,13, and through thermodynamic effects14,15,16. The29

phenomenon of convection determining its own spatial patterns is commonly referred to as self-organization. Convective orga-30

nization has been the subject of extensive research and review9,17,18,19. Understanding how two patterns of rainfall are connected31

in time through self-organizing mechanisms offers a potential measure of predictability as well as a means of evaluating the32

physical realism of model processes.33

Prediction of convective rainfall requires an understanding of the organizing dynamics, including those of initiation. An34

example of triggering associated with mesoscale convergence is at the low-level gust front of a cold pool or the meeting of mul-35

tiple cold-pool fronts. Maurer et al.20 used a convection-permitting model and found 35% of the initiations of deep convection in36

the Sahel were triggered by mesoscale convergence at cold-pool gust fronts. These afternoon initiations produce the organized37

systems that go on to provide nocturnal rainfall. Vizy and Cook21 also used a convection-permitting model in which noctur-38

nal rainfall is most likely sourced from non-orographically initiated MCS. Instead, their proposed initiation mechanisms are a39

mixture of synoptic scale moisture gradients and mesoscale circulations.40

Land surface feedbacks constrain spatial distributions of the initiation, tracks, and intensity of MCS in the Sahel. In particular,41

soil moisture is negatively correlated with subsequent MCS track and initiation22,23,24. Gradients of soil moisture can generate42
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density-driven flows which enhance convection at the edges between wetter and dryer regions25,26. These effects lead to neg-43

atively correlated rainfall locations from one day to the next, as the previous day’s rain wets the soil, suppressing both new44

convection and the passage of upstream storms. Birch et al.27 present a case study where a gravity wave generated by an MCS45

initiated further convection upon propagating over favorable soil moisture conditions. In this case, convergence was present at46

the synoptic scale, but the trigger was a combination of mesoscale features.47

Spatial patterns in rainfall have practical use in forecasting, as does knowledge of the processes the patterns result from. As48

part of the ongoing NFLICS project28,29, past observations of MCS convection have been used to build a nowcasting tool that49

uses a database of location-conditioned probabilities to calculate likelihood maps of near-term future convective activity, based50

on the current pattern. Methods using proxy observations of soil moisture also show skill in nowcasting the tracks of MCS30.51

Other statistical methods have used previous days’ rain to predict a day ahead, and this has been shown to outperform a global52

ensemble in West Africa31. The skill of the approach is mainly in predicting propagating features, such as MCS and Easterly53

Waves31,32.54

Statistical patterns can also be used to evaluate the extent to which a model has convective memory. Convective memory is55

defined by Colin et al.33 as ‘the dependence of convective behavior on its own history’. In many traditional closure based param-56

eterizations, memory on convective scales is impossible given the diagnostic treatment of both the triggering and maintenance57

of convection. In these regimes, the effects of convection on later convection are only ever felt via changes to the large-scale58

state variables; the interactions of sub-grid scale processes are absent. By going to higher resolutions models can begin to59

explicitly resolve memory carrying features, such as cold-pool gust fronts. However, there have also been efforts to develop60

cold-pool schemes using sub-grid and cross-column prognostic variables and equations, that can be coupled to convective61

diagnosis34,35,36,37.62

Rainfall in West Africa, and across the tropics more broadly, is inherently unpredictable at a 1 to 7-day lead time38. At the63

same time, near-term information about rainfall is critical to local livelihoods and flood vulnerability. There is therefore a need64

to better quantify spatio-temporal patterns in rainfall at shorter, sub-daily timescales. These sub-daily patterns can then be used65

to evaluate models, assess their value for short-range prediction, and better understand the associated physical processes and66

how model errors may relate to these. This study identifies novel spatio-temporal patterns of rainfall that provide predictability67

on the sub-daily timescale. We show these patterns exist in both observations and in a climate model, and link them to well-68

studied dynamical processes. We present examples of using the patterns for novel model evaluation, comparing the results from69

observations to those from a regional climate model with both explicit convection and parameterized convection. In the next70

section, we discuss the data used and the methods of pattern construction. Then we present results relating rainfall to rainfall at71

a later time, and then those relating rainfall with other model fields at a later time. The latter relationships are chosen to explore72

associations between time-lagged patterns in rainfall and mechanisms of convective initiation, gravity waves and cold pools. We73



4 Bassford ET AL

then finish with a discussion of sensitivities of the method in the context of storm lifecycles, and the potential applications of74

quantifying these patterns such as the development or improvement of nowcasting tools.75

2 METHODS76

2.1 Data77

The model data used in this study are from the IMPALA project39. We use two custom configurations of the Met Office Unified78

Model, one with explicit convection at 4.5km resolution (CP4), and another with parameterized convection at 25km (P25). In79

JJA in West Africa, P25 has a seasonal dry bias relative to satellite retrievals of rainfall. CP4 has a smaller but still negative80

seasonal bias and a higher frequency of higher rain rates, but produces too much rain over steep terrain. CP4 also has a better81

representation of land-based MCS over the region, particularly of the long-lived and fast moving storms40. See Stratton et al.39
82

for more detail on general rainfall biases, and Crook et al.40 for details of MCS represenation.83

We perform analysis on data from 1998-2006 June to September inclusive. This gives us 9 years of 120-day seasons, giving84

a total of 1080 days of data for both CP4 and P25. The model fields used are hourly rainfall rates and three-hourly winds,85

temperature, and pressure tendency (omega). All variables are instantaneous. We compare the models to satellite-based retrievals86

of rainfall rate from GPM-IMERG version 641, which are on a 0.1◦ grid which approximates a 10km resolution in the analysis87

domain.88

The analysis domain here is in two parts, a parent and a sub-domain (see Figure2 ). The parent domain is from 16◦W to 16◦E89

and from 2◦N to 26◦N, which encompasses the majority of the land surface of tropical West Africa and some adjacent ocean.90

It is worth remembering throughout that UTC is approximately LST in this domain, given the importance of diurnal cycles for91

convective rainfall. The sub-domain is the Western Sahel from 8◦W to 8◦E and 10◦N to 18◦N. The sub-domain was chosen to92

be entirely continental, to minimize coastal effects, and to minimize the presence of significant orography. A higher proportion93

of the largest and longest-lived systems also develop in the chosen sub-domain42. These large systems produce the most intense94

updrafts and rainfall, and are often active through the night. The parent domain is 8◦ larger in all directions than the sub-domain,95

with a common center at (0◦,14◦N). The parent domain includes both the south and west coasts of tropical West Africa as well96

as both inland and coastal areas of significant orography, the implications of which are discussed later.97

2.2 Lagged-cross correlations98

Cross-correlations were calculated between the sub-domain high rainfall locations at time 𝑡0, and the parent domain convective99

rainfall locations at 𝑡1. High here refers to rainfall above the 𝑡0 99th percentile for the sub-domain, relative to the respective100

climatology of the data source. At 𝑡1, a threshold of 2mm/hour is chosen simply as a representative rain rate for convection. Using101
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percentiles at 𝑡0 samples similar numbers of 𝑡0 events in each data source. At 𝑡1 the primary concern is the differences between102

the models and between models and observations. Figure 1 shows (a) how the 𝑡0 thresholds change through the diurnal cycle103

in the sub-domain, and (b) how much rain >2mm/hr one might expect in the parent domain each model throughout the day. By104

using a fixed 𝑡1 threshold we clearly keep the diurnal cycle biases of the models in the results, highlighting their leading-order105

impact on the timing of the development of spatial structure.106

The cross-correlations were also calculated between high rainfall at 𝑡0 and anomalies of temperature, horizontal winds and107

omega at 𝑡1. The anomalies are defined as deviations from the 10-year grid cell mean for a given time of day and pentad. All108

cross-correlations were calculated for a range of 𝑡0 and 𝑡1 values, but for clarity the choice was made to restrict the majority109

of the discussion to the results of cross-correlations with a fixed 𝑡0 of 6Z for which signals were strongest. The evolution of110

the patterns with increasing lag time (i.e. by advancing 𝑡1) then gives patterns in rainfall throughout the day relative to rainfall111

locations at 6Z. The highest rainfall at 6Z is often found in long-lived nocturnal MCS.112

First, the rainfall field (in mm/hr) is passed through a Heaviside function to create a binary array which is one where rainfall is113

above the threshold, and zero elsewhere. This is done separately for the parent and sub-domain with their respective thresholds.114

For 𝑡1 temperature and wind anomalies, the Heaviside is not applied. The cross-correlation is then calculated using the standard115

’signal.correlate’ method in the signal processing library from the open-source SciPy Python package. We make use of the built116

in FFT option to speed up the calculation. We also use the built in option to trim the edges of the full cross-correlation to the117

size of the parent domain, keeping the center the same. Because the sub-domain and parent domain have a common center, the118

center of the resulting cross-correlation represents the location of a 𝑡0 event, which will be labeled as the origin. An example is119

illustrated in Figure 2 for a single day of data with (𝑡0, 𝑡1) = (6𝑍, 15𝑍).120

For a start time 𝑡0, a set of cross-correlations are calculated for each lag time 𝑡1 − 𝑡0. Dividing each by the total number of121

rain events in the 𝑡0 domain gives a conditional probability map. This map shows the probability of rain at (𝑥, 𝑦, 𝑡1), given high122

rainfall at (0,0,𝑡0). This calculation is repeated for each day in the JJAS period of each year from 1998 to 2006, giving a total of123

1080 cross-correlations for each lag time. Taking point means over all 1080 cases gives one final set of probabilities for each124

lag time. In the following results, 𝑡0 = 6𝑍 in all cases.125

The distance of maximum probability from the average 𝑡0 rain location for a given radial direction can be found by transforming126

into polar coordinates (𝑟, 𝜃), and normalizing the correlation values in each of 2𝜋∕𝛼 sectors of a domain-wide circle around127

the origin, for a small angle 𝛼. This shows, for each 𝜃 independently, where on the radius the highest probabilities are located.128

This approach highlights radial structures when changes in the intensity of the signal with angle make the patterns otherwise129

harder to perceive. In this case, 𝛼 = 0.5◦ is used, and the values are normalized in [0, 1]. We are then able to identify if coherent130

radial structure exists in which the higher values of probability in a given direction are found at similar distances from the 𝑡0131

rain location.132
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3 RESULTS133

3.1 Lagged Rainfall to Rainfall cross-correlation134

Figure 3 shows the mean conditional probability maps between sub-domain rainfall at 6Z and the parent domain at 3-hourly135

intervals. All three datasets show an area of high probability propagating in a WSW direction. This direction is known to be the136

dominant climatological propagation direction for Sahelian squall lines43,44,40. By visual inspection, the shape and propagation137

of these areas in the CP4 map are more similar than P25 to those in observations. The P25 map also shows an additional ENE138

moving feature which is not consistent with known climatologies. These model differences are consistent with previous work139

comparing organized convective rainfall in CP4 and P2540. In both CP4 and IMERG probability maps, there are stationary140

features associated with orography to the SE for +6 to +12. The feature is likely associated with climatological orographic141

rainfall in the Jos Plateau, approximately (10N,8E), and the mountains of northwestern Cameroon and southwestern Nigeria.142

In Figure 4 , differences in spatial maximum probability are due to combination of model rainfall biases and resolution.143

Probabilities are generally higher in the IMERG map at all lag times than for both models. By using a fixed threshold at 𝑡1 the144

time evolution of the mean probability closely follows the diurnal cycle of the 2mm/hr percentile shown in 1 . However, the145

evolution of the spatial variability in CP4 probabilities is also closer to observations. The improved mean diurnal cycle is a146

known advantage of convection permitting simulations more generally45,39.147

Figure 5 shows the same data as Figure 3 , but each probability map has been normalized radially using the method described148

previously. The result is a coherent ring-like structure of higher values around the 𝑡0 location of convection. The rings are of149

similar size for all data sources, with the average radius of 600km at a lag of +12 hours. Considering the ring as growing with150

time, the average propagation speed is approximately 14ms−1. This is faster than the modal range of MCS propagation in both151

models and in observations, which ranges from 4-12ms−1 depending on the model or observations (see Crook et. al figure 6a40).152

However, 14ms−1 is well inside the observed spread. Patterns in Figure 5 for CP4 and IMERG are more similar, particularly153

up until +9 hours. A tight range of radii for the highest values of the radially normalized probabilities are common to all at lag154

+12. For CP4 and IMERG, there are clear local minima close to and west of the origin, and the pattern becomes much noisier155

to the east. The pattern in P25 at +12 is generally more zonally symmetric, including in the central minimal.156

3.2 Investigating physical mechanisms157

In testing for organizing mechanisms we will therefore continue to use data from the CP4 model, based on its better agreement158

with IMERG in Figures 3 and 5 , whilst remaining aware of the temporal differences seen in Figure 4 . Since the rings in 5159

have some radial thickness, we assume a range of propagation speeds exist in the associated mechanisms. The speed of ring160

’growth’ can be used to begin to determine which parts of the pattern are potentially associated with cold pools and which with161
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waves. We can first use a cross-correlation of 6𝑍 rainfall with 𝑡1 temperature and wind anomalies to determine the likely location162

of cold pool gust fronts.163

Figure 6 shows the 9-season mean cross correlation of 6𝑍 high rainfall locations with 𝑡1 = 12𝑍 temperature (contours) and164

meridional wind anomalies (arrows) at 925hPa. Overlaid in blue are the values of the highest 20% of the radially normalized165

probabilities for three lag hours later at 𝑡1 = 15𝑍. This is done to make 𝑡1 = 12𝑍 the pre-rain environment. Again the origin166

represents the location of the 6𝑍 high rainfall. The temperature and wind cross correlation values have been divided by the167

number of high rain points at 𝑡0: this gives an estimate for the mean magnitudes of the anomalies. At 12Z, there is an elliptically168

shaped mesoscale cold anomaly centred just westward of the intense rainfall location siz hours prior. The majority of high values169

in the 15𝑍 radially normalized probabilities are found at the edge of the cold anomaly between the -0.5K and 0K contours. The170

wind anomalies near the origin show a component of divergent flow outward from the earlier rain location, except to the east. In171

many places there is convergence of the wind anomalies where we find high values of the radially normalized probabilities three172

hours later. The western part of the pattern is reminiscent of cold outflow-driven lifting ahead of a propagating MCS. To the173

north, however, a propagating storm doesn’t explain the ring location, so we will next examine just a cross-section of the pattern.174

Figure 7 shows a north-south cross-section of Figure 6 . Overlaid now are all the values of the radially normalized probabil-175

ities on that cross-section for 𝑡1 = 15𝑍. The cross-section is chosen to mostly exclude the propagating ’MCS’ itself and focus176

instead on the surrounding environment. The maximum magnitude of the wind anomalies coincident with negative temperature177

anomalies in this cross-section is < 1𝑚𝑠−1. If this speed were maintained it would give a radius of < 100km (or 1◦) in 12 hours.178

This is a conservative estimate since not every event used to construct the average will have a strong cold pool, bringing down179

the average magnitude of the anomalies. Using instead the JJAS composite cold pool front speed of 6.5𝑚𝑠−1 in Provod et al.46
180

gives an estimated radius of < 300km (or 3◦) in 12 hours. The sections of the rings to the north and south extend as far as 600km181

from the average 6Z rain point. These more distant correlations are more likely the result of faster cold-pool gusts or gravity182

waves as seen in Birch et al (2013)27. Meridional asymmetry is present in both the temperature and wind anomalies. The mean183

cold anomaly extends further north than it does south, potentially because a given expanding pool of cold air at a given tem-184

perature will be more negatively anomalous in the warmer north. These asymmetries could also be due to contrasting boundary185

layer characteristics that favour more or less cold pool propagation.186

Next, we search the same cross-sections for the presence of wave-like signals in anomalies of vertical motion. Figure 8 shows187

two latitude-height sections of the mean cross-correlation of 6Z rainfall with omega and meridional wind anomalies between188

925hPa and 100hPa where 𝑡1 = 9𝑍 (left) and 𝑡1 = 21𝑍 (right). At 9Z, positive/negative omega anomalies (descending/as-189

cending air) dominate the lower/upper column in the area surrounding the 6Z rain event. Twelve hours later, at 21Z, a region of190

weak descent extends northward from the 6Z rain location approximately 6◦, and up to ∼600hPa with ascent above. The vertical191

structure to the north is similar to that associated with stratiform heating7,47,48, with upper level ascent and lower level descent.192
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Combined with the deep ascent seen to the south this would be the expected contribution to the signal from a southwesterly prop-193

agating MCS with a trailing stratiform region. Figure 9 is another cross section, this time of the 12Z 500hPa omega anomaly194

cross correlations alongside the subsequent 15Z radially normalized probabilities. The amplitudes of the two are clearly out of195

phase to distances of 6-7◦.196

4 DISCUSSION197

4.1 Summary of results198

A coherent ring-like pattern of higher conditional probabilities of rainfall around earlier rainfall is accentuated by radially nor-199

malizing. The rings have a scale of ∼ 1000km at a lag time of 𝑡0+ 9-12 hours and include a region of high-probability to the200

west of the earlier rainfall, indicative of MCS propagation. The patterns calculated from a model with explicit convection show201

spatial and diurnal cycle characteristics more similar to those in observations, compared to a model with parameterized con-202

vection. We present statistical indications that convective memory may contribute to improved diurnal cycles—an improvement203

noted in previous studies of convection-permitting models.204

The mechanisms for coherent patterns are explored in the convection-permitting model, and we find patterns in the dynamics205

with features common to cold pools and gravity waves. Cold pools are identified by anomalously cold and divergent regions206

at time 𝑡1, around where convective rainfall occurred at time 𝑡0. At the edge of thse regions, anomalous convergence leads to207

an enhancement of the radially normalized probabilities, particularly in the western half of the coherent pattern. Cross-sections208

through composite cross-correlations of rainfall with vertical motion show 12Z anomalies in 500hPa ascent are anti-correlated209

to 6Z rain locations but correlated in a region 2-6◦ away. This ascent is colocated with the peaks in a similar cross-section of the210

radially normalized probabilities.211

4.2 Start time sensitivity and storm lifecyles212

As mentioned in Section 2, the choice of start time used in the cross-correlations (CC) was dictated by which produced the213

strongest correlations that were not attributable to stationary features such as coasts and orography. However, this is not to say214

that starting at other times does not produce coherent patterns. To quantify the sensitivity of the method to start time, we can215

calculate mean CC for the full range of 𝑡0 all with a fixed lag time. Taking one-dimensional cross-sections of the resulting arrays216

and stacking them along a common axis shows us the distribution of conditional probabilities in (𝑡0, 𝐷) space, where 𝐷 is the217

distance from the mean 𝑡0 rain point as in figures in section 3.218

The (𝑡0, 𝐷) space plot gives us information about both the amount and speeds at which 𝑡0 rain enhances t1 rain in the sur-219

rounding area. Figure 10 shows such a plot for northward cross-sections of CC with 𝑡0 from 0-14Z, all with a fixed lag of 9220
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hours. As such the corresponding 𝑡1 are from 9Z on the same day to 23Z. We can interpret this under the assumption that higher221

probability results from some propagating response of the atmosphere to t0 rainfall after 9 hours. For example, a significant cor-222

relation at 5 degrees north corresponds to some propagating feature that travels at ∼17ms−1. We see the strongest correlation at223

distances requiring speeds between ∼5-20ms−1 when 𝑡0 is 5-8Z, and only up to ∼10ms−1 for 𝑡0 of 12-14Z. All these speeds can224

be achieved by cold pool gust fronts46 or gravity waves, other than the first baroclinic mode which is much faster.225

Fast moving gust-fronts and large amplitude gravity waves are generated by large buoyancy perturbations in MCSs. The226

slower speeds for afternoon 𝑡0 could be the result of local clustering of new afternoon initiations around surface features26, or227

enhancement by slower gust fronts generated in smaller storms49. The afternoon boundary layer is less stable, and so doesn’t228

allow for as fast of a propagation of waves along its top as could be possible at night or in the early morning. At 5-8Z, the229

likelihood of initiation of new isolated convection and subsequent generation of CCGW is low50. We assume that any intense230

rainfall at these times is from existing MCS that have been maintained through the night. The impact of the collapse of MCSs in231

the morning on the subsequent afternoon initiations could be a potential explanation for the significance of the 5-8Z choice of 𝑡0.232

Similarly to how initiation is associated with CCGW, collapse should also generate similar waves but with the opposite phase.233

Storm collapse will also be associated with mesoscale subsidence, low-level evaporative cooling, and soil moisture feedbacks.234

All these arguments support suppression of convection in storm collapse regions, with enhanced convection at the interface with235

the surrounding environment. These long-lived nocturnal storms are more common in the chosen sub-domain than further to236

the south42.237

If a very intense MCS can maintain itself until diurnal heating peaks again, then the storm can survive multiple days51. If238

not then the storm weakens and decays. Figure 11 shows the time evolution of a meridional mean of CP4 rainfall probability239

maps in Figure 3 . We see that the rainfall probability decays through the morning, but then reappears later in the afternoon.240

The system appears to have continued to ’propagate’ westward, despite producing little to no rainfall for a period of time. This241

is suggestive of MCS decay and regeneration along the same track.52,53,51.242

Another interesting and relevant conceptual discussion is the existence of relationship of storm lifetimes, diurnal cycles, and243

the growth of the ring pattern. The role of rotation in dampening tropospheric perturbations is determined by the Rossby radius244

(𝑅𝑜), which is on the order of ∼10,000km at 13◦N. When considering the depth of the entire troposphere, rotational effects245

are insignificant on the scale of the patterns in our results, which are ∼1000km at most. However, consider an external Rossby246

radius 𝜆𝑅, defined as247

𝜆𝑅 =

√

𝑔𝐻Δ𝜃∕𝜃0

𝑓
, (1)

where 𝑔 is gravitational acceleration, 𝐻 is the initial depth of the cold pool, Δ𝜃∕𝜃0 is the temperature perturbation, and 𝑓 the248

Coriolis parameter. This defines a limit on the scale of the cold pool over timescales of ∼ 1∕𝑓 . With tropical scale 𝑓 ∼ 10−5𝑠−1,249

and cold pool characteristic scales of 𝐻 ∼ 103𝑚, Δ𝜃 ∼ 3𝐾 , and 𝜃0 ∼ 300𝐾 , the value of 𝜆𝑅 ∼ 106𝑚. At latitudes 10-18N250
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the 1∕𝑓 timescale ranges between approximately 11 and 6 hours respectively. Although temperatures rapidly recover in the251

interiors, the edges of large cold-pools from MCSs may survive longer13 up to and beyond the 1∕𝑓 timescale. The time elapsed252

between 6Z and peak diurnal heating is close to 1∕𝑓 for those latitudes where nocturnal MCS are common, and the size order of253

the ringlike pattern in rainfall enhancement at 9-12 hours is similar to the above calculation of 𝜆𝑅. The variation of this inertial254

scale with 𝑓 over the domain could also explain the ’thickness’ of the contributions to the composite ring pattern that result255

from boundary layer interactions such as cold pool driven moisture convergence and lifting.256

4.3 Adaptability of the method257

There is nuance to the potential conversion of these results to a statistical forecasting tool, since the probabilities shown are258

multiply conditional on the chosen times, locations, thresholds and domain used to calculate them. The current method also259

only uses 99th percentile 𝑡0 rainfall locations and says nothing about the relationship between location and intensity for 𝑡0 and/or260

𝑡1. Surpassing a given threshold of rainfall might result from different mechanisms over higher terrain, for example. We should261

also remember that the threshold for 𝑡0 is not fixed here and instead changes with time of day. The rainfall probability maps in262

these results are analogous to a composite of binary arrays around the most intense rainfall locations in the sub-domain at 𝑡0.263

This could easily be adapted to include magnitudes in both 𝑡0 and 𝑡1 rainfall intensity above a given threshold, but would likely264

require some normalization relative to the time of day to remove the dominant diurnal signal. Including magnitude gives greater265

weight to the most intense rainfall events, but also adds another condition to the probability map.266

The interaction of local rainfall responses and seasonal climatology is one of the main themes of investigation in tropical267

scale interactions. In the current method, areas of high climatological mean rainfall appear as “smudged" stationary features at268

𝑡1. This is because we chose to retain information about the climatological rainfall patterns as well as local links to previous269

rainfall. An event doesn’t need to be anomalous to be impactful and vice versa. Given the stochastic nature of convection and270

the inherent difficulties in modeling its intensity on a local scale, probability of any amount of convective rain is arguably more271

interpretable and more useful for users of this kind of information. Also, from a scientific perspective, we are interested in any272

rainfall with a meaningful physical connection to convection. For this, the actual instantaneous rate and not the anomalous rate273

is required. For example, a negative anomaly could still be strongly convective but just less so than the mean and vice versa. A274

focus only on large local positive anomalies therefore restricts the sample of convective events.275

A simple prediction tool conceivable with this method is one where a forecaster inputs the location of a storm at 𝑡0 within276

a given sub-domain S, retrieves a 𝑡1 cross correlation between S and its wider environment from a large store of observational277

data and model rainfall analysis, and maps likelihoods of rainfall over a chosen threshold at 𝑡1 given the storms current location.278

Methods of this kind offer advantages over simply tracking or propagating existing features in the domain, as they incorporate279

information about potential interaction at distance. Crucially, this includes the relationship between existing and new convection280
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which tracking alone cannot capture. Of course, the robustness of such a tool requires great care and is beyond the scope of281

this study. A similar tool has already been developed by the NFLICS project29, but here we show the potential to enhance the282

physical understanding of patterns using high-resolution model data alongside satellite rainfall retrievals.283

While the computational simplicity of the method is this paper has is merits, it is conceivable that patterns such as these could284

be learned with more complex machine learning techniques with higher dimensional inputs. For example, using convolutional285

methods for spatial rainfall pattern learning (e.g. Badrinath et al. (2023)54) could yield similar results to ours, since convolutions286

are mathematically similar to cross-correlation. Deep learning generally is increasingly used for nowcasting, with models trained287

using satellite data (e.g. MetNet55). However, training these models with the existing observational record alone is not ideal due288

to the non-stationary nature of the climate system both within that period and more generally56. A potential solution is to use289

km-scale model data to better fill the sample space. However, this requires continued evaluation of the realism of model patterns290

and processes; our results are an example of a pattern-based evaluation. There are also developments in hybrid approaches that291

combine machine learning with physical models57,58. Future analysis could also use methods for explicitly diagnosing cold pools292

from km-scale model data (e.g. Drager and van den Heever59) and, supported with datasets of rainfall and identified cold-pools293

in observations46,60,61, use these to again predict patterns of rainfall enhancement by previous rain.294

Waves and cold pools are ubiquitous and universal features of atmospheric convection, and as such the relationships shown295

in our results should be relevant across other tropical domains where convection dominates climatological rainfall. Similar296

methods could be used to explore patterns in other domains or examine the behaviour of other models and their processes. For297

example, Mapes (2024)62 shows frequency composites of observed cold cloud objects in a South American domain, and the298

inferred spatial pattern of self enhancement/suppression is both elliptical and dependent on the diurnal cycle. The application of299

the method to model fields of quantities not observable by remote sensing also presents interesting possibilities. However, the300

patterns produced are sensitive to model process representations, such as the parametrization of convection, and the question of301

whether pattern mechanisms are common between observations and models remains an important consideration.302

5 CONCLUSIONS303

Our results demonstrate that lagged cross-correlations can uncover coherent structures of enhanced convective rainfall proba-304

bility around early morning rainfall events in the West African Sahel. These patterns appear in both observations and regional305

climate model simulations. Notably, the convection-permitting model reproduces these patterns with greater fidelity in terms306

of magnitude and timing, aligning more closely with satellite observations than its parameterized counterpart. The closer sim-307

ilarity of the observed and explicit model’s pattern likely stems from an improved representation of the diurnal cycle, better308
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representation of MCS and their lifecycles, and increased sensitivity of convection to previous convection via spatially resolved309

non-linear interactions such as with cold-pool gust fronts and convectively generated gravity waves.310

Given the inherent unpredictability of rainfall at daily timescales in tropical regions such as the Sahel38, there is a clear311

need to exploit sub-daily patterns and mechanisms to develop and evaluate models and tools that provide early warnings to312

vulnerable populations. This approach will become increasingly critical as both daily and sub-daily extremes are projected to313

intensify in the future63,64,65,66. We expect that these efforts could be enhanced by the use of more sophisticated statistical314

methods than used in this paper, or with machine learning. We highlight that km-scale models produce spatiotemporal patterns315

similar to observations, which lends credence to using the existing large volumes of model data to supplement and enhance316

statistical forecasts or machine learning training datasets. Additionally, improved spatiotemporal characteristics of model rainfall317

at km-scale resolutions increase confidence that model processes can be evaluated with respect to observed rainfall patterns.318

For coarser resolutions, parameterizations need either to represent the spatial statistics, or the underlying drivers. Processes319

evaluation remains fundamental for improving forecast accuracy and constraining uncertainty in modeling of future changes.320
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FIGURE 1 Mean diurnal cycles of the thresholds used to define 𝑡0 rain event and 𝑡1 convective rain locations. (a) The sub-
domain 99th percentile rainfall values at all possible t0 for CP4, P25, and IMERG. (b) The percentile corresponding to 2mm/hr
at all possible t1 for CP4, P25, and IMERG.

FIGURE 2 An example of a probability map derived from cross-correlation (c) for a single day with 𝑡0 = 6𝑍 and 𝑡1 = 15𝑍.
Location with rainfall over the thresholds are shaded blue in (a) and (b). The sub-domain (a) is shown in (b) by the red rectangle.
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FIGURE 3 Probability of rain >2mm at 𝑡1, surrounding the mean 99th percentile 6𝑍 rain location, with 𝑡1 =

9𝑍, 12𝑍, 15𝑍, 18𝑍 for CP4, P25, and IMERG. See section 2.2 for the calculation method.
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FIGURE 4 Maximum, mean, and standard deviations of the probabilities (P) in figure 3 .

FIGURE 5 Results of radially normalizing the probability maps in figure 3 . For a given direction the highest and lowest
probabilities are represented in pale blue and brown respectively. See section 2.3 for calculation details.
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FIGURE 6 Mean CP4 cross-correlation of 6Z rainfall locations over the threshold with 𝑡1 = 12𝑍 925hPa temperature anoma-
lies in K (black contours) and 925hPa horizontal wind anomalies (arrows). Blue shading shows the top 20% of the radially
normalized rainfall probabilities at 𝑡1 = 15𝑍.
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FIGURE 7 A north-south cross section through x=0 of figure 6 , and the same for the 15Z CP4 radially normalized rainfall
probabilities. Note that only the meridional component of the wind anomalies are shown.

FIGURE 8 A latitude-height cross-section through x=0 of the mean CP4 rainfall and omega anomaly cross-correlation with
𝑡0 = 6𝑍 and 𝑡1 = 9𝑍 and 21𝑍. On both panels are the ±0.1𝑃𝑎𝑠−1 contours for t1=9Z.
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FIGURE 9 A north-south cross-section through x=0 of the CP4 rainfall and omega anom. cross-correlation (red) with 𝑡0, 𝑡1 =

6𝑍, 12𝑍. In blue is the cross-section of the CP4 radially normalized probabilities for 𝑡1 = 15𝑍.
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FIGURE 10 Sections of probability maps at 𝑡0 + 9ℎ𝑟𝑠 for 𝑡0 in 0,14Z. Only the northward direction from the mean 𝑡0 rainfall
location is shown for simplicity. Meridional distance northward from the origin is shown by the y-axis. The lower x-axis shows
𝑡0, and the upper x-axis is the corresponding 𝑡1 = 𝑡0 + 9 hours.
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FIGURE 11 Meridional mean of CP4 probability maps in figure 3 , but for hourly 𝑡1 up to 23Z. 𝑡0 = 6𝑍.
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