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Abstract

Several works have recently investigated the parameterized complexity of data
completion problems, motivated by their applications in machine learning, and clus-
tering in particular. Interestingly, these problems can be equivalently formulated
as classical graph problems on induced subgraphs of powers of partially-defined
hypercubes.
In this paper, we follow up on this recent direction by investigating the Independent
Set problem on this graph class, which has been studied in the data science setting
under the name Diversity. We obtain a comprehensive picture of the problem’s
parameterized complexity and establish its fixed-parameter tractability w.r.t. the
solution size plus the power of the hypercube.
Given that several such First Order Logic (FO) definable problems have been
shown to be fixed-parameter tractable on the considered graph class, one may
ask whether fixed-parameter tractability could be extended to capture all FO-
definable problems. We answer this question in the negative by showing that FO
model checking on induced subgraphs of hypercubes is as difficult as FO model
checking on general graphs.
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1 Introduction

Recently, there has been an increasing interest in studying the parameterized complexity
of clustering problems motivated by their applications in machine learning [2–6, 17,
19, 21, 26, 27, 31, 40, 41], particularly their applications to fundamental clustering
problems [1, 29, 42, 45]. In many of these clustering problems, we are given a set
of d-dimensional vectors over the Boolean/binary domain, where the vectors are
regarded as rows of a matrix. It is worth noting that due to the applications of
such problems in incomplete-data settings, a number of past works on the topic
also studied settings where some of the entries in these vectors are unknown [8–
10, 17, 19, 21, 22, 30, 31, 38]. The objective is to determine if these vectors (or, in the
incomplete-data setting, their completions) satisfy some desirable clustering properties.
Examples of such properties include admitting a partitioning into k clusters each of
diameter (or radius) at most r (for some given k, r ∈ N), or admitting a k-cluster of
diameter (or radius) at most r, where the distance under consideration is typically the
Hamming distance [12, 16, 19, 21, 24, 33–36]; here, a k-cluster of diameter r is a set of
k points which have pairwise distance of at most r.

As it turns out, many of these well-studied clustering problems can be formulated
as classical graph problems on induced subgraphs of powers of the hypercube graph.
For instance, finding a cluster of diameter at most r ∈ N, for a given r, is equivalent to
the Clique problem defined on the subgraph of the r-th power of the hypercube that
is induced by the subset of hypercube vertices corresponding to the given input vectors.
Similarly, partitioning the set of vectors into k clusters each of diameter at most r, for
some given r, k ∈ N, is equivalent to the partitioning into k cliques problem on the
same graph class, whereas partitioning the set of vectors into clusters, each of radius
at most r with respect to some vector in the set, is equivalent to the k-dominating set
problem on the same graph class described above. We remark that, to the best of our
knowledge, this graph class is not a subclass of commonly studied graph classes and
has not been considered in previous works pertaining to algorithmic upper or lower
bounds for graph-theoretic problems.

Contribution. In this paper, we study the parameterized complexity of another
classical graph problem defined on induced subgraphs of powers of the hypercube: the
Independent Set problem. In the context of data analytics, the problem arises when
studying the “diversity” of a given set of vectors, a notion that can be viewed as the
opposite of minimising, i.e., maximising, the number of clusters in a cluster partitioning
of the set of vectors (in fact, in the area of data analytics this problem is studied
directly under the nomenclature diversity or dispersion [11, 32, 46]). More precisely,
motivated by the aforementioned extensive interest in the analysis of incomplete data,
we focus on the more general incomplete data setting. We refer to this problem as
Pow-Hyp-IS-Completion: given a set of Boolean vectors with some missing entries
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and integers k and r, the goal is to complete the missing entries so that the resulting
set of vectors contains a subset S of k vectors such that the Hamming distance between
each pair is at least r + 1 (or to correctly determine that such a set does not exist).

The main contribution of this paper is a complete characterisation of the parameter-
ized complexity of Pow-Hyp-IS-Completion w.r.t. the two parameters k and r: we
provide a fixed-parameter algorithm for Pow-Hyp-IS-Completion when parameter-
ized by k+r, and complement this positive result with intractability results for the cases
where any of these two parameters is dropped. In particular, we show that the problem
is NP-complete already for r = 2—that is, the problem is paraNP-hard parameterized
by r, and W[1]-hard parameterized by k alone. Interestingly, the FPT result shows that
the parameterized complexity of the problem is independent of any restrictions on the
number or the structure of the missing entries in the input vectors—contrasting many
of the previous results on clustering incomplete data [19, 21, 30, 31]. We remark that
even the fixed-parameter tractability of the problem in the complete data setting (i.e.,
where all entries are known) is non-obvious, but follows as an immediate corollary of
our result.

For our final contribution, we revisit the observation that several of the complete-
data clustering problems recently considered in the literature (e.g., see [19, 21]) reduce
to well-known graph problems on the class of induced subgraphs of powers of the
hypercube. Since it was shown that all of these graph problems are fixed-parameter
tractable when restricted to this graph class and the graph problems are expressible in
First Order Logic (FO), a natural question to ask is whether these FPT results can be
generalised to any graph problem expressible in FO logic. We resolve this question in
the negative.

Related Work. The problem of computing the diversity of a data set, which forms
the underpinning of our study of Pow-Hyp-IS-Completion, has been studied in
a variety of different contexts and settings. For instance, Ceccarello, Pietracaprina,
Pucci and Upfal studied approximation algorithms for the problem [11]. Gawrychowski,
Krasnopolsky, Mozes, and Weimann obtained a linear-time algorithm for the problem
when the data set is represented as a tree [32], improving upon the previous polynomial-
time algorithm of Bhattacharya and Houle [7]. Sacharidis, Mehta, Skoutas, Patroumpas
and Voisard provided heuristics for dynamic versions of the problem [46].

More broadly, there is extensive work on problems arising in the context of
incomplete data. Hermelin and Rozenberg [39] studied the Closest String with

Wildcards problem, which can be seen as the problem of finding a data completion
and a center to a minimum-radius cluster containing all the data points. Koana, Froese
and Niedermeier [40] recently revisited the earlier work of Hermelin and Rozenberg [39]
and obtained, among other results, a fixed-parameter algorithm for that problem
parameterized by the radius plus the maximum number of missing entries per row; see
also the related work of the same authors [41]. Eiben et al. considered a number of
different clustering problems in the presence of incomplete data [18, 19], and a subset
of these authors previously investigated the fundamental Matrix Completion prob-
lem in the same setting [30]. The parameterized complexity of k-means clustering on
incomplete data was investigated by Eiben et al. [17] and Ganian et al. [31].
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Parts of this paper appeared in a preliminary and shortened form in the Pro-
ceedings of IPEC 2023, 18th International Symposium on Parameterized and Exact
Computation [20].

2 Preliminaries

Problem Terminology and Definition

Let a⃗ and b⃗ be two vectors in {0, 1,□}d, where □ is used to represent coordinates whose

value is unknown (i.e., missing entries). We denote by ∆(⃗a, b⃗) the set of coordinates in

which a⃗ and b⃗ are guaranteed to differ, i.e., ∆(⃗a, b⃗) = { i | (⃗a[i] = 1 ∧ b⃗[i] = 0) ∨ (⃗a[i] =

0 ∧ b⃗[i] = 1) }, and we denote by δ(⃗a, b⃗) the Hamming distance between a⃗ and b⃗

measured only between known entries, i.e., |∆(⃗a, b⃗)|. Moreover, for a subset D′ ⊆ [d]
of coordinates, we denote by a⃗[D′] the vector a⃗ restricted to the coordinates in D′.

Let M ⊆ {0, 1}d and let [d] = {1, . . . , d}. For a vector a⃗ ∈ M and t ∈ N, we

denote by Nt(⃗a) the t-Hamming neighbourhood of a⃗, i.e., the set { b⃗ ∈ M | δ(⃗a, b⃗) ≤ t }
and by Nt(M) the set

⋃

a⃗∈M Nt(⃗a). We say that M∗ ⊆ {0, 1}d is a completion of
M ⊆ {0, 1,□}d if there is a bijection α : M → M∗ such that for all a⃗ ∈ M and all
i ∈ [d] it holds that either a⃗[i] = □ or α(⃗a)[i] = a⃗[i].

We now proceed to give the formal definition of the problem under consideration:

Pow-Hyp-IS-Completion

Input: A set M with elements from {0, 1,□}d and k, r ∈ N.
Question: Is there a completion M∗ of M and a subset S of M∗ with |S| = k

such that, for any two vectors a, b ∈ S, we have δ(a, b) ≥ r + 1?

Observe that in a matrix representation of the above problem, we can represent
the input matrix as a set of vectors where each row of the matrix corresponds to one
element in our set.

We remark that even though the statements are given in the form of decision
problems, all tractability results presented in this paper are constructive and the
associated algorithms can also output a solution (when it exists) as a witness, along
with the decision. In the case where we restrict the input to vectors over {0, 1}d (i.e.,
where all entries are known), we omit “-Completion” from the problem name.

Parameterized Complexity

The basic motivation behind parameterized complexity is to find a parameter that
describes the structure of the problem instance such that the combinatorial explosion
can be confined to this parameter. More formally, a parameterized problem Q is a
subset of Ω∗ ×N, where Ω is a fixed finite alphabet. Each instance of Q is a pair (I, κ),
where κ ∈ N is called the parameter. A parameterized problem Q is fixed-parameter
tractable (FPT) [13, 14, 25], if there is an algorithm, called an FPT-algorithm, that
decides whether an input (I, κ) is a member of Q in time f(κ) · |I|O(1), where f is a
computable function and |I| is the input instance size. The class FPT denotes the class
of all fixed-parameter tractable parameterized problems.

A parameterized problem Q is FPT-reducible to a parameterized problem Q′ if there
is an algorithm, called an FPT-reduction, that transforms each instance (I, κ) of Q
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into an instance (I ′, κ′) of Q′ in time f(κ) · |I|O(1), such that κ′ ≤ g(κ) and (I, κ) ∈ Q

if and only if (I ′, κ′) ∈ Q′, where f and g are computable functions. Based on the
notion of FPT-reducibility, a hierarchy of parameterized complexity, the W-hierarchy
=

⋃

t≥0 W[t], where W[t] ⊆ W[t+ 1] for all t ≥ 0, has been introduced, in which the
0-th level W[0] is the class FPT. The notions of hardness and completeness have been
defined for each level W[i] of the W-hierarchy for i ≥ 1 [13, 14]. It is commonly believed
that W[1] ̸= FPT (see [13, 14]). The W[1]-hardness has served as the main working
hypothesis of fixed-parameter intractability. A problem is paraNP-hard if it is NP-hard
for a constant value of the parameter [25].

Sunflowers

A sunflower in a set family F is a subset F ′ ⊆ F such that all pairs of elements in F ′

have the same intersection.
Lemma 1 ([23, 25]). Let F be a family of subsets of a universe U , each of cardinality
exactly b, and let a ∈ N. If |F| ≥ b!(a − 1)b, then F contains a sunflower F ′ of
cardinality at least a. Moreover, F ′ can be computed in time polynomial in |F|.

3 The Parameterized Complexity of
Pow-Hyp-IS-Completion

Our aim for Pow-Hyp-IS-Completion is to establish fixed-parameter tractability
parameterized by k + r (i.e., regardless of the structure or number of missing entries).
As our first step, we show that all rows in an arbitrary instance (M,k, r) can be,
w.l.o.g., assumed to contain at most O(k · r) many □’s.

Next, we observe that if M is sufficiently large and the r-Hamming neighbourhood
of each vector is upper-bounded by a function of k+r, then—since the number of □’s is
bounded—(M,k, r) is a YES-instance. The argument here is analogous to the classical
argument showing that Independent Set is trivial on large bounded-degree graphs.

On a high level, we would now like to find and remove an “irrelevant vector” from
M—since here the number of □’s on every row is bounded, any instance reduced in
this way to only contain a bounded number of vectors can be solved via a brute-force
fixed-parameter procedure. However, finding an irrelevant vector is rather challenging,
primarily because the occurrence of □’s is not restricted. Instead, we develop a more
powerful set representation F ′ for vectors in the instance which also uses elements
to keep track of the presence of □’s in the neighbours of v⃗. We can then apply the
Sunflower Lemma to find a sufficiently-large sunflower in F ′, and in the core of the
proof we argue that (1) such a sunflower consists of at most a bounded number of
“important petals” (which can be identified in polynomial time), and (2) any petal that
is not important represents an irrelevant vector.

3.1 Dealing with Unstructured Missing Data

In this subsection, we design an algorithm for Pow-Hyp-IS-Completion which
remains efficient even when the number and placement of unknown entries is not
explicitly restricted on the input.
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We begin with a simple lemma that allows us to deal with vectors (i.e., rows) with
a large number of missing entries. For brevity, let a k-diversity set be a set containing
k vectors which have pairwise Hamming distance at least r + 1.
Lemma 2. Let I = (M,k, r) be an instance of Pow-Hyp-IS-Completion where
k ≥ 1 and let v⃗ ∈ M be a vector containing more than (k − 1) · (r + 1)-many □’s.
Then I is a YES-instance if and only if I ′ = (M \ {v⃗}, k − 1, r) is a YES-instance.
Moreover, a completion and k-diversity set for I can be computed from a completion
and (k − 1)-diversity set for I ′ in linear time.

Proof. The forward direction is trivial: for any completion M∗ of M and k-diversity
set S in M∗, we can obtain a (k − 1)-diversity set and completion for I ′ by simply
removing v⃗ from M∗ and S.

For the backward direction, consider a completion M ′∗ of M ′ = M \ v⃗ and a
(k − 1)-diversity set S = {s⃗1, . . . , ⃗sk−1} in M ′∗. Let us choose an arbitrary set C of
(k − 1) · (r + 1) coordinates in v⃗ that all contain □, and let us then partition C into
k-many subsets α1, . . . , αk each containing precisely r + 1 coordinates. Now consider
the vector v⃗∗ obtained from v⃗ as follows:

• for each i ∈ [k − 1] and every coordinate j ∈ αi, set v⃗
∗[j] to the opposite value of

s⃗i[j] (i.e., v⃗
∗[j] = 1 if and only if s⃗i[j] = 0);

• for every other coordinate j of v⃗∗, we set v⃗∗[j] = v⃗[j] if v⃗[j] ̸= □ and v⃗∗[j] = 0
otherwise.

Clearly, M∗ = M ′∗ ∪ {v⃗∗} is a completion of M . Moreover, since v⃗∗ differs from
each vector in S in at least r + 1 coordinates, S ∪ {v⃗∗} is a k-diversity set in M∗.

Next, we show that instances which are sufficiently large and where each vector only
“interferes with” a bounded number of other vectors are easy to solve. Technically, let

ζ(k, r) = 3(k−1)·(r+1) ·
∑

α∈[(k−1)·(r+1)+r]

(

α! · ((k − 1) · 2 · (3(k − 1) · (r + 1) + 2r))α
)

be the exact meaning of “sufficiently large” here; for brevity, note that ζ(k, r) ∈
(kr)O(kr).
Lemma 3. Let I = (M,k, r) be an instance of Pow-Hyp-IS-Completion. If
|M | ≥ k · ζ(k, r) and |Nr(v⃗)| < ζ(k, r) for every v⃗ ∈ M , then a k-diversity set in I can
be found in polynomial time.

Proof. One can find a solution to I by iterating the following greedy procedure k times:
choose an arbitrary vector v⃗, add it into a solution, and delete all other vectors with
Hamming distance at most r from v⃗. By the bound on |Nr(v⃗)|, each choice of v⃗ will
only lead to the deletion of at most ζ(k, r) vectors from M . Moreover, since δ measures
the Hamming distance only between known entries, any completion of the missing
entries can only increase (and never decrease) the Hamming distance between vectors.
Hence, the size of M together with the bounded size of the Hamming neighbourhood
of v⃗ guarantee that this procedure will find a solution of cardinality k in I which will
remain valid for every completion of M .

6
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We can now move on to the main part of the proof: a procedure which either
outputs a solution outright or finds an irrelevant vector.
Lemma 4. Let I = (M,k, r) be an instance of Pow-Hyp-IS-Completion such that
|Nr(v⃗)| ≥ ζ(k, r) for some vector v⃗ ∈ M and such that each vector in M contains at
most (k − 1) · (r + 1) □’s. There is a polynomial-time procedure that finds a vector

f⃗ ∈ M satisfying the following properties:

• (M,k, r) is a YES-instance if and only if I ′ = (M \{f⃗}, k, r) is a YES-instance, and
• A completion and diversity set for I can be computed from a solution and diversity
set for I ′ in linear time.

Proof. We will begin by constructing a set system over the neighbourhood of v⃗. Let
Z = { z ∈ [d] | v⃗[z] = □ } be the set of coordinates where v⃗ is incomplete. Clearly, since
(because |Nr(v⃗)| ≥ ζ(k, r))

|Nr(v⃗)| ≥ 3(k−1)·(r+1) ·
∑

α∈[(k−1)·(r+1)+r]

(

α! · ((k − 1) · 2 · (3(k − 1) · (r + 1) + 2r))α
)

and |Z| ≤ (k−1)·(r+1), we can find a subset N ⊆ Nr(v⃗) of vectors whose cardinality is
at least

∑

α∈[(k−1)·(r+1)+r]

(

α!·((k−1)·2·(3(k−1)·(r+1)+2r))α
)

such that all vectors in

N are precisely the same on the coordinates in Z, i.e., ∀x⃗, y⃗ ∈ N : ∀z ∈ Z : x⃗[z] = y⃗[z].
Now, let F be a set containing 2 elements for each coordinate j ∈ [d] \ Z of vectors

in M : the element □j and the element Dj . We construct a set system F over F as
follows. For each vector x⃗ ∈ N , we add a set x̂ to F that contains:

• □j if and only if x⃗[j] = □, and
• Dj if and only if x⃗[j] ̸= □ and x⃗[j] ̸= v⃗[j].

Observe that, since x⃗ contains at most (k−1) ·(r+1) □’s by assumption and since x⃗
differs from v⃗ in at most r-many completed coordinates, every set in F has cardinality
at most (k − 1) · (r + 1) + r. This means that there exists α ∈ [(k − 1) · (r + 1) + r]
such that there are at least α! · ((k − 1) · 2 · (3(k − 1) · (r + 1) + 2r))α vectors x⃗ ∈ N

such that |x̂| = α. This means we can apply Lemma 1 to find a sunflower F ′ in F of

cardinality at least (k − 1) · 2
(

3(k − 1) · (r + 1) + 2r
)

+ 1; for ease of presentation, we

will identify the elements of F ′ with the vectors they represent. Let f⃗ be an arbitrarily
chosen vector from F ′; we claim that f⃗ satisfies the properties claimed in the lemma,
and to complete the proof it suffices to establish this claim.

The backward direction is trivial: if I ′ is a YES-instance then clearly I is a YES-
instance as well. It is also easy to observe that a completion and diversity set for I can
be computed from a solution and diversity set for I ′ in linear time (adding a vector
does not change the validity of a solution). What we need to show is that if I is a

YES-instance, then so is I ′ (i.e., (M \ {f⃗}, k, r)); moreover, this final claim clearly

holds if I admits a solution that does not contain f⃗ .
So, assume that M admits a completion M∗ which contains a k-diversity set

S = {f⃗ , s⃗1, . . . , ⃗sk−1}. Let C be the core of the sunflower F ′, and note that all vectors
in F ′ have precisely the same content in the coordinates in C.

7
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Finding a replacement for f⃗

We would now like to argue that, for some completion which we will define later, F ′

contains a vector that can be used to replace f⃗ in the solution.
Let s⃗i ∈ S be an arbitrary vector. First, let us consider the case that, in M , s⃗i

differs from v⃗ in more than 3(k− 1) · (r+1)+ 2r coordinates (i.e., v⃗[j] ̸= s⃗i[j] in M for
at least 3(k− 1) · (r+1)+2r choices of j). Then every vector in F ′ will have Hamming
distance greater than r from s⃗i regardless of the completion.

Indeed, for every vector f ′ ∈ F ′ there are at most 3(k − 1) · (r + 1) coordinates j

such that at least one of v⃗[j], s⃗i[j], f⃗ ′[j] is equal to □, meaning that there are at least
2r other coordinates where v⃗ differs from s⃗i and which are guaranteed to be complete—
and since δ(f⃗ ′, v⃗) ≤ r, it must hold that δ(f⃗ ′, s⃗i) > r (by the triangle inequality).
Hence indeed every vector in F ′ must have distance at least r + 1 from s⃗i, and in this
case we will create a set Si = ∅ (the meaning of this will become clear later).

Now, consider the converse case, i.e., that s⃗i differs from v⃗ in at most 3(k − 1) ·
(r + 1) + 2r coordinates. We may now extend the set system over F by adding a
set representation of s⃗i, specifically by adding a set Qi such that {□j , Dj} ⊆ Qi if
s⃗i[j] ̸= v⃗[j] (note that since v⃗[j] ̸= □, this also includes the case s⃗i[j] = □) and
otherwise {□j , Dj} ∩Qi = ∅. Observe that |Qi| ≤ 2 · (3(k − 1) · (r + 1) + 2r), and in
particular Qi \C intersects with at most 2 · (3(k− 1) · (r+1)+ 2r) elements of F ′. Let
Si be the set of all such elements, i.e., sets in F ′ which have a non-empty intersection
with Qi outside of the core (formally, these are sets of F ′ that do intersect Qi \ C).

Observe that by the construction of F ′, there must exist at least one set in the
sunflower that does not lie in any Si. To conclude the proof, we will show that there is
a completion M ′∗ of M ′ such that any arbitrarily chosen vector f⃗ ′ in the non-empty
set F ′ \ ({f⃗} ∪

⋃

i∈[k−1] Si) can replace f⃗ in the k-diversity set S.

Arguing Replaceability

Consider a new completion M ′∗ of M \ f⃗ obtained as follows:

• For each vector w⃗ ∈ F ′ \ S, we complete

1. the □’s in C ∪ Z precisely in the same way as f⃗ , and
2. for every other □ at coordinate j, we set w⃗[j] = −(v⃗[j]− 1) (i.e., to the opposite

of v⃗ – recall that v⃗[j] ̸= □ since j ̸∈ Z); and

• all other □’s in all other vectors in M \ f⃗ are completed in precisely the same way
as in M∗.

Since M ′∗ precisely matches M∗ on all vectors in S \ f⃗ , it follows that S \ f⃗ is a

(k − 1)-diversity set in M ′∗. Moreover, consider for a contradiction that δ(f⃗ ′, s⃗i) ≤ r

for some s⃗i ∈ S after completion, i.e., in M ′∗. Then clearly s⃗i could not differ from v⃗ in
more than 3(k−1) · (r+1)+2r coordinates in M ′, since—as we already argued—in this
case every vector in F ′ will have Hamming distance greater than r from s⃗i regardless
of the completion.

Hence, we must be in the case where s⃗i differed from v⃗ in at most 3(k−1)·(r+1)+2r

coordinates in M ′. Now consider how δ(f⃗ ′, s⃗i) differs from δ(f⃗ , s⃗i). First of all, there
is no difference between these two distances on the coordinates in Z ∪ C due to
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our construction of M ′∗ and choice of N . For the remaining coordinates, we will
consider separately the set X of coordinates in the petals of f⃗ and f⃗ ′ (i.e., the set

{ j ∈ [d] \ (Z ∪ C) | f⃗ [j] ̸= v⃗[j] ∨ f⃗ ′[j] ̸= v⃗[j] }), and the set Y = [d] \ (C ∪ Z ∪X) of

all remaining coordinates. It follows that v⃗[j] = f⃗ [j] = f⃗ ′[j] for all coordinates j ∈ Y ,
and hence there is no difference between the two distances on these coordinates either.

So, all that is left is to consider the difference between δ(f⃗ ′, s⃗i) and δ(f⃗ , s⃗i) on the
coordinates in X; it will be useful to recall, that(unlike for the sets Qi, the construction

of F ′ guarantees that each coordinate occurs at most once in f⃗ and also at most once
in f⃗ ′, and that α is the size of each set in the sunflower F ′. Among the coordinates
in X, f⃗ can only differ from s⃗i in at most α− |C| many coordinates—notably in the

coordinates of its own petal—because the coordinates in the petal of f⃗ ′ do not intersect
with Qi. On the other hand, our construction guarantees that f⃗ ′ differs from s⃗i in at
least α − |C| coordinates in X; more precisely, on all coordinates in the petal of f⃗ ′,

since on these coordinates (1) s⃗i is equal to v⃗ and (2) f⃗ ′ differs from v⃗.

In summary, we conclude that δ(f⃗ ′, s⃗i) ≥ δ(f⃗ , s⃗i) and hence (S \ {f⃗}) ∪ {f⃗ ′} is a
k-diversity set in M ′∗, as claimed.

We can now establish our main result for Pow-Hyp-IS-Completion.
Theorem 5. Pow-Hyp-IS-Completion is fixed-parameter tractable parameterized by
k + r. In particular, Pow-Hyp-IS-Completion can be solved in time O∗((kr)O(k2r)),
where O∗ ignores polynomial factors in the runtime.

Proof. The algorithm proceeds as follows. Given an instance I = (M,k, r) of Pow-

Hyp-IS-Completion, it first checks whether M contains a vector with more than
(k − 1) · (r + 1) □’s; if yes, it applies Lemma 2 and restarts on the reduced instance.
Second, it checks whether |M | ≥ k · ζ(k, r); if not, it uses the fact that the number
of □’s and the number of rows is bounded by a function of the parameter to find
a completion and a k-diversity set in I (or determine that one does not exist) by

brute force. Note that this step can be achieved in time O∗(
(

k·ζ(k,r)
k

)

2k(k−1)·(r+1)k2) =

O∗((k · (kr)O(kr))k2k(k−1)·(r+1)k2) = O∗((kr)O(k2r)).
Third, it checks whether each vector v⃗ satisfies |Nr(v⃗)| < ζ(k, r); if yes, then it

solves I by invoking Lemma 3. Otherwise, it invokes Lemma 4 to reduce the cardinality
of M by 1 and restarts. If the algorithm eventually terminates with a “NO”, then we
know that the initial input was a NO-instance; otherwise, it will output a solution
which can be transformed into a solution for the original input by the used lemmas.

Since all steps, apart from solving the instance with |M | ≥ k ·ζ(k, r) can be achieved

in polynomial-time, we obtain O∗((kr)O(k2r)) as the total runtime of the algorithm.

3.2 Lower Bounds

Theorem 6. Pow-Hyp-IS is NP-complete and W[1]-hard parameterized by k.

Proof. We prove both NP-hardness and W[1]-hardness results by giving a polynomial-
time FPT reduction from Independent Set (IS), which is W[1]-hard [14].

Let (G, k) be an instance of IS, where V (G) = {v1, . . . , vn}, and let m = E(G). Fix
an arbitrary ordering O = (e1, . . . , em) of the edges in E(G).
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For each vertex vi ∈ V (G), define a vector a⃗i ∈ {0, 1}m by setting a⃗i[j] = 1 if vi
is incident to ej and a⃗i[j] = 0 otherwise. Now expand the set of coordinates of these
vectors by adding to each of them n(n− 1) new coordinates, n− 1 coordinates for each
vi, i ∈ [n]; we refer to the n− 1 (extra) coordinates of vi as the “private” coordinates
of vi. For each vi, i ∈ [n], set n − 1 − deg(vi) many coordinates among the private
coordinates of vi to 1, and all other new coordinates of vi to 0. Let M = {a⃗i | i ∈ [n]}
be the set of expanded vectors, where a⃗i ∈ {0, 1}m+n(n−1), for i ∈ [n]. The reduction
from IS to Pow-Hyp-IS produces the instance I = (M,k, 2n− 4) of Pow-Hyp-IS;
clearly, this reduction is a polynomial-time FPT-reduction.

Observe that, for any two distinct vertices vi, vj ∈ V (G), δ(a⃗i, a⃗j) = 2n − 2 if vi
and vj are nonadjacent and δ(a⃗i, a⃗j) = 2n− 4 if vi and vj are adjacent.

The proof that (G, k) is a Yes-instance of IS iff (M,k, 2n− 4) is a Yes-instance of
Pow-Hyp-IS is now straightforward.

Theorem 7. Pow-Hyp-IS is NP-complete even when r = 2.

Proof. We reduce from the Independent Set problem (which is NP-complete). Let
(G, k) be an instance of Independent Set and let G′ be the graph obtained from G

after subdividing every edge exactly twice. We first observe that G has an independent
set of size at least k if and only if G′ has an independent set of size at least |E(G)|+ k.
This is because if I ⊆ V (G) is an independent set of G, then we can add one of the
subdivision vertices for every edge of G because I does not contain both endpoints of
an edge. On the other hand, if I ⊆ V (G′) is an independent set of G′, then we can
assume without loss of generality that I does not contain both endpoints of an edge
in G because we could easily transform I into an independent set of the same size by
replacing one of the endpoints of such an edge with a subdivided vertex.

Next we construct an instance I = (M, |E(G)|+k, 2) of Pow-Hyp-IS in polynomial-
time such that G′ has an independent set of size at least |E(G)|−k if and only if I is a
Yes-instance. We set d = 2|V (G)| and obtain M as follows. Let V (G) = {v1, . . . , vn}.
For every vi ∈ V (G), we add the vector v⃗i that is 1 at the two coordinates i and i+ 1
and otherwise 0. Moreover, for every e = vivj ∈ E(G), we add the vector e1 that is 1 at
the coordinates i, i+1, and j and the vector e2 that is 1 at the coordinates j, j+1, and i.
This completes the construction of I. The equivalence now follows because two vectors
in M have distance at most r = 2 if and only if their corresponding vertices in G′ are
adjacent; here e1 and e2 correspond to the two subdivision vertices on the edge e.

4 On Graph Problems on Induced Subgraphs of the
Hypercubes

In this section, we discuss the implications of the results in the previous section for
fundamental problems defined on induced subgraphs of powers of the hypercube graph.

In particular, the d-dimensional hypercube graph is the graph Qd whose vertex set
is the set of all Boolean d-dimensional vectors, and two vertices are adjacent if and
only if their two vectors differ in precisely 1 coordinate. We can then define the class
Qr

d as the class of all graphs that are induced subgraphs of the r-th power of Qd. We
note that, in line with the commonly used definition of hypercube graphs [15, 28], we
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consider the vertices in Qr
d to be vectors and hence every graph G ∈ Qr

d contains an
explicit characterisation of its vertices as vectors.

In this setting, it is straightforward to observe that Pow-Hyp-IS is precisely the
Independent Set problem on Qr

d. Moreover, the clustering problems In-Clustering,
Diam-Clustering, and Large Diam-Cluster considered in [19, 21] are precisely
the Dominating Set, Partition Into Cliques, and Clique problems, respectively,
on Qr

d. Therefore, all the upper and lower bound results derived in this paper and
in [19, 21] pertaining to these clustering problems hold true for their corresponding
graph problems on Qr

d.
Corollary 8. Given r, d, k ∈ N and a graph G ∈ Qr

d, determining whether G has a:

• dominating set of size k is FPT parameterized by k + r;
• partition into k cliques is FPT parameterized by k + r;
• independent set of size k is FPT parameterized by k + r;
• clique of size k is FPT parameterized by r.

We note that all the tractability results outlined in Corollary 8 are tight, which
follows from the lower-bound results obtained in Section 3.2 and in [19, 21], in the
sense that dropping any parameter from our parameterizations leads to an intractable
problem.

Observing that three of the graph properties in the problems discussed above
are expressible in First Order Logic (FO) and result in FO formulas whose length
is a function of the parameter k, an interesting question that ensues from the above
discussion is whether these positive results can be extended to the generic problem
of First-Order Model Checking [37, 44], formalised below. We will show next that
the answer to this question is negative—and, in fact, remains negative even when we
restrict ourselves to induced subgraphs of hypercubes (i.e., for r = 1).

Q-FO-Model-Checking

Input: A first-order (FO) formula Φ, integers d, r, and a graph G ∈ Qr
d.

Parameter: |Φ|
Question: Does G |= Φ?

We denote by FO-Model-Checking the general FO Model Checking problem on
graphs, i.e., C-FO-Model-Checking with C being the class of all graphs.
Lemma 9. Let H be an arbitrary graph. There is a graph G ∈ Q1

|V (H)|+|E(H)| such

that G is isomorphic to the graph H ′ obtained from H after subdividing every edge
of H exactly once and attaching a leaf to every vertex resulting from a subdivision.
Moreover, G can be computed from H in polynomial time.

Proof. Let n = |V (H)| and m = |E(H)|. To prove the lemma, we construct a matrix
representation M ∈ {0, 1}n+m of H ′ which has one row (vector) for every vertex in H

and where two vertices in H ′ are adjacent if and only if their corresponding rows in
M have Hamming distance at most 1. Let v1, . . . , vn be an arbitrary ordering of the
vertices of H, and e1, . . . , em be an arbitrary ordering of its edges. Then, M contains
one row ri for every i ∈ [n] that is 1 at its i-th entry and 0 at all other entries. Moreover,
for every edge eℓ = {vi, vj} ∈ E(H), M contains the following two rows:

11
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• the row re (corresponding to the degree-3 vertex in H ′ obtained from e) that is 1 at
the i-th and j-th entries, and 0 at all other entries; and

• the row r′e (corresponding to the leaf in H ′ obtained from e) that is 1 at the i-th,
j-th, and (n+ ℓ)-th entries, and 0 at all other entries.

This completes the construction ofM . Clearly, two rows inM have Hamming distance at
most one if and only if their corresponding vertices in H ′ are adjacent, as required.

Theorem 10. Q-FO-model-checking is W[t]-hard for every t ∈ N
∗.

Proof. We give a parameterized reduction from FO Model Checking, which is W[t]-
hard for every t ∈ N

∗. Let I := (Φ, H) be an instance of FO Model Checking.
We will show the theorem by constructing the equivalent instance I ′ := (Φ′, G) such
that G ∈ Q1

d and |Φ| ≤ f(|Φ′|) for some computable function f and value d that is
polynomially bounded in the input size. G is obtained from H in the same manner as
in Lemma 9. Moreover, Φ′ is obtained from Φ as follows:

• Let ϕV (x) be the formula that holds for a variable x if and only if x corresponds to
one of the original vertices in G, i.e., ϕV (x) := ∀yE(x, y)∃z ̸= x ∧ E(y, z);

• replace every subformula of the form ∃xϕ (for some variable x and some subformula
ϕ of Φ) with the formula ∃xϕV (x) ∧ ϕ;

• replace every subformula of the form ∀xϕ (for some variable x and some subformula
ϕ of Φ) with the formula ∀xϕV (x) → ϕ; and

• replace every atom E(x, y), where E is the adjacency predicate and x and y are
variables, with the formula ∃sE(x, s) ∧ E(s, y) ∧ x ̸= y.

It is straightforward now to show that H |= Φ if and only if G |= Φ′, and that
|Φ′| ≤ 20|Φ|. Moreover, because of Lemma 9, G′ ∈ Q1

d, as required.

5 Conclusion

In this paper, we studied the parameterized complexity of the classical Independent
Set problem on induced subgraphs of powers of hypercubes, but with the additional
complication that the “positions” of the vertices in the hypercube representation may
be partially unknown. We considered the two most natural parameters for the problem:
the size k of the independent set and the power r of the hypercube, and provided a
complete characterisation of the problem’s complexity w.r.t. k and r. We also performed
a meta-investigation of the parameterized complexity of graph problems on this graph
class that are expressible in FO logic and showed the existence of such problems that
are parameterized intractable.

A natural future direction of our work is to study the parameterized complexity
of other graph problems on this class, in particular those that have applications in
clustering. One famous open problem that comes to mind is the p-center problem [16, 33].
The problem can be formulated similarly to the above setting, with the exception
of allowing the selection of vertices to be from the whole hypercube, as opposed to
restricting them to the input subgraph. In particular, the well-known p-centers problem
reduces to the k-dominating set problem in the r-th power of the hypercube graph, but
where the k vertices in the dominating set are not restricted to the input subgraph, but
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can be chosen from Qd. This problem was shown to be FPT parameterized by k+r [21].
An intriguing NP-hard restriction of the problem is the problem slice corresponding to
p = 1, or what is known as the 1-center problem, or equivalently, the Closest String

problem [33, 43]. The parameterized complexity of the problem paramertized by each
of k and r alone remain important open questions.
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