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Abstract
With growing demand straining urban transit systems’ resilience in managing outburst passenger flows,
existing approaches focused on offline and single-modal evacuations remain limited. This study proposes
an online multi-modal evacuation framework that coordinates on-duty taxis, buses, and metros while
minimizing impact on their regular services. We develop a data-driven agent-based environment to update
multi-modal transit data and stranded passenger information in real time. Two coordination strategies are
introduced: (1) an independent strategy using a distributed training and distributed execution algorithm,
and (2) a collaborative strategy using a hybrid centralized training and distributed execution algorithm.
To dynamically assess evacuation effectiveness, we design a resilience framework with three metrics:
robustness, rapidity, and resourcefulness. These metrics are transformed into demand-responsive feedback
at each time step, enabling agents to proactively generate resilient evacuation plans. In a real-world
case study triggered by a railway disruption, our approach outperforms genetic algorithms and multi-
agent deep deterministic policy gradient algorithms in computation time and solution quality under
offline conditions. Simulated new environments further validate its online applicability, demonstrating
its potential for real-world deployment.

Keywords: Urban transit, multi-modal evacuation, online, resilience, multi-agent reinforcement learning

1. Introduction1

Outburst passenger flow (OPF), triggered by unexpected transit disruptions or large-scale gathering2

events, poses significant challenges to the resilience of urban transit systems, namely the adaptability and3

recoverability under abnormal conditions (Zhou et al., 2019). For example, a disruption on Singapore’s4

urban rail line in September 2024 affected 358,000 commuters on the first day, many of whom sought5

alternative routes (Land Transport Guru, 2024). During the July 2021 Henan flood in China, all trains6

along the Longhai and Jingguang mainland railway lines were urgently canceled for an entire day, leaving7

thousands of passengers attempting to leave overcrowded railway stations (Hu et al., 2024). As sudden8

surges of passengers overwhelm transit services, the risk of overcrowding is heightened, causing potential9

accidents for stranded passengers (Xu et al., 2021). For passengers unable to evacuate independently10

(such as those without vehicles, carrying luggage, or traveling long distances), transit-based evacuation11

strategies are essential, which involve the dispatch of additional transit capacities to relocate stranded12

passengers safely and efficiently (Matherly et al., 2015). Once an unexpected OPF occurs, transit-based13

evacuation must rely on the on-duty services, such as unoccupied taxis, buses and metro capacities near14

the affected area, due to the absence of reserved back-up resources (Zhang et al., 2025). However, over-15

reliance on any single mode may not only constrain overall evacuation capacity but also compromise its16

serviceability for regular passengers outside the OPF area. Therefore, coordinated multi-modal evac-17

uation is essential by strategically allocating passenger demand across modes based on the respective18

characteristics and capacity of each mode.19

Due to the unpredictability of passenger accumulation and capacity availability, it is often infeasible20

to evacuate all passengers in a single planning cycle. Online evacuation planning is necessary, which21

continuously adapts evacuation plans to real-world conditions. To support such dynamic planning, real-22

time perception of both passenger mobility and transit capacity is essential. Agent-based models have23

been studied to simulate the dynamic interactions between passengers and vehicles during evacuations24
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(Chang et al., 2024). However, existing models often rely on static simulation software and rule-based1

logic, limiting their responsiveness to real-world uncertainties. A data-driven agent-based model that can2

update environmental conditions in real time is therefore required to provide accurate inputs for effective3

evacuation planning. To adapt evacuation plans, a decision-making tool must be capable of generating4

solutions based on up-to-date information. Reinforcement learning, a machine learning paradigm for5

adaptive decision-making, offers a promising solution (Sutton and Barto, 2018). Pretrained agents can6

be directly deployed in the environment, without depending on predefined scenarios or computationally7

intensive optimization. This paradigm significantly enhances the flexibility of emergency response and8

reduces the computational time, enabling real-time emergency management in various domains, e.g.,9

metro inflow control (Jiang et al., 2018) and train rescheduling (Ying et al., 2020). Therefore, this paper10

proposes a novel data-driven agent-based environment coupled with a reinforcement learning framework11

to enable effective and scalable online multi-modal evacuation.12

To comprehensively evaluate the effectiveness of online evacuation planning during OPF, a dynamic13

indicator is needed to provide real-time feedback on the effectiveness of plans at each time step. While14

traditional indicators, such as network clearance time, risk exposure time, and the number of evacuated15

passengers (Jiang et al., 2022; Li et al., 2023), focus on the overall post-evacuation effectiveness, resilience,16

which reflects the propagation of system performance during abnormal events, has not been fully explored.17

Resilience can be captured by the “resilience triangle” and the “4R” metrics (i.e., redundancy, robustness,18

rapidity, and resourcefulness) (Bruneau et al., 2003). Therefore, the resilience of OPF evacuation, as a19

dynamic evaluation framework, requires further development.20

This paper aims to propose an online multi-modal evacuation planning approach throughout the21

period of regional OPF. Specifically, this approach is designed to dynamically generate evacuation plans22

by coordinately dispatching the redundant capacity of each mode, while explicitly accounting for the23

impact of evacuation on the regular service. To achieve this, a multi-agent reinforcement learning (MARL)24

framework is developed that seamlessly integrates dispatching strategies for taxi, bus, and metro systems.25

Key strategies include: (a) deploying idle taxis to an OPF area; (b) dynamically reallocating bus fleets26

across emergency routes; and (c) regulating metro passenger inflow volumes to mitigate congestion.27

Considering the real-world mobility of multi-modal transit vehicles and passengers, a data-driven agent-28

based environment is constructed by leveraging multi-source datasets—including the taxi GPS traces,29

bus smart card transactions, bus automated vehicle location (AVL) logs, time-dependent metro origin-30

destination (OD) demand matrices, and anonymized mobile dataset. The framework is validated in a31

multi-modal hub in Xi’an, China, where a railway disruption causes thousands of passengers stranded,32

necessitating urgent evacuation. Our approach demonstrates superior computational efficiency compared33

to genetic algorithms (GA) and multi-agent deep deterministic policy gradient (MADDPG) algorithms34

in offline conditions. Furthermore, its online applicability is proved by transferring pre-trained agents to35

a series of new scenarios. The contributions of this work are threefold:36

• We propose an online multi-modal evacuation planning approach. Unlike offline evacuation plan-37

ning, our approach continuously generates evacuation plans in real time for each mode at each time38

step until the OPF subsides. In contrast to existing studies that focus on OPF within a single39

system, our approach targets the OPF in a geographic area, enabling a more practical and compre-40

hensive analysis of overall passenger demand. Different from single-mode evacuation, we leverage41

the coordination of multiple modes with each mode having advantageous transit characteristics42

in terms of capacity and efficiency. By distributing passengers across multiple modes, our ap-43

proach only relies on redundant capacities from on-duty services, thereby improving the generality44

of application by eliminating the need for backup capacities.45

• We develop a novel MARL framework that coordinates capacity dispatch across multiple modes.46

Unlike MARL frameworks with homogeneous agents, our framework adopts heterogeneous agents,47

where each agent controls a specific mode, each with a distinct dispatching strategy and operational48

characteristics. To dynamically evaluate evacuation plans and provide feedback to agents, we49

establish a set of demand-responsive feedback functions based on a customized resilience framework.50

• We introduce two MARL algorithms to train heterogeneous agents for coordinating multi-modal51

evacuations. A distributed training and distributed execution (DTDE) algorithm trains agents to52

independently control each mode and evacuate their respective demands. A hybrid centralized53

training and distributed execution (H-CTDE) algorithm trains agents to collaboratively manage54

multi-modal capacities, accounting for passengers’ mode shifting. Compared with the traditional55
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centralized training and distributed execution (CTDE) algorithm, the H-CTDE algorithm incorpo-1

rates a central critic that evaluates the overall effectiveness of evacuation plans, and a local critic2

that distinguishes the contribution of each mode and impact on its respective regular service. This3

algorithm ensures balanced utilization across modes, preventing over-reliance on any single mode4

and mitigating lazy or conservative behaviors among agents.5

This paper is structured as follows. Section 2 reviews the related literature. Section 3 defines our6

strategy and the resilience framework. Section 4 formulates the mathematical model. Section 5 builds7

the MARL framework. Section 6 introduces the DTDE and H-CTDE training algorithms. Section 78

validates our approach through real-world case studies. Finally, the paper is concluded in Section 8.9

2. Literature review10

This paper focuses on the online multi-modal evacuation problem for improving the system’s resilience11

under OPF. Therefore, related studies are reviewed from two aspects: transit-based evacuation planning12

for the OPF in Section 2.1, and dynamic evaluation for evacuation planning in Section 2.2.13

2.1. Transit-based evacuation planning for outburst passenger flows14

Studies on transit-based evacuation planning for OPF can be classified into offline and online ap-15

proaches based on their reliance on the information, as described in Section 1. Studies on the offline and16

online evacuation planning are reviewed in Sections 2.1.1 and 2.1.2, respectively.17

2.1.1. Offline evacuation planning18

Traditional offline evacuation planning has focused on addressing a fixed number of evacuees using19

predetermined capacities. Studies have primarily focused on the bus system, with strategies including20

fleet dispatching, routing, and shelter (or destination) location optimization. Goerigk et al. (2015) first21

proposed an integer linear programming model that framed bus evacuation planning as a vehicle routing22

problem with multiple pick-up and shelter locations. The objective was to minimize the overall evacuation23

time. Teichmann et al. (2021) addressed large-scale evacuation planning under the nuclear leakage24

scenario. Evacuees were concentrated around the nuclear facility and needed to be transported away25

from the risky zone. Different from studies like Goerigk et al. (2015), the bus routing was assumed to be26

predefined, while the bus dispatching was carefully optimized to determine which fleet was assigned to27

which route. The primary objective was to minimize the clearance time of the risky area. However, overly28

relying on buses could restrict the evacuation capacity. Therefore, Yang et al. (2018) proposed a mixed-29

integer linear programming model that integrated taxis, buses and metros for collaborative evacuation.30

Different from single-modal evacuation, multi-modal capacities were coordinately dispatched. Passengers31

were distributed across multiple modes by a systematic optimization model, assuming that all passengers32

followed the assignment and were fully evacuated. Jiang et al. (2025) integrally dispatched conventional33

fixed-route buses and demand-responsive flexible-route buses to optimize passenger travel time and the34

number of evacuated passengers through vehicle routing and passenger assignment strategies. However,35

the assumption that evacuees and capacities are fixed is not applicable in many non-noticed emergencies36

where the dynamics of passenger growth and capacity availability increase the uncertainty in planning.37

Some studies have incorporated dynamic models into offline evacuation planning to simulate evacuees’38

mobility. Chang et al. (2024) proposed a two-stage agent-based model to simulate pedestrian movement39

and bus routing process under a toxic gas leak scenario. An agent-based model was developed to dy-40

namically simulate the mobility of passenger elements during bus evacuation (Note: To distinguish the41

term “agent” in the MARL and agent-based modeling context, the agents in the agent-based modeling42

method will be referred to as “elements” hereafter). However, the number of bridging buses was assumed43

to be sufficient to fully accommodate all passengers, which overlooked the propagation of stranded pas-44

sengers. Hao et al. (2024) proposed a train dispatching strategy to address the OPF scenario in a metro45

system. The strategy focused on adding operating trains to enhance evacuation capacity. Wang and Jin46

(2025) proposed a train rescheduling and passenger assignment approach to evacuate stranded passengers47

following a rail disruption. The method incorporated non-disrupted train lines to construct alternative48

evacuation routes. Dynamic passenger inflow was considered, and the evacuation of all passengers was49

not mandatory. Instead, they aimed to maximize the number of evacuated passengers and minimize the50

number of additional trains. Ma et al. (2024) addressed another OPF scenario caused by significant air-51

line cancellations, where stranded passengers at the airport required transit to return. Passenger demand52

was treated as dynamically arriving, as these passengers were originally heading for flights. Although53
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the above approaches considered the dynamic arrival of evacuees, the resources, including available buses1

and trains, were treated as statically given in the background. This assumption neglects the real-world2

capacity availability, which often depends on the redundancy of transit systems.3

By using the dynamic redundant capacities in the urban transit system, Jiang et al. (2022) proposed4

a multi-modal evacuation strategy that involved taxis, buses, and metros. The availability of capacities5

was dynamically driven by taxi GPS, bus and metro smart card datasets. However, similar to Yang6

et al. (2018), both studies assumed evacuees as statically predetermined and ultimately fully evacuated,7

overlooking the passenger growth and their mode choice behavior in real-world scenarios.8

2.1.2. Online evacuation planning9

To enable online applications for OPF evacuation, several studies have explored inflow control strate-10

gies within metro systems. Zhang et al. (2021) addressed coordinated passenger flow control for multiple11

stations in a metro system using dynamic programming. A heuristic decomposition algorithm was pro-12

posed to manage flow control dynamically, relying only on real-time information. Liang et al. (2023),13

which also employed dynamic programming, developed a passenger flow control strategy for stations14

along the oversaturated metro lines, effectively addressing uncertainties in passenger demand through15

an online forward algorithm for real-time control. Moreover, Jiang et al. (2019) leveraged Q-learning to16

implement online inflow control and train stop-skipping strategies. Recently, Zhang et al. (2025) have17

explored bus evacuation for stranded passengers during rail disruptions. They integrated bus bridging18

and dispatching approach based on the rolling horizon approach, aiming to dynamically dispatch bridging19

buses while minimizing the impact on regular passengers. However, both their inflow control and bus20

evacuation components relied on a single mode of transport for evacuation, which limited overall capacity21

and operational efficiency.22

In the multi-modal system, the metro and bus were coordinately dispatched for large-scale evacuation23

by Abdelgawad and Abdulhai (2010). They integrated demand estimation and routing simulation into a24

rolling horizon framework that generated evacuation plans for each time step. Wang et al. (2024) leveraged25

a rolling horizon framework, dispatching taxis while considering the surrounding regular bus services to26

address OPF in the taxi system. Passengers’ mode choice was modeled based on travel time and fare27

costs. However, rolling horizon methods lack the Bellman equation structure to balance immediate and28

future benefits (Powell, 2011), thereby limiting the ability to proactively generate resilient evacuation29

plans during the OPF period. Additionally, Su et al. (2024, 2025) proposed a data-driven agent-based30

evacuation model that integrated taxis and buses for OPF evacuation. However, this method focused on31

the macroscopic evacuation rate, which did not assess precise plans of vehicle dispatching or passenger32

distribution. Therefore, current online multi-modal evacuation research has yet to fully integrate taxi,33

bus, and metro systems while accounting for the impact on their respective regular services. Moreover,34

as evacuation systems become increasingly complex, enhancing computational efficiency is essential to35

ensure real-time applicability.36

2.1.3. Summary37

Existing transit-based evacuation studies for OPF are summarized in Table 1, with their application38

scenarios and methodologies systematically classified. The abbreviations used in the table are defined as39

follows. The “Onl.” column indicates whether the evacuation strategy is applicable online. “Eva.” and40

“Res.” columns denote, respectively, whether evacuees and resources are treated as static (S) or dynamic41

(D). “Mode” column refers to the transit modes considered, including taxi (T), bus (B), and metro (M).42

“Imp.” column indicates whether the impact of evacuation on regular services is taken into account.43

“Cho.” column represents the mode choice modeling approach, categorized as systematic optimization44

(Sys), independent choice (Ind), or mode shift behavior (Mod). “Model” column specifies the model-45

ing methods used, such as integer linear programming (ILP), mixed-integer linear programming (MILP),46

mixed-integer nonlinear programming (MINLP), dynamic programming (DP), robust optimization (RO),47

simulation (Sim), rolling horizon approaches (RH), reinforcement learning (RL), and multi-agent rein-48

forcement learning (MARL). “Strategy” column denotes the adopted evacuation strategies, including49

vehicle routing (VR), emergency vehicle dispatching (ED), destination relocating (DL), inflow control50

(IC), train rescheduling (TR), and passenger distribution (PD). “Objective” column refers to the com-51

ponents considered as optimization goals, including waiting time (WT), in-vehicle time (VT), operating52

cost (OC), and evacuated passengers number (EN).53

According to the table, although many studies have focused on evacuation planning in offline settings,54
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online evacuation strategies have primarily matured within metro and bus systems (see Columns “Onl.”1

and “Mode”). Moreover, few studies have simultaneously considered the dynamic nature of both evacuees2

and resources (see Columns “Eva.” and “Res.”). Additionally, the impact of evacuation on regular services3

has not been clearly addressed in the taxi system (see Column “Imp.”). In the studies of multi-modal4

evacuation planning, passengers’ mode choice behavior has not been addressed, except for Wang et al.5

(2024) and Su et al. (2024, 2025) (see Column “Cho.”). Passengers’ mode choice in these two studies is6

completely independent based on the trip cost of each mode (i.e., travel time and fare cost), regardless of7

their original mode choice while waiting for evacuation. However, as studies on mode-shifting behavior8

have shown, passengers typically prefer to remain with their original mode; only when the original mode9

is unavailable are they willing to shift to alternative modes (Li et al., 2020a,b; Gu and Chen, 2023).10

According to Column “Model”, online multi-modal evacuation planning studies have primarily adopted11

the rolling horizon approach, which cannot proactively generate resilient evacuation plans by balancing12

immediate and future benefits. Consequently, developing an online multi-modal evacuation approach13

that accounts for passengers’ mode-shifting behavior and the impact of evacuation on regular services14

requires further exploration.15

To ensure generality, the proposed framework incorporates widely adopted evacuation strategies,16

including emergency dispatching (for taxis and buses), bus destination relocating, metro inflow control,17

and passenger distribution (see Column “Strategy”). The objectives include minimizing passenger waiting18

time, operational cost (measured by the impact on regular services), and maximizing the evacuated19

passenger number (see Column “Objective”).20

Table 1: Summary of transit-based evacuation literature

Applicable scenario Methodology
Publication Onl. Eva. Res. Mode Imp. Cho. Model Strategy Objective
Abdelgawad and Ab-
dulhai (2010)

� D S B, M × Sys Sim, RH ED, PD WT, VT, OC, EN

Goerigk et al. (2015) × S S B × - ILP VR VT
Yang et al. (2018) × S S T, B, M × Sys ILP ED, PD WT, VT
Jiang et al. (2018) � D S M � - RL IC, TR WT
Teichmann et al. (2021) × S S B × - MILP ED, DL VT, OC
Zhang et al. (2021) � D S M � - DP IC EN
Jiang et al. (2022) × S D T, B, M × Sys ILP PD WT
Liang et al. (2023) � D S M � - DP IC WT, EN
Chang et al. (2024) × S S T, B × - Sim VR, ED, DL WT, VT
Ma et al. (2024) × D S B × - MINLP VR, ED, DL WT, VT, OC
Hao et al. (2024) × D S M × - RO IC, ED, TR OC, EN
Wang et al. (2024) � D S T, B × Ind RO, RH ED, DL, PD WT, VT, OC, EN
Su et al. (2024, 2025) � D D T, B × Ind Sim ED, PD WT, VT, OC
Jiang et al. (2025) × D S B × - ILP VR, ED, PD VT, EN
Wang and Jin (2025) × D S M × - MINLP TR VT, EN
Zhang et al. (2025) � D D B � - MILP, RH ED, PD WT, OC
This paper � D D T, B, M � Mod MARL ED, IC, PD WT, OC, EN

2.2. Dynamic evaluation for evacuation planning21

Traditional evacuation indicators often focus on the overall evacuation effectiveness. In our proposed22

online evacuation problem, which updates evacuation plans dynamically at each time step, resilience is23

required to evaluate not only the overall effectiveness but also the contribution of each plan at each24

time step. Quantification of resilience under various interventions and abnormal conditions has been25

studied. Studies such as Jin et al. (2014) and Tang et al. (2021) quantified the resilience of metro26

network under bus bridging strategies using the difference between satisfied demand and total demand.27

Bešinović et al. (2022) quantified the resilience of railway network under infrastructure maintenance and28

train rescheduling strategies using the demand satisfaction as an indicator as well. Though the “resilience29

triangle” has been well demonstrated by these quantification methods, the “4R” metrics have not been30

explicitly analyzed in their frameworks. The metrics of resilience have been addressed separately in31

recent studies. Li et al. (2023) addressed the system’s robustness by focusing on the peak crowdedness32

in the station during rail disruptions. It was indicated by the maximum number of stranded passengers.33

However, this indicator emphasized only the worst-case scenario conditions, overlooking scenarios where34

crowdedness remained at a moderately high level for an extended period, which could also pose significant35
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challenges. In the bus system, Wang et al. (2025) addressed the system’s rapidity of OPF by focusing on1

passengers’ extra waiting time. However, the risk of overcrowding, as addressed by Li et al. (2023), was2

not considered.3

Resilience, as a multi-metric framework, comprehensively reflects the severity of the worst-case condi-4

tion (robustness), the speed of recovery (rapidity), and the extent of recovery (resourcefulness) (Bruneau5

et al., 2003). The evacuation mode, evacuation indicators, and resilience metrics used in the above studies6

are summarized in Table 2. Overall, existing evaluation methods rarely integrate the resilience triangle7

and metrics within a unified framework for evaluating dynamic interventions (refer to evacuation in our8

study) in OPF scenarios9

Table 2: Summary of dynamic evaluation for evacuation planning

Paper Mode Evacuation indicator Resilience metrics
Jin et al. (2014) M Demand satisfaction Resilience triangle
Tang et al. (2021) M Demand satisfaction Resilience triangle
Bešinović et al. (2022) R Demand satisfaction Resilience triangle
Li et al. (2023) M Maximum stranded passengers Robustness
Wang et al. (2025) B Passengers’ waiting time Rapidity
This paper T, B, M Demand satisfaction, Passengers’ waiting

time, Maximum stranded passengers
Resilience triangle, robustness,
rapidity, resourcefulness

Notation: T-taxi, B-bus, M-metro, R-railway

3. Problem statement10

The online multi-modal evacuation strategy is explained in Section 3.1, and the framework of resilience11

for OPF evacuation is defined in Section 3.2.12

3.1. Online multi-modal evacuation for outburst passenger flows13

The OPF evacuation is addressed in online settings by multi-modal coordination. The time horizon14

is discretized into time steps where an evacuation plan is provided at each interval ∆t (Note that ∆t15

should be relatively short, e.g., 5 minutes, to maintain synchronization with the real-world scenario).16

Passengers stranded in the OPF area require transit to various destinations scattered across the city.17

To handle this scattered passenger demand pattern, multi-modal transits are dispatched coordinately18

with each mode having a specific dispatching strategy and operational characteristics. Since our strategy19

aims to use redundant capacities from on-duty services, the impact of evacuation on regular services20

is explicitly considered. Two coordination dispatching strategies are proposed to facilitate multi-modal21

evacuation. The primary objective is to enhance the resilience under OPF and minimize the impact22

on regular services. To dynamically evaluate evacuation plans throughout the OPF period, a resilience23

framework is defined in Section 3.2.24

3.1.1. Dispatching strategies and operational characteristics for multi-modal evacuation25

To accommodate different passenger demands, the dispatching strategy and operational characteristics26

of each mode are demonstrated in Fig. 1 and described as follows:27

• Taxis, with limited capacity and flexible routing options, are ideal for short-distance door-to-door28

service. As illustrated in Fig. 1, each taxi directly transits passengers (orange lines) to their destina-29

tions (black circles). It is needed to determine the number of taxis to be dispatched for evacuation.30

• Buses, with moderate capacity, provide adaptable route-based coverage. As shown in Fig. 1, pas-31

sengers, whose destinations (black circles) are located in a nearby geographic area, need to be32

aggregated onto one emergency route. These emergence routes (blue lines) directly transport pas-33

sengers to a predefined terminal station (blue points) with each terminal station serving a specific34

geographic area (blue dashed circles). This strategy aligns with established methodologies, such as35

the spatial cluttering method described in Ma et al. (2024). The last-mile trip costs (black dashed36

lines), measured by the distance between bus terminal station and passengers’ destinations, are37

considered in our model to capture passengers’ disutility due to transfers. As buses are assigned38

to the emergency route, the buses that are stationed at the depot before they commence the next39

operation are deployed to avoid leaving on-board regular passengers stranded midway. Decisions40

are made in two steps: a) the number of buses to be dispatched; b) the bus assignment among41

emergency routes. This requires two key decisions: first determining how many buses to dispatch,42

then assigning them among emergency routes. To maintain proper bus headways, at most one bus43

is assigned to each route at each time step, as the evacuation plan is updated every ∆t.44
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• Metro systems serve as high-capacity backbones for rapid evacuation but are constrained by fixed1

infrastructure, including rail lines, stations, and train frequency (shown as green lines and points).2

Metro passengers are assumed to disembark at the station nearest to their destinations. Their3

last-mile travel costs (black dashed lines) are calculated based on the distance between their dis-4

embarkation stations (green points) and final destinations (black circles). Passenger inflow at the5

metro station within the OPF area is the focus of this paper.6

Figure 1: Characteristics of multi-modal evacuation
While this paper does not optimize bus routing and stopping patterns, our approach can accommodate7

flexible routing schemes by incorporating predefined candidate emergency routes. Such routes could be8

determined by solving the bus routing problem, as shown in existing studies like Zhu et al. (2024).9

3.1.2. Impact of evacuation on regular services10

To explicitly evaluate the impact of evacuation on regular services, the consequence of dispatching11

on-duty vehicles (for taxis and buses) and additional metro inflow is reflected by the number of passengers12

who are denied boarding (Ma et al., 2019), which is referred to as passenger abandonment hereafter. This13

kind of abandonment is induced differently for the three modes. The considerations are as follows, and14

the corresponding quantitative methods will be described in Section 5.2.1.15

• Unoccupied taxis are identified within a certain area around the OPF, similar to the definition of16

searching area in Su et al. (2024). Dispatching taxis from a certain area induces a lack of vehicles17

for other passengers within this area. Regular passengers located outside the OPF area, whose18

taxis are dispatched for evacuation, are considered as abandoned.19

• Buses are dispatched from their original routes. Thus, regular passengers heading to the dispatched20

buses at all stations along the bus route are deemed as abandoned.21

• Metro trains become highly occupied due to the additional inflow at the station within the OPF22

area. Regular passengers at the downstream stations will be denied boarding if the arriving train23

is already at full capacity. Those passengers are deemed as abandoned in the metro system.24

3.1.3. Coordination strategies25

To coordinate multi-modal capacity dispatch, two strategies are developed to address passengers’26

mode-choice dynamics. While evacuees naturally exhibit mode preferences during waiting periods (their27

original mode choice), these preferences can be identified in real time through mobile data analysis28

within each mode’s designated waiting zones (Zhong et al., 2017). The following coordination strategies29

are proposed based on distinct treatments of these mode-choice patterns:30

• Independent strategy: Each mode handles its respective demand, with passengers adhering to their31

original mode choices and not allowed to shift modes while waiting. This restriction is similar to32

the assumptions in single-modal evacuation, as reviewed in Section 2.1, where passenger demand33

is fully managed within each mode without considering mode-shifting behavior. For practical34

implementation, this strategy makes the demand for each mode more predictable. However, it35

may lead to longer waiting times for passengers in the mode with significant imbalance between36

capacity and demand. This strategy will be facilitated by an MARL framework, as described in37

Section 5.3.1, and trained with a DTDE algorithm, as outlined in Section 6.1.38
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• Collaborative strategy: Each mode dispatches capacity based on the overall passenger demand1

within the OPF area. Passengers can dynamically shift modes depending on their original mode’s2

available capacity at each time step and the mode-specific trip costs for each mode. If the passenger’s3

original mode is fully occupied and alternative modes still have residual capacity at the time step,4

he/she is allowed to perform a mode shift based on a probability model, which considers the trip5

cost of each mode. If no residual capacity exists in any modes, passengers continue to wait for6

evacuation at the next time step (only ∆t minutes later). For practical implementation, when any7

mode faces high demand, passengers can shift to less busy modes to reduce the stranding duration.8

This strategy will be facilitated by another MARL framework, as described in Section 5.3.2, and9

trained with an H-CTDE algorithm, as outlined in Section 6.2.10

3.1.4. Assumptions11

Five critical assumptions underpin our problem formulation.12

A1. Self-evacuation, such as by active transportation and regular buses, is not considered. Taxi,13

bus, and metro systems are considered major modes for large-scale evacuation in urban areas.14

A2. All stranded passengers queue at the waiting zone of each mode within the OPF area. Passengers15

are served following the first-come-first-served principle.16

A3. Dispatched buses and taxis operate on a one-way route rather than a round trip.17

A4. Passengers are relieved from overcrowding once they are assigned to a suitable transit mode.18

A5. To minimize the impact of evacuation on regular services, train rescheduling and inflow control19

in other stations outside the OPF area are not considered. Running time and dwell time of trains are20

fixed following the timetable.21

Assumption A1 defines the scope of stranded passengers to be evacuated. This paper excludes self-22

evacuation, meaning that our approach is responsible for evacuating all stranded passengers who have23

entered the OPF area. This assumption isolates the demand in the OPF area from the regular tran-24

sit system, which mitigates the uncertainty of passenger dynamics. Taxi, bus, and metro systems are25

considered major modes due to their accessibility, flexibility, and complementary strengths in balancing26

capacity and coverage. Assumption A2 assumes that passengers follow their order of arrival, consistent27

with assumptions commonly made in transit-based evacuation studies (Ma et al., 2024; Su et al., 2024).28

In some practical emergencies, vulnerable populations may require prioritization. This can be addressed29

by modifying the queuing principle in the model to incorporate prioritization based on factors such as30

age, gender, or other relevant criteria. The model is described in Section 5.3.1, and an example illus-31

trating how to adjust the queuing principle is provided in the Appendix C. Assumption A3 is valid for32

large-scale evacuations, similar to the studies like Liu et al. (2022) and Jiang et al. (2022). In scenar-33

ios where passengers’ destinations are dispersed throughout the city, most routes involve long-distance34

travel. Unlike short-distance bridging services such as Zhang et al. (2025), the circulation of buses and35

taxis is not considered in this study. Assumption A4 excludes passengers’ boarding time from the model.36

This assumption is reasonable when boarding efficiency is high. As stated in Assumption A2, passengers37

are already queuing in the designated waiting zones of each mode, and the mixing of passenger flows38

is neglected, further supporting the validity of this simplification. Similar assumptions have also been39

adopted in other studies, such as Zhang et al. (2021) and Zhu et al. (2024). Assumption A5 limits the40

scope of emergency response strategies in the metro system, which is commonly adopted in metro pas-41

senger inflow control studies, like Zhang et al. (2021); Liang et al. (2023) and Jiang et al. (2022). Train42

operations are typically considered robust enough to handle the oversaturated passenger flows without43

rescheduling.44

3.2. Resilience framework for outburst passenger flows evacuation45

To dynamically evaluate the effectiveness of evacuation at each time step, a resilience framework is46

defined for OPF evacuation. To quantify the OPF within this resilience framework, “capacity deficiency”47

is defined as the result of the mismatch between capacity (represented by satisfied demand) and demand48

(represented by total passenger demand). To diagram the “resilience triangle”, the capacity deficiency is49

calculated as a negative value, shown in Eq. (1).50

Capacity deficiency = Satisfied demand− Total demand (1)
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The absolute value of this deficiency indicates the number of stranded passengers who remain unsatisfied1

in the crowded area.2

To demonstrate the resilience framework indicated by capacity deficiency, two example curves under3

OPF are shown in Fig 2. The grey curve represents the case without evacuation, serving as a benchmark,4

while the blue curve represents the case with a well-designed evacuation. An overcrowding threshold (red5

dashed line) is outlined, representing the safety limit for the number of stranded passengers. It serves as a6

trigger for initiating evacuation planning, which is also known as an alarm mechanism in other emergency7

management studies (Abdelgawad and Abdulhai, 2010). Under normal conditions (black curve), capacity8

deficiency is near zero, indicating an equilibrium state with only a few stranded passengers. When OPF9

occurs at t0, the capacity deficiency intensifies, leading to a rise in the number of stranded passengers.10

The evacuation measures are activated at tstart when the number of stranded passengers surpasses the11

threshold. By comparison of the two curves, a well-designed evacuation approach (blue curve) can12

effectively reduce the maximum number of stranded passengers, shorten the duration of overcrowding,13

and accelerate the restoration of capacity-demand equilibrium, thereby enhancing resilience under OPF.14

Figure 2: Resilience framework of OPF evacuation

To develop the resilience framework for evacuation, the “4R” metrics need to be defined in alignment15

with existing evacuation metrics (including maximum stranded passenger number, network clearance16

time and risk exposure time). Note that as redundancy is typically enhanced during pre-event stage17

(Xu et al., 2021), robustness, rapidity, and resourcefulness are emphasized in this paper which aims to18

enhance the resilience during the evacuation process. For the definition of resilience metrics, please refer19

to prominent review articles (Zhou et al., 2019; Gu et al., 2020). The labels of resilience metrics in20

Fig. 2 follow the concepts provided in these reviews. Overall, the definitions of resilience metrics used to21

evaluate the evacuation process are as follows.22

• Robustness captures performance under worst-case conditions, measured by the maximum num-23

ber of stranded passengers. To ensure passenger safety, this metric should remain near or below24

the overcrowding threshold. Enhancing robustness involves minimizing the maximum number of25

stranded passengers during disruptions.26

• Rapidity reflects the total duration of the abnormal condition caused by the OPF. Two time spans27

require attention: (1) The time spans from the onset time tstart to the time of equilibrium restoration28

(tend for the case with well-designed evacuation and t′end for the case without evacuation). It aligns29

with the concept of network clearance time as an evacuation indicator; (2) the time spans from30

the onset time to the dissipation of overcrowding (tx for the case with a well-designed evacuation31

and t′x for the case without evacuation). This corresponds to the concept of risk exposure time.32

Both time spans can be shortened by minimizing the stranded duration for each passenger during33

evacuation planning.34

• Resourcefulness measures the effectiveness of evacuation strategies in enhancing system resilience,35
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quantified by the performance gap between scenarios with and without evacuation (represented1

by the area between their respective curves). This metric can be improved by simultaneously2

maximizing demand satisfaction and minimizing stranded passenger durations during evacuation.3

4. Mathematical model4

To enhance the resilience under OPF and minimize the impact of evacuation on regular services, an5

optimization model is required to consider both objectives during OPF evacuation. The decision variables6

are the dispatched capacity of each mode m ∈M = {taxi, bus,metro} at each time step t ∈ T , indicated7

by atm. Among them, attaxi and atbus represent the number of dispatched taxis and buses, receptively, while8

atmetro represents the dispatched number for passenger inflow at the metro station within the OPF area9

(indicating the capacity of the metro system to accommodate stranded passengers). Thus, the objective10

function of the entire period can be generally expressed as Eq. (2),11

maxR =
∑

t∈T

∑

m∈M

(

Rm,t
resilience(a

t
m)−Rm,t

abandon(a
t
m)

)

, (2)

where R indicates the overall objective of the three modes throughout the OPF period. Rm,t
resilience(a

t
m) is12

a general representation for the objective of resilience enhancement, which is transformed into demand-13

responsive feedback for each mode at each time step in Section 5.4. Rm,t
abandon(a

t
m) is a general representa-14

tion for the objective of the impact mitigation of evacuation on regular services, captured by the number15

of regular passengers abandoned by each mode at each time step. Abandoned regular passengers are16

variables related to the dispatched capacities, which will be described in Section 5.2.1.17

To formulate the constraints related to capacity dispatching, several parameters need to be defined.18

Let nt
m indicate the number of dispatchable capacities of mode m at time step t. Let cm indicate the ca-19

pacity limit of the vehicle in mode m (taxi, bus or train). To formulate the constraints related to passenger20

distribution, several parameters and auxiliary variables need to be defined. For practical considerations,21

some individual passengers actually travel together, such as family members. Therefore, let p index a22

passenger group who shares the same entry time, leaving time, mode choice and destination. Recall from23

Section 3.1.3 that passengers have mode choices while waiting for evacuation, where the derivation of24

their original mode choices will be described in Section 5.2.2 and their mode-shifting mechanism will be25

described in Section 5.3.2. Let P t
m denote the set of passenger groups that are evacuated by mode m26

at time step t. Let q(p) indicate the number of passengers in group p where q(p) ≥ 1. In the case of a27

single passenger with a specific entry time, leaving time and destination, q(p) = 1. Recall that, in the28

bus system, passengers are distributed across different emergency routes. Let r index a specific route, γ29

indicate the set of all emergency routes, and γt indicate the set of emergency routes with a bus assigned30

at time step t. Let P t
bus,r indicate the set of passenger groups which are distributed to route r at time31

step t. Values of parameters and variables are derived from the data-driven agent-based environment, as32

described in Section 5.2. Thus, the constraints can be expressed as follows:33

0 ≤ atm ≤ nt
m, ∀m ∈M, t ∈ T, (3)

34
∑

p∈P t
taxi

q(p) ≤ attaxictaxi, ∀t ∈ T, (4)

35
∑

p∈P t
bus,r

q(p) ≤ cbus, ∀t ∈ T, r ∈ γt, (5)

36
|γt| = atbus, ∀t ∈ T, (6)

37
∑

p∈P t
metro

q(p) ≤ atmetro, ∀t ∈ T, (7)

38
atm ∈ N, ∀m ∈M, t ∈ T. (8)

Constraint (3) ensures that the dispatched capacity of each mode at each time step cannot exceed the39

dispatchable capacity. Constraint (4) ensures that the number of passengers evacuated by taxis cannot40

exceed the dispatched taxi capacity. Constraint (5) ensures that the number of passengers distributed to41

each bus route cannot exceed the bus capacity. Recall that each bus route dispatches at most one bus at42
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time step t. Constraint (6) indicates that the number of routes with a bus assigned equals the number of1

buses dispatched. Constraint (7) ensures that the number of inflows at the metro station cannot exceed2

the dispatched number. Constraint (8) indicates that the decision variable of dispatched capacity per3

mode must be a natural number.4

Proposition 1. If the number of routes with assigned buses equals the total number of dispatched5

buses, then each route must be assigned exactly one bus.6

Proof. Let r(v) ∈ γ denote the route assigned to the dispatched bus v. The set of dispatched buses7

is denoted by V̄ t
bus = {v1, . . . , vn}, where |V̄ t

bus| = atbus. The set of routes with buses assigned is denoted8

by γt = {r(v1), . . . , r(vn)}, where |γt| ≤ atbus because there could be duplicate routes within the set γt.9

Only if each route is assigned exactly one bus, then |γt| = atbus; otherwise, |γt| < atbus.10

The formulated problem is a dynamic combinatorial resource allocation problem with discrete decision11

variables and multi-stage temporal dependencies. These characteristics render the problem NP-hard and12

intractable for exact algorithms under large-scale instances. Especially, each passenger group’s entry13

time, leaving time and destination are incorporated into the model, and track the passenger growth and14

capacity availability based on real-time datasets. Therefore, a reinforcement learning-based approach is15

developed to effectively adapt evacuation plans over time (Sutton and Barto, 2018). Decision variables atm16

will be determined by our MARL agents with either independent or collaborative strategy in Sections 5.3.117

and 5.3.2, respectively.18

All notations used in this paper are organized into five appendix tables. Decision variables are listed19

in Table A1, followed by objectives and feedback in Table A2, indices and sets in Table A3, modeling20

parameters in Table A4, and training parameters in Table A5.21

5. Multi-agent reinforcement learning formulation22

First, our MARL framework for online multi-modal evacuation is introduced in Section 5.1. Next, the23

establishment of our data-driven agent-based environment is introduced in Section 5.2. Then, two agents24

are formulated to respectively implement the independent and the collaborative strategies in Section 5.3.25

Finally, the objectives are transformed into demand-responsive feedback in Section 5.4.26

5.1. Multi-agent reinforcement learning framework27

The framework of our MARL is given in Fig. 3. A data-driven agent-based environment (blue box)28

consists of three dynamic transit environments (taxi, bus, metro) and a dynamic passenger environment.29

During an OPF event, real-time datasets—including taxi GPS, bus AVL, smart card transactions and30

metro time-dependent OD demand datasets—are processed to generate dynamic transit environments.31

These environments continuously track: (1) dispatchable capacities, and (2) regular passenger number32

for each mode. The mobile dataset is processed to generate the dynamic passenger environment. This33

environment tracks the conditions of stranded passengers within the OPF area. The MARL agents (white34

box) receive these capacity and demand metrics as state variables, enabling coordinated dispatch of taxis,35

buses, and metro inflows while optimizing passenger distribution across all modes.36

Given agents’ actions in capacity dispatch and passenger distribution (orange arrows), the environ-37

ment updates accordingly (orange loop) and provides feedback to agents (green arrows). The feedback38

includes the resilience enhancement and impact of evacuation on regular services (green boxes), corre-39

sponding to the objective function in Eq. (2). As analyzed in Section 3.2, resilience metrics, including40

robustness, rapidity and resourcefulness, can be enhanced by different evacuation indicators. The frame-41

work of transformation relation between objectives and feedback at each time step is shown in Fig. 4.42

Since the number and stranded duration of evacuated passenger groups both depend on the results of43

passenger distribution of evacuation plans, an integrated feedback, referred to as demand satisfaction,44

is proposed. The resilience enhancement is driven by two demand-responsive feedback mechanisms: (1)45

overcrowding monitoring and (2) demand satisfaction evaluation, while the impact of evacuation on46

regular services is quantified through the abandoned passenger number.47

5.2. Data-driven agent-based environment48

Data-driven agent-based environments aim to track the evolving condition of capacity availability49

and passenger mobility, and evaluate the consequences of the agents’ actions on the environments. Three50

dynamic transit environments are designed with the elements of vehicles and regular passengers in taxi,51

bus and metro systems, respectively, while a dynamic passenger environment is created with the elements52

of stranded passengers.53
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The environment in this section refers to the offline training environment, constructed using historical1

datasets with complete information on capacities and passenger demand. However, passengers leave2

following the agent-determined evacuation plan rather than their original travel patterns. This setup3

simulates real-world feedback while training agents to iteratively optimize their decision-making. To4

ensure a seamless online application, agents are restricted to observable real-time states during the5

operation.6

5.2.1. Dynamic transit environment7

Agent-based models are established using datasets from multi-modal systems. To update the po-8

sitioning and occupancy conditions of taxis, buses and trains with real-time information, the dynamic9

transit environment for each mode is established as follows.10

(1) Taxi transit environment11

The taxi transit environment is formulated based on the taxi GPS dataset. An example, including12
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elements of taxis and regular passengers, is illustrated in Fig. 5a. For a given searching area and time1

step, taxis located within the searching area, which are unoccupied at the beginning of the time step2

(white taxis in Fig. 5a), are deemed to be dispatchable. Let v ∈ V t
taxi indicate a specific taxi, where V t

taxi3

indicates the set of dispatchable taxis at time step t. A detailed description of the taxi GPS dataset, and4

the identification of dispatchable taxis is presented in Appendix B.1. Then, the number of dispatchable5

taxis at time step t can be calculated as nt
taxi = |V

t
taxi|, which serves as the capacity limit in Constraint (3).6

For each taxi v, the GPS dataset records its ID, location, timestamp (a time instant, denoted by7

t̃, that records the moment a data point is generated and the timestamp interval, denoted by ∆t̃, is8

significantly smaller than the time step interval, i.e., ∆t̃ ≪ ∆t) and occupancy (a binary indicator,9

denoted by ρ̂taxi(v, t̃), representing whether the taxi is occupied at each timestamp). A taxi that is10

originally dispatched to serve regular passengers can be revealed in the GPS dataset by checking the11

occupancy status ρ̂taxi(v, t̃) of the taxi v within the time step [t, t + ∆t]. If a taxi’s occupancy status12

becomes occupied within the searching area at subsequent time steps, it means that the taxi is heading13

to pick up a regular passenger (dashed line in Fig. 5a) in practice. When such a taxi is dispatched to14

evacuate stranded passengers in the OPF area, the associated regular passenger must be abandoned. To15

capture this, a binary indicator, ρtaxi(v), is introduced to indicate whether a regular passenger would16

be abandoned by taxi v if it is dispatched for evacuation. Specifically, the abandonment of a regular17

passenger by taxi v is calculated by Eq. (9).18

ρtaxi(v) =

{

1 ∃ρ̂taxi(v, t̃) = 1

0 ∀ρ̂taxi(v, t̃) = 0
, ∀t ∈ T, v ∈ V t

taxi, t̃ ∈ [t, t+∆t] (9)

(2) Bus transit environment19

Bus transit environment is formulated based on bus smart card transactions and the AVL dataset.20

An example, including elements of bus and regular passengers, is illustrated in Fig. 5b. Let v ∈ V t
bus21

indicate a specific bus, where V t
bus indicates the set of dispatchable buses at time step t. The bus smart22

card dataset records each regular passenger’s ID (denoted by p̂), station code, bus ID (denoted by v(p̂))23

and timestamp, and the bus AVL dataset records buses’ IDs, location and timestamps. Recall that our24

strategy only dispatches buses from the depot, as described in Section 3.1.1. For a given depot (located25

in the upper-left corner of Fig. 5b) and a time step, the bus, which is located at the depot, can be26

identified via the AVL data. A detailed description of the bus smart card dataset, and the identification27

of dispatchable buses is presented in Appendix B.2. The number of dispatchable buses at time step t28

can be calculated by nt
bus = |V

t
bus|, which serves as the capacity limit in Constraint (3).29

The impact of dispatching an on-duty bus for evacuation can be revealed in the smart card dataset30

by checking the bus ID and calculating the number of regular passengers associated with the bus (dashed31

lines in Fig. 5b). Let ρbus(v) ∈ N indicate the number of abandoned regular passengers associated with32

a bus when it is dispatched. It is calculated by Eq. (10).33

ρbus(v) = |{p̂|v(p̂) = v}|, ∀t ∈ T, v ∈ V t
bus (10)

(3) Metro transit environment34

The Metro transit environment is formulated based on a time-dependent OD demand matrix. An35

example, including elements of trains and regular passengers, is illustrated in Fig. 5c. Time-dependent36

OD demand matrix records the regular passenger demand between any two stations within a time interval.37

A detailed description of the time-dependent OD demand dataset is presented in Appendix B.3. Given a38

station, denoted by i∗, within the OPF area (the station within the white circle in Fig. 5c), let vt ∈ Vmetro39

denote the train arriving at station i∗ at time step t, where Vmetro denotes the set of trains. Under the40

fourth assumption in Section 3.1.4, where the train’s running and dwell time are fixed, the demand for41

each train at a given time step can be derived (Liang et al., 2023). Then, let w(vt, i, j) denote the demand42

on train vt from station i to j, where i, j ∈ I. I is the set of metro stations. Specifically, let i, ī denote43

the origin and terminal stations of the train, respectively. For a given time step t, the available capacity44
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on train vt arriving at station i, denoted by nt,i
metro, is determined by Eq. (11),1

nt,i
metro = cmetro −

∑

i′

= ii−1
ī

∑

j=i+1

w(vt, i
′, j), ∀t ∈ T, i ∈ I, (11)

where cmetro is the capacity of an empty train. The summation calculates the number of passengers who2

board upstream of station i and disembark at downstream stations.3

The available capacity at the OPF station i∗ can also be obtained by Eq. (11). To maintain the4

generality with the mode of taxi and bus, let nt
metro to indicate the dispatchable capacity at station i∗,5

which serves as the capacity limit in Constraint (3).6

When additional passenger flows enter station i∗, the train may become fully occupied, resulting in7

regular passengers at downstream stations being denied boarding. For any downstream station i, the8

number of abandoned passengers is denoted by ρmetro(vt, i), which is determined by Eq. (12).9

ρmetro(vt, i) = max





ī
∑

j=i+1

w(vt, i, j)− nt,i
metro, 0



 , ∀t ∈ T, i ∈ {I|i∗ < i < ī} (12)

Within the maximizing function, the first summation calculates the number of regular passengers at10

a downstream station i, while the second term represents the available capacity nt,i
metro of train vt arriving11

at this station. The maximizing function ensures that this indicator is non-negative.12
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5.2.2. Dynamic passenger environment13

An agent-based model is established using the mobile dataset, with each passenger as an element. The14

application of mobile datasets to model human mobility patterns during emergencies has been validated in15

several recent studies (Wang et al., 2021; Diaz et al., 2023). An example illustrating passenger elements is16

shown in Fig. 5d. Time and passenger information are given by the mobile dataset. The time information17
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includes each passenger’s original entry and leaving time within the OPF area. The passenger information1

contains each passenger’s ID, destination, travel distance, and original mode choice. A detailed description2

of the mobile dataset is presented in Appendix B.4.3

However, two additional types of information are further required to apply our strategy in practice:4

• As described in Section 4, passengers are classified based on their original entry time, leaving time,5

mode choices and destinations to evacuate them as a passenger group. The number of passengers6

within each passenger group is referred to as q(p).7

• To calculate the occupancy level of a metro train, it is essential to know the passengers’ disem-8

barkation station if they take the metro train. Based on each passenger’s trajectory (namely, the9

destination and travel distance here), the disembarkation station can be estimated by matching the10

trajectory with the geographic locations of metro stations. This approach is similar to the method11

used in Huang et al. (2024), where passengers are mapped to specific stations based on their holding12

locations along the metro line. In this case, let i(p) to denote the estimated disembarkation station13

for a passenger group p if it takes the metro train.14

For a given time step t, passengers, whose entry time falls within the time step, are considered as15

entering and becoming stranded in the OPF area. Let P̄ t indicate the set of stranded passengers at16

time step t, which collects the stranded passenger groups p ∈ P̄ t. The method for identifying stranded17

passengers is presented in Appendix B.4. Additionally, for each passenger group p, let e(p) indicate its18

entry time, l̃(p) indicate its original leaving time, d(p) indicate its destination, k(p) indicate its travel19

distance, m̃(p) indicate its original mode choice. These parameters are essential for passenger distribution20

in Section 5.3.1 and evacuation evaluation in Section 5.4.21

5.3. Agents22

To facilitate the online multi-modal evacuation with the corresponding strategies described in Sec-23

tion 3.1.3, the formulation of agents under the independent strategy is introduced in Section 5.3.1 and24

that under collaborative strategy is introduced in Section 5.3.2.25

5.3.1. Independent strategy: Demand splitting and independent dispatching26

In our first coordination strategy, it is assumed that passengers always follow their original mode27

choice without shifting to alternative modes. Then, the stranded passengers can be split by their mode28

choice as: P̄ t
m = {p|p ∈ P̄ t, m̃(p) = m}, where P̄ t

m indicates the set of stranded passenger groups in29

mode m at time step t. In this setup, each agent can independently dispatch capacities to evacuate the30

stranded passengers within the respective system. The construction of the agents is designed as follows.31

For each mode m ∈M , an agent dispatches capacities based on its local observable state at each time32

step t. The state variables include three key components as follows:33

• Dispatchable capacity nt
m: This is derived from the dynamic transit environment of each mode,34

which quantifies the available capability to evacuate passengers.35

• Stranded passenger number δtm: This is calculated based on the set of stranded passenger groups36

p ∈ P̄ t
m by δtm =

∑

p∈P̄ t
m
q(p), which reflects the urgency of the evacuation at current time step t.37

• Current time step t: By including the current time as a component, the agent is expected to balance38

the dispatching decisions over time.39

Therefore, the state variables for each mode m at time step t are formulated as St
m = [nt

m, δtm, t].40

The agent’s action, denoted as atm, follows constraints of the mathematical model in Section 4, and41

updates the environment following the mechanism outlined below.42

• For the taxi agent, its action attaxi determines the number of taxis to be dispatched at time step43

t, respecting Constraint (3). Under the second assumption in Section 3.1.4, taxis operate on the44

one-way route. Thus, the dispatched taxis are collected in a set V̄ t
taxi, which are prevented from45

being dispatched in subsequent time steps.46

• For the bus agent, its action atbus determines the number of buses to be dispatched at time step t,47

respecting Constraint (3). The dispatched buses at time step t are collected in a set V̄ t
bus, which are48

prevented from being dispatched in subsequent time steps. Each route at most receives one bus,49

subject to Constraint (6). When the number of available buses is insufficient to serve all emergency50

routes, routes with the highest passenger demand are prioritized.51

• For the metro agent, its action atmetro determines the number of passenger inflow at time step t,52

respecting Constraints (3) and (7).53
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Given the agent’s action for each mode, stranded passengers are distributed to dispatched capacities1

based on their original mode choices. The set of evacuated passenger groups, denoted by P t
m, collects2

passenger groups who are evacuated by mode m at time step t. The passenger distribution follows the3

mechanisms outlined below.4

• For the taxi mode, stranded passengers can be assigned to the dispatched taxis until the capacity5

limit is reached, as specified by Constraint (4). Recall the second assumption that passengers6

follow the first-come-first-served principle, and remaining passengers wait for the evacuation plan7

in subsequent time steps. The set of passenger groups evacuated by taxi is represented by Eq. (13).8

Specifically, the selection aims to minimize the latest entry time among all evacuated passenger9

groups, i.e., the maximum e(p) within the selected subset P under the Constraint (4).10

P t
taxi = arg min

P⊆P̄ t
taxi







max
p∈P

e(p)|
∑

p∈P

q(p) ≤ attaxictaxi







, ∀t ∈ T (13)

• For the bus mode, stranded passengers whose destinations are served by a bus can be evacuated11

until the capacity limit is reached, as specified by Constraint (5). Remaining passengers wait for12

the evacuation plan in subsequent time steps. The set of passenger groups on bus emergency route13

r is represented by Eq. (14),14

P t
bus,r = arg min

P⊆P̄ t
bus















max
p∈P

e(p)|
∑

p∈P
d(p)∈Dt

r

q(p) ≤ cbus















, ∀t ∈ T, r ∈ γt, (14)

and the set of passenger groups evacuated by bus at time step t is P t
bus =

∪

∀r∈γt P t
bus,r.15

• For the metro mode, the set of passenger groups evacuated by metro, which follows Constraint (7),16

is represented by Eq. (15).17

P t
metro = arg min

P⊆P̄ t
metro







max
p∈P

e(p)|
∑

p∈P

q(p) ≤ atmetro







, ∀t ∈ T (15)

Although the model is established based on the first-come-first-served principle, alternative queu-18

ing rules for vulnerable populations can be incorporated when additional information about stranded19

passengers is available. The implementation is provided in Appendix C.20

Finally, the evacuated passenger groups in the set P t
m are removed from the set of stranded passenger21

groups, representing their relief from the dynamic passenger environment, i.e., P̄ t+1
m ← P̄ t

m − P t
m.22

Note that some residual capacities exist in some modes after passenger distribution when the number23

of stranded passengers is smaller than dispatched capacities at time step t. In the independent strategy,24

these residual capacities are released back into the dynamic transit environments, as passengers in other25

modes are not considered for using these capacities.26

5.3.2. Collaborative strategy: Passengers’ mode shifting and collaborative dispatching27

In our second coordination strategy, the assumption that passengers will only take their original modes28

as restricted in the independent strategy is relaxed. Instead, a passenger mode-shifting mechanism29

is proposed that considers both their original mode choice and mode-shifting behavior. The residual30

capacities released in the independent strategy are utilized in the collaborative strategy. Accordingly,31

agents are further designed as follows.32

For each mode m ∈M , an agent’s state variables include the dispatchable capacity of each mode nt
m,33

the total stranded passenger number δt where δt =
∑

p∈P̄ t q(p), and the current time step t. Therefore,34

the state variables at time step t are formulated as S′t
m = [nt

m, δt, t]. Note that the total stranded passenger35

number δt provides global observation, stimulating agents with higher dispatchable capacities to allocate36

more capacities rather than solely handling their own demands.37

Action for each agent atm remains the same as that in the independent strategy, which is to determine38

the number of capacities to be dispatched for each mode m at time step t.39
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Given agent’s action for each mode, stranded passengers are initially distributed according to their1

original mode choice, as outlined in Section 5.3.1. Let a set P̂ t
m denote the set of initial evacuated2

passenger groups that collects passenger groups that are distributed with respect to their original mode3

choice. If the dispatched capacities exceed the number of passengers after the initial distribution, the4

residual capacity is then allocated to passengers whose mode-shifting choice aligns with this mode. The5

residual capacity for each mode can be checked as follows:6

• For taxis, the residual capacity is calculated as the difference between the dispatched taxi capacities7

and the number of passengers in the set of initial evacuated passenger groups. The residual capacity8

of taxi system is calculated by Eq. (16).9

n̂t
taxi = attaxictaxi −

∑

p∈P̂ t
taxi

q(p), ∀t ∈ T (16)

• For buses, the residual capacity on each emergency route is calculated as the difference between10

the maximum bus capacity and the number of onboard passengers on that route in the set of initial11

evacuated passenger groups. The residual capacity of bus system is calculated by Eq. (17).12

n̂t
bus,r = cbus −

∑

p∈P̂ t
bus,r

q(p), ∀t ∈ T, r ∈ γt (17)

• For metro trains, the residual capacity is updated based on the inflow number. The residual capacity13

of metro system is calculated by Eq. (18).14

n̂t
metro = nt

metro − atmetro, ∀t ∈ T (18)

Remaining passengers, whose original mode choices have reached its capacity limit at the current15

time step, are allowed to shift to a more efficient alternative mode with residual capacity.16

As studied by Li et al. (2020a,b), passengers prefer to choose a mode with less travel time, fare17

cost, and inconvenience of transfer. Additionally, passengers are inclined to remain with their original18

mode choice, even when an efficient alternative mode exists, based on their perception of the abnormal19

condition. To capture this, let um(p) indicate the trip cost for passenger group p when traveling by20

mode m. The cost factors include the travel time, fare and last-mile trip (capturing the inconvenience of21

transfer). Additionally, a mode loyalty factor, denoted by ϵm0 , is introduced, which reflects the passengers’22

willingness to remain with their original mode. Thus, the general trip cost is calculated by Eq. (19),23

um(p) = ϵm0 (ϵm1 k(p) + ϵm2 k(p) + ϵm3 k̂m(p)), ∀m ∈M, t ∈ T, p ∈ P̄ t
m, (19)

where ϵm0 ∈ (0, 1) discounts the perceived trip cost of passengers’ original mode choice, while ϵm0 = 124

is applied to modes other than the original mode. The first two terms in the parentheses represent the25

travel time cost and fare cost, respectively, both of which are related to passengers’ travel distance k(p).26

The third term represents the last-mile trip cost. ϵm1 , ϵm2 , ϵm3 are the coefficients that capture the unit27

costs on travel time, fare and last-mile trip, respectively. The last-mile trip terms, k̂m(p), are formulated28

differently based on the characteristics of modes:29

• For taxi trips, last-mile costs are not incurred, as taxis provide door-to-door service, k̂taxi(p) = 0.30

• For bus trips, it should be recalled that a terminal is designated for each service area. The last-mile31

term k̂bus(p) represents the distance from a passenger group’s disembarking terminal station to its32

destination.33

• For metro trips, given a disembarking metro station of a passenger group, the last-mile term34

k̂metro(p) represents the distance from passenger group’s disembarking metro station to its destina-35

tion.36

A Logit model, commonly used to represent passengers’ probability in mode choice decisions (Wang37

et al., 2024; Su et al., 2024), is established to formulate each passenger’s mode-shifting behavior. The38

probability is calculated by Eq. (20).39

Lm(p) =
exp(1/um(p))

∑

m′∈M exp(1/um′(p))
, ∀m ∈M, t ∈ T, p ∈ P̄ t

m (20)
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When a passenger group’s original mode is fully occupied and alternative modes have residual capaci-1

ties, the passenger group is allowed to shift modes. In our agent-based model, the mode-shifting choice is2

implemented by letting each passenger group perform a random sampling based on the Logit probability3

model. Passengers are then continuously distributed to the residual capacities following the methodology4

outlined in Section 5.3.1, until the capacity limit is reached or no passengers remain.5

5.4. Feedback6

According to the objective function in Eq. (2), the agents aim to maximize the resilience while min-7

imizing the impact on regular service. As analysis in Section 5.1, the feedback function of resilience8

enhancement, denoted by Rm,t
resilience, for each mode m at each time step t is transformed into the combi-9

nation of demand satisfaction, denoted by Rm,t
demand, and overcrowding, denoted by Rm,t

crowd. The feedback10

function of resilience enhancement is calculated by Eq. (21),11

Rm,t
resilience = α1R

m,t
demand − α2R

m,t
crowd, ∀m ∈M, t ∈ T, (21)

where α1 and α2 are the coefficients to balance the feedback of demand satisfaction and overcrowding.12

The overall feedback function, denoted by Rt
m, for each mode m at each time step t is the weighted sum13

of resilience feedback and the feedback of impact on regular services, denoted by Rm,t
abandon. The overall14

feedback function is calculated by Eq. (22),15

Rt
m = α1R

m,t
demand − α2R

m,t
crowd − α3R

m,t
abandon, ∀m ∈M, t ∈ T, (22)

where α3 is the coefficient to balance the feedback of impact on regular services.16

5.4.1. Feedback 1: Resilience enhancement17

Resilience metrics, as posterior evaluators, are not sufficient to guide agents during the OPF. Two18

demand-responsive feedback functions, namely penalty of overcrowding and reward of demand satisfac-19

tion, are proposed as follows.20

Penalty of overcrowding is evaluated by comparing the total number of stranded passengers with a21

predefined overcrowding threshold η. Above this threshold, a penalty will be imposed to incentivize agents22

to evacuate more passengers. Since overcrowding results from the total number of stranded passengers,23

each mode shares the responsibility for the occurrence. To ensure fairness and prevent over-penalizing24

any single mode, the overall penalty is proportionally distributed based on the dispatchable capacity of25

each mode m at time step t, reflecting the greater responsibility of higher-capacity modes. The penalty26

of overcrowding for mode m at time step t is expressed by Eq. (23).27

Rm,t
crowd =

nt
m

∑

m′∈M nt
m′

max(
∑

p∈P̄ t

q(p)− η, 0), ∀m ∈M, t ∈ T (23)

Reward of demand satisfaction focuses on two aspects: the number of evacuated passengers28

and their stranded duration, respectively. The number of evacuated passengers is captured by q(p) for29

each passenger group p ∈ P t
m. Passengers’ stranded duration is measured by the time before they are30

evacuated. Let h(p, t) indicate the stranded duration of passenger group p which is evacuated at time31

step t. Stranded duration of each passenger group is calculated by the time from the occurrence of the32

OPF, tstart, (or the entry time, e(p), for passengers who arrive during the OPF) to the time step t that33

the passengers are evacuated. It is calculated by Eq. (24).34

h(p, t) = t−max(tstart, e(p)), ∀t ∈ T,m ∈M,p ∈ P t
m (24)

Passengers’ stranded duration is a negative consequence associated with the evacuation plan that35

agents are trained to reduce. However, agents are more effectively stimulated through positive feedback,36

as suggested by the reward hypothesis in Sutton and Barto (2018). Thus, a stranded duration factor,37

denoted by H(p, t), is introduced to be nonnegative, as depicted in Fig. 6. Since the strand is inevitable,38

the agent is supposed to reduce passenger groups’ evacuated stranded duration compared to their original39

stranded duration. For each passenger group p, let h(p, l̃(p)) be its original stranded duration where l̃(p)40

is its original leaving time. When the evacuated stranded duration is longer than the original stranded41

duration, a discount should be applied to the reward for demand satisfaction, reducing the value of the42



19

evacuation plan that evacuates a large number of passengers at the cost of additional stranded duration.1

Conversely, when the evacuated stranded duration is shorter than the original stranded duration, a2

leverage should be applied to increase the value of the evacuation plan. Then, the stranded duration3

factor is formulated through a negative exponential function, calculated by Eq. (25),4

H(p, t) = e
1−

h(p,t)

h(p,l̃(p))+ξ , ∀t ∈ T,m ∈M,p ∈ P t
m, (25)

where the denominator contains an additional term ξ, which is a relatively small number, to prevent the5

equation from becoming invalid when h(p, l̃(p)) = 0, while the influence is negligible for h(p, l̃(p)) ≫ ξ.6

This function ensures a smooth and continuous evaluation with H(p, t) > 0 even when h(p, l̃(p)) =7

0. When the evacuated stranded duration is close to the original stranded duration, where h(p, t) ≈8

h(p, l̃(p)), H(p, t) ≈ 1, indicating neutrality. If the evacuated stranded duration is longer, where h(p, t) >9

h(p, l̃(p)), H(p, t) < 1, indicating a discount. Conversely, if the evacuated stranded duration is shorter,10

where h(p, t) < h(p, l̃(p)), then H(p, t) > 1, indicating a leverage.11

Figure 6: Trend of the stranded duration factor
Therefore, the reward for demand satisfaction for mode m at time step t is calculated as a sum that12

combines the stranded duration factor and the number of evacuated passengers by Eq. (26).13

Rm,t
demand =

∑

p∈P t
m

H(p, t)q(p), ∀m ∈M, t ∈ T (26)

5.4.2. Feedback 2: Impact on regular services14

The impact on regular services is reflected by the number of passengers abandoned at time step t,15

which is formulated differently for each mode as follows:16

• For the taxi mode, the regular passengers associated with the dispatched taxis v ∈ V̄ t
taxi are captured17

by ρtaxi(v) in Eq. (9). The number of abandoned regular passengers at time step t is then calculated18

by Eq. (27).19

Rtaxi,t
abandon =

∑

v∈V̄ t
taxi

ρtaxi(v), ∀t ∈ T (27)

• For the bus mode, the regular passengers associated with the dispatched buses v ∈ V̄ t
bus are captured20

by ρbus(v) in Eq. (10). The number of abandoned regular passengers at time step t is then calculated21

by Eq. (28).22

Rbus,t
abandon =

∑

v∈V̄ t
bus

ρbus(v), ∀t ∈ T (28)

• For the metro mode, passengers at downstream stations may be denied boarding if the train is fully23

utilized when arriving. Given the set of evacuated passenger P t
metro and their disembarkation station24

i(p), the metro OD demand from station i∗ (station in the OPF area) to each of the downstream25

stations j can be represented by Eq. (29).26

w(vt, i
∗, j) =

∑

{p∈P t
metro|i(p)=j}

q(p), ∀t ∈ T (29)
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Given the metro OD demand w(vt, i
∗, j) from station i∗, the residual capacity on train vt after1

loading passengers at station i∗ can be updated by Eq. (11). The number of regular passengers2

abandoned in each downstream station, ρmetro(vt, i), is derived from Eq. (12). Thus, the number3

of abandoned regular passengers at time step t is calculated by Eq. (30).4

Rmetro,t
abandon =

ī
∑

i=i∗+1

ρmetro(vt, i), ∀t ∈ T (30)

6. Training algorithm5

Two training algorithms are introduced in this section. A DTDE structure is introduced for our6

independent strategy in Section 6.1. An H-CTDE structure is customized for our collaborative strategy7

in Section 6.2.8

6.1. DTDE framework9

To train the agents in the independent strategy in Section 5.3.1, a DTDE training method is pro-10

posed, where each agent has its own actor-critic network, trained by a deep deterministic policy gradient11

algorithm. Within the DTDE framework, each agent learns its policy based on the state variables while12

executing independently (Gronauer and Diepold, 2022). DTDE is particularly effective for multiple agents13

that require only their own history of observations during both training and inference, as demonstrated14

in previous studies (Wang et al., 2023; Yu et al., 2023). It is applicable for our independent strategy15

because separate agents control different modes, avoiding confusion among heterogeneous agents with16

distinct dispatching strategies and operational characteristics.17

Within the DTDE framework, each agent is equipped with an actor network that decides the number18

of dispatched capacities based on its state variables, and a critic network that evaluates the value of the19

proposed actions. The actor and critic networks used for each agent are described as follows:20

Actor Networks: An agent of each mode m ∈ M has its own actor network πm, which maps its21

state variables St
m to an action atm. However, because each mode has a unique dispatchable capacity22

as a constraint at each time step t, a general intermediate action is required. Let âmt ∈ [0, 1] represent23

the proportion of dispatched capacities, which is derived from âtm = πm(St
m | θ

π
m) where θπm are the24

parameters of the actor network. A target actor network, π′
m(St

m | θ
π′

m), is applied as well to estimate the25

target action for the next state St+1
m . To encourage exploration during the training process, a noise factor26

is added to the actions, which helps to explore different actions in the early stage, preventing premature27

convergence to suboptimal policies. The noise is gradually reduced to ensure that the agents focus more28

on exploiting learned behaviors. The noise is modeled following the Gaussian distribution in Eq. (31),29

which decays with the number of episodes.30

ϵnoiseN (0, (ϵnoise)
e
E ), (31)

where e is the current episode and E is the total training episodes. ϵnoise represents the minimum noise31

value. In each time step t, the proportion is modified by adding the noise, and clip the modified proportion32

into [0, 1]. The proportion is calculated by Eq. (32).33

âtm = clip(πm(St
m | θ

π
m) + ϵnoise, 0, 1), ∀m ∈M, t ∈ T (32)

Incorporation of constraints: The basic reinforcement learning framework does not explicitly34

consider the constraints imposed on the decision space (Ying et al., 2020). For taxi and metro dispatch,35

Constraint (3) should be satisfied, where the dispatched capacity of each mode m at each time step t36

cannot exceed the dispatchable capacity. âtm is multiplied by the dispatchable capacity nt
m for each mode37

m at a time step t. Considering Constraint (8), the result is rounded to the nearest integer. Agents’38

actions are calculated by Eq. (33).39

atm = round(âtmnt
m), ∀m ∈M = {taxi, metro}, t ∈ T (33)

For bus dispatch, Constraint (6) should be additionally considered to ensure that each route is assigned40

at most one bus at each time step t.41

Proposition 2. When the number of dispatched buses atbus exceeds the total number of emergency42
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routes |γ|, at least one route must be assigned more than one bus.1

Proof. The set of dispatched buses is denoted by V̄ t
bus = {v1, . . . , vn}, where |V̄ t

bus| = atbus. The set of2

routes assigned to buses is denoted by γt = {r1, . . . , rn}, where γt ⊂ γ and |γt| ≤ |γ|. Since Proposition 13

has shown that each route can have at most one bus assigned when |γt| = atbus, it follows that atbus ≤ |γ|4

must hold before buses are assigned to specific routes.5

Therefore, âtbus is multiplied by the dispatchable capacity of bus nt
bus at a time step t, and round the6

result to the nearest integer. Then, the rounded integer is clipped into [0, |γ|] to ensure that the number7

of dispatched buses cannot exceed the total number of emergency routes. Agent’s action is by Eq. (34).8

atbus = clip(round(âtbusn
t
bus), 0, |γ|), ∀t ∈ T (34)

Then, Constraint (6) is enforced by in-built rules for bus assignment in the agent-based model, as9

described in Section 5.3.1.10

Critic Networks: Each agent has a critic network, Qm(St
m, atm | θ

Q
m), that estimates the Q-value11

of taking action atm given the state variables St
m, where θQm are the parameters of the critic network. A12

target critic network, Q′
m(St

m, atm | θ
Q′

m ), is applied to estimate the target Q-value of the next state.13

The training process begins by initializing the actor and critic networks along with their corresponding14

target networks. During each time step t, a tuple of experience (St
m, atm, Rt

m, St+1
m ) is collected and stored15

in a replay buffer, denoted as RB. A mini-batch of experience tuples of size B ∈ N is then sampled from16

the replay buffer to update the networks. These samples are used to calculate target Q-values and train17

both the actor and critic networks.18

The critic network is trained by minimizing the loss function L(θQm), defined as Eq. (35).19

min
θ
Q
m

L(θQm) = E(St
m,atm,Rt

m,St+1
m )∼RB

[

(

Qm(St
m, atm | θ

Q
m)−R

′t
m

)2
]

(35)

The target Q-value R
′t
m is calculated by Eq. (36),20

R
′t
m = Rt

m + αdQ
′
m(St+1

m , at+1
m | θQ

′

m ) |
at+1
m =π′

m(St+1
m ), (36)

where αd is the discount factor in the Bellman equation.21

The actor network aims to maximize the expected Q-value over the policy’s action, which serves as22

its objective function, calculated by Eq. (37).23

max
θπm

J(θπm) = E(St
m,atm)∼RB[Qm(St

m, atm | θ
Q
m)] (37)

Let ∇L(θQm) and ∇J(θπm) denote the gradients used to update the critic and actor networks, re-24

spectively. The weight updates are performed using learning rates αm
Q and αm

π , calculated by Eqs. (38)25

and (39).26

θQm ← θQm + αm
Q∇L(θ

Q
m), (38)

27
θπm ← θπm + αm

π ∇J(θ
π
m) (39)

Target networks Q′
m and π′

m are used to stabilize training by providing consistent targets. These28

networks are updated using a soft update mechanism with a given update rate αs, which is calculated29

by Eqs. (40) and (41).30

θQ
′

m ← αsθ
Q
m + (1− αs)θ

Q′

m , (40)
31

θπ
′

m ← αsθ
π
m + (1− αs)θ

π′

m (41)

Algorithm 1 illustrates the framework of DTDE training process.32

6.2. H-CTDE framework33

Under the collaborative strategy, heterogeneous agents share the rewards and penalties of OPF evac-34

uation based on passenger mode-shifting mechanism. Since each mode has unique capacity, modes with35

larger capacities have more significant contributions to the reward, while the contribution by modes with36

smaller capacities may be overlooked. Additionally, due to the different regular passenger distribution37

across modes, modes with more regular passengers are likely to face higher penalties. As a result, agents38
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Algorithm 1 DTDE Training Algorithm

1: Initialize parameters θπm and θQm for actor and critic networks, respectively
2: Initialize target networks: θπ

′

m ← θπm, θQ
′

m ← θQm
3: Initialize replay buffer RB into an empty set
4: while e ≤ E do
5: for each time step t ∈ T do
6: Observe state St

m for each agent m ∈M
7: Select the proportion of dispatched capacity âtm for each agent m ∈M
8: Calculate the action atm by Eqs. (33) and (34) for each agent m ∈M
9: Execute actions atm and observe the reward Rt

m and the next state St+1
m

10: Store the tuple of experiences (St
m, atm, Rt

m, St+1
m ) in replay buffer RB

11: end for
12: for each agent m ∈M do
13: Sample a batch of tuples (St

m, atm, Rt
m, St+1

m ) with the batch size of B from replay buffer RB
14: Calculate target Q-values by Eq. (36)
15: Update critic using the sampled gradient by Eqs. (35) and (38)
16: Update actor using the sampled gradient by Eqs. (37) and (39)
17: Update target networks by Eqs. (40) and (41)
18: end for
19: Update the episode number: e← e+ 1
20: Update the noise factor: ϵnoiseN (0, (ϵnoise)

e
E )

21: end while

with limited capacity may become lazy, relying on higher-capacity modes to shoulder the burden. This1

aligns with the lazy behavior in MARL, where certain agents fail to actively contribute to the system’s2

overall performance (Liu et al., 2023). Furthermore, agents managing modes with higher regular de-3

mand may become conservative, avoiding dispatching residual capacities to minimize penalties. This4

phenomenon has been observed in MARL training (Shao et al., 2019).5

A novel CTDE structure is customized to capture the complex interdependencies among multiple6

heterogeneous agents. Fig. 7 shows the multi-agent actor-critic architecture with H-CTDE. Each agent7

has a distributed actor network (black components) that references its own local states (blue components)8

and controls its specific dispatch actions (yellow components). In addition, each agent is equipped with a9

local critic (light green components), taking its local state and action as input, that evaluates the demand10

satisfaction and passenger abandonment within its respective mode. By emphasizing local metrics, the11

local critic ensures that each agent is aware of its individual contribution and impact of its action. Then a12

central critic network (dark green component) is further developed, which takes the joint state and action13

as input, to account for the overall objective. The combination of local critics and central critic allows14

agents to optimize performance for their specific modes while aligning with broader system objectives.15

The neural networks are formulated as follows:16

Actor Networks: The agent of each mode m ∈M has an actor network, denoted by πm(S
′t
m | θ

π
m),17

which takes local state S
′t
m as input and outputs an action atm. A target actor network, π′

m(S
′t
m | θ

π′

m),18

is applied. The proportion of dispatched capacity of each mode at each time step âtm is calculated by19

Eq. (32), and the value of action is determined by Eqs. (33) and (34).20

Central Critic Network: The central critic network is responsible for evaluating the joint action-21

value function, taking into account the global reward. Let St = [δt, t, nt
taxi, n

t
bus, n

t
metro] denote the joint22

states, at = [attaxi, a
t
bus, a

t
metro] denote the joint actions. It takes the joint state and action as input and23

outputs a global Q-value, denoted as Q(St, at | θQ). A target central critic network, Q′(St, at | θQ
′

), is24

applied as well. The overall feedback at each time step t is formulated as: Rt =
∑

m∈M Rt
m.25

Local Critic Network: Each agent also has a local critic network Qm(S
′t
m, atm | θ

Q
m) that evaluates its26

actions based on local feedback for mode m at time step t, denoted by Rm,t
local, which combines the rewards27

for demand satisfaction and penalties for passenger abandonment, where Rm,t
local = α1R

m,t
demand−α3R

m,t
abandon.28

A target local critic network, Q′
m(S

′t
m, atm | θ

Q′

m ), is applied as well.29



23

Figure 7: Multi-agent actor-critic architecture with H-CTDE

The target Q-value of local critic network, denoted by R
′m,t
local, is calculated by Eq. (42).1

R
′m,t
local = Rm,t

local + αdQ
′
m(S

′t+1
m , at+1

m | θQ
′

m ) |
at+1
m =π′

m(S
′t+1
m )

(42)

The loss function of local critic network, denoted by L(θQm), is calculated by Eq. (43).2

min
θ
Q
m

L(θQm) = E(St
m,atm,R

m,t
local,S

t+1
m )∼RB

[

(

Qm(St
m, atm | θ

Q
m)−R

′m,t
local

)2
]

(43)

The target Q-value of central critic network, denoted by R
′t, is calculated by Eq. (44).3

R
′t = Rt + αQ′(S

′t+1, at+1 | θQ
′

) |
at+1=[π′

taxi(S
′t+1
taxi ),π

′

bus(S
′t+1
bus ),π′

metro(S
′t+1
metro)]

(44)

The loss function of central critic network, denoted by L(θQ), is calculated by Eq. (45).4

min
θQ

L(θQ) = E(St,at,Rt,St+1)∼RB

[

(

Q(St, at | θQ)−R
′t
)2

]

(45)

The objective function of actor network, denoted by J(θπm), is calculated by Eq. (46).5

max
θπm

J(θπm) = E(St
m,atm,St,at)∼RB[Qm(St

m, atm | θ
Q
m) +Q(St, at | θQ)] (46)

The local critic and actor networks are updated by Eqs. (38) and (39), and the central critic network6

is updated by θQ ← θQ+αQ∇L(θ
Q). The target local critic and actor networks are updated by Eqs. (40)7

and (41), and the target central network is updated by θQ
′

← αsθ
Q+(1−αs)θ

Q′ . Algorithm 2 illustrates8

the framework of H-CTDE training process.9

7. Case study10

Our online multi-modal evacuation approach is evaluated in a real-world OPF scenario. In Section 7.1,11

the study area and parameter settings for the case are presented as well as the OPF peak-hour and full-12

term period are identified. The computational efficiency of our MARL algorithms is demonstrated in13

Section 7.2. The effectiveness of our online multi-modal evacuation in enhancing resilience and impact14
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Algorithm 2 H-CTDE Training Algorithm
1: Initialize parameters of actor θπm, local critic θQm for each agent m, and central critic θQ

2: Initialize target networks with θπ
′

m ← θπm, θQ′

← θQ and θQ
′

m ← θQm
3: Initialize replay buffer RB into an empty set
4: while e ≤ E do
5: for each time step t ∈ T do
6: Observe state S

′t
m for each agent m ∈M

7: Select the proportion of dispatched capacity âtm for each agent m ∈M
8: Calculate the action atm by Eqs. (33) and (34) for each agent m ∈M
9: Execute actions atm and observe global feedback Rt, local reward Rm,t

local and the next state S
′t+1
m

10: Store the tuple (St, S
′t
taxi, S

′t
bus, S

′t
metro, a

t, attaxi, a
t
bus, a

t
metro, R

t, Rm,t
local, S

t+1, S
′t+1
taxi , S

′t+1
bus , S

′t+1
metro) into RB

11: end for
12: for each agent m ∈M do
13: Sample a batch of tuples (St, S

′t
taxi, S

′t
bus, S

′t
metro, a

t, attaxi, a
t
bus, a

t
metro, R

t, Rm,t
local, S

t+1, S
′t+1
taxi , S

′t+1
bus , S

′t+1
metro)

with the batch size of B
14: Calculate target local and central Q-values by Eqs. (42) and (44), respectively
15: Calculate the loss of local critic, central critic, and actor networks by Eqs. (43), (45) and (46), respectively
16: Update the local critic and actor networks by Eqs. (38) and (39), respectively. Update the central critic

network by: θQ ← θQ + αQ∇L(θ
Q)

17: Update target local critic networks and target actor network by Eqs. (40) and (41), respectively. Update
target central critic networks as: θQ

′

← αsθ
Q + (1− αs)θ

Q′

18: end for
19: Update the episode number: e← e+ 1
20: Update the noise factor: ϵnoiseN (0, (ϵnoise)

e

E )
21: end while

mitigation is shown in Section 7.3. A series of agents trained in Section 7.2 are applied to new environ-1

ments for online decision-making, verifying the transferability of our MARL approaches in Section 7.4.2

Finally, the practical, theoretical implications, and managerial insights are summarized in Section 7.5.3

7.1. Experiment description4

This case study is based on a severe railway disruption that occurred on July 20, 2021, when heavy5

rainfall caused a severe malfunction at the central mainland railway hub in Zhengzhou, China (Hu et al.,6

2024). The study area is focused on Xi’an North Station, a high-speed railway station as well as a multi-7

modal urban transit hub, with a taxi waiting zone (orange area), a bus station (blue area), and a metro8

station (green area), as shown in Fig. 8a. Following the cancellation of all trains, railway passengers9

waiting in the station are forced to return, leading to the OPF overwhelming the local urban transit10

system. Unnoticed passengers continue to arrive at the station, worsening the situation.11

Fig. 8b demonstrates the distribution of passengers leaving Xi’an North Station across the days in12

July 2021 through a heat map. The horizontal axes represent different days and hours, respectively, while13

the vertical axis represents the number of passengers leaving the station in each hour. On July 20, there14

is an anomalously large number of passengers leaving in the middle of the day, as indicated by the red15

bars between 12:00 and 16:00. The OPF on July 20 forms the basis of our case study. An overcrowding16

threshold is set by referring to the 70th percentile of passenger numbers leaving the area throughout17

July 2021 (Ma et al., 2024). Therefore, based on the historical records of passenger numbers leaving the18

railway station, the overcrowding threshold is set as 5,000.19

Fig. 9 shows the number of passengers stranded at the OPF area throughout the day of our case study.20

Any time when the number of stranded passengers exceeds the overcrowding threshold, an evacuation21

is required. Therefore, the full term of OPF period is determined as from 10:00 to 18:40. As the peak22

occurs around 14:00, four hours centered on this peak are selected as the peak-hour period, which is23

from 12:00 to 16:00. The varying starting times and time spans create distinct scenarios, each with24

different numbers of stranded passengers and time steps. These differences lead to agents developing25

unique decision-making policies during training. Scenarios with varying time spans are applied to train26

MARL agents, allowing for the evaluation of their problem-solving effectiveness and the testing of their27

ability to transfer solutions in online applications.28

The taxi GPS, bus smart card transactions, AVL, and time-dependent metro OD demand are syn-29

chronized with mobile data during the OPF on July 20 in Xi’an. The time step ∆t is set to 5 minutes.30
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(a) Study area (b) Distribution of passengers leaving the station

Figure 8: Study area and passenger distribution during OPF

Figure 9: Identification of OPF period

Based on the administrative divisions of passengers’ destinations, the city is divided into 13 service areas,1

as illustrated in Fig. 10. Each area is assigned a terminal station (black point) for the emergency bus2

routes based on passengers’ average travel distance. Typically, the maximum capacity under emergency3

conditions is 150% of the normal seating capacity (Abdelgawad and Abdulhai, 2012). Hence, the bus4

capacity cbus is set to 100 psg/veh, while the metro capacity cmetro is set to 3000 psg/veh. The loy-5

alty factor of passengers’ original mode choice ϵm0 is set as 0.9. Based on practical implementation, the6

weights for trip cost [ϵm1 , ϵm2 , ϵm3 ] are set as [0.5, 3.5, 0] for taxi, [2, 1, 1] for bus, and [1.5, 1.5, 1] for metro.7

Feedback weights [α1, α2, α3] are set as [1, 0.5, 0.5] to balance the objectives of the evacuation process.8

The first weight rewards the agent for demand satisfaction. The second and third weights (0.5 for both)9

penalize overcrowding and passenger abandonment.10

The hyperparameters for MARL training are systematically adjusted to identify the best-performing11

configuration. The actor, local critic and central critic networks for each agent all have two hidden12

layers with 200 and 100 units, respectively. The activation functions of the hidden layers are ReLU. The13

activation functions of the output layers are set as a sigmoid function to ensure that the output values14

remain within the range [0, 1]. The minimum action noise is set as ϵnoise = 0.1. The discount factor for15

the target Q-value is set to αd = 0.9. The total number of training episodes is set to E = 5, 000. The sizes16

of the reply buffer and batch vary with the size of the episode (i.e., time span) |T | = (tend − tstart)/∆t,17

which are set as 100 ∗ |T | and 20 ∗ |T |, respectively. The target network soft update rate is αs = 0.8,18

which updates every 20 episodes. The learning rates are set as 107 for central critic, 105 for taxi actor,19

108 for the taxi critic, 105 for bus actor, 106 for the bus critic, 105 for the metro actor, and 107 for the20

metro critic.21

7.2. Computational efficiency and policy learning analysis22

This section focuses on illustrating the computational efficiency of our MARLs in addressing the23

complexity of dynamic multi-modal evacuation, and demonstrating the detailed policy learning process24
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Figure 10: Classification of service areas and terminal stations of emergency bus routes

of agents under both independent and collaborative strategies. First of all, the computational efficiency1

is demonstrated under a series of environments with different time spans in Section 7.2.1. Then, the2

convergence processes of our customized MARLs are analyzed by comparing them to GAs and MAD-3

DPG algorithms in Section 7.2.2. Finally, different policies learned under independent and collaborative4

strategies are compared in Section 7.2.3.5

Note that both MARL and GA can solve the offline problem with the assumption of complete knowl-6

edge of the entire period. However, only MARL is applicable to online settings. This section solely7

focuses on illustrating the computational efficiency of our customized MARLs for the offline problem.8

Two other algorithms are used for comparison: GA, a representative search-based heuristic algorithm,9

and MADDPG, a classic MARL algorithm with a conventional CTDE framework. These two algorithms10

are commonly employed as benchmarks in offline cases (Li and Ni, 2022; Ying et al., 2022).11

7.2.1. Computational efficiency: our MARL vs benchmarks12

To demonstrate the computational efficiency of our MARL, a series of environments with different time13

spans are built. As the full-term period ranges from 10:00-18:40, the start time is fixed at 10:00. Then,14

the end times are set as 12:00, 14:00, 16:00, 18:00, and 20:00, respectively. This creates environments15

with time spans of 2, 4, 6, 8, and 10 hours, which sufficiently cover the OPF period. These environments16

are used to evaluate our MARL approaches and the benchmark algorithms (i.e., GA and MADDPG).17

The GA is configured with a population size of 50 and a generation of 100, resulting in a total of 5,00018

attempts, which matches the number of training episodes in our MARL approaches. The MADDPG uses19

the same parameters as our MARL approaches.20

The computational efficiency, including the maximum rewards, final average rewards (average reward21

over the last 100 episodes) and computational time, are demonstrated in Table 3. GA-I refers to the GA22

under independent strategy, while GA-C refers to that under collaborative strategy. Let the results of23

our H-CTDE algorithm as the baseline, with the gaps of the other algorithms calculated relative to it.24

First, both the maximum and final average rewards for our MARL approaches under the collaborative25

strategy are 12-24% higher than those under the independent strategy, demonstrating the effectiveness26

of the passenger mode-shifting mechanism in the collaborative strategy. The detailed policy learning27

process under these two strategies will be analyzed in Section 7.2.3.28

Second, the maximum rewards achieved by GAs are slightly (1-3%) higher than those of our approach29

under both the independent and collaborative strategies. This is due to GAs’ higher randomness in their30

search mechanism. However, GAs require significantly more computation time, approximately 22-48%31

higher than that of our approaches. Additionally, the final average rewards, which reflect the stable32

performance after training, obtained by our MARL approaches are 2-4% higher than those of GAs under33

both strategies. These gaps tend to increase with the length of time span. This result indicates that our34

MARL has higher stability, which is crucial for online applications that require continuous provision of35

reliable results based on updated information.36

Finally, our H-CTDE approach achieves 2-6% higher maximum rewards and 7-11% higher final average37

reward compared to those of MADDPG. This demonstrates the effectiveness of our H-CTDE approach38
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in solving multi-modal evacuation problems using hybrid critic networks, especially when dealing with1

heterogeneous agents that have different dispatching strategies and operational characteristics.2

The detailed convergence processes of the algorithms are provided in Fig. D1 in the Appendix D.3

Each subfigure compares different algorithms under the same evacuation strategy and time span.4

Two special scenarios are tested: one representing the peak hour of the OPF and the other representing5

the full-term duration of the OPF. As analyzed in Section 7.1, the peak hour spans from 12:00 to 16:00,6

while the full-term duration extends from 10:00 to 18:40. The computational efficiencies are listed in7

Table 4. The convergence process of the peak-hour scenario and the maximum-reward solutions of the8

full-term scenario will be analyzed in detail in Sections 7.2.2 and 7.3, respectively.9

Table 3: Comparison of the offline computational efficiency

Time span Strategy Algorithm Maximum reward Final average reward Time
Value Gap (%) Value Gap (%) Value (s) Gap%

10:00-12:00 Independent DTDE 30100.17 -23 28524.98 -24 7966 -12
GA-I 30719.30 -21 27578.90 -26 10294 +14

Collaborative H-CTDE 38962.82 - 37369.52 - 9007 -
GA-C 38750.43 -0.5 36116.55 -3 11824 +31
MADDPG 37379.58 -4 33272.04 -11 6906 -23

10:00-14:00 Independent DTDE 47640.52 -14 46480.61 -15 14185 -20
GA-I 48819.09 -12 45713.33 -19 19541 +10

Collaborative H-CTDE 55596.37 - 54512.70 - 17791 -
GA-C 56358.92 +1 53283.90 -2 26291 +48
MADDPG 54379.58 -2 50272.04 -8 12298 -31

10:00-16:00 Independent DTDE 60524.69 -14 59179.18 -14 20965 -19
GA-I 62161.38 -12 56777.54 -18 27666 +6

Collaborative H-CTDE 70181.90 - 68819.78 - 26016 -
GA-C 71796.90 +2 67396.71 -2 35654 +37
MADDPG 67379.58 -4 63272.04 -8 18176 -30

10:00-18:00 Independent DTDE 70665.16 -12 69621.00 -12 28233 -17
GA-I 72577.52 -9 67702.55 -15 35832 +6

Collaborative H-CTDE 80126.83 - 78975.00 - 33832 -
GA-C 81477.27 +1 77470.19 -2 41300 +22
MADDPG 77379.58 -4 73272.04 -7 24478 -28

10:00-20:00 Independent DTDE 81041.88 -13 80005.75 -13 34395 -21
GA-I 81724.83 -12 74961.22 -19 45358 +4

Collaborative H-CTDE 93292.66 - 92264.47 - 43533 -
GA-C 93683.06 +0.4 88963.22 -4 55033 +26
MADDPG 87379.58 -6 83272.04 -10 29820 -32

Table 4: Computational efficiency of peak-hour and full-term scenarios

Time span Strategy Algorithm Maximum reward Final average reward Time
Value Gap (%) Value Gap (%) Value (s) Gap (%)

12:00-16:00 Independent DTDE 51284.11 -20 49434.07 -22 9133 -0.2
(Peak hour) GA-I 51565.14 -20 48907.59 -23 11565 +21

Collaborative H-CTDE 61729.92 - 60129.79 - 9154 -
GA-C 61470.01 -0.4 57870.45 -4 12165 +25
MADDPG 57995.29 -6 53794.49 -12 7926 -15

10:00-18:40 Independent DTDE 84643.59 -26 78611.27 -32 30589 -24
(Full term) GA-I 80411.41 -33 76575.23 -36 38967 +3

Collaborative H-CTDE 107009.84 - 104113.92 - 37911 -
GA-C 104869.64 -2 98075.31 -6 44913 +16
MADDPG 96308.65 -11 91492.60 -14 26619 -42

7.2.2. Convergence process: our MARL vs benchmarks10

To analyze the convergence process, the training processes under the peak-hour environment with11

a four-hour time span from 12:00 to 16:00 is shown in Section 7.2.2. The convergence processes of12

independent and collaborative strategies are presented in Fig. 11a and Fig. 11b, respectively. Both13

Fig. 11a and Fig. 11b illustrate that the MARLs have a clear advantage in computational efficiency,14

which converge within approximately 800 episodes, whereas GAs require over 3000 episodes to reach15

convergence. The maximum rewards, final average rewards and computation time have been presented16

in Table 4.17
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(a) Independent strategy

(b) Collaborative strategy

Figure 11: Convergence of GA and MARL

According to Table 4, under the independent strategy, DTDE achieves lower maximum reward1

(51284.11 vs. 51565.14) but higher final average reward after the algorithm convergence (49434.07 vs.2

48907.59) compared to GA-I. This difference suggests that while GA-I can stochastically achieve indi-3

vidual high rewards, the DTDE approach can stably achieve higher rewards after training. Under the4

collaborative strategy, the gap between H-CTDE and GA-C widens further. H-CTDE achieves the high-5

est performance with a maximum reward of 61,729.92 and a final average reward of 60,129.79. In contrast,6

GA-C has a final average reward of 57,870.45 (4% lower than H-CTDE) and a slightly lower maximum7

reward of 61,470.01. This result highlights the superior adaptability and efficiency of H-CTDE in manag-8

ing the complexity of collaborative dispatch and passengers’ mode-shifting behavior. This is because the9

reward structure requires balancing competing objectives, such as maximizing demand satisfaction and10

minimizing passenger abandonment. The transition between states depends on the actions taken, making11

the reward highly interactive with the environment. The learning-based algorithm effectively optimizes12

these trade-offs by iteratively refining policies based on feedback, whereas searching-based algorithms13

like GA struggle because they rely on predefined heuristic strategies and limited initial search spaces. A14

similar phenomenon is also reported by Ying et al. (2022).15

By comparing our proposed H-CTDE with the MADDPG training framework, the improvements16

become more significant. The maximum reward achieved by the MADDPG is 57,995.29 (6% lower than17

H-CTDE), with a final average reward of 53,794.49 (12% lower than H-CTDE). Another phenomenon18

can be found in Fig. 11b that the reward per episode achieved by MADDPG (grey line) drops during19

the first 100 training episodes and remains stable thereafter, indicating an unfavorable learning direction20

where agents are stuck in suboptimal policies. In the MADDPG approach, the central critic evaluates21

the policies of all agents collaboratively, which can inadvertently lead to certain agents becoming “lazy”.22
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This issue is particularly evident in heterogeneous agent frameworks, such as ours, where the capacities of1

different modes (e.g., cmetro = 3000 vs. cbus = 100) vary significantly. Agents controlling higher-capacity2

modes, like metro, can dominate the optimization process by achieving higher demand satisfaction, while3

lower-capacity modes contribute less visibly to the global reward. Furthermore, the global penalty in the4

MADDPG framework fails to adequately capture the impact of evacuation on regular services. Regular5

passenger demand varies across modes, times, and areas, as proved by the results in Figs. 17 and 18,6

which will be thoroughly discussed in Section 7.3.3. Therefore, a global penalty is counterproductive,7

potentially encouraging overly conservative behavior. These phenomena of lazy and conservative behavior8

align with challenges frequently highlighted in previous studies (Shao et al., 2019; Liu et al., 2023). In9

contrast, H-CTDE addresses these challenges by enabling better coordination and individualized learning10

for each mode, ensuring that all agents are effectively stimulated to contribute to the evacuation.11

7.2.3. Policy learning analysis: independent vs. collaborative strategies12

An obvious result, supported by Tables 4, shows that the rewards achieved by the collaborative13

strategy are generally higher than those achieved by the independent strategy. The final average reward14

of collaborative strategy is 22% higher than that of independent strategy (60129.79 vs. 49434.07). This15

result shows different policies learned by agents under the two evacuation strategies. To better understand16

agents’ policy learning process, this section analyzes the convergence of the three feedback components:17

demand satisfaction, overcrowding and passenger abandonment, through the training processes of their18

corresponding algorithms.19

Fig. 12 demonstrates the convergence process of demand satisfaction and evacuated passenger number20

through independent (blue) and collaborative (black) strategies. Subplot Fig. 12a presents the reward21

associated with demand satisfaction, incorporating both the number of evacuated passengers and their22

corresponding stranded durations, as defined in Eq. (26). Subplot Fig. 12b focuses solely on the evacuated23

passenger number. The light lines represent the values for each episode, while the dark lines indicate the24

moving averages. As shown in the Fig. 12a, the collaborative strategy consistently achieves higher demand25

satisfaction compared to the independent strategy. The collaborative strategy yields a reward of 64,835,26

compared to 57,165 for the independent strategy. In Fig. 12b, the collaborative strategy consistently27

evacuated 29,276 passengers after training, compared to 23,513 passengers evacuated by the independent28

strategy. Although the collaborative strategy satisfies only 5,763 more passengers than the independent29

strategy, the demand satisfaction reward improves by 7,670. This improvement highlights the effectiveness30

of the passenger mode-shifting mechanism in not only increasing the number of satisfied passengers but31

also reducing stranded duration. By effectively using the residual capacity of underutilized modes, the32

collaborative approach ensures that more passengers are accommodated, particularly alleviating the33

pressure on heavily relied-upon modes. The policies of multi-modal collaboration learned by agents will34

be analyzed in detail in Section 7.3.35

Fig. 13 demonstrates the convergence of overcrowding penalties in both strategies (blue representing36

the independent strategy and black representing the collaborative strategy). The light lines represent the37

values for each episode, while the dark lines indicate the moving averages. The overcrowding is inevitable38

since the algorithm begins with the number of stranded passengers exceeding the threshold. During the39

first 100 training episodes, the collaborative strategy results in higher overcrowding penalties than the40

independent strategy. However, after training, the collaborative strategy incurs an average overcrowding41

penalty of only 899, compared to 1,263 for the independent strategy, representing a 44.8% increase. The42

collaborative strategy coordinates passengers’ mode shifting across the multi-modal system, preventing43

bottlenecks and avoiding excessive loading on high-demand routes or transit modes. This system-wide44

passenger mode-shifting mechanism ensures that no single mode is overwhelmed, maintaining service45

stability. In contrast, the independent strategy focuses on individual mode optimization, which can lead46

to localized overcrowding.47

Fig. 14 shows a notable difference in passenger abandonment between the two strategies. The col-48

laborative strategy allows the residual capacities of other modes to be effectively utilized, reducing the49

burden on heavily used modes and ensuring that fewer regular passengers are displaced. Conversely, the50

independent strategy attempts to increase demand satisfaction by dispatching additional capacities for51

evacuation, often at the expense of abandoning more regular passengers. The behavior of sacrificing the52

services of regular passengers indicates that the agents recognize the reward of demand satisfaction as53

being higher than the penalty of passenger abandonment. As a result, agents intentionally prioritize de-54
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Figure 12: Convergence of demand satisfaction and evacuated passenger number under independent and collaborative
strategies

Figure 13: Convergence of overcrowding under independent and collaborative strategies

mand satisfaction over the potential penalty of passenger abandonment. After training, the collaborative1

strategy abandons 67% less passengers than the independent strategy (8511 vs. 14199).2

7.3. Analysis for resilience enhancement and impact mitigation3

This section takes the solution with the maximum reward obtained under the full-term environment4

from 10:00 to 18:40 to illustrate agents’ policies on resilience enhancement and impact mitigation. Train-5

ing hyperparameters and results are given in Section 7.3.1. Section 7.3.2 demonstrates the effectiveness6

of evacuation strategies in enhancing the resilience under OPF, specifically focusing on the robustness,7

rapidity and resourcefulness. Section 7.3.3 presents detailed passenger distribution and abandonment at8

each time step during dynamic multi-modal evacuation.9

7.3.1. Training parameters10

To analyze agents’ capability of resilience enhancement and impact mitigation, the full-term OPF11

period (10:00-18:40) is taken as the offline training environment. To obtain higher-quality solutions,12

extensive parameter tuning is conducted through multiple training iterations. Both the learning rate and13

the number of training episodes are systematically adjusted to identify the best-performing configuration.14

Specifically, the number of episodes is set as E = 10, 000, The learning rates are set as 109 for central15

critic, 106 for taxi actor, 109 for the taxi critic, 106 for bus actor, 107 for the bus critic, 106 for metro actor,16
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Figure 14: Convergence of passenger abandonment under independent and collaborative strategies

and 108 for the metro critic. The results of the maximum reward, final average reward and computation1

time are shown in Table 4.2

7.3.2. Resilience analysis3

Based on the solutions with maximum rewards of DTDE and H-CTDE, the resilience performance4

with independent, collaborative and without evacuation is presented in Fig. 15. The tuples {time,5

stranded passenger number} of some specific points are labeled above the curves. At the beginning,6

5,590 passengers are stranded at 10:00, exceeding the overcrowding threshold. The risk exposure time7

lasts 8 hours and 45 minutes until 18:40 in the real-world case. The blue line represents the independent8

evacuation process, while the black line indicates the collaborative evacuation process. By comparing9

with the real-world condition without evacuation (grey line), both evacuation strategies can enhance10

the resilience, while the indicators, including the Robustness, Rapidity and resourcefulness, perform11

differently, which is summarized in Table 5.12

Figure 15: Resilience performance of our approaches and the case without evacuation

Table 5: Resilience metrics of our approaches and the case without evacuation

Strategies Robustness (psg) Rapidity-1 (min) Rapidity-2 (min) Resourcefulness (psg*min)
Independent 5590 350 25 4400750
Collaborative 5590 70 20 4671790
Without 10,677 780 520 -
Note: Rapidity-1-network clearance time; Rapidity-2-risk exposure time; psg-passenger; min-minute

In the collaborative evacuation process, only 1218 stranded passengers are left within the first 2013

minutes (4 time steps), demonstrating strong robustness and short risk exposure time. The system14

achieves equilibrium with only 37 passengers remaining after 70 minutes (14 time steps), which highlights15

the rapidity by clearing the network with only 9% of the time compared to the case without evacuation.16
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While there are some passengers accumulating between 11:10 and 13:55, during the peak OPF period,1

the maximum accumulation reaches only 496 passengers, which remains within an acceptable range.2

According to Table 5, the resourcefulness of collaborative strategy is 4,671,790, which is 6% higher3

than that of independent strategy. Subsequently, agents’ main focus is changed to managing arriving4

passenger flow and preventing overcrowding, which results in consistently maintaining a low level of5

stranded passengers.6

Conversely, in the independent evacuation process, the restoration duration is significantly extended.7

Although only 1391 stranded passengers are left within the first 25 minutes (5 time steps), demonstrat-8

ing comparable rapidity (risk exposure time), equilibrium is reached with 46 passengers remaining at9

15:50. This process takes 350 minutes, five times longer than the collaborative strategy, highlighting a10

drawback in network clearance time. The slower restoration curve, indicating weaker resourcefulness,11

underscores the capacity limitations of individual modes. This limitation forces stranded passengers to12

wait for subsequent services, thereby prolonging the overall evacuation time span. Although the time to13

reach equilibrium with the independent strategy is longer than that with the collaborative strategy, the14

independent strategy still uses only 45% of the time compared to the case without evacuation.15

7.3.3. Demand distribution and passenger abandonment across modes16

The total demand, satisfied demand and passenger abandonment by each mode at each time step17

are depicted in Figs. 16, 17 and 18 for the case without evacuation, with independent strategy and with18

collaborative strategy, respectively. In these figures, the red points represent the total demand. The19

cumulative bars above the x-axis illustrate the satisfied demand by each mode: green for metro, blue20

for bus, and orange for taxi. Meanwhile, the bars below the x-axis represent the number of abandoned21

passengers. This visualization demonstrates the passenger distribution and abandonment across modes,22

highlighting the dynamic performance of the evacuation strategies in balancing emergency dispatch and23

impact of evacuation on regular passengers.24

Fig 16 illustrates the real-world case without evacuation. The red points represent the total passenger25

demand at each time step, corresponding to the left axis, while the stacked bars represent the satisfied26

demand by each mode—green for metro, blue for bus, and yellow for taxi—corresponding to the right27

axis. Due to the limited capacities, the transit for stranded passengers remains inadequate under OPF.28

The number of stranded passengers (passenger demand) increases sharply, from 5,590 at 10:00 to 10,67729

by 13:30. Although demand decreases after the peak hour, the decline lasts 5 hours until 18:40 with30

about 5,000 passengers remaining. During this period, demands are evenly distributed across modes,31

consistently averaging about 104 for metro, 65 for taxis, and 68 for buses at each time step. However, the32

capacity utilization across modes is not balanced, as metro train capacity is significantly larger than that33

of buses and taxis. This discrepancy highlights the intense use of bus and taxi services to accommodate34

the OPF, while the metro system retains some residual capacity. It reflects passengers’ real-world mode35

choice in the absence of proactive multi-modal evacuation strategies. The increasing number of stranded36

passengers highlights the urgent need for effective evacuation and guidance.37

Figure 16: Total passenger demand and satisfied demand without evacuation

Fig. 17 illustrates the dynamic evacuation under independent strategy. The total demand depicts38

a gradual decrease from 10:00 to 15:30. The metro, with higher capacity, totally accommodates 2,08939

passengers within the first two steps. The efficient utilization of metro capacity enables passengers to40
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depart earlier. This mode also proves effective during the rapid demand increase between 12:00 and 13:00,1

evacuating an average of 185 passengers per time step. However, the metro’s advantage of high capacity2

diminishes later, which only evacuates an average of 112 passengers per time step. This is because most3

stranded passengers, who are willing to take the metro, have already left, and newly arriving passengers4

after that time are less likely to choose the metro. In contrast, the bus and taxi systems are not extensively5

dispatched at the first two steps, which evacuate the majority of stranded passengers from the third to6

fifth steps, with buses evacuating 947 passengers and taxis evacuating 2,197 passengers. However, due7

to the limited available capacity within the bus and taxi systems, the evacuation process is gradual and8

prolonged. Between 12:00 and 13:00, buses and taxis evacuate an average of 97 and 86 passengers per time9

step, respectively. However, after 13:00, their average demand satisfaction drops to 89 and 70 passengers10

per time step. Therefore, the independent strategy effectively groups passengers by mode and allocates11

additional capacity at specific time steps to high-demand modes, thereby reducing stranded duration.12

However, since passengers are restricted to their original mode choice, the overall evacuation speed is13

limited by the lower-capacity modes, like bus and taxi.14

According to the bars below the x-axis, in the metro system, the minimal abandonment occurs before15

12:00 due to low regular demand. However, 1,391 regular passengers are abandoned between 12:00 and16

13:00, when the OPF rapidly increases, coinciding with the metro’s peak service. For the bus system,17

passenger abandonment averages 150 per step due to continuous dispatching, which rises to 200 during18

high regular demand (12:00–14:00). Taxis experience notable abandonment only in the first five steps19

when capacity is heavily dispatched. This imbalance highlights the strain on regular services during20

heavy dispatch periods, emphasizing the need for better coordination of dispatching across modes.21

Figure 17: Demand satisfaction and passenger abandonment with independent strategy at each time step

Fig. 18 illustrates the dynamic evacuation under collaborative strategy. Agents swiftly dispatch22

sufficient capacities at the first time step, evacuating 2,761 passengers in the first time step, with 2572 by23

metro, 100 by bus and 89 by taxi. Taxis, throughout the period, evacuate an average of 130 passengers per24

time step. Buses are strategically dispatched only during specific periods, such as regular services off-peak25

hours (10:00–11:00) and the OPF peak hour (13:00–14:00). During these time periods, buses evacuate26

an average of 100 stranded passengers but only abandon an average of 79 regular passengers per time27

step. Buses are not heavily relied upon, possibly due to the higher penalty of passenger abandonment,28

compared to the average abandonment of 17 for metro and 41 for taxi per time step.29

According to the bars below the x-axis, passenger abandonment is clearly visible at the first time step,30

as agents dispatch extensive capacities to evacuate overwhelming OPF. 1,522 regular metro passengers31

are abandoned and have to wait for the next train. These passengers are all accommodated in the next32

time step, just ∆t = 5 minutes later. This is in stark contrast to the independent framework, where33

abandonment remains higher throughout the period due to passengers’ rigid mode choice. The collabora-34

tive evacuation’s ability to use residual capacities across modes results in minimal ongoing abandonment35

after the first time step, which effectively mitigates the negative impact on regular passengers.36
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Figure 18: Demand satisfaction and passenger abandonment with collaborative strategy at each time step

7.4. Transferability1

One key advantage of reinforcement learning approach lies in its transferability when adapting the2

pre-trained agents to new but similar scenarios. Based on the result in Section 7.3, the majority of3

stranded passengers are evacuated within the first several time steps, while the rest of time is focused on4

maintaining the crowdedness with arriving passengers. This creates a dilemma in reinforcement learning,5

where increasing the complexity and duration of the training environment may not always benefit online6

performance (Zhang et al., 2024). To demonstrate the transferability of the MARL in online cases and7

further illustrate the impact of the length of training datasets, several representative pre-trained MARL8

agents will be employed in a series of new environments in this section.9

The generation of new environments used to evaluate the transferability is introduced in Section 7.4.1.10

Then, the efficiency of agents pre-trained by peak-hour and full-term environments is compared in Sec-11

tion 7.4.2. Finally, a sensitivity analysis is presented to investigate how various factors, such as the12

length of training environment, the length of new environment, and the variance between training and13

new environments, influence the agents’ online performance in Section 7.4.3.14

7.4.1. Environment generation15

To create new environments, a series of variant factors is added to the number of passengers in16

each passenger group, as referred to q(p) in the agent-based environment, in the training dataset. The17

variant factors follow a Gaussian distribution with a mean of 0 and standard deviations of 3, 6 and 10.18

The standard deviations correspond to the 30th, 60th and 90th percentiles of the passenger numbers19

in the dataset, ensuring that the new environments differ from the training environment at multiple20

levels. Any generated negative passenger numbers are eliminated from the dataset. The propagation21

of stranded passengers in these new environments is shown in Fig. 19. With a variant factor of 3, the22

OPF environment spans from 9:40 to 18:40, with the maximum number of stranded passengers reaching23

11,076. With a variant factor of 6, the OPF environment spans from 9:10 to 20:10, with the maximum24

number of stranded passengers reaching 13,829. With a variant factor of 10, the OPF environment spans25

from 8:50 to 20:50, with the maximum number of stranded passengers reaching 17,894.26

The transferability of a set of representative agents is evaluated in three new environments with27

different time spans. All environments start at the starting time of the OPF, while their time span are28

set as 2, 8 and 12 hours, receptively. Longer time spans imply more diverse conditions, which in turn29

require greater robustness from the agents. The pre-trained agents are evaluated over 100 episodes with30

a fixed ϵnoise = 0.2 without updating the weights of neural networks. The best rewards are derived after31

3,000 episodes of training as benchmarks.32

7.4.2. Transferability efficiency33

Firstly, two pre-trained agents are transferred to the new environment with a variant factor of 10,34

which spans from 8:50-20:50. One agent is trained by the peak-hour environment discussed in Sec-35

tion 7.2.2, while the other is trained by the full-term environment in Section 7.3. Both the independent36

and collaborative strategies are tested as follows.37
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Figure 19: Demand propagation in new environments for online applications

The best, maximum and median rewards, the total computational time per episode and the average1

computational time per time step of the online application under independent strategy, are listed in2

Table 6. For agents trained in peak-hour environments, the average gap between the maximum rewards3

and the best rewards is 4.84%, while the median rewards show an average gap of 7.47%. For agents4

trained in full-term environments, the average gap between the maximum rewards and the best rewards5

is 5.75%, while the median rewards show an average gap of 10.23%. The average computational time per6

time step is similar for both agents trained by peak-hour and full-term environments (0.30s vs 0.29s).7

Table 6: Comparison of online application efficiency for independent strategy

Ending Best
Trained by Peak Hour Trained by Full Term

Reward Time Reward Time
Maximum Gap Median Gap Total AVG Maximum Gap Median Gap Total AVG

10:50 37781.31 36741.52 2.75% 35657.72 5.63% 6.7s 0.28s 36054.62 4.57% 34375.35 9.03% 7.2s 0.30s
12:50 64953.95 61457.89 5.37% 59730.62 8.04% 14.8s 0.31s 60051.46 7.55% 55628.65 14.36% 13.4s 0.28s
14:50 89675.31 85430.48 4.73% 82946.49 7.51% 20.7s 0.29s 83780.58 6.57% 80219.03 10.55% 20.5s 0.28s
16:50 107709.79 103382.17 4.02% 100469.79 6.72% 29.0s 0.30s 102000.14 5.30% 97342.81 9.57% 29.2s 0.30s
18:50 128752.85 118621.94 7.86% 115289.53 10.46% 36.2s 0.30s 119602.64 7.10% 115400.13 10.35% 34.8s 0.29s
20:50 134583.20 128777.60 4.32% 125900.96 6.45% 44.3s 0.31s 129966.88 3.43% 124440.20 7.54% 44.7s 0.31s
Average - - 4.84% - 7.47% - 0.30s - 5.75% - 10.23% - 0.29s
Note: Total-total computational time per episode; AVG-average computational time per time step

Similarly, the results of the online application under collaborative strategy are presented in Table 7.8

For agents trained in peak-hour environments, the average gap between the maximum rewards and the9

best rewards is 0.91%, while the median rewards show an average gap of 1.55%. For agents trained in10

full-term environments, the average gap between the maximum rewards and the best rewards is 1.22%,11

while the median rewards show an average gap of 2.68%. The average computational time per time step12

is similar for both agents trained by peak-hour and full-term environments (0.39s vs 0.40s).13

Table 7: Comparison of online application efficiency for collaborative strategy

Ending Best
Trained by Peak Hour Trained by Full Term

Reward Time Reward Time
Maximum Gap Median Gap Total AVG Maximum Gap Median Gap Total AVG

10:50 50111.82 49737.75 0.74% 49298.18 1.63% 9.5s 0.40s 48967.99 2.28% 47674.32 4.86% 9.5s 0.40s
12:50 86881.88 85908.08 1.12% 85314.62 1.80% 19.4s 0.41s 85235.48 1.89% 83721.22 3.64% 18.8s 0.39s
14:50 118211.07 116678.19 1.30% 116035.22 1.84% 27.8s 0.39s 116788.61 1.20% 115261.26 2.49% 26.5s 0.37s
16:50 141379.29 140475.31 0.64% 139592.98 1.26% 37.4s 0.39s 140477.14 0.64% 139266.16 1.49% 38.6s 0.40s
18:50 165541.90 164405.30 0.69% 163464.10 1.25% 49.0s 0.41s 164807.19 0.44% 162698.90 1.72% 47.7s 0.40s
20:50 181650.60 179888.19 0.97% 178839.26 1.55% 52.9s 0.37s 180066.13 0.87% 178242.33 1.88% 53.6s 0.37s
Average - - 0.91% - 1.55% - 0.39s - 1.22% - 2.68% - 0.40s
Note: Total-total computational time per episode; AVG-average computational time per time step

Agents trained in peak-hour environments (refer to peak-hour-trained agents) exhibit smaller gaps,14

compared to those trained in full-term environments (refer to full-term-trained agents), when the evacu-15

ation time span is no more than 6 hours. According to the results of independent strategy in Table 6, the16

median gap is 5.63% for peak-hour-trained agents versus 9.03% for full-term-trained agents in the 2-hour17

environment (end at 10:50). In the 4-hour environment (end at 12:50), the median gaps are 8.04% vs18

14.36%, and in the 6-hour environment (end at 14:50), the gaps are 7.51% vs 10.55%. Similar results can19

be found in the collaborative strategy in Table 7. In the 2-hour environment, the median gap is 1.63%20
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for peak-hour-trained agents versus 4.86% for full-term-trained agents. In the 4-hour environment, the1

median gaps are 1.80% vs 3.64%, and in the 6-hour environment, the gaps are 1.84% vs 2.49%. These2

results show that peak-hour-trained agents are better for handling short-term OPF events, focusing on3

rapid evacuation and quick restoration of equilibrium.4

In contrast, full-term-trained agents are better for longer time spans. When the evacuation time span5

is within 6 hours, the average median gap is 11.31% (i.e., (9.03%+14.36%+10.55%)/3) for independent6

strategies in Table 6 and 3.66% (i.e., (4.86%+3.64%+2.49%)/3) for collaborative strategies in Table 7. For7

time spans over 6 hours, these gaps decrease to 9.15% (i.e., (9.57%+10.35%+7.54%)/3) for independent8

strategies and 1.70% (i.e., (1.49% + 1.72% + 1.88%)/3) for collaborative strategies. These results show9

that full-term-trained agents are better at managing long-term OPF by adapting to the dynamic regular10

passengers with redundant capacities. The distribution of results from online applications, shown in11

Fig. 20, supports these findings as well. Peak-hour-trained agents (blue bars) produce more concentrated12

results, reflecting their focus on rapid responses and efficient handling of the surge in OPF. In contrast,13

full-term-trained agents (red bars) exhibit broader solution ranges, demonstrating greater adaptability14

to diverse conditions over a longer period.15

The results also demonstrate that the collaborative strategy achieves smaller gaps compared to the16

independent strategy, highlighting its effectiveness in producing high-quality solutions even in new en-17

vironments. In addition, the average computational time per time step under collaborative strategy is18

longer than that under independent strategy (0.40s vs 0.30s). By considering passengers’ mode shifting19

across systems, the collaborative strategy ensures adaptability and robustness, addressing unexpected20

fluctuations and efficiently balancing demand.21

By transferring the trained agents to new environments, no additional training time is required. The22

average computational time per time step under both independent and collaborative strategies is less than23

1 second, though the computational time under collaborative strategy is approximately 0.1 second longer24

than that under independent strategy. The computational time results demonstrate that our algorithm25

has ample potential for online application.26

7.4.3. Sensitivity analysis27

To demonstrate the transferability of our MARL approaches, a sensitivity analysis is conducted under28

a set of new environments with different time spans and variant factors. Three representative agents are29

selected from Section 7.2.1. Each one is trained using an environment with distinct time spans: the first30

two hours before the peak (10:00–12:00), the first four hours covering the peak hours (10:00–14:00), and31

the full ten-hour period covering the entire OPF period (10:00–20:00). Hereafter, the agents are referred32

to as the 2h-agent, 4h-agent and 10h-agent for descriptive purposes. These time spans expose the agents33

to different environmental characteristics. In the first two hours, the environment experiences a rapid34

increase in passenger demand, allowing the 2h-agent to frequently interact with incoming passengers.35

The four-hour environment, which starts with a large number of stranded passengers, enables the 4h-36

agent to focus on evacuating stranded passengers during the initial time steps. Lastly, the ten-hour37

environment, with its more complex capacity and passenger dynamics, trains the 10h-agent to flexibly38

adapt its evacuation plans over the long term. By testing these agents in new environments, the impact39

of the training datasets on their transferability can be demonstrated.40

The distributions of rewards across different scenarios for agents under the independent and collabo-41

rative strategies are shown in Fig. 21 and Fig. 22, respectively. Each subfigure corresponds to a specific42

scenario, where the variant factors increase from left to right, and the time span increases from top to43

bottom. The red line indicates the best reward achieved after training, while the blue line represents44

the median reward obtained by agents without training, which are referred to as naive-agent hereafter.45

Specifically, the detailed results, including the maximum and median rewards obtained by the agents,46

benchmark rewards with and without training, as well as the gaps and improvements, are summarized47

in Table E1 in the Appendix E.48

First of all, the phenomena reported in Section 7.4.2 also hold true in the set of new scenarios. The49

gaps between the best rewards and the median rewards obtained by pre-trained agents are larger under50

the independent strategy (average of 5.96%) than under the collaborative strategy (average of 2.26%).51

The advantage of training over a longer time span becomes more evident when the time span of the new52

environment is extended. Results of agents’ transferability for scenarios where the time spans of training53

environments are longer than those of new environments are summarized in Table E2, and results for54
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(a) Performance of independent strategy in online applications

(b) Performance of collaborative strategy in online applications

Figure 20: Distribution of results in online applications

scenarios where the time spans of training environments are shorter than those of new environments1

are summarized in Table E3. When the training time span is longer than that of new environments,2

for example, the 10h-agent under 2-hour or 8-hour environments, the average gaps are 5.33% under3

the independent strategy and 1.89% under the collaborative strategy. In contrast, the average gaps are4

6.47% under the independent strategy and 2.55% under the collaborative strategy when the time spans5

of training environments are shorter than those of new environments.6

By comparing vertically across the scenarios with different time spans, the 2h-agent shows less adapt-7

ability than the other two pre-trained agents, especially as the time spans increase in subfigures from8

top to bottom. Particularly, when the time span is 12h and variant factor is 3 under independent strat-9

egy, the median reward achieved by the 2h-agent is 2.73% lower than that achieved by naive-agent, as10

shown in Table E1. It demonstrates that 2h-agent’s policy becomes overly conservative during longer11

time spans, leading to suboptimal performance. Results of 4h-agent are summarized in Table E4, and12

those of 10h-agents are summarized in Table E5. Under the independent strategy, the 4h-agent shows13

comparable capability to the 10h-agent with the increase of time span. The average gaps between the14

median and best rewards are 5.24% for the 4h-agent and 5.27% for the 10h-agent. This is likely because15

the interactions between environments and agents are isolated among different modes, making the envi-16

ronment simpler under the independent strategy. As a result, the 4h-agent is sufficiently trained, and17

10h-agent shows less obvious advantage in long-term environments. Under the collaborative strategy,18

the 4h-agent is only comparable to 10h-agent under 2-hour environment with average gaps of 2.23%19

(i.e., (2.32%+2.45%+1.93%)/3) and 2.36% (i.e., (2.80%+2.05%+2.23%)/3), respectively. However, the20
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average gap of all scenarios by 4h-agent is 2.82%, while that by 10h-agent is 1.77%. This result indicates1

that the transferability of 4h-agent and 10h-agent diverges significantly as the time span of the new2

environment increases. Therefore, a longer environment is more effective in training agents, enabling3

them to adapt better to new environments with a larger number of time steps, particularly under the4

collaborative strategy.5

By comparing horizontally across the scenarios with different variant factors, the improvement of6

three pre-trained agents becomes more evident compared to the naive-agent, especially as the variant7

factor increases. Results of agents’ transferability under scenarios with variance factors of 3, 6, and 108

are summarized in Tables E6, E7 and E8, respectively. Under the independent strategy, the average9

improvement for scenarios with variant factors of 3, 6, 10 are 2.58%, 7.09%, and 7.20%, respectively.10

Under the collaborative strategy, the average improvements are 1.38%, 5.36%, and 4.45%, respectively.11

It proves the transferability of MARL in online cases to new environments after offline training. Notably,12

under the collaborative strategy, the superiority of the 10h-agent becomes more pronounced with the13

increase of variant factor. This indicates that a longer training environment is more effective in training14

agents to be better adaptable to new environments that are significantly different from the training one.15

Figure 21: Sensitivity analysis of agents’ transferability under independent strategy

The total computational time for each episode and the average computational time per time step16

under different scenarios and strategies are shown in Table E9. Comparing different scenarios under the17

same strategy (i.e., collaborative or independent), the average computational time per time step does18

not differ significantly. Specifically, the average computational time per time step is approximately 0.40s19

under the collaborative strategy and around 0.30s under the independent strategy. The computational20

time is primarily influenced by the evacuation strategy, with little impact from the length of the new21

scenario and the variance between the new scenario and the training environment. This result proves22



39

Figure 22: Sensitivity analysis of agents’ transferability under collaborative strategy

that our approach is generalizable and can be transferred to a wide range of new online environments.1

7.5. Practical, theoretical implications and managerial insights2

Practical implications. The proposed online approach can be seamlessly integrated into the emer-3

gency management module of a smart city platform, enabling continuous monitoring of passenger accu-4

mulation and surrounding transit capacity during mass gatherings or peak periods in rail transit systems.5

Once passenger volume exceeds a predefined safety threshold, the system can automatically generate dis-6

patching plans in less than one second. For passengers, the rapid responsiveness of our approach ensures7

timely interventions, which are critical for maintaining safety during emergencies. For transport authori-8

ties, such intelligent evacuation mechanisms contribute to the broader objectives of smart cities—ensuring9

safe, efficient, and adaptive mobility in real time. From an emergency management perspective, the sys-10

tem mitigates the risks of stampedes, severe delays, and secondary disruptions by preventing excessive11

overcrowding, thereby improving the overall resilience of urban transit systems.12

Theoretical implications. Our study bridges the gap between multi-modal evacuation and data-13

driven decision-making, contributing to the growing body of literature on evacuation strategies, a topic14

recently identified as a research hotspot (Bergantino et al., 2024). The use of online decision-making15

effectively addresses uncertainties regarding the onset and duration of OPF, which have traditionally16

constrained evacuation planning. Furthermore, our approach redefines resilience as a real-time interactive17

metric rather than a retrospective one, addressing a key theoretical gap in resilience research highlighted18

by Wei et al. (2024). This framework also serves as a foundation for data-driven resilience evaluation, in19

line with recent advancements by Dui et al. (2023) and Knoester et al. (2024).20

Managerial insights. This study highlights the critical role of multi-modal collaboration in evacua-21

tion management, emphasizing the importance of both flexibility and operational efficiency. The distinct22
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characteristics of each transport mode, as well as the potential impact of evacuation activities on regular1

services, must not be overlooked. Based on the analysis in Section 7.3, the following managerial insights2

are derived:3

• Evacuation should be continuous. Effective evacuation requires ongoing monitoring of passenger4

accumulation and capacity availability until the end of the peak period. Evacuating only the5

initially accumulated passengers is insufficient, as overcrowding may still occur if new passengers6

continue to arrive and are not accounted for.7

• Proactive passenger redistribution is essential. Evacuation managers should proactively guide pas-8

sengers to different modes based on real-time capacity availability and travel efficiency. If passengers9

persist in their original mode choices, clearance of the OPF will be constrained by bottleneck modes10

with limited capacity, limiting the overall improvement in evacuation efficiency.11

• Consider the impact on regular services. The impact of evacuation on regular services should be12

carefully assessed. Each mode exhibits different levels of residual capacity throughout the day—13

buses, taxis, and metros vary in the number of abandoned regular passengers when their capacities14

are dispatched for evacuation. To minimize impact, evacuation resources should be dispatched15

during off-peak periods or prioritized from modes experiencing lower regular passenger demand.16

These insights support the development of more adaptive and balanced evacuation strategies that align17

with real-world operational constraints and passenger behavior.18

8. Conclusion19

This paper proposed an online multi-modal evacuation framework based on heterogeneous MARL,20

targeting dynamic OPF scenarios. A novel data-driven agent-based environment was developed to capture21

real-time interactions between passenger growth and capacity availability. Two coordination strategies22

were implemented: an independent strategy under the DTDE framework and a collaborative strategy23

under a customized H-CTDE algorithm. Resilience metrics—robustness, rapidity, and resourcefulness—24

were transformed into demand-responsive feedback mechanisms to guide proactive evacuation planning.25

Comparative results demonstrated that the proposed MARL algorithms outperformed both the GA26

and MADDPG algorithms in terms of computation time and solution quality. H-CTDE achieved 7–27

11% and 2–4% higher rewards than MADDPG and GA, respectively, while reducing computation time28

by 22–48% compared to GA. The collaborative and independent strategies restored equilibrium using29

only 9% and 55% of the time required in the case without evacuation, respectively. In online settings,30

pre-trained agents consistently maintained solution gaps within 10% across most new environments, with31

computational times ranging from 0.3 to 0.4 seconds per time step. These results validated our approaches32

for online resilient evacuation planning across heterogeneous transit modes.33

Future work can extend the proposed framework by incorporating train rescheduling and flexible bus34

routing to further reduce passengers’ en-route delays. Addressing demand uncertainty caused by self-35

evacuation is also essential. To systematically balance the competing priorities of resilience enhancement36

(e.g., minimizing stranded passengers through proactive capacity allocation) and impact mitigation (e.g.,37

preserving regular service quality by limiting evacuation-driven disruptions), multi-objective reinforce-38

ment learning could be employed to optimize Pareto-optimal solutions. This approach would enable39

adaptive policy development by dynamically weighting objectives based on real-time system states and40

predefined priority rules. Additionally, the H-CTDE framework may be developed as a generalized41

paradigm to validate its broader applicability in heterogeneous multi-agent settings. Integrating the42

data-driven agent-based environment with microscopic simulation platforms such as SUMO or AnyLogic43

would provide sufficient training scenarios for our approach. Lastly, improving data quality remains44

critical where current limitations, such as the lack of precise regular passenger counts in taxi GPS data,45

may lead to underestimated system impacts.46
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Appendix A. Table of notations1

Table A1: Notations of decision variables

Symbol Explanation
attaxi The number of taxis dispatched for evacuation at time step t.
atbus The number of buses dispatched for evacuation at time step t.
atmetro The number of dispatched passenger inflow at the metro station at time step t.
atm A general indicator of dispatched capacity of mode m at time step t.

Table A2: Notations of objectives

Symbol Explanation
R Overall objective.
Rm,t

resilience Objective of resilience enhancement for mode m at time step t.
Rm,t

abandon Objective of impact mitigation on regular services for mode m at time step t.
Rm,t

demand Reward of demand satisfaction for mode m at time step t.
Rm,t

crowd Penalty of overcrowding for mode m at time step t.
Rt

m Objective value for mode m at time step t.

Table A3: Notations of indices and sets

Symbol Explanation
t Index of time step.
m Index of mode.
p Index of passenger group.
r Index of emergency bus route.
v Index of vehicle in taxi and bus system.
i, i′, j, j′ Indices of metro stations.
i, ī Indices of original and terminal station, respectively.
i∗ Index of the station within the OPF area.
vt Index of train which arrives at the metro station i∗ at time step t.
T Set of time steps.
M Set of modes, where M = {taxi, bus,metro}.
P t
m Set of evacuated passenger groups of mode m at time step t.

P̄ t
m Set of stranded passenger groups for mode m at time step t.

P̄ t Set of total stranded passenger groups at time step t.
γ Set of emergency bus routes.
γt Set of emergency bus routes with buses assigned at time step t.
Dt

r Set of destinations on route r at time step t.
P t

bus,r Set of evacuated passenger groups on emergency bus route r at time step t.
V t

taxi Set of dispatchable taxis until time step t.
V t

bus Set of dispatchable buses until time step t.
V̄ t

taxi, V̄
t

bus Sets of dispatched taxis and buses at time step t, respectively.
Vmetro Set of metro trains.
I Set of metro stations.
P̂ t
m Set of initial evacuated passenger groups.
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Table A4: Notations of modeling parameters

Symbol Explanation
tstart, tend Starting and ending time of the online multi-modal evacuation, respectively.
∆t,∆t̃ Length of a time step and an interval between timestamps.
cm Vehicle capacity of mode m.
nt
m The number of dispatchable capacities of mode m at time step t.

t̃ The timestamp of a taxi GPS data.
ρ̂taxi(v, t̃) A binary indicator indicating whether the taxi v is occupied at each timestamp t̃.
ρtaxi(v) A binary indicator indicating whether a regular passenger is abandoned when taxi v is

dispatched.
p̂ Index of a regular bus passenger.
v(p̂) The ID of the bus boarded by regular passenger p̂ takes.
ρbus(v) The number of regular passengers abandoned when bus v is dispatched.
w(vt, i, j) Passenger demand on train vt from station i to station j.
nt,i

metro Available capacity of train vt arriving at station i.
ρmetro(vt, i) The number of regular passengers that are abandoned on train vt at station i.
q(p) Passenger number of a passenger group p.
i(p) Estimated disembarkation station of passenger group p if it takes metro.
e(p) Entry time of passenger group p.
l̃(p) Original leaving time of passenger group p.
d(p) Destination of passenger group p.
k(p) Total distance for the entire journey of passenger group p.
m̃(p) Original mode choice of passenger group p.
St
m, S

′t
m State variables for agents under independent and collaborative strategies, respectively.

δtm, δt Single-modal and total stranded passenger number at time step t, respectively.
h(p, t) Stranded duration of passenger group p which is evacuated at time step t.
H(p, t) Stranded duration factor of passenger group p which is evacuated at time step t.
ξ A relatively small number.
um(p) Trip cost of passenger group p when traveling by mode m.
ϵm0 Mode loyalty factor for passengers’ willingness to remain with their original mode.
k̂(p) Last-mile trip term of passenger group p.
Lm(p) Probability model for choosing mode m by passenger group p for evacuation.
n̂t
m Residual capacity after passengers are distributed based on their original mode choice for

mode m at time step t.
n̂t

bus,r Residual capacity on emergency bus route r at time step t.
α1, α2, α3 Coefficients in the feedback functions.
ϵm1 , ϵm2 , ϵm3 Coefficients of unit costs.

Table A5: Notations of training parameters

Symbol Explanation
πm, π′

m Actor and target actor networks for mode m, respectively.
Qm, Q′

m Local critic and target local critic networks for mode m, respectively.
Q,Q′ Central critic and target central critic networks, respectively.
θπm, θπ

′

m Parameters for actor and target actor networks, respectively.
θQm, θQ

′

m Parameters for local critic and target local critic networks, respectively.
θQ, θQ

′ Parameters for central critic and target central critic networks, respectively.
âtm Proportion of dispatched capacities of mode m at time step t.
St Vector of combined states as the input of central critic network at time step t.
at Vector of combined actions as the input of central critic network at time step t.
Rt, R

′t Global reward and target global Q-value at time step t, respectively.
Rm,t

local, R
′m,t
local Local reward and target local Q-value at time step t, respectively.

e,E Current and total number of training episodes, respectively.
ϵnoise, ϵnoise Noise factor and minimum noise added to agents’ actions, respectively.
RB,B Reply buffer and the size of a batch of tuples, respectively.
L Loss function for training the critic networks.
J Objective function for training the actor networks.
αd, α

m
Q , αQ, α

m
π , αs Coefficients for discount factor, learning rates for local critic, central critic and actor net-

works, and soft updating rate for target networks, respectively.
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Appendix B. Processing of multi-source data for environment formulation1

This section introduces the processing method for the multi-source dataset used to formulate a data-driven2

transit and passenger environment for MARL training. The environment on the transit side is based on taxi GPS,3

bus smart card, bus AVL, and metro OD demand datasets, and the environment on the passenger side is based on4

the mobile dataset.5

Appendix B.1. Taxi GPS dataset6

The taxi transit environment is driven by taxi GPS data to capture the positioning and occupancy conditions7

of taxis. A sample of the taxi GPS dataset is shown in Table B6. Let Vtaxi denote the overall GPS dataset8

throughout the OPF period. Each taxi has a specific taxi ID v, listed in the first column. The location is recorded9

with longitude Lon(v, t̃) and latitude Lat(v, t̃). A column of timestamp t̃ in the dataset records the time instance10

of each record. In practice, records are updated every 30 seconds, i.e., ∆t̃ = 30s. The occupancy status ρ̂(v, t̃) is11

recorded in the last column, where 1 means that the taxi is occupied and 0 means that it is empty.12

Table B6: Sample of taxi GPS data

Taxi ID Timestamp Longitude Latitude Occupancy
30000XXXX 12:18:04 108.9339 34.37231 0
30000XXXX 12:18:34 108.937215 34.37301 1
30000XXXX 12:19:04 108.938705 34.3734 1
30000XXXX 12:19:34 108.93822 34.37523 1
30000XXXX 12:20:04 108.936007 34.375725 1

By setting a searching area around the center of the OPF region, denoted by a coordinate (Lon∗, Lat∗), only13

unoccupied taxis (i.e., occupancy=0) within this designated searching area are considered dispatchable. The real-14

time distance of each taxi v to the center at timestamp t̃ is k(v, t̃), which is calculated by the Haversine formula 115

as Eq. (B1).16

k(v, t̃) = 2θR · arcsin





√

sin2
(

Lon(v, t̃)− Lon∗

2

)

+ cos(Lat∗) · cos(Lat(v, t̃)) · sin2
(

Lat(v, t̃)− Lat∗

2

)



 , (B1)

where θR = 6371km denotes the radius of earth. The set of dispatchable taxis at time step t can be expressed as17

Eq. (B2).18

V t
taxi = {v ∈ Vtaxi|k(v, t̃) ≤ θB , ρ̂(v, t̃) = 0, t̃ ∈ [t, t+∆t]}, (B2)

where θB denotes the radius of the searching area. In practice, the searching radius could be 3km or more for19

ride-hailing(Su et al., 2024). Thus, the value of searching radius is set as 3km in our study.20

Appendix B.2. Bus smart card dataset21

The bus transit environment is driven by the AVL dataset to capture bus positioning and smart card data to22

capture the occupancy conditions.23

The AVL dataset records the longitude, latitude, and timestamp of each bus, similar to the taxi GPS dataset.24

By substituting the coordinates and area of the bus depot into Eqs. (B1) and (B2), the set of dispatchable buses25

V t
bus at time step t can be determined.26

The bus smart card dataset records the occupancy of passengers on each bus. A sample of the bus smart27

card dataset is shown in Table B7. Each row records a passenger’s ID p̂, ID v(p̂) for the bus taken by passenger28

p̂, timestamp (i.e., boarding time), and the station where passenger p̂ boards bus v(p̂). The regular passengers29

associated with the dispatched bus can be revealed by Eq. (10).

Table B7: Sample of bus smart card data that will be updated dynamically

Passenger ID Bus ID Timestamp Station
125XXX 151XXX 06:04:16 Beishaomen
351XXX 151XXX 06:04:20 Beishaomen
498XXX 151XXX 06:09:08 Fangxincun
165XXX 151XXX 06:10:21 Yahehuayuan
794XXX 151XXX 06:24:16 Wenjinglukou

30

Appendix B.3. Metro OD dataset31

The metro transit environment is driven by time-dependent OD demand data to capture the occupancy of32

trains. A sample of the OD demand matrix at time step t is shown in Table B8 , where the columns denote the33

1https : //en.wikipedia.org/wiki/Haversine_formula
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origin stations and rows denote the destination stations. Each number denotes the demand volume w(vt, i, j) from1

metro station i to j on train vt that arrives at the OPF station at time step t. The values in the matrix are updated2

with time step t. The dataset is used to calculate Eqs. (11) and (12).3

Table B8: Sample of metro OD demand

Houweizhai Sanqiao Zaohe Zaoyuan Hanchenglu ...
Beikezhan 58 23 22 9 86 ...
Beiyuan 2 3 2 1 7 ...
Yundonggongyuan 41 14 9 6 26 ...
Xingzhengzhongxin 53 5 15 5 13 ...
Fengchengwulu 50 16 13 7 21 ...
Shitushuguan 78 12 14 4 20 ...
... ... ... ... ... ... ...

Appendix B.4. Mobile dataset4

The mobile dataset captures individual passenger mobility. A sample of mobile dataset is presented in Table B9.5

Each passenger group p has a record of its entry time e(p), original leaving time l̃(p), total distance for the entire6

journey k(p), destination d(p), original mode choice m̃(p), passenger number q(p), and debarking station i(p).7

Table B9: Sample of mobile dataset

ID Entry time Leave time Destination Distance Mode Number Disembarkation station Age Gender
1 10:00:37 11:59:30 Weiyang 3824m taxi 5 - 1 M
2 10:00:37 13:59:30 Lianhu 16807m bus 5 - 3 F
3 10:00:47 17:51:30 Weiyang 4123m metro 1 Beiyuan 5 M

The passengers who are stranded in the OPF area during the time interval [t, t + ∆t] are deemed stranded.8

Passengers who belong to the set of stranded passengers at time step t are presented by Eq. (B3).9

P̄ t = {p|t ≤ e(p) ≤ t+∆t}. (B3)

Appendix C. Implementation of priority queuing for vulnerable populations10

In emergencies, vulnerable populations should be proactively informed and receive special care (Transportation11

Research Board, 2008). Such populations can be feasibly identified in our problem, since they are concentrated in the12

waiting zone and can be recognized through targeted surveys (Turner et al., 2010). Our model framework allows for13

the incorporation of various queuing principles beyond the default first-come-first-served rule. To demonstrate the14

flexibility of the model, we provide an example that prioritizes vulnerable populations. Specifically, the vulnerable15

populations we focus on are those at higher risk during overcrowding, including the elderly, children, individuals16

with disabilities, and pregnant women. Assuming that each passenger group’s vulnerability level v∗(p) is assessed17

by the number of vulnerable populations it contains, which can be defined as a sum of multiple indicators:18

v∗(p) = a∗(p) + b∗(p) + p∗(p) (C1)

where a∗(p) ∈ {0, 1} denotes whether the passenger group has an elder or child (1 if it has, 0 otherwise); b∗(p) ∈19

{0, 1} denotes whether the passenger group has a disabled passenger (1 if it has, 0 otherwise); p∗(p) ∈ {0, 1} denotes20

whether the passenger group has a pregnant passenger (1 if it has, 0 otherwise). The sets of evacuated vulnerable21

passenger groups for the taxi, bus, and metro modes can be reformulated as follows:22

P
′t
taxi = arg max

P⊆P̄ t

taxi







min
p∈P

v∗(p)|
∑

p∈P

q(p) ≤ attaxictaxi







, ∀t ∈ T, (C2)

23

P
′t
bus,r = arg max

P⊆P̄ t

bus















min
p∈P

v∗(p)|
∑

p∈P

d(p)∈Dt

r

q(p) ≤ cbus















, ∀t ∈ T, r ∈ γt, (C3)

24

P
′t
metro = arg max

P⊆P̄ t

metro







min
p∈P

v∗(p)|
∑

p∈P

q(p) ≤ atmetro







, ∀t ∈ T. (C4)

Vulnerable populations should be prioritized, with the sets of stranded passenger groups updated by P t
m ←25

P t
m−P

′t
m, ∀t ∈ T,m ∈M . The remaining passengers are then selected based on the first-come-first-served principle26

as defined by Eqs. (13)-(15).27
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Appendix D. Sensitivity analysis of agents’ computational efficiency1

The convergence processes of agents under environments described in Section 7.2.1 are listed in Fig. D1. Note2

that for the GA in Fig. D1j, which does not converge within 5000 episodes, the population size and the number3

of generations are increased, resulting in a total of 100000 episodes, to achieve convergence, which is shown in the4

bottom-left corner.5

(a) 10:00-12:00 under collaborative strategy (b) 10:00-12:00 under independent strategy

(c) 10:00-14:00 under collaborative strategy (d) 10:00-14:00 under independent strategy

(e) 10:00-16:00 under collaborative strategy (f) 10:00-16:00 under independent strategy

(g) 10:00-18:00 under collaborative strategy (h) 10:00-18:00 under independent strategy

(i) 10:00-20:00 under collaborative strategy (j) 10:00-20:00 under independent strategy

Figure D1: Convergence of the algorithms under different environments
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Appendix E. Sensitivity analysis of agents’ transferability1

The results of the sensitivity analysis, as presented in Section 7.4.3, are shown in Table E1. Several comparable results are presented in Tables E2-E8. Note that within2

the tables: “S” represents the time span of the new environment, “A” represents the time span of the training environment, “V” represents the variant factor, “After”3

represents the maximum reward after training, “Non-” represents the median reward achieved by agent without training, “Max” represents the maximum reward achieved4

by the pre-trained agents, “Med” represents the mediant reward, “Gap” represents the difference between the maximum reward achieved by the pre-trained agents and the5

maximum reward achieved after training, and “Imp” represents the improvement achieved by the pre-trained agents compared to the median reward of non-trained agents.6

Table E1: Results of transferability

Scenario Independent strategy Collaborative strategy
Benchmarks Results Benchmarks Results

S A V After- Non- Gap Max Gap Imp Med Gap Imp After- Non- Gap Max Gap Imp Med Gap Imp
2h 2h 3 23063 21291 7.68% 22246 3.54% 4.14% 21736 5.75% 1.93% 27222 26161 3.90% 27020 0.74% 3.15% 26658 2.07% 1.83%
2h 2h 6 35939 31126 13.39% 34118 5.07% 8.33% 33015 8.14% 5.26% 46100 41432 10.13% 45501 1.30% 8.83% 45096 2.18% 7.95%
2h 2h 9 34628 31651 8.60% 32824 5.21% 3.39% 31745 8.33% 0.27% 44046 42413 3.71% 43857 0.43% 3.28% 43767 0.63% 3.07%
2h 4h 3 23375 21291 8.92% 22798 2.47% 6.45% 22478 3.84% 5.08% 27334 26161 4.29% 27080 0.93% 3.36% 26700 2.32% 1.97%
2h 4h 6 36428 31126 14.55% 35733 1.91% 12.65% 34992 3.94% 10.61% 46242 41432 10.40% 45514 1.58% 8.83% 45110 2.45% 7.95%
2h 4h 9 35186 31651 10.05% 34513 1.91% 8.13% 33746 4.09% 5.95% 44892 42413 5.52% 44425 1.04% 4.48% 44026 1.93% 3.59%
2h 10h 3 23369 21291 8.89% 22911 1.96% 6.93% 22544 3.53% 5.36% 27860 26161 6.10% 27533 1.17% 4.92% 27080 2.80% 3.30%
2h 10h 6 36434 31126 14.57% 35872 1.54% 13.03% 35042 3.82% 10.75% 46041 41432 10.01% 45484 1.21% 8.80% 45097 2.05% 7.96%
2h 10h 9 35189 31651 10.06% 34775 1.18% 8.88% 33828 3.87% 6.19% 45009 42413 5.77% 44401 1.35% 4.42% 44007 2.23% 3.54%
8h 2h 3 64986 61346 5.60% 62545 3.76% 1.84% 61604 5.20% 0.40% 71737 69690 2.85% 71048 0.96% 1.89% 70211 2.13% 0.73%
8h 2h 6 100720 89009 11.63% 94697 5.98% 5.65% 91671 8.98% 2.64% 128405 117593 8.42% 124246 3.24% 5.18% 122042 4.96% 3.46%
8h 2h 9 100721 89952 10.69% 94615 6.06% 4.63% 91552 9.10% 1.59% 125036 116025 7.21% 123696 1.07% 6.14% 122934 1.68% 5.53%
8h 4h 3 67012 61346 8.45% 64945 3.09% 5.37% 64457 3.81% 4.64% 71729 69690 2.84% 71205 0.73% 2.11% 70247 2.07% 0.78%
8h 4h 6 105352 89009 15.51% 104088 1.20% 14.31% 97377 7.57% 7.94% 128652 117593 8.60% 126026 2.04% 6.55% 122525 4.76% 3.83%
8h 4h 9 104510 89952 13.93% 103484 0.98% 12.95% 97036 7.15% 6.78% 126899 116025 8.57% 124656 1.77% 6.80% 122146 3.75% 4.82%
8h 10h 3 66944 61346 8.36% 65003 2.90% 5.46% 64204 4.09% 4.27% 72194 69690 3.47% 71660 0.74% 2.73% 71281 1.26% 2.20%
8h 10h 6 105295 89009 15.47% 104076 1.16% 14.31% 97491 7.41% 8.05% 130174 117593 9.66% 129319 0.66% 9.01% 128451 1.32% 8.34%
8h 10h 9 104522 89952 13.94% 103446 1.03% 12.91% 97060 7.14% 6.80% 127463 116025 8.97% 126660 0.63% 8.34% 125623 1.44% 7.53%
12h 2h 3 82721 81224 1.81% 80247 2.99% -1.18% 78966 4.54% -2.73% 91230 90169 1.16% 90606 0.68% 0.48% 90321 1.00% 0.17%
12h 2h 6 127765 113163 11.43% 121713 4.74% 6.69% 117127 8.33% 3.10% 160296 151355 5.58% 156433 2.41% 3.17% 154360 3.70% 1.87%
12h 2h 9 127380 105284 17.35% 121686 4.47% 12.88% 117180 8.01% 9.34% 156943 149216 4.92% 155871 0.68% 4.24% 155065 1.20% 3.73%
12h 4h 3 84617 81224 4.01% 83530 1.28% 2.73% 83068 1.83% 2.18% 91843 90169 1.82% 91164 0.74% 1.08% 90368 1.61% 0.22%
12h 4h 6 134175 113163 15.66% 132480 1.26% 14.40% 123602 7.88% 7.78% 160763 151355 5.85% 157947 1.75% 4.10% 154831 3.69% 2.16%
12h 4h 9 133303 105284 21.02% 131842 1.10% 19.92% 123970 7.00% 14.02% 158939 149216 6.12% 156649 1.44% 4.68% 154434 2.83% 3.28%
12h 10h 3 85132 81224 4.59% 83479 1.94% 2.65% 83028 2.47% 2.12% 92181 90169 2.18% 91763 0.45% 1.73% 91274 0.98% 1.20%
12h 10h 6 134193 113163 15.67% 132409 1.33% 14.34% 123425 8.02% 7.65% 162343 151355 6.77% 160325 1.24% 5.53% 159062 2.02% 4.75%
12h 10h 9 133266 105284 21.00% 131876 1.04% 19.95% 123798 7.10% 13.89% 160119 149216 6.81% 157986 1.33% 5.48% 157158 1.85% 4.96%

Average - - 11.59% - 2.63% 8.95% - 5.96% 5.62% - - 5.99% - 1.20% 4.79% - 2.26% 3.73%
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Table E2: Results of transferability
(training time span > new time span)

Scenario Independent strategy Collaborative strategy
S A V After- Med Gap After- Med Gap
2h 2h 3 23063 21736 5.75% 27222 26658 2.07%
2h 2h 6 35939 33015 8.14% 46100 45096 2.18%
2h 2h 9 34628 31745 8.33% 44046 43767 0.63%
2h 4h 3 23375 22478 3.84% 27334 26700 2.32%
2h 4h 6 36428 34992 3.94% 46242 45110 2.45%
2h 4h 9 35186 33746 4.09% 44892 44026 1.93%
2h 10h 3 23369 22544 3.53% 27860 27080 2.80%
8h 10h 3 66944 64204 4.09% 72194 71281 1.26%
2h 10h 6 36434 35042 3.82% 46041 45097 2.05%
8h 10h 6 105295 97491 7.41% 130174 128451 1.32%
2h 10h 9 35189 33828 3.87% 45009 44007 2.23%
8h 10h 9 104522 97060 7.14% 127463 125623 1.44%

Average 5.33% 1.89%

Table E3: Results of transferability
(training time span < new time span)

Scenario Independent strategy Collaborative strategy
S A V After- Med Gap After- Med Gap
12h 10h 3 85132 83028 2.47% 92181 91274 0.98%
12h 10h 6 134193 123425 8.02% 162343 159062 2.02%
12h 10h 9 133266 123798 7.10% 160119 157158 1.85%
8h 2h 3 64986 61604 5.20% 71737 70211 2.13%
12h 2h 3 82721 78966 4.54% 91230 90321 1.00%
8h 2h 6 100720 91671 8.98% 128405 122042 4.96%
12h 2h 6 127765 117127 8.33% 160296 154360 3.70%
8h 2h 9 100721 91552 9.10% 125036 122934 1.68%
12h 2h 9 127380 117180 8.01% 156943 155065 1.20%
8h 4h 3 67012 64457 3.81% 71729 70247 2.07%
12h 4h 3 84617 83068 1.83% 91843 90368 1.61%
8h 4h 6 105352 97377 7.57% 128652 122525 4.76%
12h 4h 6 134175 123602 7.88% 160763 154831 3.69%
8h 4h 9 104510 97036 7.15% 126899 122146 3.75%
12h 4h 9 133303 123970 7.00% 158939 154434 2.83%

Average 6.47% 2.55%

Table E4: Results of transferability (4h-agents)

Scenario Independent strategy Collaborative strategy
S V After- Med Gap After- Med Gap
2h 3 23375 22478 3.84% 27334 26700 2.32%
8h 3 67012 64457 3.81% 71729 70247 2.07%
12h 3 84617 83068 1.83% 91843 90368 1.61%
2h 6 36428 34992 3.94% 46242 45110 2.45%
8h 6 105352 97377 7.57% 128652 122525 4.76%
12h 6 134175 123602 7.88% 160763 154831 3.69%
2h 9 35186 33746 4.09% 44892 44026 1.93%
8h 9 104510 97036 7.15% 126899 122146 3.75%
12h 9 133303 123970 7.00% 158939 154434 2.83%
Average 5.24% 2.82%
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Table E5: Results of transferability (10h-agents)

Scenario Independent strategy Collaborative strategy
S V After- Med Gap After- Med Gap
2h 3 23369 22544 3.53% 27860 27080 2.80%
8h 3 66944 64204 4.09% 72194 71281 1.26%
12h 3 85132 83028 2.47% 92181 91274 0.98%
2h 6 36434 35042 3.82% 46041 45097 2.05%
8h 6 105295 97491 7.41% 130174 128451 1.32%
12h 6 134193 123425 8.02% 162343 159062 2.02%
2h 9 35189 33828 3.87% 45009 44007 2.23%
8h 9 104522 97060 7.14% 127463 125623 1.44%
12h 9 133266 123798 7.10% 160119 157158 1.85%
Average 5.27% 1.77%

Table E6: Results of transferability (Variance factor = 3)

Scenario Independent strategy Collaborative strategy
Benchmarks Results Benchmarks Results

S A V After- Non- Gap Med Gap Imp After- Non- Gap Med Gap Imp
2h 2h 3 23063 21291 7.68% 21736 5.75% 1.93% 27222 26161 3.90% 26658 2.07% 1.83%
2h 4h 3 23375 21291 8.92% 22478 3.84% 5.08% 27334 26161 4.29% 26700 2.32% 1.97%
2h 10h 3 23369 21291 8.89% 22544 3.53% 5.36% 27860 26161 6.10% 27080 2.80% 3.30%
8h 2h 3 64986 61346 5.60% 61604 5.20% 0.40% 71737 69690 2.85% 70211 2.13% 0.73%
8h 4h 3 67012 61346 8.45% 64457 3.81% 4.64% 71729 69690 2.84% 70247 2.07% 0.78%
8h 10h 3 66944 61346 8.36% 64204 4.09% 4.27% 72194 69690 3.47% 71281 1.26% 2.20%
12h 2h 3 82721 81224 1.81% 78966 4.54% -2.73% 91230 90169 1.16% 90321 1.00% 0.17%
12h 4h 3 84617 81224 4.01% 83068 1.83% 2.18% 91843 90169 1.82% 90368 1.61% 0.22%
12h 10h 3 85132 81224 4.59% 83028 2.47% 2.12% 92181 90169 2.18% 91274 0.98% 1.20%

Average 2.58% 1.38%

Table E7: Results of transferability (Variance factor = 6)

Scenario Independent strategy Collaborative strategy
Benchmarks Results Benchmarks Results

S A V After- Non- Gap Med Gap Imp After- Non- Gap Med Gap Imp
2h 2h 6 35939 31126 13.39% 33015 8.14% 5.26% 46100 41432 10.13% 45096 2.18% 7.95%
2h 4h 6 36428 31126 14.55% 34992 3.94% 10.61% 46242 41432 10.40% 45110 2.45% 7.95%
2h 10h 6 36434 31126 14.57% 35042 3.82% 10.75% 46041 41432 10.01% 45097 2.05% 7.96%
8h 2h 6 100720 89009 11.63% 91671 8.98% 2.64% 128405 117593 8.42% 122042 4.96% 3.46%
8h 4h 6 105352 89009 15.51% 97377 7.57% 7.94% 128652 117593 8.60% 122525 4.76% 3.83%
8h 10h 6 105295 89009 15.47% 97491 7.41% 8.05% 130174 117593 9.66% 128451 1.32% 8.34%
12h 2h 6 127765 113163 11.43% 117127 8.33% 3.10% 160296 151355 5.58% 154360 3.70% 1.87%
12h 4h 6 134175 113163 15.66% 123602 7.88% 7.78% 160763 151355 5.85% 154831 3.69% 2.16%
12h 10h 6 134193 113163 15.67% 123425 8.02% 7.65% 162343 151355 6.77% 159062 2.02% 4.75%

Average 7.09% 5.36%

Table E8: Results of transferability (Variance factor = 10)

Scenario Independent strategy Collaborative strategy
Benchmarks Results Benchmarks Results

S A V After- Non- Gap Med Gap Imp After- Non- Gap Med Gap Imp
2h 2h 9 34628 31651 8.60% 31745 8.33% 0.27% 44046 42413 3.71% 43767 0.63% 3.07%
2h 4h 9 35186 31651 10.05% 33746 4.09% 5.95% 44892 42413 5.52% 44026 1.93% 3.59%
2h 10h 9 35189 31651 10.06% 33828 3.87% 6.19% 45009 42413 5.77% 44007 2.23% 3.54%
8h 2h 9 100721 89952 10.69% 91552 9.10% 1.59% 125036 116025 7.21% 122934 1.68% 5.53%
8h 4h 9 104510 89952 13.93% 97036 7.15% 6.78% 126899 116025 8.57% 122146 3.75% 4.82%
8h 10h 9 104522 89952 13.94% 97060 7.14% 6.80% 127463 116025 8.97% 125623 1.44% 7.53%
12h 2h 9 127380 105284 17.35% 117180 8.01% 9.34% 156943 149216 4.92% 155065 1.20% 3.73%
12h 4h 9 133303 105284 21.02% 123970 7.00% 14.02% 158939 149216 6.12% 154434 2.83% 3.28%
12h 10h 9 133266 105284 21.00% 123798 7.10% 13.89% 160119 149216 6.81% 157158 1.85% 4.96%

Average 7.20% 4.45%

Table E9: Computational time during online application

Collaborative strategy Independent strategy
Scenario Variance = 3 Variance = 6 Variance = 9 Variance = 3 Variance = 6 Variance = 9

Total AVG Total AVG Total AVG Total AVG Total AVG Total AVG
2h 9.4s 0.39s 9.9s 0.41s 9.7s 0.40s 7.0s 0.29s 7.5s 0.31s 7.9s 0.33s
8h 39.5s 0.41s 39.8s 0.41s 40.0s 0.42s 27.5s 0.29s 27.6s 0.29s 27.9s 0.29s
12h 57.5s 0.40s 57.6s 0.40s 58.1s 0.40s 40.5s 0.28s 40.9s 0.28s 41.1s 0.29s
Note: Total-total computational time for each episode; AVG-average computational time per time step
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