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In this Letter we continue the investigation of RG flows between Virasoro minimal models of two-

dimensional conformal field theories that are protected by noninvertible symmetries. RG flows leaving

unbroken a subcategory of noninvertible symmetries are associated with anomaly matching conditions that

we employ systematically to map the space of flows between minimal models beyond the Z2-symmetric

proposed recently in the literature. We introduce a family of nonlinear integral equations that appear to

encode the exact finite-size, ground-state energies of these flows, including nonintegrable cases, such as the

recently proposed Mðkqþ I; qÞ →Mðkq − I; qÞ. Our family of NLIEs encompasses and generalizes the

integrable flows known in the literature: ϕð1;3Þ, ϕð1;5Þ, ϕð1;2Þ and ϕð2;1Þ. This work uncovers a new interplay

between exact solvability and noninvertible symmetries. Furthermore, our nonperturbative description

provides a nontrivial test for all the flows conjectured by anomaly matching conditions, but so far not

observed by other means.

DOI: 10.1103/dg1s-5vp6

Introduction—The systematic identification of renorm-

alization group (RG) flows between quantum field theo-

ries is a paramount problem in theoretical physics. Global

symmetries are central to this quest, providing nonper-

turbative constraints on the RG flows between the ultra-

violet (UV) and infrared (IR) fixed points, and dictating

the allowed interactions generated along the flows. By

matching their anomalies, we can put strong constraints

on the IR theory. Recently, building on the seminal

paper [1], a profound effort has been devoted to exploring

generalizations to the usual notion of global symmetries,

such as higher-form, noninvertible, or more general

higher-categorical symmetries, extending the usual

grouplike structures to the more general algebraic ones

of fusion higher categories (for recent reviews see [2,3]).

In two-dimensional conformal field theories (CFT), non-

invertible symmetries are ubiquitous [4–7]: topological

line operators, acting as generators of 0-form symmetries,

do not form generically a group but a fusion category. In

the case of rational 2d CFTs with diagonal modular

invariance, i.e., the Virasoro minimal models Mðp; qÞ,
the set of topological line operators coincides with the

finitely many Verlinde line defect, forming a fusion

modular category [4,8]. Hence, the study of RG flows

from a minimal model provides a unique arena where we

have a complete understanding of the full set of categori-

cal symmetries of the UV theory, and it has indeed

recently received considerable attention [9–16]. This

approach was first undertaken in [4,7] and, more recently,

in [17], where the authors predict infinitely many new

RG flows between minimal models: Mðkqþ I; qÞ →
Mðkq − I; qÞ, preserving a special Aq−1 fusion category

containing the standard Z2 symmetry.

Some specific deformations of minimal models are

integrable, meaning the scattering events are factorized

and the two-body S matrix satisfies the Yang-Baxter

equation [18–20]. Integrable flows allow for an exact,

nonperturbative description through the thermodynamic

Bethe ansatz (TBA) equations [21]—equivalently, a non-

linear integral equation (NLIE) [22,23]—encoding their

exact, finite-size energy spectrum.

Here, we extend the investigation of RG flows between

minimal models predicted by anomaly matching conditions

associated with noninvertible symmetries. We also present

evidence that the ground-state energy of all these RG flows

—not just the integrable ones—admits an explicit NLIE

description. We base this statement on the observation that

a three-parameter family of NLIE encodes nontrivial

features of the RG flows predicted by anomaly-matching

conditions. In particular, for multioperator deformations—

which is the case for most of the RG flows we looked at—

the scaling function obtained from the NLIEs shows clear
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signs of multiscale behavior in the UV, with exponents

agreeing with the operators predicted by the anomaly

matching conditions. Additionally, for the deformations

triggered by the ϕð1;3Þ, ϕð1;5Þ, ϕð2;1Þ, and ϕð1;2Þ operators, the

kernels of the NLIEs reduce to the known ones [24–31].

This is substantial evidence supporting the interpretation of

the NLIEs as a universal description for RG flows between

minimal models. Definitive evidence will come from

accurate numerical investigation and by comparison against

conformal perturbation theory [21] or Hamiltonian trunca-

tion [32]. We will embark on this project in the near future.

The NLIEs are a potential nonperturbative description for

all the flows Mðkqþ I; qÞ�!
ϕð1;2kþ1Þ

Mðkq − I; qÞ conjec-

tured in [17], providing an explicit proof of their existence.

They greatly expand the class of flows that can be studied

nonperturbatively, even in the absence of a known inte-

grable structure.

Minimal models RG flows—Consider a UV fixed point

described by a Virasoro minimal model T UV ¼ Mðp; qÞ.
Basic notions about Virasoro minimal models, fixing the

conventions used in this Letter, may be found in

Appendix A in Supplemental Material [33]. In this

Letter, we are interested in studying deformations of the

UV theory by one of its relevant (hðr;sÞ < 1) primary fields:

HMðp;qÞ þ gðr;sÞ

Z

dxϕðr;sÞ; ð1Þ

where HMðp;qÞ is the Hamiltonian of the minimal model

Mðp; qÞ. The IR fixed point at the end of this RG flow may

be either gapped or gapless. The former case is typical for

generic deformations, having an IR described by a topo-

logical quantum field theory (TQFT). We will not consider

these in our analysis, albeit they can be studied with

techniques similar to those discussed here [4,7,17,34–37].

We refer the reader to the discussion at the end of this Letter

for comments on this matter. In the latter case, when the IR

theory is gapless, we assume here it may be described by

another minimal model itself:

T UV ¼ Mðp; qÞ�!
ϕðr;sÞ

Mðp0; q0Þ ¼ T IR: ð2Þ

An important constraint on T IR is given by the ceff-theorem:

along RG flows between PT -symmetric nonunitary CFT,

the effective central charge

ceffðp; qÞ ¼ 1 −
6

pq
ð3Þ

is monotonically decreasing [38], and reduces to the usual

Zamolodchikov c theorem [39] for the case of unitary CFT.

We will assume that PT symmetry is always preserved

along our flows, as tested by now in all the examples

considered in the literature [10–12,40,41], where it has been

observed that CFT transition happens precisely at the

spontaneous PT breaking locus. Furthermore, PT sym-

metry guarantees the reality of the energy spectrum at finite

volume (and therefore of conformal dimensions) along the

entire flow down to the IR CFT, as is the case for the non-

unitary minimal models. Stringent constraints follow from

the noninvertible symmetry lines of theminimalmodels.We

will describe a very general strategy we plan to employ also

for more general UV fixed points in future work.

Whenever, for any state on the cylinder jΦi, the line Lσ

commutes with the deformation triggering the RG flow,

½Lσ;ϕðr;sÞ�jΦi ¼ 0; ð4Þ

then the line operator Lσ is unbroken by the deformation.

The maximal subcategory fLσg
ðr;sÞ
UV ⊂ Vðp;qÞ of Verlinde

lines commuting with the deformation is closed under

fusion and generates the symmetry that is preserved along

the RG flow. Using the fusion rules and Verlinde line action

on the primary fields,

ð5Þ

(4) is turned into a trigonometric equation for the label σ, at

fixed ðr; sÞ. In particular, it implies that the quantum

dimension of the preserved lines is an RG flow invariant,

ð6Þ

as well as the spin content of the defect Hilbert spaces

associated with the preserved lines HLσ
[42]. These two

pieces of RG-invariant categorical data are to be considered

as ’t Hooft anomaly matching conditions in the realm of

fusion categories. To explore the possible T IR we proceed

as follows: (1) Given T UV, for any relevant primary field

ϕðr;sÞ of T UV, we compute the fusion subcategory [43] of

Verlinde lines fLσg
ðr;sÞ
UV commuting with the perturbation

via Eq. (4). (2) We generate a list of the possible minimal

models T IR that satisfy ceffðT UVÞ > ceffðT IRÞ. This list is
always finite. (3) We select among the T IR determined

above, only the minimal models containing a fusion

subcategory fLρgIR of Verlinde lines coinciding with

fLσg
ðr;sÞ
UV . This means that all the quantum dimensions,

fusion rules, and spins in the defect Hilbert spaces in these

two subcategories coincide with fLσg
ðr;sÞ
UV .

This, for any given ðp; qÞ produces a list of candidate

flows of the form (2) fulfilling all the anomaly-matching

conditions by construction. This procedure shall be
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regarded as exclusive rather than inclusive, meaning that
anomaly matching does not guarantee that the flow will
dynamically exist. Generically more than a single relevant
operator may trigger the same flow. If the set of operators
triggering the flow also preserves the same fusion sub-
category of lines, then along the flow all such operators
(and all the Virasoro descendants thereof) may be dynami-
cally generated. The critical point in the IR will be hit by
fine-tuning a combination of the UV deformations; refer to
the Appendix B in Supplemental Material [33] for a more
detailed illustration. Lastly, the existence of a gapless flow
triggered by a given relevant operator does not exclude the
existence of gapped phases for other critical couplings. For
example, the ϕð1;3Þ perturbation of the tricritical Ising

model Mð5; 4Þ flows to either a gapped phase or to
Mð4; 3Þ depending on the sign of the perturbation. One
can also determine which fields govern the approach
entering direction of the flow to the IR. Indeed, given that
the topological lines are preserved along the flow, one can
analogously determine which are the most relevant irrel-
evant operators of T IR, commuting with the same sub-
category of the UV theory.

Note that those may also be Virasoro descendants of

relevant primaries. Often the most relevant irrelevant

among the operators is TT̄; that is always a viable direction
given that it commutes with all the topological lines. In this

case, the flow either enters along the TT̄ direction [44] or

along the least irrelevant descendant of a (relevant) primary

that has commutations relations with the preserved topo-

logical lines and RG invariants consistent with the UV data.

From this perspective, the noninvertible symmetries also

provide a strong organizing principle for the effective field

theory (or conformal perturbation theory) expansion

around both the UV and IR. The procedure is easily

automatized and implemented in Mathematica. In Fig. 1

we report the outcome up to p ¼ 8, but it can be readily

extended to any value of p [45]. Among others, we

reproduce all the Z2 symmetric flows conjectured in

[17], as well as the ϕð1;2Þ, and ϕð2;1Þ flows known to be

integrable [31,46], but not belonging to that family. In
addition, we find new flows that are not part of the known

families but are allowed by anomaly matching. An example

is Mð7; 5Þ⟶
ϕð2;3Þ

Mð11; 3Þ discussed in the Appendix C in

Supplemental Material [33] (together with a detailed

discussion up to p ¼ 7). An interesting case is the
integrable flows with ϕð1;5Þ, while ϕð1;3Þ could a priory

be dynamically generated along the flow, the solutions of

the NLIEs suggest that this is not the case. We plan to study

in detail the relation between integrability and noninvertible

symmetries somewhere else.

Description via NLIE—Since the seminal article [47], it

was shown that certain special perturbations of minimal

models could be described as quantum reductions of

integrable quantum field theories. Specifically, perturba-

tions controlled by the relevant field ϕð1;3Þ are obtained as

quantum reductions of the sine-Gordon (sG) model

[24,25,48–50], while perturbations by the fields ϕð1;5Þ,

ϕð2;1Þ, and ϕð1;2Þ arise from the quantum reduction of the

Zhiber-Mikhailov-Shabat (ZMS) model [46,51–53].

Thanks to their integrability, it has been possible to derive

a nonlinear integral equation (NLIE) that nonperturbatively

encodes the energies EsðRÞ of any state s on a cylinder of

radius R, which acts as an RG parameter. As functions of

r ¼ Rm, with m being the mass scale of the system, the

energies interpolate between the UV regime

EsðRÞ �!
r→0

−
πðcUV − 24hsÞ

6R
;

the usual Casimir behaviur [54], and the IR one

EsðRÞ�!
r→∞

Ns ∈Z≥0:

In [26,29,30] it was shown that the integrable structure of

sG could be equally well employed to encode massless

flows interpolating between successive unitary minimal

models Mðpþ 1; pÞ⟶
ϕð1;3Þ

Mðp; p − 1Þ. Soon it became

clear that this description could also address flows

Mðp; qÞ⟶
ϕð1;3Þ

Mð2p − q; qÞ [27,28] and, using the

integrable structure of ZMS, massless flows

Mð2pþ I; pÞ⟶
ϕð1;5Þ

Mð2p − I; pÞ and lastly in [31] the

flows Mð2p − I; pÞ⟶
ϕð2;1Þ

Mð2p − I; p − IÞ.
One of the main results of this Letter is that the NLIEs

encoding the finite size spectrum of massless flows

between minimal models can be extended—at the very

least on a qualitative level—beyond the ϕð1;3Þ, ϕð1;5Þ, ϕð2;1Þ,

and ϕð1;2Þ cases, to the whole family of flows predicted by

anomaly matching conditions associated to noninvertible

symmetries.

The structure of the “massless NLIEs” is the same as for

the known cases [26,31]: one first computes the solutions

fRðθÞ and fLðθÞ to the following coupled NLIE system:

4 5 6 7 8 9 10 11

2

3

4

5

6

7

p

q

FIG. 1. Flows between minimal models determined by our

algorithm T UV ¼ Mðp ≤ 8; qÞ.
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fRðθÞ ¼ iα0 − i
r

2
eθ −

X

σ¼�

σ

Z

Cσs

dθ0
�

ϕðθ − θ0ÞL−σ
R ðθ0Þ þ χðθ − θ0ÞLσ

Lðθ
0Þ
�

;

fLðθÞ ¼ −iα0 − i
r

2
e−θ þ

X

σ¼�

σ

Z

Cσs

dθ0
�

ϕðθ − θ0ÞLσ
Lðθ

0Þ þ χðθ − θ0ÞL−σ
R ðθ0Þ

�

; ð7Þ

where L�
R
L

ðθÞ ¼ log
�

1þ exp
�

�fR
L

ðθÞ
��

. Then, the scaling

function fsðrÞ ¼ 6REsðRÞ=π is determined as

fsðrÞ ¼
X

σ¼�

3irσ

2π2

Z

Cσs

dθ
�

e−θLσ
LðθÞ − eθL−σ

R ðθÞ
�

: ð8Þ

In these equations, the parameter α0 is known as twist. The

kernels ϕðθÞ and χðθÞ identify the specific theory, while the
contours C�s determine the state. In particular, the ground

state is obtained with the choice C�s ¼ R� iη, with η≳ 0.

The flows described in this Letter correspond to the

following choice of kernels [55]:

ϕðθÞ ¼ −

Z

R

dω

2π
eiθω

sinh
�

1

κ
πω

�

cosh
�

2ξ−κ
2κ

πω
�

sinh
�

ξ−1
κ
πω

�

cosh
�

1

2
πω

� ;

χðθÞ ¼ −

Z

R

dω

2π
eiθω

sinh
�

1

κ
πω

�

cosh
�

κ−2
2κ

πω
�

sinh
�

ξ−1
κ
πω

�

cosh
�

1

2
πω

� ; ð9Þ

where κ > 2 and ξ > 1, making the Fourier image

integrable [56] on R. The physical parameters of the UV

and IR CFTs are determined as follows:

cUVeff ðp;qÞ≡1−
6

pq
¼1−3

�

α0

π

	

2 ðξ−1Þ2

ξðξþ1Þ
;

cIReffðp
0;q0Þ≡1−

6

p0q0
¼1−3

�

α0

π

	

2ξ−1

ξ
;

hðr;sÞ≡
ðpr−qsÞ2−ðp−qÞ2

4pq
¼1−

1

zðr;sÞ

κ

ξþ1
ð10Þ

with hðr;sÞ being the conformal dimension of the perturbing

field ϕðr;sÞ in the UV and zðr;sÞ ¼ 1, 2, depending on

whether the field ϕðr;sÞ is even or odd under the natural

Z2 symmetry in the UV [57]. Fixing these three physical

parameters, i.e., choosing a UV starting CFT together with

an outgoing direction and a target IR CFT, uniquely fixes

the form of the NLIEs (7). Consequently, any additional

information extracted from (8) can be considered a non-

trivial prediction. One quantity that can be analytically

computed is the conformal dimension of the operator that

attracts the flow in the IR CFT:

hðr0;s0Þ ¼ 1þ
1

zðr0;s0Þ

κ

ξ − 1
: ð11Þ

The request that this conformal dimension appears, as it

should, in the Kač table of the IR minimal modelMðp0; q0Þ
enforces a constraint on the allowed values of the integers

p; q; p0; q0; r; s; r0, and s0:

pðrþ 1Þ − qðs − 1Þ

p0ðr0 þ 1Þ − q0ðs0 − 1Þ
¼ −

zðr0;s0Þ

zðr;sÞ

p0ðr0 − 1Þ − q0ðs0 þ 1Þ

pðr − 1Þ − qðsþ 1Þ
:

ð12Þ

While we could not find the most general solution to the

above Diophantine equation, we can verify that the special

family of solutions that corresponds to the flows discovered

in [17]

fMðμpþI;pÞ ⟶

ϕð1;2μþ1Þ

Mðμp−I;pÞg ð13Þ

solve all the constraints with 2μ and μp − I being positive

integers. This family includes the familiar ϕð1;3Þ, ϕð1;5Þ,

ϕð2;1Þ and ϕð1;2Þ flows [58]. In the Appendix in

Supplemental Material [33], we show how the NLIEs (7)

reduce the known integrable cases for μ ¼ 1=2, 1, 2 [59],

where p0=2 ≤ p ≤ p0 − 2. Further restrictions can be

imposed on the solutions using the noninvertible symmetry

matching.

Numerical analysis and conformal perturbation

theory—Extracting analytically any further nontrivial pre-

diction from NLIEs of the form (7), (8) is a notoriously

arduous task. We can make some headway by studying

them numerically. In particular, we can compare the

behavior of the scaling function for large and small values

of r to the predicted behavior of the ground-state energy

along the flow (2). Contrary to the well-known integrable

cases, we expect the general flow to be a multifield

deformation of the UV CFT, with the IR theory only

arising upon fine-tuning of the critical coupling of the

various deforming fields, e.g., in the flow

Mð7; 2Þ →Mð5; 2Þ, where both UV fields ϕð1;2Þ and

ϕð1;3Þ were seen to contribute by using a Hamiltonian

truncation method [40,41]. Indeed, all relevant operators

allowed by the preserved generalized symmetries will

contribute to the flow, in agreement with the standard

Wilsonian RG lore. For a flow triggered by a numberM of

relevant UV fields fϕðri;siÞg
M
i¼1

, the expected small r

PHYSICAL REVIEW LETTERS 135, 021602 (2025)

021602-4



behavior of the scaling function (8) is

fðrÞ ¼
r→0 3r2=ð4πÞ

sin

�

πκ
ξþ1

	þ
X

∞

flig¼0

al1;…;lM
r
P

M

i¼1
liyðri ;siÞ ;

yðr;sÞ ¼ 2zðr;sÞð1 − hðr;sÞÞ;

a0;0;…;0 ¼ ceffðp; qÞ ¼ 1 −
6

pq
: ð14Þ

Here the coefficients al1;…;lM
are proportional to the

correlation functions of the perturbing fields on the vacuum

(see [60] for more details). While the expansion (14) is

expected to have a finite radius of convergence [21,60], the

situation in the IR is much less under control. There, the

conformal perturbation theory (CPT) expansion

fðrÞ ¼
r→∞

fðp0; q0Þ þ
X

∞

l¼1

�

a0lr
lyðr0 ;s0Þ þ b0lr

−2l
�

þ � � � ð15Þ

is asymptotic, and there is little [61] control over the

omitted further contributions. We performed a numerical

analysis of the NLIEs (7) for several cases and found that,

in all of them, the scaling function (8) agrees perfectly with

the expected behaviors (14) and (15). While the parameters

(10) are built in the kernel by construction, the agreement

with the multiple sum for small r shall be regarded as a

highly nontrivial check that our data passes with flying

colors. In principle, further support can come from com-

paring the first few coefficients of the expansions with the

estimates coming from CPT. We will report on this in a

future publication. Figure 2 reports the numerical results for

the flow Mð10; 3Þ →Mð8; 3Þ, triggered by ϕð1;7Þ, first

proposed in [62], which has recently received a lot of

attention [10,12,63]. The fit that includes contributions

from all the perturbing fields, is numerically favoured,

independently agreeing with the results obtained in [10] by

employing Hamiltonian truncation and CPT methods.

Outlook—In this Letter, we studied RG flows between

generic minimal models. Many flows can be conjectured by

the matching of the global symmetries. For these flows, we

propose an NLIE description encoding the ground state

energy nonperturbatively. It would be interesting to con-

front our ground state energy with the results that can be

independently obtained by conformal perturbation theory

and Hamiltonian truncation. While here we focussed on

gapless RG flows between minimal models, our methods

extend to the ones to gapped phases. In this case, the

anomalies of noninvertible symmetries predict a nontrivial

structure of the vacua of the TQFT and particle-soliton

degeneracies [34–37]. A direct application would be to

check whether the RG flows between QCD2 theories

proposed in [64] may be obtained via matching of the

anomalies associated with lines of the coset models in

QCD2 as initiated recently in [36]. Another interesting

future direction is studying the IR fixed point from

deformation of coupled minimal models, following the

approach of [13,14,63], especially because these flows may

end on compact nonrational CFT for some special

deformations.

Our NLIEs also admit a simple extension to the massive

version, similar to what happens for the ϕð1;3Þ and ϕð1;5Þ,

ϕð1;2Þ cases. For these integrable massive flows, the NLIE

describes the ground state energy of, respectively, the sG

and ZMS theories. In general, we expect the massive

version of our equations to be related to the ground state

of a (timelike) Liouville CFT deformed by several vertex

operators. This perspective suggests the possibility of

studying the one-point functions of these theories using

the reflection relations proposed in [65–67]. We plan to

follow this path in the near future.
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FIG. 2. Ground state scaling function (8) for the flow

Mð10; 3Þ →Mð8; 3Þ, triggered by ϕð1;7Þ. We fitted the points

between the pairs of larger blue and green dots against UVand IR

CPT predictions, respectively. The fit performed including the

contributions of all perturbing fields (red full line)—here

yð1;5Þ ¼ 3yð1;7Þ—performs much better than the fit for a single

field (purple dashed line). The table collects the relative errors on

points that were not used.
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