UNIVERSITYW

This is a repository copy of A Case Study on defining traceable Machine Learning Safety
Requirements for an Automotive Perception component.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/231244/

Version: Accepted Version

Proceedings Paper:

Shahbeigi Roudposhti, Sepeedeh, Hawkins, Richard David orcid.org/0000-0001-7347-
3413, Burton, Simon orcid.org/0000-0001-9040-8752 et al. (3 more authors) (2025) A
Case Study on defining traceable Machine Learning Safety Requirements for an
Automotive Perception component. In: 36th IEEE International Symposium on Software
Reliability Engineering. 36th IEEE International Symposium on Software Reliability
Engineering, 21-24 Oct 2025, BRA. (In Press)

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

| university consortium eprints@whiterose.ac.uk
WA Universities of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/231244/
https://eprints.whiterose.ac.uk/

A Case Study on Defining Traceable Machine
Learning Safety Requirements for an Automotive
Perception Component

Sepeedeh Shahbeigi
Department of Computer Science
University of York
York, UK
Sepeedeh.shahbeigi @york.ac.uk

Victoria Hodge
Department of Computer Science
University of York
York, UK
Victoria.hodge @york.ac.uk

Abstract—Integrating machine learning (ML) into safety-
critical systems introduces significant safety assurance challenges,
particularly as these systems become increasingly autonomous
and operate in more open and complex environments. One of
the most significant of these challenges is how to systematically
specify traceable ML safety requirements. In this paper, we
explore the challenges of specifying safety requirements for
ML components through a case study of a vehicle Automated
Lane Centering function, in which an ML model performs lane
detection in a highway scenario. We show how safety concerns
propagate from system-level hazards, and explore specific issues
that arise in defining meaningful and traceable ML-level require-
ments, including specifying ML behaviour and robustness. The
paper provides the first detailed case study showing how effective
and traceable ML safety requirements can be specified for an ML
component.

Index Terms—ML Assurance, ML Safety Requirements, Spec-
ification, Automotive perception

I. INTRODUCTION

Getting requirements right is critical in safety-critical sys-
tems such as autonomous vehicles, where incomplete or am-
biguous specifications can lead to hazardous behaviour [1].
While not sufficient alone, requirements engineering (RE)
supports the foundation of through-life safety assurance.

The integration of machine learning (ML) complicates this
process. ML components behave probabilistically and depend
on data, introducing epistemic uncertainty and challenging
conventional specification techniques. This raises a key ques-
tion: how can traceable safety requirements be defined for ML
components embedded within complex autonomous systems?

Existing frameworks such as AMLAS [2] acknowledge this
need but provide only high-level guidance without prescribing
how to specify such requirements in practice. Most approaches
either treat ML as a black box or assume requirements are
externally defined.

Richard Hawkins
Department of Computer Science
University of York
York, UK
Richard.hawkins @york.ac.uk

Colin Paterson
Department of Computer Science
University of York
York, UK
Colin.paterson @york.ac.uk

Simon Burton
Department of Computer Science
University of York
York, UK
Simon.burton @york.ac.uk

Ibrahim Habli
Department of Computer Science
University of York
York, UK
Ibrahim.habli@york.ac.uk

In this paper, we demonstrate, through a detailed case
study, how safety requirements for an ML component can be
specified and traced from system-level requirements. Using
an Automated Lane Centering (ALC) function, where an ML
model performs lane detection on highways, we show how
functional safety concerns can be decomposed and linked
across abstraction levels. Furthermore, we provide prelim-
inary guidance on the structure and formulation of safety
requirements allocated to ML components, and outline how
these can be traceably decomposed to requirements at the ML
implementation level.

Our work complements AMLAS and previous efforts on
partial specification [3], robustness [4], and traceability [5] by
demonstrating how these aspects can be addressed in practice.
Section II details the case study; Section III discusses next
steps, including future work to formalise this into a process.

II. THE CASE STUDY

We illustrate our approach using a case study of a vehicle
equipped with a camera and an ALC function operating on a
US highway. The case study demonstrates how our structured
syntax enables traceable specification of safety requirements
from system-level objectives down to ML components. Owing
to space constraints, we focus on the practical challenges of
developing traceable requirements and the discussions needed
to refine them from higher levels. Full technical derivations
and the development of the general methodology are deferred
to follow-up work.

In this case study, we assume the ego vehicle is a standard
passenger car (1.8 mx4.5m) on 3.7m-wide lanes, travelling
at constant v = 31m/s with ap = 3m/ % overtaking
and other manoeuvres are out of scope. The ALC architec-
ture (Fig. 1) comprises camera perception (ML lane-marking

detection), lane tracking estimating Y, (lateral offset to the
lane centre), and a steering controller; traceability points are
annotated [J#] and cross-referenced in Table 1.

A. Operational Design Domain

Safety requirements must be specified with respect to the
system’s intended operational context, formalised as the Oper-
ational Design Domain (ODD). The ODD defines environmen-
tal attributes such as scenery, weather, and dynamic elements
that influence system behaviour [6]. We represent the ODD
as a structured, hierarchical taxonomy to support traceable
requirement derivation. Each attribute is annotated with meta-
data indicating whether it is fixed (e.g., regulatory constraints),
variable (e.g., weather), or relevant to ML behaviour, each of
which plays a role in subsequent analysis.

To manage complexity, we define Partial Operational Do-
mains (PODs) as subsets of the ODD that describe specific
operational scenarios. PODs enable incremental and context-
specific SR development and provide a foundation for linking
requirements to concrete operational conditions. Fig. 3 illus-
trates examples of the ODD taxonomy. Specification of PODs
are beyond the scope of this paper and is elaborated in future
work.

B. Limitations of Traditional Safety Requirements for ML
Components

To highlight the limitations of conventional SRs for ML,
we begin with a standard example using the Easy Approach
to Requirements Syntax (EARS) [7], which structures SRs via
conditions, responses, and constraints. A typical SR for lane
detection might be:

Allocated SR (EARS): When lane markings are
visible, the lane detector SHALL output the detected
lane positions to the lane tracker.

While EARS improves clarity, it is insufficient for ML
components, which are probabilistic, data-driven, and context-
sensitive. This introduces dimensions such as performance,
robustness, and dataset dependence that traditional templates
cannot capture. To be meaningful, such requirements must also
state their underlying assumptions, which themselves become
additional requirements for rigorous ML assurance.

To address this, we introduce a structured syntax incorpo-
rating ML-specific elements, detailed later in the paper. In
this work, our focus is on ML component and model-level
requirements, which demonstrate SR traceability from system-
level to ML.

C. System-Level and Perception Safety Requirements

To support traceability to the ML component, we briefly
summarise the relevant higher-level safety requirements from
the system and perception layers that adapt to our proposed
MLC- and ML-level SRs. Due to space constraints, full details
are deferred to a longer version of this work. The top-level
system SR is to prevent unintended lane departure or collision
hazard. This is formalised as:

S-SR001: The system SHALL ensure that the ego vehicle’s
bounding box remains within the [safe drivable area] on a
motorway, under all conditions defined in the ODD, with a
failure probability of less than 10~® per hour.

From S-SR001, the following requirements are allocated to
the perception component. The first specifies limits on Y,,;
the second addresses the extrapolation of lane markings from
previous detections when current observations are unavailable.
This is a common approach in tracking systems.

P-SR001: The maximum lateral displacement error Y,
SHALL not exceed 0.66 m for more than 143 consecutive
frames, with a failure probability of 4.7 x 10~Y per hour
under all ODD conditions.

P-SR002: Extrapolation SHALL not persist for more than

0.94 seconds.

The Y, value is estimated from detected lane positions,
lane width, vehicle dimensions, and road curvature. Risk
budgets follow [8], with failure probabilities allocated using
data from [9].

D. ML Component Safety Requirement Translation

The perception function is decomposed into three subcom-
ponents. Here we focus only on the ML-based Lane detection
component shown in figure 1. Before specifying ML model
requirements, we distinguish between ML component safety
requirements (MLC-SRs) and ML model safety requirements
(ML-SRs). In our architecture, the lane detection module
is fully implemented as the ML component, so MLC-SRs
represent its allocated functional safety requirements, while
ML-SRs define the model-level behaviours needed to fulfil
them. We express MLC-SRs using the following structured
syntax:

MLC-SR#: [{context}] [condition] [metric] SHALL
[relation] [acceptance criteria] [input number] [probability of
failure] [confidence]

This format captures ML-specific properties such as prob-
abilistic failure, metric, based constraints, and temporal
bounds—that are not expressible using traditional templates
like EARS [7]. Key elements include:

o Metric: A measurable quantity linked to ML output (e.g.,

lateral displacement).

o Acceptance Criteria: A quantitative threshold on the
metric.

o Input Number: The window over which performance is
evaluated (e.g., per frame or sequence).

o Probability of Failure: A bound on the likelihood of
requirement violation.

« confidence: When the condition must hold (e.g., always,
or >90% of the time). This reflects the uncertainty on
the requirement (including the probability of failure).
Howeyver, it is not the focus of this work and will be
elaborated in a follow-up work.

o {context}: A subdomain of the system’s ODD which
defines the scope of validity of the requirement.

Perception

Pre-
processing

Image’

ML-based

Camera H¥ .
Lane detection

PDetected lanes Lane
>

»{ Controller

—» Steering angle
tracker

Fig. 1: Functional architecture of the ALC function.

Our syntax extends the FRET [10] template, designed for
deterministic components, by explicitly incorporating prob-
abilistic and data-dependent elements required for ML as-
surance. Owing to space constraints, we concentrate on the
essential elements of our requirement formulation. Full detail,
comparison with FRET, and examples are provided in our
follow-up paper. This syntax supports traceable, quantitative
specification of ML behaviours beyond the scope of EARS and
FRET. If we apply this formulation to our example, assuming
context, we can define the following MLC-SR:

MLC-SRO001: In the {context} and the event of the correct detection, the sum

Context + Condition
of left and right errors of the detected lanes SHALL not exceed 0.66 m for

Acceptance Criteria

Metric
more than 143 consecutive frames, with failure probability of 6 x 10710,
Probability of failure

Input range

MLC-SRO001 directly reflects the tolerance in lateral dis-
placement defined in P-SR001, accounting for both left and
right lane boundaries. The 0.66 m bound is derived from
the safe drivable area calculation. The failure probability is
based on statistical analysis of component-level failures in
autonomous systems [9]. The MLC-SR explicitly encodes
measurable safety constraints and their statistical context
which are essential for developing and assuring ML models.

MLC-SR001 addresses the behaviour of the ML component
in terms of true positives (TPs) [J1]; However, to compre-
hensively capture its failure modes, additional considerations
are required. In particular, SRs must account for the impact
of false positives (FPs), false negatives (FNs), and the com-
pounding effect of consecutive misclassifications over time.

This need arises from P-SR001, which constrains the al-
lowable lateral displacement error Y,,,. The value of Y, is
computed from the positions of the lane markings detected by
the ML-based lane detection component. The details of this
estimation can be found in [11]. Consequently, its accuracy
is highly sensitive to the correctness of the ML outputs. Any
false negative or false positive directly skews the inferred lane
boundaries and, in turn, the estimated lateral position of the
vehicle. For example, consistently missing one lane side or
detecting artefacts as valid markings can displace the com-
puted lane centre, leading to errors in Y, estimate. Therefore,
the MLC-SRs defined here establish explicit constraints on
detection accuracy, false detection rates, and error persistence,
ensuring that the ML component operates within the tolerances
required to maintain compliance with P-SR001.

These failure modes were previously identified during
hazard analysis and system decomposition, and are already
reflected in P-SR001. The MLC-SRs that follow refine those
failure modes to specify the conditions under which FPs and
FNs must be tolerated or constrained at the ML component
level.

To ensure completeness, these failure modes should be
refined in collaboration with domain experts, who can pro-
vide contextual insight into their operational implications. For
instance, a missed lane marking (FN) or the incorrect detection
of a non-lane feature as a lane (FP) may lead to significantly
different hazards depending on road context, traffic density,
and control strategies.

In transport systems, such as autonomous driving, isolated
failures may be tolerable, but sustained misclassifications over
an interval of inputs can result in hazardous outcomes. There-
fore, the derived MLC-SRs must reflect not only individual
failure events but also their temporal persistence and combina-
tions [J2]. The following requirements explicitly address FP,
FN, and their compounding effects:

MLC-SR002: If lane markings of lengths 0.3 m or longer are not present,

Condition
they SHALL not be detected (false positive).
Acceptance Criteria

MLC-SR003: If a lane marking of lengths 0.3 m or longer is present, it

Metric (binary)

Condition
SHALL be detected (false negative).
Acceptance Criteria
MLC-SR004: True and false negative frames SHALL not continue for

Acceptance Criteria

Metric (binary)

Metric
more than 94 frames.
Input range

The 30 cm threshold in MLC-SR002 is chosen to exclude
artefacts such as road debris or worn paint fragments that could
otherwise be misidentified as lanes. This value corresponds to
the minimum length of a standard intermittent lane marking
and will be subject to refinement based on empirical testing
[J31.

MLC-SR003 ensures safety-critical lane markings are re-
liably detected. MLC-SR004 addresses compound failure
modes, where prolonged FN or TN behaviour may propagate
downstream to the control system, leading to hazardous devi-
ations [J4].

A key challenge in the safety analysis of ML components is
that identical failure modes may result in significantly different
hazard severities depending on the operational context. For
example, missing a pedestrian walking on a sidewalk might

|
|

Fig. 2: False outputs of the ML component: a) FP1: the lane
marking is detected when it does not exist, b) FP2: the lane
marking is detected when it does not exist-further, c) FP3: the
lane marking is detected when it does not exist-closer, and d)
FN: the lane marking is not detected when it exist

pose negligible risk to the ego vehicle, whereas failing to
detect a pedestrian on the vehicle’s trajectory could result
in a catastrophic outcome. Therefore, hazard analysis must
account not only for the type of ML failure but also for
its context-specific consequences. Such weighting informs the
prioritisation of failure modes in the ML safety specification
process outlined in the next subsection.

Figure 2 illustrates typical error modes in ML-based lane
detection. FP1 corresponds to spurious/non-existent lane de-
tection, while FP2 and FP3 involve the misclassification of
non-lane features. FN denotes a missed detection where a
lane marking is present. Among these, FP1, FP3, and FN are
the most safety-critical, as they may lead to lateral deviation
or unintended road departure. Hence, while SRs distinguish
between false positives (FPs) and false negatives (FNs), their
weighted hazard potential should guide both performance
requirement thresholds and the focus of validation efforts.

In this section, we have demonstrated that the conven-
tional approach to formalising safety requirements for system
components must be adapted when applied to components
incorporating ML. In the next section, we demonstrate key
considerations and challenges in decomposing these MLC-SRs
into ML-specific safety requirements.

E. ML safety Requirements

In the previous subsection, we identified MLC-SRs for
context. The MLC-SRs specify the safety requirements on the
component, but are not yet presented in a form that can be used
by an ML developer to create and verify an ML model. To do
this requires that the MLC-SRs be translated into ML-specific
requirements, while maintaining traceability to the component
safety requirement.

ML safety requirements encompass two distinct aspects:
performance and robustness. Performance SRs specify how
well the ML model must behave under expected conditions,
while robustness SRs ensure the model remains safe under
operational variability across the ODD. In this subsection, we
focus exclusively on deriving the performance-related SRs for
an example POD, PODy. The next subsection elaborated on
robustness SRs.

A direct decomposition of the MLC-SRs involves specify-
ing both classification and localisation accuracy requirements.
Classification accuracy relates to the ML model’s ability to
correctly classify true positives (TP) and true negatives (TN).
localisation accuracy refers to the spatial alignment between
TP detections and their corresponding ground truth. localisa-
tion accuracy ensures that localisation error remains within an
acceptable bound. We begin by deriving requirements related
to classification accuracy and associated detection metrics,
before addressing localisation accuracy at the end of this
subsection, as it follows more directly from prior constraints.

classification accuracy is sensitive to dataset imbalance,
which may obscure model limitations if not properly ac-
counted for. While we assume the dataset has been collected
following rigorous safety requirements (SRs), we acknowledge
that achieving perfect balance is impractical in real-world
perception tasks. The effect of these imperfections are reflected
in the [confidence] element of the requirement syntax and are
studied in a follow-up research.

Building on MLC-SR001, we assume that safety-relevant
failures may result from misclassifications, false positives
(FPs) or false negatives (FNs), sustained across up to 143
consecutive frames. This motivates the following requirement:

o ML-SRO001: The classification accuracy of lane detection
SHALL not be less than 0.889.

This threshold reflects the need to tolerate occasional mis-
classifications while preventing prolonged failures that could
lead to a lane departure. In the worst case, systematic fail-
ures—triggered by specific inputs, blind spots, or dataset gaps
can persist with certainty (Pyq; = 1) until mitigated. Such
failures cannot be addressed through probabilistic guaran-
tees alone and must be eliminated during development. Any
reproducible failure observed in validation invalidates prior
assumptions and requires re-executing the safety process.

To bound risk from semi-systematic failures, which may
persist due to temporal correlation in input data, we model
error propagation using a conservative exponential growth
model. Assuming an initial failure rate Pp; and a temporal
amplification factor £ = 1.05, the cumulative failure proba-
bility over 143 frames must remain below 6 x 10710, Solving
this yields an upper bound of Pg; < 0.027, corresponding
to a required accuracy of at least 0.973 in quasi-systematic
conditions. In practice, this is balanced against architectural
mitigations and offline validation results, leading to the se-
lected threshold of 0.889 as a practical lower bound that
supports the system’s safety target.

This formulation makes traceability from MLC-SR001 to
ML-SRO001 explicit and highlights how probabilistic accuracy
targets are grounded in the safety assumptions and temporal
risk models of the system.

To mitigate dataset bias and support robust validation of
accuracy-related SRs, we adopt complementary performance
metrics rather than relying on single detection thresholds.
Notice that FP and FN are defined using MLC-SR002 and
MLC-SR003 [J5].

TABLE I: Traceability Between Allocated, MLC and ML-Level Safety Requirements. [J#] points to the paragraphs within the

subsections that include the justifications.

System-level Perception Justification Justification
SR SR MLC-SR (SR—MLC-SR) ML-SR (MLC-SR—ML-SR)

ML-SR001 II-E: [J1]

) ML-SR002 II-E: [J6]

MLC-SR001 II-D: [J1] ML-SR003 ILE: [J6]

P-SRO01 ML-SR004 II-E: [J7]

S-SR001 P-SRO02 MLC-SR002 II-D: [J3] ML-SR002 ILE: [J5]
MLC-SR003 1I-D: [J4] ML-SR003 ’

ML-SR002 II-E: [J6]

MLC-SR004 1I-D: [J2] ML-SR003 II-E: [J6]

ML-SR004 II-E: [J7]

The per-frame failure probability is:

FP+ FN
TP+FP+FN+TN
To satisfy ML-SR001, the model’s accuracy must exceed
0.889.

MLC-SR004 constrains undetected frames (FN + TN) to
fewer than 94 consecutive inputs, giving Penetn < 0.798.
MLC-SR001 limits total detection errors to Penypp < 0.027.
Exploring valid FN, FP, and TN combinations under these
constraints, we compute the resulting bounds:

o ML-SR002: Recall SHALL be greater than 0.910.

e ML-SR003: Precision SHALL be greater than 0.995.

These thresholds ensure safe performance across both omis-
sion and commission errors, supporting traceability from
MLC-SR001 and MLC-SR004 to measurable ML model be-
haviour [J6].

We define the localisation accuracy requirement derived
from MLC-SR001, which limits localisation error in true
positive (TP) lane detections [J7]. We use mean squared error
(MSE) to quantify this, as it penalises large deviations relevant
to lateral safety.

e ML-SR004: The average MSE of TP lane detections (left

and right, per image) SHALL be less than 0.66 m.

This threshold aligns with the lateral error bound in P-
SR001, maintaining consistency across the requirement chain.

Table I summarises the ML safety requirements derived in
our case study, showing traceability from the allocated system-
level requirement (SR-001) to ML component (MLC-SRs) and
model-level (ML-SRs) requirements. Each link is supported by
justification references [J#], pointing to the relevant rationale.
This structured decomposition ensures that all ML-level re-
quirements are grounded in system safety. Future work will
formalise these justifications into reusable argument patterns
for integration into safety cases.

Prait = 1 — PAccuracy

FE. Robustness Safety Requirements Through POD-Based De-
composition

This subsection extends the previously defined ML-SRs,
developed from the allocated SRs which are referred to as
performance SRs, by introducing robustness ML-SRs. We

define robustness as the ability of the model to behave safely
in variations of the OD defined by the attributes in the
ODD. Our approach takes a different path to AMLAS [12]
where performance and robustness SRs are suggested to be
developed separately. We define the ML SRs as a set of
performance SRs contextualised in associated range of PODs
(robustness). The union of these PODs spans the entire ODD.
The purpose of this decomposition is to ensure that the ML
component continues to satisfy its performance-related SRs
as critical operational attributes vary within their defined
bounds. By incrementally introducing variability across PODs,
the robustness requirements capture the model’s ability to
generalise across the ODD, and additionally are helpful to
expose potentially undiscovered systematic failures. Ongoing
research focuses on formalising the integration of PODs with
requirements specification to enable scalable and rigorous
assurance.

We have shown how to specify a set of ML-SRs which we
denote by ML-SRs; for POD,. However, to ensure traceability
we have to ensure that the whole context is covered. Therefore,
we propose decomposing context in a systematic manner into
[PODj,...,PODy], which captures all the attributes under
which the ML component is expected to operate safely.
Defining PODs requires careful coordination between ML
engineers, safety experts, and domain specialists to identify
relevant attributes and appropriate granularity [13]. For exam-
ple, road surface quality affects lane detection and warrants
inclusion, while ambient temperature may not. Excluding
irrelevant factors prevents unnecessary combinatorial growth,
streamlines evaluation, and provides a principled stopping
point for POD refinement. These eliminated attributes should
be documented and tagged in the ODD for the completeness
coverage checks explained in the following paragraphs.

To manage complexity and support traceability, we represent
PODs as a tree, where each node corresponds to an opera-
tional attribute, and distinct PODs differ by at least one such
attribute. Starting from PODg, new POD; instances are formed
by incrementally varying attributes that affect ML behaviour.
Nodes are annotated with metadata (e.g., fixed/variable, tree
depth, included/excluded), enabling consistent terminology,

v v ¥) ¥) v 1
Dynamic | |Environmental| |Scenery Dynamic | |Environmental| |Scenery Dynamic | |Environmental| | Scenery
Elements Conditions Elements Conditions Elements Conditions

@ =

Sun

Fig. 3: Illustration of PODs merging operation: PODy & POD; = POD. Each POD corresponds to a partial operational context;

their union incrementally covers full ODD.

completeness checks, and automated POD merging during
iterative refinement. Fig. 3 illustrates a sample merge process.

PODs are introduced incrementally and merged through
a summation process to construct a global POD structure
denoted by POD in Fig. 3. This process continues until the
union of all defined PODs fully covers the context that is
relevant to ML performance. As new PODs are introduced,
previously unrecognised operational attributes may be iden-
tified as relevant to ML behaviour. When this occurs, the
POD structure and corresponding ML robustness SRs must
be updated accordingly. Attributes that are part of the ODD
but deemed not relevant to ML should still be explicitly tagged
and documented, to ensure traceability and completeness when
comparing the POD union to the full ODD specification. Fig. 3
illustrates this iterative expansion and merging process. In
this way, we define a set of ML performance SRs (ML-SRs)
and associate each with one or more PODs, resulting in a
structured requirement set of the form:

{(ML-SRs;, {POD;, ...,POD; })}¥,

Here, we decomposed the MLC-SRs into a structured set
of ML-SRs that explicitly account for model behaviour across
the full ODD. By deriving quantitative bounds on classifica-
tion accuracy, recall, and precision from system-level hazard
constraints, we ensured that each ML-SR is measurable and
traceable to higher-level safety objectives. Additionally, we
included a localisation accuracy requirement for true positives
to address the quality, not just quantity, of correct detections.

This formulation captures robustness via POD coverage,
supports systematic derivation of dataset requirements (e.g.,
completeness, relevance, and balance as defined in AMLAS),
and lays the foundation for ML assurance within the safety
case. Future work will extend this to derive dataset-level
requirements from these ML-SRs.

III. CONCLUSION AND FUTURE WORK

This work presented a case-study—driven methodology for
specifying ML-SRs in an autonomous driving systems appli-
cation, combining performance and robustness through PODs
to enhance ODD-wide traceability beyond AMLAS. Future
work will extend the approach to dataset-level requirements
and formalise it into an application-agnostic framework for
scalable ML assurance.

ACKNOWLEDGMENT

This work was supported by the Centre for Assuring Au-
tonomy, a partnership between Lloyd’s Register Foundation
and the University of York (https://www.york.ac.uk/assuring-
autonomy/)

REFERENCES

[1] Z. Pei, L. Liu, C. Wang, and J. Wang, “Requirements engineering
for machine learning: A review and reflection,” in 2022 [EEE 30th
International Requirements Engineering Conference Workshops (REW),
pp. 166-175, 1IEEE, 2022.

[2] R. Hawkins, C. Paterson, C. Picardi, Y. Jia, R. Calinescu, and I. Habli,
“Guidance on the assurance of machine learning in autonomous systems
(amlas),” arXiv preprint arXiv:2102.01564, 2021.

[3] R. Salay and K. Czarnecki, “Improving ml safety with partial specifica-
tions,” in Computer Safety, Reliability, and Security: SAFECOMP 2019
Workshops, ASSURE, DECSoS, SASSUR, STRIVE, and WAISE, Turku,
Finland, September 10, 2019, Proceedings 38, pp. 288-300, Springer,
2019.

[4] H. Kuwajima, H. Yasuoka, and T. Nakae, “Engineering problems in
machine learning systems,” Machine Learning, vol. 109, no. 5, pp. 1103—
1126, 2020.

[5]1 J. H. Husen, H. Washizaki, H. T. Tun, N. Yoshioka, Y. Fukazawa,
and H. Takeuchi, “Traceable business-to-safety analysis framework for
safety-critical machine learning systems,” in Proceedings of the Ist
International Conference on Al Engineering: Software Engineering for
Al pp. 50-51, 2022.

[6] British Standards Institution, “Operational design domain (odd),” 2025.
Publicly Available Specification.

[71 A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach
to requirements syntax (ears),” in 2009 17th IEEE international require-
ments engineering conference, pp. 317-322, IEEE, 2009.

[8] S. Shalev-Shwartz, “On a formal model of safe and scalable self-driving
cars,” arXiv preprint arXiv:1708.06374, 2017.

[91 A. Richter, T. P. Walz, M. Dhanani, I. Hiring, G. Vogelbacher,
F. Hoflinger, J. Finger, and A. Stolz, “Components and their failure rates
in autonomous driving,” in Proceeding of the 33rd European Safety and
Reliability Conference, pp. 233-240, 2023.

[10] D. Giannakopoulou, A. Mavridou, J. Rhein, T. Pressburger, J. Schumann,
and N. Shi, “Formal requirements elicitation with fret,” in International
Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ-2020), no. ARC-E-DAA-TN77785, 2020.

[11] M. Tian, F. Liu, and Z. Hu, “Single camera 3d lane detection and
tracking based on ekf for urban intelligent vehicle,” in 2006 [EEE
International conference on vehicular electronics and safety, pp. 413—
418, IEEE, 2006.

[12] R. Hawkins, M. Osborne, M. Parsons, M. Nicholson, J. McDermid, and
I. Habli, “Guidance on the safety assurance of autonomous systems in
complex environments (sace),” arXiv preprint arXiv:2208.00853, 2022.

[13] S. Shahbeigi, N. M. Proma, V. Hodge, R. Hawkins, B. Li, and
V. Donzella, “Robustness requirement coverage using a situation
coverage approach for vision-based ai systems,” arXiv preprint
arXiv:2507.12986, 2025.

