
This is a repository copy of A Case Study on defining traceable Machine Learning Safety 
Requirements for an Automotive Perception component.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/231244/

Version: Accepted Version

Proceedings Paper:
Shahbeigi Roudposhti, Sepeedeh, Hawkins, Richard David orcid.org/0000-0001-7347-
3413, Burton, Simon orcid.org/0000-0001-9040-8752 et al. (3 more authors) (2025) A 
Case Study on defining traceable Machine Learning Safety Requirements for an 
Automotive Perception component. In: 36th IEEE International Symposium on Software 
Reliability Engineering. 36th IEEE International Symposium on Software Reliability 
Engineering, 21-24 Oct 2025 , BRA. (In Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/231244/
https://eprints.whiterose.ac.uk/


A Case Study on Defining Traceable Machine

Learning Safety Requirements for an Automotive

Perception Component

Sepeedeh Shahbeigi

Department of Computer Science

University of York

York, UK

Sepeedeh.shahbeigi@york.ac.uk

Richard Hawkins

Department of Computer Science

University of York

York, UK

Richard.hawkins@york.ac.uk

Simon Burton

Department of Computer Science

University of York

York, UK

Simon.burton@york.ac.uk

Victoria Hodge

Department of Computer Science

University of York

York, UK

Victoria.hodge@york.ac.uk

Colin Paterson

Department of Computer Science

University of York

York, UK

Colin.paterson@york.ac.uk

Ibrahim Habli

Department of Computer Science

University of York

York, UK

Ibrahim.habli@york.ac.uk

AbstractÐIntegrating machine learning (ML) into safety-
critical systems introduces significant safety assurance challenges,
particularly as these systems become increasingly autonomous
and operate in more open and complex environments. One of
the most significant of these challenges is how to systematically
specify traceable ML safety requirements. In this paper, we
explore the challenges of specifying safety requirements for
ML components through a case study of a vehicle Automated
Lane Centering function, in which an ML model performs lane
detection in a highway scenario. We show how safety concerns
propagate from system-level hazards, and explore specific issues
that arise in defining meaningful and traceable ML-level require-
ments, including specifying ML behaviour and robustness. The
paper provides the first detailed case study showing how effective
and traceable ML safety requirements can be specified for an ML
component.

Index TermsÐML Assurance, ML Safety Requirements, Spec-
ification, Automotive perception

I. INTRODUCTION

Getting requirements right is critical in safety-critical sys-

tems such as autonomous vehicles, where incomplete or am-

biguous specifications can lead to hazardous behaviour [1].

While not sufficient alone, requirements engineering (RE)

supports the foundation of through-life safety assurance.

The integration of machine learning (ML) complicates this

process. ML components behave probabilistically and depend

on data, introducing epistemic uncertainty and challenging

conventional specification techniques. This raises a key ques-

tion: how can traceable safety requirements be defined for ML

components embedded within complex autonomous systems?

Existing frameworks such as AMLAS [2] acknowledge this

need but provide only high-level guidance without prescribing

how to specify such requirements in practice. Most approaches

either treat ML as a black box or assume requirements are

externally defined.

In this paper, we demonstrate, through a detailed case

study, how safety requirements for an ML component can be

specified and traced from system-level requirements. Using

an Automated Lane Centering (ALC) function, where an ML

model performs lane detection on highways, we show how

functional safety concerns can be decomposed and linked

across abstraction levels. Furthermore, we provide prelim-

inary guidance on the structure and formulation of safety

requirements allocated to ML components, and outline how

these can be traceably decomposed to requirements at the ML

implementation level.

Our work complements AMLAS and previous efforts on

partial specification [3], robustness [4], and traceability [5] by

demonstrating how these aspects can be addressed in practice.

Section II details the case study; Section III discusses next

steps, including future work to formalise this into a process.

II. THE CASE STUDY

We illustrate our approach using a case study of a vehicle

equipped with a camera and an ALC function operating on a

US highway. The case study demonstrates how our structured

syntax enables traceable specification of safety requirements

from system-level objectives down to ML components. Owing

to space constraints, we focus on the practical challenges of

developing traceable requirements and the discussions needed

to refine them from higher levels. Full technical derivations

and the development of the general methodology are deferred

to follow-up work.

In this case study, we assume the ego vehicle is a standard

passenger car (1.8 m×4.5 m) on 3.7 m-wide lanes, travelling

at constant v = 31m/s with amax = 3m/s
2
; overtaking

and other manoeuvres are out of scope. The ALC architec-

ture (Fig. 1) comprises camera perception (ML lane-marking



detection), lane tracking estimating Ywv (lateral offset to the

lane centre), and a steering controller; traceability points are

annotated [J#] and cross-referenced in Table I.

A. Operational Design Domain

Safety requirements must be specified with respect to the

system’s intended operational context, formalised as the Oper-

ational Design Domain (ODD). The ODD defines environmen-

tal attributes such as scenery, weather, and dynamic elements

that influence system behaviour [6]. We represent the ODD

as a structured, hierarchical taxonomy to support traceable

requirement derivation. Each attribute is annotated with meta-

data indicating whether it is fixed (e.g., regulatory constraints),

variable (e.g., weather), or relevant to ML behaviour, each of

which plays a role in subsequent analysis.

To manage complexity, we define Partial Operational Do-

mains (PODs) as subsets of the ODD that describe specific

operational scenarios. PODs enable incremental and context-

specific SR development and provide a foundation for linking

requirements to concrete operational conditions. Fig. 3 illus-

trates examples of the ODD taxonomy. Specification of PODs

are beyond the scope of this paper and is elaborated in future

work.

B. Limitations of Traditional Safety Requirements for ML

Components

To highlight the limitations of conventional SRs for ML,

we begin with a standard example using the Easy Approach

to Requirements Syntax (EARS) [7], which structures SRs via

conditions, responses, and constraints. A typical SR for lane

detection might be:

Allocated SR (EARS): When lane markings are

visible, the lane detector SHALL output the detected

lane positions to the lane tracker.

While EARS improves clarity, it is insufficient for ML

components, which are probabilistic, data-driven, and context-

sensitive. This introduces dimensions such as performance,

robustness, and dataset dependence that traditional templates

cannot capture. To be meaningful, such requirements must also

state their underlying assumptions, which themselves become

additional requirements for rigorous ML assurance.

To address this, we introduce a structured syntax incorpo-

rating ML-specific elements, detailed later in the paper. In

this work, our focus is on ML component and model-level

requirements, which demonstrate SR traceability from system-

level to ML.

C. System-Level and Perception Safety Requirements

To support traceability to the ML component, we briefly

summarise the relevant higher-level safety requirements from

the system and perception layers that adapt to our proposed

MLC- and ML-level SRs. Due to space constraints, full details

are deferred to a longer version of this work. The top-level

system SR is to prevent unintended lane departure or collision

hazard. This is formalised as:

S-SR001: The system SHALL ensure that the ego vehicle’s

bounding box remains within the [safe drivable area] on a

motorway, under all conditions defined in the ODD, with a

failure probability of less than 10−8 per hour.

From S-SR001, the following requirements are allocated to

the perception component. The first specifies limits on Ywv;

the second addresses the extrapolation of lane markings from

previous detections when current observations are unavailable.

This is a common approach in tracking systems.

P-SR001: The maximum lateral displacement error Ywv

SHALL not exceed 0.66 m for more than 143 consecutive

frames, with a failure probability of 4.7 × 10−9 per hour

under all ODD conditions.

P-SR002: Extrapolation SHALL not persist for more than

0.94 seconds.

The Ywv value is estimated from detected lane positions,

lane width, vehicle dimensions, and road curvature. Risk

budgets follow [8], with failure probabilities allocated using

data from [9].

D. ML Component Safety Requirement Translation

The perception function is decomposed into three subcom-

ponents. Here we focus only on the ML-based Lane detection

component shown in figure 1. Before specifying ML model

requirements, we distinguish between ML component safety

requirements (MLC-SRs) and ML model safety requirements

(ML-SRs). In our architecture, the lane detection module

is fully implemented as the ML component, so MLC-SRs

represent its allocated functional safety requirements, while

ML-SRs define the model-level behaviours needed to fulfil

them. We express MLC-SRs using the following structured

syntax:

MLC-SR#: [{context}] [condition] [metric] SHALL

[relation] [acceptance criteria] [input number] [probability of

failure] [confidence]

This format captures ML-specific properties such as prob-

abilistic failure, metric, based constraints, and temporal

boundsÐthat are not expressible using traditional templates

like EARS [7]. Key elements include:

• Metric: A measurable quantity linked to ML output (e.g.,

lateral displacement).

• Acceptance Criteria: A quantitative threshold on the

metric.

• Input Number: The window over which performance is

evaluated (e.g., per frame or sequence).

• Probability of Failure: A bound on the likelihood of

requirement violation.

• confidence: When the condition must hold (e.g., always,

or ≥90% of the time). This reflects the uncertainty on

the requirement (including the probability of failure).

However, it is not the focus of this work and will be

elaborated in a follow-up work.

• {context}: A subdomain of the system’s ODD which

defines the scope of validity of the requirement.



Camera
Pre-

processing
ML-based

Lane detection
Lane

tracker
Controller Steering angle

Perception

Image’ Detected lanes

Fig. 1: Functional architecture of the ALC function.

Our syntax extends the FRET [10] template, designed for

deterministic components, by explicitly incorporating prob-

abilistic and data-dependent elements required for ML as-

surance. Owing to space constraints, we concentrate on the

essential elements of our requirement formulation. Full detail,

comparison with FRET, and examples are provided in our

follow-up paper. This syntax supports traceable, quantitative

specification of ML behaviours beyond the scope of EARS and

FRET. If we apply this formulation to our example, assuming

context, we can define the following MLC-SR:

MLC-SR001 directly reflects the tolerance in lateral dis-

placement defined in P-SR001, accounting for both left and

right lane boundaries. The 0.66 m bound is derived from

the safe drivable area calculation. The failure probability is

based on statistical analysis of component-level failures in

autonomous systems [9]. The MLC-SR explicitly encodes

measurable safety constraints and their statistical context

which are essential for developing and assuring ML models.

MLC-SR001 addresses the behaviour of the ML component

in terms of true positives (TPs) [J1]; However, to compre-

hensively capture its failure modes, additional considerations

are required. In particular, SRs must account for the impact

of false positives (FPs), false negatives (FNs), and the com-

pounding effect of consecutive misclassifications over time.

This need arises from P-SR001, which constrains the al-

lowable lateral displacement error Ywv . The value of Ywv is

computed from the positions of the lane markings detected by

the ML-based lane detection component. The details of this

estimation can be found in [11]. Consequently, its accuracy

is highly sensitive to the correctness of the ML outputs. Any

false negative or false positive directly skews the inferred lane

boundaries and, in turn, the estimated lateral position of the

vehicle. For example, consistently missing one lane side or

detecting artefacts as valid markings can displace the com-

puted lane centre, leading to errors in Ywv estimate. Therefore,

the MLC-SRs defined here establish explicit constraints on

detection accuracy, false detection rates, and error persistence,

ensuring that the ML component operates within the tolerances

required to maintain compliance with P-SR001.

These failure modes were previously identified during

hazard analysis and system decomposition, and are already

reflected in P-SR001. The MLC-SRs that follow refine those

failure modes to specify the conditions under which FPs and

FNs must be tolerated or constrained at the ML component

level.

To ensure completeness, these failure modes should be

refined in collaboration with domain experts, who can pro-

vide contextual insight into their operational implications. For

instance, a missed lane marking (FN) or the incorrect detection

of a non-lane feature as a lane (FP) may lead to significantly

different hazards depending on road context, traffic density,

and control strategies.

In transport systems, such as autonomous driving, isolated

failures may be tolerable, but sustained misclassifications over

an interval of inputs can result in hazardous outcomes. There-

fore, the derived MLC-SRs must reflect not only individual

failure events but also their temporal persistence and combina-

tions [J2]. The following requirements explicitly address FP,

FN, and their compounding effects:

The 30 cm threshold in MLC-SR002 is chosen to exclude

artefacts such as road debris or worn paint fragments that could

otherwise be misidentified as lanes. This value corresponds to

the minimum length of a standard intermittent lane marking

and will be subject to refinement based on empirical testing

[J3].

MLC-SR003 ensures safety-critical lane markings are re-

liably detected. MLC-SR004 addresses compound failure

modes, where prolonged FN or TN behaviour may propagate

downstream to the control system, leading to hazardous devi-

ations [J4].

A key challenge in the safety analysis of ML components is

that identical failure modes may result in significantly different

hazard severities depending on the operational context. For

example, missing a pedestrian walking on a sidewalk might



Fig. 2: False outputs of the ML component: a) FP1: the lane

marking is detected when it does not exist, b) FP2: the lane

marking is detected when it does not exist-further, c) FP3: the

lane marking is detected when it does not exist-closer, and d)

FN: the lane marking is not detected when it exist

pose negligible risk to the ego vehicle, whereas failing to

detect a pedestrian on the vehicle’s trajectory could result

in a catastrophic outcome. Therefore, hazard analysis must

account not only for the type of ML failure but also for

its context-specific consequences. Such weighting informs the

prioritisation of failure modes in the ML safety specification

process outlined in the next subsection.

Figure 2 illustrates typical error modes in ML-based lane

detection. FP1 corresponds to spurious/non-existent lane de-

tection, while FP2 and FP3 involve the misclassification of

non-lane features. FN denotes a missed detection where a

lane marking is present. Among these, FP1, FP3, and FN are

the most safety-critical, as they may lead to lateral deviation

or unintended road departure. Hence, while SRs distinguish

between false positives (FPs) and false negatives (FNs), their

weighted hazard potential should guide both performance

requirement thresholds and the focus of validation efforts.

In this section, we have demonstrated that the conven-

tional approach to formalising safety requirements for system

components must be adapted when applied to components

incorporating ML. In the next section, we demonstrate key

considerations and challenges in decomposing these MLC-SRs

into ML-specific safety requirements.

E. ML safety Requirements

In the previous subsection, we identified MLC-SRs for

context. The MLC-SRs specify the safety requirements on the

component, but are not yet presented in a form that can be used

by an ML developer to create and verify an ML model. To do

this requires that the MLC-SRs be translated into ML-specific

requirements, while maintaining traceability to the component

safety requirement.

ML safety requirements encompass two distinct aspects:

performance and robustness. Performance SRs specify how

well the ML model must behave under expected conditions,

while robustness SRs ensure the model remains safe under

operational variability across the ODD. In this subsection, we

focus exclusively on deriving the performance-related SRs for

an example POD, POD0. The next subsection elaborated on

robustness SRs.

A direct decomposition of the MLC-SRs involves specify-

ing both classification and localisation accuracy requirements.

Classification accuracy relates to the ML model’s ability to

correctly classify true positives (TP) and true negatives (TN).

localisation accuracy refers to the spatial alignment between

TP detections and their corresponding ground truth. localisa-

tion accuracy ensures that localisation error remains within an

acceptable bound. We begin by deriving requirements related

to classification accuracy and associated detection metrics,

before addressing localisation accuracy at the end of this

subsection, as it follows more directly from prior constraints.

classification accuracy is sensitive to dataset imbalance,

which may obscure model limitations if not properly ac-

counted for. While we assume the dataset has been collected

following rigorous safety requirements (SRs), we acknowledge

that achieving perfect balance is impractical in real-world

perception tasks. The effect of these imperfections are reflected

in the [confidence] element of the requirement syntax and are

studied in a follow-up research.

Building on MLC-SR001, we assume that safety-relevant

failures may result from misclassifications, false positives

(FPs) or false negatives (FNs), sustained across up to 143

consecutive frames. This motivates the following requirement:

• ML-SR001: The classification accuracy of lane detection

SHALL not be less than 0.889.

This threshold reflects the need to tolerate occasional mis-

classifications while preventing prolonged failures that could

lead to a lane departure. In the worst case, systematic fail-

uresÐtriggered by specific inputs, blind spots, or dataset gaps

can persist with certainty (Pfail = 1) until mitigated. Such

failures cannot be addressed through probabilistic guaran-

tees alone and must be eliminated during development. Any

reproducible failure observed in validation invalidates prior

assumptions and requires re-executing the safety process.

To bound risk from semi-systematic failures, which may

persist due to temporal correlation in input data, we model

error propagation using a conservative exponential growth

model. Assuming an initial failure rate Pfail and a temporal

amplification factor k = 1.05, the cumulative failure proba-

bility over 143 frames must remain below 6× 10−10. Solving

this yields an upper bound of Pfail < 0.027, corresponding

to a required accuracy of at least 0.973 in quasi-systematic

conditions. In practice, this is balanced against architectural

mitigations and offline validation results, leading to the se-

lected threshold of 0.889 as a practical lower bound that

supports the system’s safety target.

This formulation makes traceability from MLC-SR001 to

ML-SR001 explicit and highlights how probabilistic accuracy

targets are grounded in the safety assumptions and temporal

risk models of the system.

To mitigate dataset bias and support robust validation of

accuracy-related SRs, we adopt complementary performance

metrics rather than relying on single detection thresholds.

Notice that FP and FN are defined using MLC-SR002 and

MLC-SR003 [J5].



TABLE I: Traceability Between Allocated, MLC and ML-Level Safety Requirements. [J#] points to the paragraphs within the

subsections that include the justifications.

System-level

SR

Perception

SR
MLC-SR

Justification

(SR→MLC-SR)
ML-SR

Justification

(MLC-SR→ML-SR)

S-SR001
P-SR001

P-SR002

MLC-SR001 II-D: [J1]

ML-SR001 II-E: [J1]

ML-SR002 II-E: [J6]

ML-SR003 II-E: [J6]

ML-SR004 II-E: [J7]

MLC-SR002 II-D: [J3] ML-SR002

ML-SR003
II-E: [J5]

MLC-SR003 II-D: [J4]

MLC-SR004 II-D: [J2]

ML-SR002 II-E: [J6]

ML-SR003 II-E: [J6]

ML-SR004 II-E: [J7]

The per-frame failure probability is:

Pfail =
FP + FN

TP + FP + FN + TN
= 1− PAccuracy

To satisfy ML-SR001, the model’s accuracy must exceed

0.889.

MLC-SR004 constrains undetected frames (FN + TN) to

fewer than 94 consecutive inputs, giving PFN+TN ≤ 0.798.

MLC-SR001 limits total detection errors to PFN+FP ≤ 0.027.

Exploring valid FN, FP, and TN combinations under these

constraints, we compute the resulting bounds:

• ML-SR002: Recall SHALL be greater than 0.910.

• ML-SR003: Precision SHALL be greater than 0.995.

These thresholds ensure safe performance across both omis-

sion and commission errors, supporting traceability from

MLC-SR001 and MLC-SR004 to measurable ML model be-

haviour [J6].

We define the localisation accuracy requirement derived

from MLC-SR001, which limits localisation error in true

positive (TP) lane detections [J7]. We use mean squared error

(MSE) to quantify this, as it penalises large deviations relevant

to lateral safety.

• ML-SR004: The average MSE of TP lane detections (left

and right, per image) SHALL be less than 0.66 m.

This threshold aligns with the lateral error bound in P-

SR001, maintaining consistency across the requirement chain.

Table I summarises the ML safety requirements derived in

our case study, showing traceability from the allocated system-

level requirement (SR-001) to ML component (MLC-SRs) and

model-level (ML-SRs) requirements. Each link is supported by

justification references [J#], pointing to the relevant rationale.

This structured decomposition ensures that all ML-level re-

quirements are grounded in system safety. Future work will

formalise these justifications into reusable argument patterns

for integration into safety cases.

F. Robustness Safety Requirements Through POD-Based De-

composition

This subsection extends the previously defined ML-SRs,

developed from the allocated SRs which are referred to as

performance SRs, by introducing robustness ML-SRs. We

define robustness as the ability of the model to behave safely

in variations of the OD defined by the attributes in the

ODD. Our approach takes a different path to AMLAS [12]

where performance and robustness SRs are suggested to be

developed separately. We define the ML SRs as a set of

performance SRs contextualised in associated range of PODs

(robustness). The union of these PODs spans the entire ODD.

The purpose of this decomposition is to ensure that the ML

component continues to satisfy its performance-related SRs

as critical operational attributes vary within their defined

bounds. By incrementally introducing variability across PODs,

the robustness requirements capture the model’s ability to

generalise across the ODD, and additionally are helpful to

expose potentially undiscovered systematic failures. Ongoing

research focuses on formalising the integration of PODs with

requirements specification to enable scalable and rigorous

assurance.

We have shown how to specify a set of ML-SRs which we

denote by ML-SRs1 for POD0. However, to ensure traceability

we have to ensure that the whole context is covered. Therefore,

we propose decomposing context in a systematic manner into

[PODj , . . . , PODk], which captures all the attributes under

which the ML component is expected to operate safely.

Defining PODs requires careful coordination between ML

engineers, safety experts, and domain specialists to identify

relevant attributes and appropriate granularity [13]. For exam-

ple, road surface quality affects lane detection and warrants

inclusion, while ambient temperature may not. Excluding

irrelevant factors prevents unnecessary combinatorial growth,

streamlines evaluation, and provides a principled stopping

point for POD refinement. These eliminated attributes should

be documented and tagged in the ODD for the completeness

coverage checks explained in the following paragraphs.

To manage complexity and support traceability, we represent

PODs as a tree, where each node corresponds to an opera-

tional attribute, and distinct PODs differ by at least one such

attribute. Starting from POD0, new PODi instances are formed

by incrementally varying attributes that affect ML behaviour.

Nodes are annotated with metadata (e.g., fixed/variable, tree

depth, included/excluded), enabling consistent terminology,



POD0

Scenery

. . .

Environmental
Conditions

Weather

Sun

Dynamic
Elements

. . .

⊕

POD1

Scenery

. . .

Environmental
Conditions

Weather

Rain

Dynamic
Elements

. . .

=

PODtotal

Scenery

. . .

Environmental
Conditions

Weather

SunRain

Dynamic
Elements

. . .

Fig. 3: Illustration of PODs merging operation: POD0 ⊕ POD1 = POD. Each POD corresponds to a partial operational context;

their union incrementally covers full ODD.

completeness checks, and automated POD merging during

iterative refinement. Fig. 3 illustrates a sample merge process.

PODs are introduced incrementally and merged through

a summation process to construct a global POD structure

denoted by POD in Fig. 3. This process continues until the

union of all defined PODs fully covers the context that is

relevant to ML performance. As new PODs are introduced,

previously unrecognised operational attributes may be iden-

tified as relevant to ML behaviour. When this occurs, the

POD structure and corresponding ML robustness SRs must

be updated accordingly. Attributes that are part of the ODD

but deemed not relevant to ML should still be explicitly tagged

and documented, to ensure traceability and completeness when

comparing the POD union to the full ODD specification. Fig. 3

illustrates this iterative expansion and merging process. In

this way, we define a set of ML performance SRs (ML-SRs)

and associate each with one or more PODs, resulting in a

structured requirement set of the form:

{(ML-SRsi, {PODj , . . . , PODk})}
N
i=1

Here, we decomposed the MLC-SRs into a structured set

of ML-SRs that explicitly account for model behaviour across

the full ODD. By deriving quantitative bounds on classifica-

tion accuracy, recall, and precision from system-level hazard

constraints, we ensured that each ML-SR is measurable and

traceable to higher-level safety objectives. Additionally, we

included a localisation accuracy requirement for true positives

to address the quality, not just quantity, of correct detections.

This formulation captures robustness via POD coverage,

supports systematic derivation of dataset requirements (e.g.,

completeness, relevance, and balance as defined in AMLAS),

and lays the foundation for ML assurance within the safety

case. Future work will extend this to derive dataset-level

requirements from these ML-SRs.

III. CONCLUSION AND FUTURE WORK

This work presented a case-study±driven methodology for

specifying ML-SRs in an autonomous driving systems appli-

cation, combining performance and robustness through PODs

to enhance ODD-wide traceability beyond AMLAS. Future

work will extend the approach to dataset-level requirements

and formalise it into an application-agnostic framework for

scalable ML assurance.

ACKNOWLEDGMENT

This work was supported by the Centre for Assuring Au-

tonomy, a partnership between Lloyd’s Register Foundation

and the University of York (https://www.york.ac.uk/assuring-

autonomy/)

REFERENCES

[1] Z. Pei, L. Liu, C. Wang, and J. Wang, ªRequirements engineering
for machine learning: A review and reflection,º in 2022 IEEE 30th

International Requirements Engineering Conference Workshops (REW),
pp. 166±175, IEEE, 2022.

[2] R. Hawkins, C. Paterson, C. Picardi, Y. Jia, R. Calinescu, and I. Habli,
ªGuidance on the assurance of machine learning in autonomous systems
(amlas),º arXiv preprint arXiv:2102.01564, 2021.

[3] R. Salay and K. Czarnecki, ªImproving ml safety with partial specifica-
tions,º in Computer Safety, Reliability, and Security: SAFECOMP 2019

Workshops, ASSURE, DECSoS, SASSUR, STRIVE, and WAISE, Turku,

Finland, September 10, 2019, Proceedings 38, pp. 288±300, Springer,
2019.

[4] H. Kuwajima, H. Yasuoka, and T. Nakae, ªEngineering problems in
machine learning systems,º Machine Learning, vol. 109, no. 5, pp. 1103±
1126, 2020.

[5] J. H. Husen, H. Washizaki, H. T. Tun, N. Yoshioka, Y. Fukazawa,
and H. Takeuchi, ªTraceable business-to-safety analysis framework for
safety-critical machine learning systems,º in Proceedings of the 1st

International Conference on AI Engineering: Software Engineering for

AI, pp. 50±51, 2022.
[6] British Standards Institution, ªOperational design domain (odd),º 2025.

Publicly Available Specification.
[7] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, ªEasy approach

to requirements syntax (ears),º in 2009 17th IEEE international require-

ments engineering conference, pp. 317±322, IEEE, 2009.
[8] S. Shalev-Shwartz, ªOn a formal model of safe and scalable self-driving

cars,º arXiv preprint arXiv:1708.06374, 2017.
[9] A. Richter, T. P. Walz, M. Dhanani, I. HÈaring, G. Vogelbacher,

F. HÈoflinger, J. Finger, and A. Stolz, ªComponents and their failure rates
in autonomous driving,º in Proceeding of the 33rd European Safety and

Reliability Conference, pp. 233±240, 2023.
[10] D. Giannakopoulou, A. Mavridou, J. Rhein, T. Pressburger, J. Schumann,

and N. Shi, ªFormal requirements elicitation with fret,º in International

Working Conference on Requirements Engineering: Foundation for

Software Quality (REFSQ-2020), no. ARC-E-DAA-TN77785, 2020.
[11] M. Tian, F. Liu, and Z. Hu, ªSingle camera 3d lane detection and

tracking based on ekf for urban intelligent vehicle,º in 2006 IEEE

International conference on vehicular electronics and safety, pp. 413±
418, IEEE, 2006.

[12] R. Hawkins, M. Osborne, M. Parsons, M. Nicholson, J. McDermid, and
I. Habli, ªGuidance on the safety assurance of autonomous systems in
complex environments (sace),º arXiv preprint arXiv:2208.00853, 2022.

[13] S. Shahbeigi, N. M. Proma, V. Hodge, R. Hawkins, B. Li, and
V. Donzella, ªRobustness requirement coverage using a situation
coverage approach for vision-based ai systems,º arXiv preprint

arXiv:2507.12986, 2025.


