
This is a repository copy of Vocabulary learning and regularity extraction:Temporal 
dynamics of consolidation and associations with slow-wave sleep and sleep spindles.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/231230/

Version: Accepted Version

Article:

Kimel, Eva, Hairston, Ilana S, Ben-Zion, Dafna et al. (4 more authors) (2025) Vocabulary 
learning and regularity extraction:Temporal dynamics of consolidation and associations 
with slow-wave sleep and sleep spindles. Cortex; a journal devoted to the study of the 
nervous system and behavior. pp. 172-187. ISSN: 1973-8102

https://doi.org/10.1016/j.cortex.2025.07.012

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1016/j.cortex.2025.07.012
https://eprints.whiterose.ac.uk/id/eprint/231230/
https://eprints.whiterose.ac.uk/


1 

Vocabulary Learning and Regularity Extraction:  1 

Temporal Dynamics of Consolidation and Associations with Slow-2 

wave Sleep and Sleep Spindles 3 

 4 

Eva Kimel1,2*, Ilana S. Hairston1,3, Dafna Ben-Zion1, Yekete Akal3, Anat Prior1, M. Gareth 5 

Gaskell2, and Tali Bitan1,4 6 

 7 

1 University of Haifa, Haifa, Israel, 2 University of York, York, UK, 3 Tel Hai Academic 8 

College, Tel-Hai, Israel, 4 University of Toronto, Toronto, ON, Canada 9 

* Corresponding author 10 

 11 

This research was funded by Israeli Science Foundation grant no. 1052/16 to T. Bitan. 12 

E. Kimel was supported by the Israel National Postdoctoral Award for Advancing Women 13 

in Science. 14 

 15 

We would like to thank Adi Marinberg, Mona Blyer, Haya Hajyahya, Amit Green, Oren 16 

Levin, and Rabab Fadul for their help with participant recruitment and data collection, and 17 

to Dan Denis and Scott Cairney for their valuable advice. 18 

 19 

For the purpose of open access, the author has applied a Creative Commons Attribution (CC 20 

BY) licence to any Author Accepted Manuscript version arising from this submission. 21 

 22 

 23 

  24 



2 

Vocabulary Learning and Regularity Extraction: Temporal Dynamics of 1 

Consolidation and Associations with Slow-wave Sleep and Sleep Spindles 2 

 3 

Abstract: Fast sleep spindles and slow-wave sleep (SWS) have been linked to 4 

memory consolidation, however, their associations with learning and longer term retention 5 

of different aspects of language remain unclear. We investigated the temporal dynamics of 6 

consolidation of vocabulary and grammar, and their links with these sleep metrics. Young 7 

adult participants were trained in the evening on an artificial language that used plural 8 

inflections with an underlying morpho-phonological regularity that was not taught explicitly. 9 

Some of the words were presented frequently and others infrequently. Polysomnographic 10 

measures were collected during the night following learning; participants were tested on the 11 

vocabulary, trained inflections, and generalisation to untrained words at four time points 12 

across nine days. 13 

Accuracy on the vocabulary test improved across the first night following learning, 14 

and the change was positively associated with SWS duration. Memory for infrequent words 15 

declined towards Day 9, but greater spindle density during the first night was associated 16 

with a smaller decline. Although mean group accuracy on trained inflections did not 17 

significantly change overnight, individually, the change was negatively correlated with 18 

spindle density. Generalisation accuracy showed no change across time and no correlations 19 

with sleep characteristics. Overall, the results demonstrate that vocabulary and grammar 20 

learning have different temporal dynamics of consolidation and distinct patterns of 21 

association with sleep metrics. The findings suggest a protective role of spindles for long-22 

term retention of memory, particularly of weakly encoded items, and emphasise the need to 23 

dissociate the benefits of SWS from those of spindles. 24 

  25 
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Introduction 1 

Language learning is a continuous process that begins before birth and continues 2 

throughout life (Brysbaert et al., 2016), relying on both encoding and offline consolidation. The 3 

process of learning, or forming new memories, does not end with exposure, but rather continues 4 

to undergo additional changes in the following hours, days, weeks and longer (e.g., Gaskell, 5 

2024). During this consolidation process, the new memory trace becomes more stable and is 6 

integrated with previously existing memories (Diekelmann & Born, 2010; Gaskell & Dumay, 7 

2003; Stickgold & Walker, 2005). Consolidation can also facilitate the extraction of patterns, 8 

regularities, or implicit rules that in turn enable generalisation: applying knowledge from 9 

previously learned information when processing new input (Fenn et al., 2003; Tamminen et al., 10 

2012). 11 

A recent systematic review and meta-analysis on word learning confirmed that various 12 

aspects of memory for novel words benefit from sleep (Schimke et al., 2021). Sleep was shown to 13 

benefit both recall and recognition of novel word forms, as compared to a time period that does 14 

not contain sleep (Mirković & Gaskell, 2016; Tamminen et al., 2010). Sleep also supports the 15 

integration of novel word forms into the existing lexicon, as first demonstrated in a pioneering 16 

study by Gaskell and Dumay (2003). In this study, participants were taught novel word forms that 17 

were phonological neighbours of existing words (e.g., cathedruke - cathedral). They found 18 

inhibition in the access to existing words due to competition with the new word forms, but this 19 

was evident only in the delayed (one week post-training) test and not immediately after training, 20 

suggesting that offline consolidation is required for novel words to become fully integrated into 21 

the mental lexicon. The benefit of a delay that includes sleep for lexical integration has since been 22 

replicated in several studies (Davis et al., 2009; Davis & Gaskell, 2009; Dumay & Gaskell, 2007; 23 

Tamminen & Gaskell, 2008; Van Der Ven et al., 2015).  24 

In contrast to vocabulary learning, the contribution of sleep to offline extraction of 25 

regularities in language learning is less clear. Some previous studies have demonstrated sleep-26 

dependent enhancement in inferring covert relationships between non-linguistic stimuli (e.g., 27 

Durrant et al., 2011, 2013; Lewis & Durrant, 2011; Wagner et al., 2004, Ellenbogen et al., 2007), 28 

leading to the suggestion that sleep may also benefit rule extraction and generalisation in 29 

language stimuli (e.g., Batterink et al., 2014; Batterink & Paller, 2017). For example, in a study in 30 

which participants learned new affixes, learning effects were assessed both with speed of oral 31 
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repetition and with a definition selection task. When the learned affixes were attached to 1 

untrained stems in order to assess generalisation, the advantage in the speed of oral repetition was 2 

only evident 2 days after training, supporting the contribution of offline consolidation to 3 

generalisation. Interestingly, in the definition selection task, participants showed evidence of 4 

generalisation immediately after learning, emphasising task-dependence (Tamminen et al., 2010; 5 

for a review see Cordi & Rasch, 2021; Palma & Titone, 2021).  6 

However, the role of sleep in generalisation in language was questioned in a number of 7 

studies. For example, Tamminen and colleagues (2020) introduced adult participants to a novel 8 

orthography. Participants were able to generalise this knowledge to unfamiliar words, even when 9 

they were deprived of sleep the night after learning. Moreover, Mirković & Gaskell (2016) did 10 

not find a benefit of a post-learning nap for language regularity extraction, in contrast to a sleep 11 

benefit for vocabulary learning found in the same study. A similar result was reported by Ben-12 

Zion and colleagues (Ben-Zion et al., 2022): They exposed participants to artificial novel words 13 

and their plural endings, where the plural suffixes were implicitly determined by the stem 14 

endings. A group that trained in the evening and slept immediately after training was compared to 15 

a group that trained in the morning and thus slept ~12 hrs after training. While inflection of 16 

trained words, which can rely on item-specific knowledge, differed between the groups 12-hours 17 

post-learning, the generalisation to untrained items, which reflects the extraction of regularities 18 

improved after 24 hours, but showed no group difference in performance. In summary, sleep 19 

plays a central role in vocabulary learning, but its impact on regularity extraction and 20 

generalisation is not as straightforward. Importantly, most studies have looked at either 21 

vocabulary learning or generalisation (though see Mirković & Gaskell, 2016), making it harder to 22 

directly compare learning of these two aspects. We address this limitation in the current study by 23 

examining both vocabulary and grammar learning together. 24 

The Complementary Learning Systems framework (CLS; McClelland et al., 1995; 25 

O’Reilly et al., 2014) proposes a model for the involvement of sleep in memory formation. It 26 

suggests that during exposure, an initial episodic, context-rich encoding is formed, supported by 27 

the hippocampus; then, during sleep, the memories are integrated into cortical networks and 28 

become less dependent on the hippocampus (Klinzing et al., 2019; Kumaran et al., 2016). Davis 29 

and Gaskell (2009) were the first to apply this model to language learning by reviewing 30 

behavioral and brain imaging studies that together support a two stage learning process as 31 
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described by the CLS. First, rapid word acquisition supported by the medial temporal lobe and the 1 

hippocampus, followed by consolidation that involves offline neocortical learning, the evidence to 2 

which emerges following a night of sleep (Gaskell, 2024). 3 

Several sleep metrics have been linked to sleep-dependent memory consolidation in 4 

language, with two key measures being slow-wave sleep duration (Tamminen et al., 2010) and 5 

sleep-spindle density (Tamminen et al., 2013; Tham et al., 2015). Slow-wave sleep (SWS) is the 6 

sleep stage that is characterised by the most synchronised and low frequency neural activity; 7 

Sleep spindles are brief bursts of neural activity lasting .5–3 seconds within a specific frequency 8 

range (12-16 Hz; Ng et al., 2024), and their role in memory consolidation was confirmed by a 9 

recent meta-analysis (Kumral et al., 2023) and was linked to memory replay (e.g., Cairney et al., 10 

2018). Both SWS and sleep spindles are thought to support the transfer of information from 11 

relying on the hippocampus to relying primarily on the neocortex (Klinzing et al., 2019) with a 12 

co-occurrence of spindles and slow oscillations (typical of slow-wave sleep) identified as a 13 

predictor of memory consolidation across a sleep period (Denis & Cairney, 2023; Staresina, 14 

2024).  15 

More specifically, for language learning, SWS duration has been positively correlated 16 

with vocabulary acquisition, as measured by recognition speed of newly learned words 17 

(Tamminen, 2010), and by paradigms that assess automatic access to word meanings (Tham et al., 18 

2015). However, there is no evidence regarding a direct correlation of SWS duration and 19 

regularity extraction in language. SWS duration was positively associated with learning of 20 

implicit restrictions on phoneme position within syllable sequences, but not with generalisation of 21 

these constraints to novel sequences (Gaskell et al., 2014). Similarly, others did not find 22 

correlations between SWS duration and generalisation of linguistic regularities (Batterink et al., 23 

2014; Batterink & Paller, 2017). For example, Batterink and colleagues (2014) introduced an 24 

implicit rule where novel articles predicted noun animacy. Participants showed slower responses 25 

for untrained phrases that violated the rule, thus exhibiting generalisation, but their sensitivity to 26 

the rule was not correlated with SWS duration. 27 

Sleep-spindle activity was found to be correlated with proper-name learning (Clemens et 28 

al., 2005), with the integration of novel words into the lexicon (Tamminen et al., 2010, 2013; 29 

Tham et al., 2015), and with overnight change in cued-recall accuracy for novel words (Weighall 30 

et al., 2017). To our knowledge only one study, by Batterink and Paller (2017), tested the 31 
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association of sleep spindles with regularity extraction, and they did not find a significant 1 

association.  2 

To summarise, vocabulary learning benefits from sleep and these benefits are associated 3 

with SWS duration and sleep-spindle density: two aspects of sleep heavily implicated in memory 4 

consolidation. In contrast, it is unclear whether sleep benefits regularity extraction, and the few 5 

studies that tested associations of regularity extraction and sleep characteristics did not find a 6 

correlation with either SWS or spindles. Therefore, the aim of the present study is to 7 

systematically investigate the associations of vocabulary learning and regularity extraction with 8 

both SWS duration and spindle density in the same cohort of participants. 9 

Moreover, we will also test longer-term memory, 8 days after initial training, based on 10 

reports of some improvements in the integration of novel words into the mental lexicon becoming 11 

evident only a week after the initial training (Clay et al., 2007; James et al., 2019; Tamminen & 12 

Gaskell, 2012; though see Tamminen et al., 2013). Importantly, previous research has only 13 

studied the correlations between sleep metrics and immediate post-learning or post-sleep 14 

performance, but the associations of SWS and spindles with longer-term consolidation have not 15 

been tested. Therefore, a key strength and novel aspect of our study lies in exploring the 16 

connection between post-learning sleep characteristics and longer-term retention. 17 

Finally, we manipulated frequency of exposure - in light of the reports on preferential 18 

sleep-dependent consolidation of weaker memories (Denis et al., 2020, 2021; Diekelmann et al., 19 

2009; Drosopoulos et al., 2007; Schapiro et al., 2017), we wanted to test this effect on word 20 

learning. 21 

To this end we adapted an artificial language used in previous studies (Ben Zion et al., 22 

2019; Ben-Zion et al., 2022) which have shown evidence for learning of implicit morpho-23 

phonological regularities and facilitation by sleep for trained words (i.e., stem+suffix), though not 24 

for generalisation. We added a direct assessment of vocabulary learning and included four time 25 

points in our study: 1) in the evening - immediately after training, 2) the next morning, after a 26 

night of sleep (~12 hrs post-training), 3) the following morning, a day after (~36 hrs post-training) 27 

and 4) six days after session 3. The training comprised novel vocabulary and plural forms, with 28 

implicit morpho-phonological regularity underlying the plural form suffixes.  29 

We tested the associations of SWS duration and sleep spindles with the change in 30 

accuracy for vocabulary, trained plural inflections and generalisation across the four time points, 31 
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which spanned nine days (generalisation was only measured across three days). We predicted a 1 

positive association of the sleep metrics with the change in performance over time for vocabulary 2 

and plural inflections, with stronger association between sleep characteristics and memory for 3 

infrequent words as compared to frequent words. For grammar learning, based on previous 4 

findings of no correlations, we hypothesised that any positive associations might only become 5 

evident on Day 3, rather than the day following initial learning. 6 

 7 

Methods 8 

Participants  9 

We analysed the data of 29 participants (F = 19), whose mean age was 25.83 ± 3.28 years. 10 

Participants were recruited in and around the campus of Tel-Hai Academic College (Kiryat 11 

Shmone, Israel); They could choose whether to be paid or receive research participation credit. 12 

We invited participants whose native language was Hebrew to minimise linguistic background 13 

variability, who had normal or corrected-to-normal vision. Exclusion criteria included: diagnosed 14 

hearing deficits, neurological or psychiatric diagnoses, habitual use of medications affecting 15 

sleep, habitual daytime napping, regular smoking, travelling across time zones in the past two 16 

weeks, and pregnancy. We based our power analysis on the study by Tamminen et al. (2010), 17 

which assessed correlations between behavioural measures and both SWS duration and sleep-18 

spindle density. Using Fisher's z-transformation, a power of .80 and a two-sided alpha < .05 19 

yielded an estimated sample size of 27 participants. To account for potential data loss, we decided 20 

to recruit 30 participants. 21 

Participants then filled screening questionnaires and participated in an introductory 22 

session via videoconference. Sleep disorders were ruled out by the Mini Sleep Questionnaire 23 

(MSQ; Natale et al., 2014). To increase the likelihood of participants falling asleep in the sleep 24 

lab, we did not invite those classified as “evening type” based on the Hebrew version of the 25 

Morningness-Eveningness Questionnaire (MEQ; Horne & Ostberg, 1976). We did not invite 26 

participants who were diagnosed with any learning or communication difficulty, nor individuals 27 

who scored ≥ 51 on a ADHD questionnaire (Zohar & Konfortes, 2010) so that not to introduce 28 

heterogeneity that might be relevant to language processing (Rucklidge & Tannock, 2002) or 29 

sleep patterns (Becker, 2020; Konofal et al., 2010). We stopped recruitment after testing 30 adults 30 

(18-45 years old). Data of one participant were excluded from the analysis due to poor sleep 31 
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quality (18 awakenings of at least one minute, only 2 REM periods), resulting in 29 usable 1 

datasets.  2 

Experimental Procedure 3 

 The study protocol was approved by the Ethics committees of Tel-Hai college (approval 4 

10/2019-4), and the University of Haifa (approval 378/19). The 30 participants who passed initial 5 

screening were invited to take part in the study that spanned nine days (Fig. 1). On the three 6 

nights before they began the experiment, participants were requested to go to bed no later than 7 

midnight and allow a sleep of 7-8 hours, and not to nap during the day. They filled a sleep log 8 

reporting their sleeping times and were given a smart watch to verify their sleep times on the days 9 

before the experiment. On Day 1, participants were instructed to refrain from consuming alcohol 10 

or other psychoactive substances, and only consume caffeine before 2pm. In the sleep laboratory, 11 

participants went to bed by 22:45. 12 

Figure 1. Study overview. 13 

 14 

Stimuli, tasks and behavioural data preprocessing 15 

The design was based on paradigms used in our previous studies (Ben Zion et al., 16 

2019; Ben-Zion et al., 2022, 2023; Nevat et al., 2017, 2018), and included learning singular 17 

and plural words in an artificial language. The first session included training and testing, 18 

whereas all other sessions included tests only (Fig. 1). 19 

Participants learned 36 new words which were paired with existing objects. Each 20 

training trial included an auditory presentation of the singular form (i.e., stem), the plural 21 

form, and an image depicting its referent. For example, participants heard refoz, then 22 

refozan, and were presented with an image of an apple. All stems had a CVCVC structure; 23 

Plural forms consisted of the stem and one of three VC suffixes (an, esh, ur). The last two 24 

phonemes of the stem determined the suffix, such that certain stem endings were matched to 25 

a certain suffix. For example, the plural suffix for stems ending with either /oz/ or /ap/, was 26 
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an. The mappings between the stem ending and the plural suffix that underlied the plural 1 

form rules were arbitrary. 2 

The training set included 30 words that followed these rules: 10 stems per each 3 

plural suffix. Frequency of word presentation varied such that 18 words were presented nine 4 

times each (i.e., frequent) and 12 words were presented three times each (i.e., infrequent) 5 

during training. In addition, six “irregular” words that violated the rules described above 6 

were presented. These were included to increase similarity to natural languages, and were 7 

not included in the analyses.  8 

Day 1 session consisted of: Exposure - On each trial participants were auditorily 9 

presented with the singular and plural form of one novel word, and with its image referent 10 

(for 1 second). They were requested to remember the singular form-referent mapping and to 11 

repeat out loud the plural form (with a timeout of five seconds). The trials were self-paced; 12 

trial order was random. Each of the 36 words was presented once. Test of trained inflections 13 

(baseline) - On each trial participants were auditorily presented with a singular form and a 14 

plural form and were required to indicate whether the plural form corresponded to the 15 

singular form by pressing key 1 or 2 on the keyboard (with a timeout of three seconds). Each 16 

trained word appeared twice in the test, once with its correct plural form and once with an 17 

incorrect plural form. For the incorrect plural form, a wrong combination with one of the 18 

other two trained plural endings was used in an alternating manner (e.g., if the correct 19 

ending was an, and esh was used in Day 1 test, then ur will be used in Day 2 test, etc.). Trial 20 

order was random. Training - On each trial participants were auditorily presented with a 21 

singular form and saw its image referent. They were then asked to say the plural form out 22 

loud (with a timeout of three seconds), followed by an auditory presentation of the correct 23 

plural form. Training comprised three blocks with a short break between them; frequent 24 

items were presented three times during each block, and infrequent items were presented 25 

once. The trials were self-paced; trial order was random. Test of trained inflections (post-26 

training) - as described above. Vocabulary test - On each trial participants were auditorily 27 

presented with a singular form and saw an image referent, and were asked to indicate 28 

whether the image corresponds to the singular form, by pressing key 1 or 2 on the keyboard 29 

(with a timeout of three seconds). Each trained stem appeared twice in the test, once with its 30 

correct corresponding image and once with an image that is the referent of a different word 31 
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in the experiment. Distractor images were chosen randomly such that in each test each 1 

image appeared in one trial as the correct image (i.e., with the stem that it was paired with 2 

during training), and in one trial as the incorrect image (i.e., with a stem that it was not 3 

paired with during training). Trial order was random. Generalisation test - On each trial 4 

participants heard a singular word form that was not included in the training set but had one 5 

of the endings of trained stems (e.g. /oz/ or /ap/), and were asked to produce the plural form 6 

of that word (with a timeout of three seconds). Thirty novel words were presented in each 7 

test, five for each of the six phonological stem cues. The trials were self-paced; trial order 8 

was random. For more details please refer to Ben Zion et al. (2019).  9 

Day 2 and Day 3 sessions included the three tests (trained inflections, vocabulary, 10 

generalisation); Day 9 session included tests of trained inflections and vocabulary only (due 11 

to technical reasons generalisation was not tested). The experiment was conducted using 12 

Matlab (Inc, 2022). 13 

Analyses were performed with accuracy as the dependent variable, defined as 14 

selection of the correct option in the vocabulary and trained inflection tasks, and verbally 15 

producing the plural form with the correct suffix (even if the pronunciation of the stem that 16 

was part of the plural form was compromised) in the generalisation task. The independent 17 

variables for vocabulary and trained inflection tasks were word frequency during training 18 

(frequent vs. infrequent) and post-training timepoints (Day 1, Day 2, Day 3, Day 9). The 19 

independent variable for the generalisation tasks was post-training timepoints (Day 1, Day 2, 20 

Day 3). We also analysed the reaction times (RTs) of correct responses in order to verify 21 

that positive changes in accuracy did not result in significantly slower responses.  22 

 23 

Polysomnography data collection and preprocessing 24 

Polysomnography (PSG) data collection was performed at the Research Institute of 25 

Applied Chronobiology at Tel Hai Academic College. PSG measurements were acquired 26 

using SOMNOscreen™ (Somnomedics, Germany). The montage included seven 27 

electroencephalogram (EEG) channels (F3, F4, C3, C4, Cz - as reference, A1, A2), bilateral 28 

electrooculogram (EOG), submental electromyogram (EMG), and electrocardiogram (ECG). 29 

Signals were digitised at 256 Hz, with low- and high-frequency filter settings at 0.2-35 Hz 30 

for EEG, 0.2-10 Hz for EOG and 10-35 Hz for EMG, and a 50 Hz notch filter was applied to 31 
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further minimize electrical noise. A trained sleep technician collected and scored the data in 1 

accordance with the American Academy of Sleep Medicine guidelines (AASM; Iber, 2007). 2 

All reported duration measures are thus based on this scoring. Prior to spindle detection, a 3 

research assistant conducted an additional examination of the data to exclude noisy periods 4 

that did not span entire epochs. Using the MNE-Python package, the data were down-5 

sampled to 128 Hz, re-referenced to mastoid (A1, A2) average, band-pass filtered to .3-30 6 

Hz. Independent Component Analysis (ICA) was conducted using the MNE package 7 

(Gramfort, 2013), and the signal was reconstructed after removing the three main 8 

components: cardiac interference, a salient noise/distortion, and eye movements. 9 

The duration of SWS (Stage 3) was extracted from the scored data, and SWS 10 

duration, which is the summed duration of all SWS periods in minutes, was used as the 11 

measure for each participant. Fast sleep spindles (12-16 Hz, duration .5-3 seconds; Mölle et 12 

al., 2011; Ng et al., 2024) were detected in all Stage 2 and Stage 3 epochs (henceforth 13 

NREM; Cairney et al., 2018; Leach et al., 2024; Tamminen et al., 2020) using the YASA 14 

toolbox for python (relative power = .1, correlation with spindle freq. = .45, amplitude in 15 

filtered signal = 2.5; Vallat & Walker, 2021). Average spindle density across the four EEG 16 

electrodes (Cairney et al., 2018; although see Mölle et al., 2011) was then used as a single 17 

spindle measure for each participant. In order to verify the validity of averaging across the 18 

four electrodes, we conducted a principal component analysis (PCA) on the spindle data 19 

across the four electrodes. The first component had a very strong correlation (r = .99) with 20 

the mean of the four electrodes, its loadings were similar across all four electrodes (range 21 

.68 - .86) and it captured .62 of the total variance, supporting the decision to use the average 22 

as a single measure. 23 

Statistical analysis 24 

Statistical analysis was performed in R (R Core Team, 2021), and plots were 25 

produced in python (Van Rossum & Drake, 2009). Linear mixed-effects models were 26 

constructed using the lme4 package (Bates et al., 2015) in R. For each of the three tasks: 27 

vocabulary, trained inflections, and generalisation, we first defined a full model including all 28 

predictors as fixed effects, by-participant intercepts, and by-participant slopes for time 29 

points, and for word frequency where applicable (i.e., for vocabulary and trained 30 
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inflections). By-participant random effects were added to the models in order to account for 1 

variability that is not directly related to the effects of interest. 2 

The dependent variable was accuracy: a binary outcome per-trial. We used the 3 

Buildmer function to find the maximal model that can still converge and which includes all 4 

fixed factors. For that model, we ran the glmer function from the lme4 package. We also 5 

analysed the reaction times (RTs) of correct responses using the same procedure in order to 6 

verify that positive changes in accuracy did not result in significantly slower responses. 7 

For accuracy in each task, we first ran a behaviour-only model (with time point as a 8 

predictor, and with word frequency as a predictor for vocabulary and trained inflections) and 9 

then ran a model with the behavioural predictors and the examined sleep characteristic: 10 

centralised spindle density or SWS duration. 11 

We configured factor coding using code_diff from the R package codingMatrices 12 

(https://CRAN.R-project.org/package=codingMatrices) resulting in contrasts that are the 13 

successive differences of the means, µi+i − µi. This resulted in the following contrasts 14 

for the time points: Day 2 - Day 1; Day 3 - Day 2; Day 9 - Day 3. For frequency, this 15 

definition resulted in one contrast. For follow-up analyses on interactions within the models, 16 

we applied Holm-Bonferroni correction according to the number of analyses for that model 17 

(e.g., follow-up analyses within frequent and infrequent words were corrected to 2 18 

comparisons). 19 

Pearson’s r was used to report correlation coefficients between tasks (vocabulary, 20 

trained inflections, and generalisation) in both single time-points and the intervals of interest 21 

in order to examine commonalities between tasks in their consolidation trajectories (see 22 

Ben-Zion et al. 2023). Significance was tested using the Holm-Bonferroni procedure (Holm, 23 

1979) according to the number of tests involving the same constructs (e.g., the correlation of 24 

generalisation and vocabulary tasks were assessed at 3 time points and across 2 time 25 

intervals, thus we corrected for 5 comparisons). 26 

 27 

Results 28 

According to manual sleep staging using 30-second epochs, the mean(SD) for total 29 

sleep time was 7.67 (.59) hours, with number of sleep cycles = 4.14 (1.04), Stage 1 = 2.84% 30 

(1.67%), Stage 2 = 56.30% (7.21%), Stage 3 = 21.48% (4.57%), REM = 19.38% (5.27%).  31 

https://cran.r-project.org/package=codingMatrices


13 

The first sections report analyses of accuracy and RT for each of the three tasks: 1 

vocabulary, trained inflections, and generalisation. The following sections add to the 2 

accuracy models the assessed sleep measures: SWS duration and sleep spindles density, 3 

separately. 4 

Vocabulary 5 

At all post-training time points accuracy was significantly above chance (p = 10
−15

; 6 

Fig. 2) for both frequent and infrequent words. The mixed-effects model (Table S1A) 7 

revealed a significant main effect of word frequency (z = 3.9, p = 10-4), with higher accuracy 8 

for frequent words. There was a significant increase in accuracy over the first night after 9 

learning (z = 2.6, p = .010), and a significant decline in accuracy in the third interval: Day 3-10 

morning to Day 9 (z = 2.1, p = .033). The decline in the third interval was greater for 11 

infrequent words than for frequent words (frequency x time_point interaction: z = 2.2, p = 12 

.028). In fact, a significant decline over the third interval was found only for infrequent 13 

words (z = 2.88, p = .004; statistically significant according to the Holm-Bonferroni method 14 

with ɑ = .01), but not for frequent words (z = .053 p = .958), as revealed by a follow-up 15 

analysis with the model accuracy ~ 1 + time_point + (1 | participant) separately for 16 

frequent and infrequent words. There were no other significant effects or interactions. In 17 

summary, accuracy for frequent words was higher than for infrequent ones, overall accuracy 18 

increased across the first night, and accuracy of infrequent items only declined over longer 19 

intervals. 20 

We analysed the reaction times (RTs) of correct responses using the same mixed 21 

model structure as for accuracy in order to verify that positive changes in accuracy did not 22 

result in significantly slower responses. The model revealed a significant effect of frequency 23 

(t = 2.13, p = .033) with RTs being faster for frequent vs. infrequent words. The model also 24 

revealed a significant decrease in RTs in the second and third intervals (t = 4.45, p = 10-4; t 25 

= 2.62, p = .014 respectively). There were no other significant effects or interactions (Fig. 26 

S1; Table S1B).  27 
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Figure 2. Average performance for the vocabulary task in the four time points; shaded areas 1 

denote standard errors. * p < .05; ** p < .0005. 2 

 3 

Trained inflections 4 

For all post-training time points mean accuracy was significantly above chance (p = 5 

10-13 ; Fig. 3) for both frequent and infrequent words. The mixed-effects model revealed a 6 

significant main effect of word frequency (z = 4.3, p = 10-4), with higher accuracy for 7 

frequent words. In addition, there was a significant change in performance over the second 8 

interval (z = 2.5, p = .014) with performance improving between Day 2-morning and Day 3-9 

morning (Fig. 3). There were no other significant effects or interactions (Table S1C). In 10 

summary, accuracy for frequent words was higher than for infrequent ones, and overall 11 

accuracy increased across the second interval. 12 

We analysed the reaction times (RTs) of correct responses in order to verify that 13 

positive changes in accuracy did not result in significantly slower responses: The model 14 

revealed a significant effect of frequency (t = 5.73, p = 10-8) with RTs being faster for 15 

frequent vs. infrequent words. There were no other significant effects or interactions (Fig. 16 

S2; Table S1D). 17 
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 1 

 2 

Figure 3. Average performance for the trained inflections task in the four time points; 3 

shaded areas denote standard errors. * p < .05; ** p < .0005. 4 

 5 

Generalisation 6 

To determine whether production of the correct plural form was above chance, we 7 

first assessed the proportion of participant productions that ended with a suffix other than 8 

an, esh, ur - the three suffixes introduced in the study. The proportion of such errors was 9 

very low (in the Day 1 post-training test: .04 (.07), Day 2: .04 (.06), Day 3: .02 (.03)). We 10 

thus used a chance level of ⅓, as there were essentially three plural suffixes that participants 11 

selected from. For all post-training assessments, mean group accuracy was significantly 12 

above chance (p = 10-5 ; Fig. 4). The mixed-effect model revealed no significant effects, 13 

suggesting that performance did not change significantly between the three time points 14 

(Table S1E; Fig. 4). 15 

 16 
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Figure 4. Average performance for the generalisation task in the four time points; shaded 1 

area denotes standard errors. 2 

 3 

Performance on the trained inflections task and on the generalisation task was 4 

significantly correlated at all time points (Table 1). Vocabulary performance significantly 5 

correlated with the inflections tasks starting from the second test point (Day 2). In contrast, 6 

the change across the intervals did not correlate between the tasks (Table 2). 7 

  8 
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 1 

Table 1. Correlation between performance in the three tasks at each testing session. Pearson 2 

correlation coefficients and the corresponding p-values (uncorrected) are presented; 3 

Statistical significance was assessed using the Holm-Bonferroni method for multiple 4 

comparisons. * p after correction < .05; ** p after correction < .001. 5 

Testing session: Day 1 Day 2 Day 3 Day 9 

Vocabulary and  

Trained inflections 

r = .31,  

p = .098 

r = .40,  

p = .031 

r = .42, 

p = .022 

r = .23, 

p = .237 

Vocabulary and 

Generalisation 

r = .34,  

p = .072 

r = .55,  

p = .002 * 

r = .47, 

p = .010 * 
– 

Trained inflections and 

Generalisation 

r = .65,  

p = .0001 ** 

r = .65,  

p = .0001 ** 

r = .63, 

p = .0002 ** 
– 

 6 

Table 2. Correlation between the change in performance in the three tasks across the 7 

intervals between testing sessions. Pearson correlation coefficients and the corresponding p-8 

values (uncorrected) are presented. 9 

Interval: Day 1 to Day 2 Day 2 to Day 3 Day 3 to Day 9 

Vocabulary and  

Trained inflections 

r = -.18,  

p = .356 

 r = .12,  

p = .534 

r = -.09, 

p = .633 

Vocabulary and 

Generalisation 

r = -.08, 

p = .687 

r = .27, 

p = .155 
– 

Trained inflections and 

Generalisation 

r = .07, 

p = .733 

r = -.04, 

p = .857 
– 

 10 

The association of language learning with the duration of SWS 11 

We tested whether change in accuracy in each of the three tasks (vocabulary, trained 12 

inflections, generalisation) was predicted by the duration of SWS (in minutes), by adding 13 

SWS duration (in minutes) to the predictors used in the behaviour-only model: namely, 14 

frequency and time point. Total sleep time was also included in the model as a control 15 

variable that allowed testing for associations with SWS beyond total sleep time. 16 
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For vocabulary, we found a positive association of SWS duration with the change in 1 

performance over the first interval: Day 1-evening (immediately post-training) to Day 2-2 

morning (z = 2.39, p = .017; Fig. 5), and there were no other significant effects or 3 

interactions (Table S2A) beyond those reported in the behaviour-only model. In order to 4 

verify that the association between the duration of SWS and the change in performance over 5 

the first interval was not due to outliers, we excluded any outliers above/below 2.5 SDs. 6 

This exclusion resulted in removing the highest value of SWS duration (i.e., 157.5 minutes, 7 

Z-score = 2.80), we tested the correlation without this value, and it remained significant 8 

(Pearson r = .50, p = .007). 9 

For trained inflections, there were no significant associations with SWS duration 10 

(Table S2B). 11 

For generalisation, there were no significant associations with SWS duration. The 12 

model revealed a significant positive interaction between the first interval (Day 2 vs. Day 1) 13 

and total sleep duration, which was used as a control variable in the model (z = 2.5, p = 14 

.012). No other factors or interactions were found to be significant (Table S2C). 15 

 16 

Figure 5. A positive association of SWS duration with the change in accuracy between the 17 

immediate evening test (Day 1) and the following morning (Day 2) in the vocabulary task. 18 

Each dot denotes the data of one participant, the line is a group linear regression line. 19 

 20 
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The association of language learning with fast sleep spindles 1 

To test whether spindles during NREM predicted performance in each of the three 2 

tasks, we included fast spindle density as a predictor in the models predicting performance, 3 

in addition to word frequency and time-point. 4 

 For vocabulary, there was a significant frequency x time_point x spindle density 5 

interaction (z = 2.25, p = .025; Standardised coefficient = .37, 95% CI [.05, .70] indicating a 6 

moderate effect) for the third interval (Day 3-morning to Day 9). Two follow-up analyses on 7 

this interval were conducted with the model accuracy ~ 1 + time_point x spindle_density + 8 

(1 | participant) separately for frequent and infrequent words. As in the behaviour-only 9 

model, a significant decline in performance was found for infrequent words (z = 2.83, p = 10 

.005; statistically significant according to the Holm-Bonferroni correction with ɑ = .05) but 11 

not for frequent words (z = .025 p = .980). In addition, a significant positive time_point x 12 

spindle_density interaction was found for infrequent words (z = 2.27, p = .023) but not for 13 

frequent words (z = .77, p = .439): Spindle density positively correlated with the change in 14 

accuracy across the third interval for infrequent words only (Fig. 6) such that higher spindle 15 

density was associated with smaller forgetting from Day 3 to Day 9. No other significant 16 

effects or interactions were found beyond those already reported in the behaviour-only 17 

model (Table S3A). 18 

 19 
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Figure 6. A positive association of the density of sleep spindles in NREM with the change 1 

in accuracy in the vocabulary task for infrequent (B), but not frequent (A), words in the third 2 

interval: Day 9 vs. Day 3-morning. 3 

Each dot denotes the data of one participant, the line is a group linear regression line. 4 

 5 

For trained inflections, we found a negative association between the spindle density 6 

and the change in performance in the first interval1: post-training Day 1 to Day 2 (z = 2.50, p 7 

= .013; Fig. 7; Table S3B), and there were no additional effects or interactions beyond what 8 

was reported in the behaviour-only model (Table S3B). To test if this negative association is 9 

due to a negative correlation between performance at the end of training and overnight 10 

change we tested the correlation between the two. Participants who performed better at the 11 

end of training (pre-sleep) showed a smaller overnight improvement (Pearson r = -.54, p = 12 

.004). However, there was no association between spindle density and pre-sleep 13 

performance for the trained inflections (Pearson r = .090, p = .642).  14 

 For generalisation, there were no significant effects or interactions with spindles 15 

(Table S3C). 16 

 17 

 
1
 In response to a reviewer request, we tested the negative correlation between spindle density and the residuals 

of the morning scores, after regressing out the immediate scores. The correlation remained significant: 

Pearson’s ρ = -.46, p < .013. 
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Figure 7. A negative association of the spindle density in NREM with the change in 1 

accuracy in the first interval: immediate to morning in the trained inflections task. 2 

Each dot denotes the data of one participant, the line is a group linear regression line. 3 

 4 

Discussion 5 

In this study we assessed the trajectories of consolidation of newly learned 6 

vocabulary and grammatical rules and their association with key aspects of sleep: SWS and 7 

sleep spindles. Across tasks, performance was above chance in all assessments, and higher 8 

exposure frequency benefited learning. However, we found differences in the temporal 9 

dynamics of consolidation between the different aspects of language learning. For 10 

vocabulary, accuracy significantly improved across the first night after learning; It then 11 

deteriorated between Day 3 and Day 9, but only for infrequent words. For trained plural 12 

inflections, accuracy improved between Day 2 and Day 3. In the generalisation test there 13 

was no change in accuracy across sessions. Overall, performance was highly correlated 14 

between the trained inflections and the generalisation tasks, but there were no correlations 15 

between the change in accuracy across intervals. 16 

The associations with sleep metrics differed between the tasks. For vocabulary, SWS 17 

duration was positively associated with the overnight change (Day 1 to Day 2) in accuracy. 18 

Spindle density was positively associated with the change in vocabulary memory for 19 

infrequent words over the third interval (Day 3 to Day 9). For trained inflections, 20 

unexpectedly, spindle density was negatively associated with the change in accuracy over 21 
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the first night post-training. There were no associations between sleep metrics and accuracy 1 

in generalisation. 2 

Sleep and vocabulary acquisition 3 

The overall increase in accuracy across the first night post-learning is consistent with 4 

previous studies showing a benefit of sleep to word learning (Tamminen et al., 2010; Walker et 5 

al., 2019), despite employing a different training and testing paradigm. This suggests that the 6 

benefit of sleep to vocabulary learning can be robustly measured across different paradigms as 7 

suggested by a recent review (Schimke, 2021). The positive association between overnight 8 

change and SWS duration (after controlling for total sleep time) is consistent with the suggestion 9 

that active consolidation processes during sleep benefited memory for vocabulary, as individuals 10 

with longer SWS exhibited larger accuracy benefits. Our results are consistent with those of a 11 

study by Tamminen and colleagues (2010) that showed a positive correlation between SWS 12 

duration and recognition speed of newly learned words, and more broadly with the association of 13 

declarative memory benefits with duration of SWS sleep (Gais & Born, 2004; Marshall & Born, 14 

2007). As the current study did not include a wake control group, it remains possible that the 15 

observed improvement could have occurred without post-learning sleep; addressing this would 16 

require a direct test. 17 

Mean group performance for infrequent words deteriorated across the third interval (Day 3 18 

to Day 9), but on the individual level, this delayed decline was smaller in individuals with higher 19 

spindle density suggesting that endogenous replay of word-object pairs during the night after 20 

learning had long lasting effects on the retention of infrequent word-object pairs. Potentially, 21 

spindle activity reflected tagging for consolidation on subsequent nights (Cairney et al., 2018). 22 

Our data raise the possibility that tagging was specific to infrequent items (potentially due to 23 

weaker encoding; Denis et al., 2020; Drosopoulos et al., 2007; Schapiro et al., 2017), thus linking 24 

brain activity during the first post-learning night of sleep to performance for infrequent items 25 

eight days later. Another, non mutually exclusive, possibility is that the weaker encoding of 26 

infrequent words (due to the reduced exposure) makes this set of words more sensitive to 27 

forgetting, thereby allowing the benefits of replay during sleep to be revealed. 28 

 While the current study is the first to show this longer-term link between vocabulary 29 

acquisition and endogenous spindle activity, it is consistent with a previous report on the benefit 30 

of targeted memory reactivation following a serial reaction time task, to performance 10 days 31 

https://www.zotero.org/google-docs/?broken=KfSrbL
https://www.zotero.org/google-docs/?broken=KfSrbL
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post-encoding, but not 24 hours post-encoding (Rakowska et al., 2021). Taken together, this 1 

suggests that active consolidation, via replay processes, protects word memories from being 2 

forgotten across longer time periods. 3 

The specificity of the association of spindles with protection of infrequent words is also 4 

consistent with previous reports on prioritisation of weaker memories for offline consolidation, 5 

and specifically with association of spindles with the consolidation of weakly encoded memories 6 

(Denis et al., 2020; Drosopoulos et al., 2007; Petzka et al., 2021; Schmidt et al., 2006). For 7 

example, Denis and colleagues showed a positive association between fast sleep-spindle density 8 

and the consolidation of weakly encoded word-pairs over a six hour period that contained a nap 9 

(Denis et al., 2021). Our findings suggest that post-learning sleep contributes to the preferential 10 

strengthening of longer-term memory for words encountered less frequently. Taken together with 11 

the strong overall effect of exposure (i.e., high-frequency words were remembered significantly 12 

better than low-frequency ones), these results highlight the complementary roles of both exposure 13 

and sleep in natural language learning. For frequent words, extensive exposure may allow a 14 

substantial portion of learning to occur online. In contrast, for infrequent words, exposure alone 15 

may be insufficient to form robust representations, and thus, from computational and theoretical 16 

perspectives, these words could benefit more from offline consolidation. These offline benefits 17 

for infrequent words may be particularly important in human languages, where low-frequency 18 

words make up the vast majority of the vocabulary (Piantadosi, 2014). Our findings thus support 19 

the idea that sleep and exposure interact in a way that is optimally tuned to the structure of 20 

information in natural languages, thus supporting language acquisition. 21 

Sleep and memory of trained plural inflections 22 

At the group level, accuracy for trained inflections increased across the second 23 

interval - which did not include the first night of sleep after learning. One might therefore 24 

expect spindle density to be positively correlated with the change in accuracy across this 25 

interval; however, our data did not support this hypothesis. 26 

We also found an unexpected negative association between spindles and overnight 27 

change in accuracy for trained inflections. This finding is in line with a study by 28 

Lustenberger and colleagues (2012) who found that fast spindle activity had a negative 29 

correlation with overnight change in performance in a word pairs task. In their study, spindle 30 

activity also positively correlated with immediate post-learning performance, suggesting that 31 
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participants who generally have more spindles, are better learners who achieve more of their 1 

maximal capacity during online encoding in the evening, and thus show less overnight 2 

improvement. Our data provide only partial support for this suggestion: The association of 3 

pre-sleep performance and overnight change was indeed negative. However, there was no 4 

positive association between spindle density and pre-sleep performance, and thus we cannot 5 

conclude that participants with more spindles also showed better encoding.  6 

Finally, it is important to note that our study included PSG during a single night, and 7 

therefore we cannot differentiate between individual baseline “trait” level spindle density 8 

and changes in spindle density due to learning (“state”; Gais et al., 2002). These two 9 

components have been shown to exhibit distinct patterns of correlations with behavioural 10 

measures of learning (Lustenberger et al., 2015; Schabus et al., 2004, 2008; Schmidt et al., 11 

2006), suggesting a functional distinction. Thus, it might be the case that participants who 12 

had lower spindle density as measured in our study were in fact participants whose baseline 13 

spindle levels are low, but for whom the change in density that is associated with a learning 14 

experience was high (whereas participants for whom we measured higher spindle density 15 

were participants whose baseline spindle levels are high, and the learning-induced change 16 

was low). Taking this into account, it is theoretically plausible that participants with greater 17 

learning-related changes in spindle density were those who showed higher accuracy gains, in 18 

line with previous findings on word-pair learning consolidation (Schmidt et al., 2006). 19 

Further research spanning multiple nights is needed to allow individual measurement of 20 

post-learning spindle changes relative to a baseline, and the association of these two metrics 21 

with change in accuracy. 22 

Sleep and extraction of linguistic regularities 23 

For linguistic regularity extraction, as measured by the generalisation test, mean group 24 

performance was above chance across time points, with no significant changes between them. 25 

Examining individual differences we did not find a correlation between overnight change in 26 

accuracy and SWS duration or sleep spindles.  27 

The lack of significant improvement across the different timepoints is consistent with 28 

a previous study that examined delayed generalisation (Mirković et al., 2019), but seems to 29 

be at odds with a previous study that used the same training procedure as we used here and 30 

found small but significant improvement across 24 hours (Ben-Zion et al., 2022). However, 31 
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in the study by Ben-Zion and colleagues, no group difference was found between a group 1 

that slept shortly after training (PM training) and a group who did not (AM training), at 12 2 

and 24 hours measurements, thus showing no evidence that the extraction of regularities 3 

depends on sleep. Similarly to the experimental paradigm in the current study, the 4 

generalisation in these studies involved production. However, the type of access involved in 5 

production does not seem to be the factor masking sleep-related benefits for rule learning. 6 

Mirković & Gaskell (2016) examined the extraction of grammatical regularities using a 7 

paradigm in which the generalisation test did not involve production, and reported that a 8 

short nap did not enhance the extraction of language regularities more than a period of 9 

wakefulness. Furthermore, Tamminen (2020) showed that learning of a new writing system, 10 

including regularity extraction, can withstand sleep deprivation. 11 

However, others have found that sleep benefits the acquisition of word order rules 12 

(Cross et al., 2024), artificial grammar acquisition by infants (Gómez et al., 2006) and adults 13 

(Nieuwenhuis et al., 2013), learning of phonotactic constraints in speech production 14 

(Gaskell et al., 2014), and generalisation to novel input in synthetic speech perception (Fenn 15 

et al., 2003). Furthermore, some associations between sleep metrics and regularity extraction 16 

in language have been documented (Batterink et al., 2014; Batterink & Paller, 2017). For 17 

example, in Batterink et al. (2014) participants acquired an implicit rule for using novel 18 

articles, and there was no significant change in group mean performance after the nap as 19 

compared to before the nap, in alignment with the results of the current study. However, 20 

participants who had more slow-wave sleep duration x REM duration during the nap, 21 

showed a greater increase in sensitivity to the hidden linguistic rule between the two 22 

experimental sessions. Given this evidence, the conclusions on grammar acquisition are less 23 

clear-cut compared to vocabulary acquisition; We will return to this question in the 24 

following section. 25 

Integrating results across tasks and their associations with sleep 26 

While performance in the generalisation task has to rely on knowledge of the regularities 27 

or constraints that underlie plural inflections, performance in the trained inflections task may be 28 

supported by two non-mutually exclusive factors: memory of the forms for specific pairs of 29 

singular and plurals, and knowledge of the plural inflectional regularities. Each of these factors, 30 

theoretically, can support a correct response to all trials. The significant correlations across all 31 
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timepoints between performance on trained inflections and generalisation (also reported by Ben-1 

Zion and colleagues who used a similar paradigm; Ben Zion et al., 2019; Ben-Zion et al., 2022) fit 2 

with the proposal that knowledge of the plural regularities/constraints is the dominant mechanism 3 

employed in the trained inflections task. However, it could also be the case that individuals who 4 

are better in learning the set of the plural forms that they were exposed to during training, are also 5 

better in learning the rules that underlie these plural forms. This means that performance in these 6 

two tasks does not necessarily rely on a fully shared mechanism. For instance, knowledge of word 7 

structure facilitates the acquisition of novel words (Anglin et al., 1993; Carlisle, 2000; Mahony et 8 

al., 2000), nonetheless, specific lexical knowledge and morphological rule knowledge remain 9 

distinct constructs. 10 

The consolidation dynamics for trained inflections followed a different pattern as 11 

compared to the generalisation task. First, performance for generalisation did not significantly 12 

change across timepoints, whereas performance for trained inflections improved across the 13 

second day. Second, there were no correlations between the change in performance in the two 14 

tasks across the examined time intervals (replicating previous findings using a similar paradigm; 15 

Ben Zion et al., 2019; Ben-Zion et al., 2022). Furthermore, generalisation was not found to be 16 

associated with the examined sleep metrics, whereas the change in performance for trained 17 

inflections across the night post-learning was negatively associated with sleep-spindle density. 18 

Thus, even if retrieval in the two tasks partially relies on overlapping representations, the 19 

formation of these representations seems to be associated with distinct neural mechanisms. 20 

The significant correlation between vocabulary and generalisation on Days 2 and 3 may be 21 

linked to the fact that neither was an explicit target of learning: In the training phase, participants 22 

were only required to produce the plural form of the presented words. It is also worth noting that 23 

although it was not statistically significant, all within-session correlations showed a positive 24 

trend. 25 

Our findings are consistent with the idea that vocabulary learning, which is associated 26 

with the episodic, hippocampus-dependent system, is stabilised by sleep. In contrast, the 27 

extraction of regularities may depend less on the hippocampus and instead rely more on 28 

frontostriatal skill-learning circuitry (Gaskell, 2024; Ullman, 2016), and is therefore supported by 29 

sleep to a lesser extent. Indeed, in a neuroimaging study by Nevat and colleagues (2017) that used 30 

a very similar paradigm to the one used in the current study, the frontostriatal network was 31 
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activated during inflection of trained items with no involvement of medial temporal structures. 1 

Our findings that vocabulary knowledge, but not trained inflection or generalisation, improved 2 

during the first post-learning night align with the idea of greater initial dependency of novel 3 

vocabulary on the hippocampus and, consequently, a greater benefit from sleep.  4 

The training procedure used in the current study comprised both arbitrary language 5 

aspects (i.e., vocabulary - the semantics of the stem), and systematic aspects (i.e., the implicit 6 

morpho-phonological regularity). It has been previously suggested that when both aspects are 7 

learned simultaneously, as part of the same procedure, systematic aspects might not show sleep-8 

related benefits due to a prioritisation of consolidation of the arbitrary components during post-9 

learning sleep (Mirković & Gaskell, 2016; Sweegers & Talamini, 2014). That is because arbitrary 10 

aspects are thought to be most dependent on the hippocampus during initial encoding and so they 11 

are being prioritised during sleep initially, while systematic aspects being prioritised later on 12 

(McClelland et al., 1995; Mirković & Gaskell, 2016; Stickgold & Walker, 2013). Indeed, in a 13 

study that found a clear sleep vs. wake benefit to syntactic rule acquisition (when participants 14 

were aware of the rule before sleep), no arbitrary aspects of language were part of the training as 15 

the sentences consisted of existing English words (Kim & Fenn, 2020). This could potentially 16 

explain our current finding of a lack of improvement in the trained inflections and the 17 

generalisation tasks over the first night of training, in contrast to the improvement in vocabulary. 18 

We found a negative association of spindle density with the change in accuracy in 19 

the trained inflections task. A possible interpretation is that consolidation resources, 20 

quantified in this study by SWS duration and spindle density, were allocated to label-object 21 

pairings (i.e., vocabulary task) more than to stem-plural form pairings (i.e., trained 22 

inflections task). In line with this suggestion, Antony and colleagues (2018) showed that 23 

cuing during sleep had a detrimental effect on memory of picture-location pairs when these 24 

were learned in a competitive condition. In our data, this suggestion is supported by the 25 

positive correlation between SWS and overnight change in memory for vocabulary, taken 26 

together with the positive correlation between spindles and protection of infrequent words 27 

over the delayed period vs. the negative correlation between spindles and overnight change 28 

in trained inflections. Importantly, a single-night PSG does not allow separating the “trait” 29 

spindle activity of an individual from the change following learning (i.e., “state”). Thus, it 30 

could be the case that the positive correlation between spindles and vocabulary stems from a 31 
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correlation with the changing component in overall spindle activity, whereas the negative 1 

correlation with trained inflections stems from a correlation with the baseline component. 2 

This suggestion is further supported by the weak correlations between performance for 3 

vocabulary and trained inflections tasks. 4 

Finally, although both SWS and spindle density are part of memory replay 5 

mechanisms, the correlations between accuracy in the different tasks with SWS duration and 6 

sleep spindles, varied in our data (see also Tamminen et al., 2010). This suggests a 7 

temporally distinct role for SWS vs. spindles: SWS might be related to immediate 8 

consolidation of vocabulary, while spindles might mediate longer-term consolidation and 9 

protection against forgetting of low-frequency items.  10 

Studying these interactions is especially important given that the co-occurrence of 11 

sleep spindles with slow oscillations (i.e., coupled spindles) has been shown to benefit 12 

memory (Denis & Cairney, 2023; Klinzing et al., 2019; Staresina, 2024) and may be 13 

specifically associated with consolidation of weakly encoded memories (Denis et al., 2021). 14 

This, taken together with our results, highlights the need to examine SWS, and coupled and 15 

uncoupled sleep spindles within the same study in order to develop a more detailed 16 

understanding of their distinct roles in memory consolidation. 17 

Although these findings do not directly inform language teaching practices or 18 

interventions, they underscore the importance of considering both encoding and 19 

consolidation when evaluating teaching or intervention outcomes, in typical populations and 20 

in individuals with learning difficulties. In particular, they point to the importance of 21 

delayed assessment, especially for vocabulary and low-frequency words. 22 

Limitations 23 

The findings of this study are subject to a number of limitations. The study employed a 24 

small artificial language learned under laboratory conditions, which may raise some questions 25 

about the relevance of the findings to natural language learning, although several aspects of the 26 

design support its broader applicability. First, mechanisms of encoding and consolidation, 27 

particularly in studies examining individual differences, are presumably activated also in a 28 

laboratory setting. Second, the artificial language incorporated properties of natural language, 29 

such as semantics (each word had a meaning), a linguistically plausible plural suffix rule system, 30 
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and irregularities within the rule system. Nonetheless, factors such as the learning context and the 1 

ecological relevance of the material are inherent limitations in this type of study. 2 

PSG data were collected over only one night of sleep, thus not allowing the separation of 3 

baseline neural activity during sleep from specific post-learning change. We also did not include a 4 

wake control group due to a number of factors: (1) The overall complexity of the study, (2) The 5 

availability of prior evidence on the specific contribution of sleep from a wake vs. sleep study that 6 

used a very similar paradigm (Ben-Zion et al., 2022), (3) Study design: We assessed performance 7 

on the behavioural tasks in relation to specific sleep metrics, thereby linking behavioural 8 

outcomes directly to sleep physiology.  9 

Another limitation of the study is that the generalisation test was not administered on Day 10 

9 due to technical reasons. While the available data are consistent with the view that memory for 11 

rules does not benefit from sleep, they are also compatible with the suggestion that the benefit 12 

across time is small (Ben-Zion et al., 2022) but consistent, and may accumulate over longer time 13 

periods. We aim to address the question of longer-term rule learning and its dependency on sleep 14 

and additional exposure in future studies. 15 

For vocabulary, we report a significant three-way interaction with a moderate effect 16 

between word frequency, testing time and spindle density. However, the binary nature of the task 17 

taken together with our sample size and the complexity of the model, may limit the stability and 18 

generalisability of this effect.  19 

Finally, we assessed associations with two well-established sleep metrics: SWS duration 20 

and sleep spindle density. We limited ourselves to these measures in order to avoid a proliferation 21 

of tests and reduce the risk of false positives due to multiple comparisons (Ranganathan et al., 22 

2016). However, additional measures such as coupled spindles, slow-wave activity, and slow 23 

oscillation density could potentially contribute further to our understanding of the mechanisms 24 

underlying active memory consolidation. 25 

Main Contributions 26 

In this study, we investigated the temporal dynamics of language learning across 27 

nine days and examined its relationship to two key memory-related sleep characteristics: 28 

sleep spindles and slow-wave sleep (SWS) duration. On the group level, memory for 29 

vocabulary improved over the first night post-learning, memory for trained plural forms 30 

improved over the second day post-learning, and there was no change in generalisation up to 31 
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three days post-training. On the individual level, sleep metrics were associated more with 1 

vocabulary learning than with rule learning: SWS duration was positively correlated with 2 

vocabulary consolidation across the first night post-learning, and sleep spindles showed a 3 

potential protective role for longer-term retention of learnt infrequent words. The latter is 4 

especially thought provoking as the vast majority of words in human languages are 5 

infrequent, rendering a mechanism like this highly beneficial to everyday language learning. 6 

We found a negative association of spindles with changes in plural inflections and no 7 

associations of sleep metrics with changes in generalisation, warranting future investigation.  8 

The study design offered several unique strengths: (1) It addressed both arbitrary and 9 

systematic aspects of language learning, (2) It assessed two core sleep-related learning 10 

metrics within the same group of participants, enabling direct comparisons between them, 11 

(3) It employed an extended timescale of testing, and (4) It is the first study to directly link 12 

post-learning neural activity during sleep with longer-term learning outcomes. This work 13 

highlights the multifaceted role of sleep in language learning and emphasises the importance 14 

of investigating how post-learning slow-wave sleep (SWS) and sleep spindles contribute to 15 

consolidation processes across extended time periods and varying types of linguistic 16 

knowledge. 17 
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Supplementary 1 

 2 

Table S1A. Vocabulary learning: Accuracy as predicted by word frequency and time 3 

of assessment. 4 

Full results of the generalised logistic linear mixed-regression model that Buildmer 5 

converged to: accuracy ~ 1 + word_freq * time_point + (1 + word_freq | participant). 6 

time_point denotes time of assessment, with 1 for immediate, 2 for Day 2-morning, 3 for 7 

Day 3-morning, and 4 for Day 9 after. In word_freq, 1 denotes frequent words, and 2 8 

denotes infrequent words. 9 

* p < .05, ** p < 10-4 10 

Predictor ꞵ SE z value p 

word_freq2-1 -0.29 0.08 -3.88 10-4 ** 

time_point2-1 0.20 0.08 2.55 0.011 * 

time_point3-2 0.07 0.08 0.87 0.383 

time_point4-3 -0.17 0.08 -2.13 0.033 * 

word_freq2-1:time_point2-1 0.18 0.16 1.13 0.259 

word_freq2-1:time_point3-2 0.04 0.16 0.26 0.796 

word_freq2-1:time_point4-3 -0.35 0.16 -2.20 0.028 * 

 11 

 12 

  13 
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Table S1B. Vocabulary learning: Response times as predicted by word frequency and 1 

time of assessment. 2 

Full results of the linear mixed-regression model that Buildmer converged to: logRT ~ 1 + 3 

frequency x time point + (1 + time point | participant). time_point denotes time of 4 

assessment, with 1 for immediate, 2 for Day 2-morning, 3 for Day 3-morning, and 4 for Day 5 

9. In frequency, 1 denotes frequent words, and 2 denotes infrequent words. 6 

* p < .05, ** p < 10-4 7 

 8 

Predictor Estimate SE t value p 

frequency2-1 0.02 0.01 2.13 0.033 * 

time_point2-1 -0.04 0.02 -1.67 0.106 

time_point3-2 -0.07 0.01 -4.45 10-4 ** 

time_point4-3 -0.04 0.02 -2.62 0.014 * 

frequency2-1:time_point2-1 -0.02 0.02 -0.87 0.386 

frequency2-1:time_point3-2 0.02 0.02 0.82 0.414 

frequency2-1:time_point4-3 -0.02 0.02 -1.16 0.245 

 9 

  10 
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 1 

Figure S1. Average response times for the vocabulary task in the four time points; shaded 2 

areas denote standard errors.  3 

  4 
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Table S1C. Trained inflections: Accuracy as predicted by word frequency and time of 1 

assessment. 2 

Full accuracy results of the generalised logistic linear mixed-regression model that Buildmer 3 

converged to: accuracy ~ 1 + frequency * time_of_assessment + (1 + frequency | 4 

participant). Time_point denotes time of assessment, with 1 for immediate, 2 for Day 2-5 

morning, 3 for Day 3-morning, and 4 for Day 9. In word_freq, 1 denotes frequent words, 6 

and 2 denotes infrequent words. 7 

* p < .05, ** p < 10-4 8 

 9 

Predictor ꞵ SE z value p 

word_freq2-1 -0.34 0.08 -4.27 10-4 ** 

time_point2-1 -0.01 0.08 -0.11 0.915 

time_point3-2 0.21 0.09 2.46 0.014 * 

time_point4-3 0.04 0.09 0.41 0.683 

word_freq2-1:time_point2-1 -0.14 0.17 -0.84 0.401 

word_freq2-1:time_point3-2 0.12 0.17 0.72 0.471 

word_freq2-1:time_point4-3 -0.19 0.18 -1.10 0.273 

 10 

 11 

  12 
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Table S1D. Trained inflections: Response times as predicted by word frequency and 1 

time of assessment. 2 

Full results of the linear mixed-regression model that Buildmer converged to: logRT ~ 1 + 3 

word frequency x time point + (1 + time point | participant). time_point denotes time of 4 

assessment, with 1 for immediate, 2 for Day 2-morning, 3 for Day 3-morning, and 4 for Day 5 

9. In word_freq, 1 denotes frequent words, and 2 denotes infrequent words. 6 

* p < 10-8 7 

 8 

Predictor Estimate SE t value p 

word_freq2-1 0.14 0.02 5.73 10-8 * 

time_point2-1 0.01 0.06 0.13 0.901 

time_point3-2 -0.06 0.07 -0.96 0.347 

time_point4-3 -0.06 0.04 -1.46 0.154 

word_freq2-1:time_point2-1 -0.01 0.07 -0.16 0.874 

word_freq2-1:time_point3-2 -0.05 0.07 -0.64 0.522 

word_freq2-1:time_point4-3 -0.03 0.07 -0.36 0.719 

 9 

 10 

 11 

 12 

 13 

 14 
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Figure S2. Average response times for the trained inflections task in the four time points; 1 

shaded areas denote standard errors. 2 

  3 
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Table S1E. Generalisation: Accuracy of production as predicted by time of assessment. 1 

Full accuracy results of the generalised logistic linear mixed-regression model that Buildmer 2 

converged to: accuracy ~ 1 + time_point + (1 | participant). time_point denotes time of 3 

assessment, with 1 for immediate, 2 for Day 2-morning, 3 for Day 3-morning. 4 

Predictor ꞵ SE z value p 

time_point2-1 0.14172 0.10429 1.359 0.174 

time_point3-2 0.06587 0.10462 0.63 0.529 

 5 

  6 
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Table S2A. Total sleep time and SWS duration (in minutes) as predictors of 1 

performance in the vocabulary task, in addition to word frequency and time of 2 

assessment. 3 

Full accuracy results of the generalised logistic linear mixed-regression model that Buildmer 4 

converged to: accuracy ~ 1 + word_freq * time_of_assessment * total_sleep_length + 5 

word_freq * time_of_assessment * SWS_length + (1 + word_freq | participant). time_point 6 

denotes time of assessment, with 1 for immediate, 2 for Day 2-morning, 3 for Day 3-7 

morning, and 4 for Day 9. In word_freq, 1 denotes frequent words, and 2 denotes infrequent 8 

words. 9 

* p < .05, ** p < 10-4 10 

 11 

Predictor ꞵ SE z value p 

word_freq2-1 -0.29 0.07 -3.93 10-4 ** 

time_point2-1 0.19 0.08 2.43 0.015 * 

time_point3-2 0.07 0.08 0.91 0.361 

time_point4-3 -0.17 0.08 -2.16 0.031 * 

total_sleep_length_cent -0.04 0.10 -0.43 0.669 

SWS_min_cent -0.07 0.10 -0.76 0.449 

word_freq2-1:time_point2-1 0.18 0.16 1.11 0.266 

word_freq2-1:time_point3-2 0.03 0.16 0.21 0.833 

word_freq2-1:time_point4-3 -0.35 0.16 -2.16 0.031 * 

word_freq2-1:total_sleep_length_cent -0.03 0.07 -0.43 0.670 

time_point2-1:total_sleep_length_cent -0.01 0.08 -0.11 0.916 

time_point3-2:total_sleep_length_cent -0.06 0.08 -0.72 0.473 

time_point4-3:total_sleep_length_cent 0.04 0.08 0.52 0.606 

word_freq2-1:SWS_min_cent 0.06 0.08 0.78 0.438 

time_point2-1:SWS_min_cent 0.20 0.08 2.39 0.017 * 
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time_point3-2:SWS_min_cent 0.00 0.08 -0.01 0.992 

time_point4-3:SWS_min_cent -0.05 0.08 -0.58 0.561 

word_freq2-1:time_point2-1:total_sleep_length_cent 0.02 0.16 0.15 0.879 

word_freq2-1:time_point3-2:total_sleep_length_cent 0.20 0.16 1.24 0.215 

word_freq2-1:time_point4-3:total_sleep_length_cent -0.18 0.16 -1.13 0.258 

word_freq2-1:time_point2-1:SWS_min_cent 0.09 0.16 0.58 0.564 

word_freq2-1:time_point3-2:SWS_min_cent 0.07 0.17 0.40 0.692 

word_freq2-1:time_point4-3:SWS_min_cent -0.07 0.17 -0.45 0.654 

 1 

 2 
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Table S2B. Total sleep time and duration of SWS as predictors of performance in the 1 

trained inflections task, in addition to word frequency and time of assessment. 2 

Full accuracy results of the generalised logistic linear mixed-regression model that Buildmer 3 

converged to: accuracy ~ 1 + word_freq * time_of_assessment * total_sleep_duration + 4 

word_freq * time_of_assessment * SWS_duration + (1 + word_freq | participant). 5 

time_point denotes time of assessment, with 1 for immediate, 2 for Day 2-morning, 3 for 6 

Day 3-morning, and 4 for Day 9. In word_freq, 1 denotes frequent words, and 2 denotes 7 

infrequent words. 8 

* p < .05, ** p < 10-4 9 

Predictor ꞵ SE z value p 

word_freq2-1 -0.35 0.08 -4.27 10-4 ** 

time_point2-1 -0.01 0.08 -0.07 0.947 

time_point3-2 0.21 0.09 2.48 0.013 * 

time_point4-3 0.04 0.09 0.47 0.639 

total_sleep_length_cent 0.09 0.14 0.65 0.515 

SWS_min_cent 0.10 0.14 0.70 0.483 

word_freq2-1:time_point2-1 -0.14 0.17 -0.86 0.390 

word_freq2-1:time_point3-2 0.14 0.17 0.81 0.420 

word_freq2-1:time_point4-3 -0.22 0.18 -1.22 0.223 

word_freq2-1:total_sleep_length_cent 0.02 0.08 0.22 0.823 

time_point2-1:total_sleep_length_cent 0.15 0.08 1.90 0.058 

time_point3-2:total_sleep_length_cent 0.06 0.08 0.78 0.434 

time_point4-3:total_sleep_length_cent 0.03 0.08 0.35 0.724 

word_freq2-1:SWS_min_cent 0.08 0.08 1.02 0.307 

time_point2-1:SWS_min_cent 0.01 0.09 0.13 0.896 

time_point3-2:SWS_min_cent -0.02 0.09 -0.23 0.818 

time_point4-3:SWS_min_cent -0.17 0.09 -1.83 0.067 
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word_freq2-1:time_point2-1:total_sleep_length_cent -0.05 0.16 -0.29 0.775 

word_freq2-1:time_point3-2:total_sleep_length_cent 0.14 0.16 0.83 0.407 

word_freq2-1:time_point4-3:total_sleep_length_cent -0.18 0.17 -1.08 0.279 

word_freq2-1:time_point2-1:SWS_min_cent -0.05 0.17 -0.26 0.792 

word_freq2-1:time_point3-2:SWS_min_cent 0.07 0.18 0.41 0.685 

word_freq2-1:time_point4-3:SWS_min_cent 0.33 0.18 1.80 0.072 

 1 

 2 
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Table S2C. Total sleep time and duration of SWS as predictors of performance in the 1 

generalisation task, in addition to time of assessment. 2 

Full accuracy results of the generalised logistic linear mixed-regression model that Buildmer 3 

converged to: accuracy ~ 1 + time_of_assessment * total_sleep_duration + 4 

time_of_assessment * SWS_duration + (1 | participant). time_point denotes time of 5 

assessment, with 1 for immediate, 2 for Day 2-morning, 3 for Day 3-morning. 6 

* p < .05 7 

Predictor ꞵ SE z value p 

time_point2-1 0.15 0.10 1.42 0.514 

time_point3-2 0.07 0.11 0.65 0.513 

N3_min_cent 0.21 0.19 1.14 0.253 

total_sleep_length_cent 0.09 0.19 0.48 0.630 

time_point2-1:N3_min_cent 0.03 0.11 0.31 0.758 

time_point3-2:N3_min_cent 0.05 0.11 0.47 0.642 

time_point2-1:total_sleep_length_cent 0.27 0.11 2.52 0.012 * 

time_point3-2:total_sleep_length_cent -0.07 0.11 -0.63 0.530 

 8 

 9 

 10 
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Table S3A. Spindle density as a predictor of performance in the vocabulary task, in 1 

addition to word frequency and time of assessment. 2 

Full accuracy results of the generalised logistic linear mixed-regression model that Buildmer 3 

converged to: accuracy ~ 1 + word_freq * time_point * spindle_density_cent + (1 + 4 

word_freq | participant). time_point denotes time of assessment, with 1 for immediate, 2 for 5 

Day 2-morning, 3 for Day 3-morning, and 4 for Day 9. In word_freq, 1 denotes frequent 6 

words, and 2 denotes infrequent words. 7 

* p < .05, ** p < .01, *** p < 10-4 8 

 9 

Predictor ꞵ SE z value p 

word_freq2-1 -0.29 0.08 -3.87 10-4 *** 

time_point2-1 0.20 0.08 2.56 0.010 ** 

time_point3-2 0.07 0.08 0.87 0.386 

time_point4-3 -0.17 0.08 -2.11 0.036 

spindle_density_cent 0.08 0.10 0.81 0.416 

word_freq2-1:time_point2-1 0.18 0.16 1.13 0.261 

word_freq2-1:time_point3-2 0.04 0.16 0.24 0.810 

word_freq2-1:time_point4-3 -0.34 0.16 -2.14 0.033 * 

word_freq2-1:spindle_density_cent 0.01 0.08 0.09 0.926 

time_point2-1:spindle_density_cent 0.03 0.08 0.37 0.710 

time_point3-2:spindle_density_cent -0.08 0.08 -1.01 0.315 

time_point4-3:spindle_density_cent 0.10 0.08 1.22 0.223 

word_freq2-1:time_point2-1:spindle_density_cent -0.02 0.16 -0.11 0.912 

word_freq2-1:time_point3-2:spindle_density_cent -0.21 0.17 -1.26 0.208 

word_freq2-1:time_point4-3:spindle_density_cent 0.37 0.17 2.25 0.025 * 

 10 

 11 
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 1 

Table S3B. Spindle density as a predictor of performance in the trained inflections 2 

task, in addition to word frequency and time of assessment. 3 

Full accuracy results of the generalised logistic linear mixed-regression model that Buildmer 4 

converged to: accuracy ~ 1 + frequency * time_point * spindle_density_cent + (1 + 5 

frequency | participant). time_point denotes time of assessment, with 1 for immediate, 2 for 6 

Day 2-morning, 3 for Day 3-morning, and 4 for Day 9. In word_freq, 1 denotes frequent 7 

words, and 2 denotes infrequent words. 8 

* p < .05, ** p < 10-4 9 

 10 

Predictor ꞵ SE z value p 

word_freq2-1 -0.34 0.08 -4.23 3x10-5 ** 

time_point2-1 0.00 0.08 -0.03 0.980 

time_point3-2 0.21 0.09 2.42 0.016 * 

time_point4-3 0.03 0.09 0.36 0.718 

spindle_density_cent -0.05 0.14 -0.39 0.700 

word_freq2-1:time_point2-1 -0.14 0.17 -0.83 0.409 

word_freq2-1:time_point3-2 0.13 0.17 0.75 0.454 

word_freq2-1:time_point4-3 -0.20 0.18 -1.13 0.257 

word_freq2-1:spindle_density_cent -0.03 0.08 -0.37 0.710 

time_point2-1:spindle_density_cent -0.21 0.08 -2.50 0.013 * 

time_point3-2:spindle_density_cent 0.05 0.08 0.59 0.555 

time_point4-3:spindle_density_cent 0.10 0.09 1.11 0.266 

word_freq2-1:time_point2-1:spindle_density_cent -0.02 0.16 -0.15 0.883 

word_freq2-1:time_point3-2:spindle_density_cent -0.09 0.17 -0.52 0.600 

word_freq2-1:time_point4-3:spindle_density_cent 0.14 0.17 0.82 0.415 

 11 
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Table S3C. Spindle density as a predictor of performance in the generalisation task, in 1 

addition to time of assessment. 2 

Full accuracy results of the generalised logistic linear mixed-regression model that Buildmer 3 

converged to: accuracy ~ 1 + time_point * spindle_density_NREM_cent + (1 | part_ID). 4 

time_point denotes time of assessment, with 1 for immediate, 2 for Day 2-morning, 3 for 5 

Day 3-morning. 6 

Predictor ꞵ SE z value p 

time_point2-1 0.14 0.10 1.31 0.191 

time_point3-2 0.07 0.10 0.66 0.512 

spindle_density_cent -0.01 0.19 -0.06 0.954 

time_point2-1:spindle_density_cent 0.16 0.11 1.51 0.131 

time_point3-2:spindle_density_cent -0.09 0.11 -0.87 0.383 

 7 

 8 

 9 

 10 


