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Abstract

Transformer models have achieved remarkable

performance in many formal reasoning tasks.

Nonetheless, the extent of their comprehension

pertaining to logical semantics and rules of in-

ference remains somewhat uncertain. Evalu-

ating such understanding necessitates a rigor-

ous examination of these models’ generalisa-

tion capacity to out-of-distribution data. In this

study, we probe the generalisation prowess of

Transformer models with respect to the hith-

erto unexplored domain of numerical satisfia-

bility problems. Our investigation reveals that

Transformers exhibit minimal scale and noise

invariance, alongside limited vocabulary and

number invariance. However, even when Trans-

former models experience a notable decline

in performance on out-of-distribution test sets,

they often still surpass the random baseline by

a considerable margin.

1 Introduction

Transformer1 models have become the de facto

state-of-the-art in solving almost all language-

based tasks (Devlin et al., 2018; Yang et al., 2019;

Raffel et al., 2019; OpenAI, 2023). Notably, among

these tasks, formal reasoning has garnered consid-

erable interest in recent times (Richardson et al.,

2020; Tafjord et al., 2021; McCoy et al., 2019).

Formal reasoning delineates a distinct strand of rea-

soning characterised by the drawing of conclusions

solely from logical rules, without relying on com-

mon sense or background knowledge. Although

Transformers have exhibited notable proficiency in

formal reasoning tasks (Talmor et al., 2019; Brown

et al., 2020; Kojima et al., 2022), the depth of their

comprehension regarding logical semantics and

rules of inference remains uncertain.

Many logical problemsÐand in particular the

problem of recognising valid entailmentsÐcan be

1For brevity, we use ªTransformer modelsº or ªTransform-
ersº to refer to auto-regressive Transformer-based language
models

reduced to the problem of determining satisfiabil-

ity: a set of closed formulae Φ is satisfiable if there

exists some structure (in a model-theoretic sense)

A in which every element of Φ is true. This concept

extends to natural language in an obvious way: a

set of sentences is satisfiable if the set of formulae

into which they translate is satisfiable. Informally,

the natural language satisfiability problem is the

task of determining whether there are any inher-

ent contradictions within a given set of sentences.

Consequently, natural language variants of satis-

fiability problems represent an ideal domain for

studying transformer models’ ability to learn rules

of inference and logical semantics. In our study, we

extend research on the formal reasoning abilities of

transformers by introducing problems that involve

numerical reasoning. That is, we consider a spe-

cial case of the satisfiability problem in which the

formulae (or sentences) involve numerical quantifi-

cation. For illustration, consider the following set

of sentences:

Consider the following set of sentences,

1. At most 25 doctors are artists

2. At least 30 engineers are not doctors

3. At most 35 non-doctors are artist

4. At least 100 engineers are artists

Sentences 1, 3 and 4 form an unsatisfiable set: the

first two entail there to be at most 60 artists, which

directly contradicts sentence 4. On the other hand,

sentences 1, 2 and 3 form a satisfiable set: as may

be easily seen, there is a structure in which these

sentences are all true.

Learning to solve instances of numerical satisfia-

bility problems requires an understanding of logical

semantics and natural language numerals, as well

as the ability to apply logical and mathematical

rules.Furthermore, this framework offers a high

degree of controllability, enabling the systematic

scaling of the problem space, automated evaluation

of solutions, and the identification of hard-problem
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Evaluation

(1) Fine-tuning

Data Generation

(1) Sentence
Generation

(2) Reduce to ILP

(3) Determine the
Solution

1. At most 25 doctors are artists
2. At least 30 engineers are not doctors
3. At most 35 non-doctors are artist

Is the set  satisfiable?

(2) In-distribution Evaluation

1. At most 15 doctors are artists
2. At least 25 engineers are not doctors
3. At most 50 non-doctors are artist

Is the set  satisfiable?

(3) Out-of-distribution Evaluation

1. At most 245 teachers are politicians
2. At least 341 scientists are not teachers
3. At most 147 non-teachers are politicians

Is the set  satisfiable?

Generate
OOD Data

Figure 1: A data generation methodology that reduces

sets of generated sentences to sets of inequalities and

employs a linear solver to determine the solution. The

resulting dataset is then used to fine-tune and evalu-

ate Transformers on both in-distribution and out-of-

distribution (OOD) problems to test robustness and gen-

eralisation.

regions. Moreover, numerical satisfiability intro-

duces problem instances that are computationally

more complex than their counterparts involving

only the quantifiers every, some and no. There-

fore, this problem provides a unique approach to

evaluating transformer models’ ability to perform

numerical reasoning. To the best of our knowl-

edge, this problem has not been investigated in the

previous literature.

The primary reason for this limitation is that rel-

atively few reasoning tools can directly ascertain

the satisfiability of formulae incorporating num-

bers or numerical quantifiers. Consequently, there

arises the challenge of constructing an extensive

dataset suitable for fine-tuning and assessing Trans-

formers. We overcome this limitation by reducing

the numerical satisfiability problems into integer

linear problems (see Figure 1). Moreover, we ac-

knowledge the potential drawbacks associated with

evaluating models using synthetic data, particularly

the pitfalls associated with undersampling challeng-

ing instances (Wu et al., 2021; Shin et al., 2019).

To address this concern and ensure a robust dataset,

we adopt a targeted sampling approach by selecting

problem instances from the phase-change region.

This region, where the probability of satisfiability

is approximately 0.5, represents a critical region

where algorithms tasked with determining satisfia-

bility typically experience prolonged running times.

Consequently, we conduct a comprehensive explo-

ration of the problem space associated with the nu-

merical satisfiability problems under consideration

to delineate the boundaries of the phase-change

region.

Even if transformer models learn to solve prob-

lem instances of numerical satisfiability, this is

not indicative of their ability to learn logical se-

mantics and rules of inference. Indeed, this as-

pect requires a comprehensive evaluation of these

models’ generalisation ability. Consequently, we

evaluate transformer models’ generalisation abil-

ity across several axes. (1) Vocabulary invariance:

Do Transformers demonstrate sensitivity to out-of-

vocabulary (OOV) terms? (2) Numeracy invari-

ance: Can Transformers generalise to different nu-

merical values that were unseen during fine-tuning?

(3) Scale invariance: Are Transformers capable

of generalising to problems of larger scope? (4)

Noise invariance: How sensitive are Transformers

to noisy sentences which do not affect the satisfi-

ability of the problem? Together, these evaluative

dimensions furnish a comprehensive understanding

of Transformers’ generalisation abilities, spanning

both their comprehension of logical and numerical

semantics in natural language and their proficiency

in learning and applying mathematical and logical

rules.

The contributions of this paper are as follows.

(1) Based on the principles of mapping satisfia-

bility problems to integer linear problems (Pratt-

Hartmann, 2023, Ch. 7), we design an algorithm

to construct numerical satisfiability problems. (2)

We explore the problem space of the constructed

numerical satisfiability problems to establish the

phase-change region. (3) We design a systematic

investigation to evaluate Transformers’ ability to

learn logical semantics and rules of inference from

natural language text. (4) We evaluate a diverse

range of Transformers, encompassing varying sizes

and architectures, in both fine-tuned and zero-shot/

few-shot settings.

2 Methodology

2.1 Language Fragments

When constructing our dataset, we employ lan-

guage fragments in sentence generation. We define

a fragment of a natural language L to be a set of

sentence forms in L equipped with semantics trans-

lating those sentences to some formal system such

as first-order logic (Pratt-Hartmann, 2004; Pratt-

Hartmann and Third, 2006). Say that a sentence

template in L is a sentence of L in which certain
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open-class words have been replaced by schematic

variables. For instance, ªEvery A is a Bº repre-

sents an English sentence template where common

(count) nouns are replaced by variables A and B.

Then, one way to define a language fragment is

by a set of finite templates. For example, the Aris-

totelian syllogistic (Aristotle, 1938) can be defined

by the following set of templates,

Every A is a B Some A is a B

No A is a B Some A is not a B

We introduce two modifications to the Aristotelian

syllogistic: (1) allow negations in the subject. (2)

replace the quantifiers all, some, no with the numer-

ical quantifiers at least K and at most K, where

K ∈ N
+ (N+ = {1, 2, 3, . . . }). The resulting frag-

ment, which we refer to as the counting fragment or

C, can be defined by the following set of templates,

At least K A are B At least K A are not B

At least K non-A are B At least K non-A are not B

At most K A are B At most K A are not B

At most K non-A are B At most K non-A are not B

Then the numerical satisfiability we consider is as

follows,

Given: a finite set S of sentences in C,

Return: True if S is satisfiable; False otherwise.

The problem of determining the satisfiability of a

set of sentences in C is NPTIME-complete (Kun-

cak and Rinard, 2007). Given a set of sentences

in C, we derive a system of linear inequalities as

described in the next section. We remark in pass-

ing that this idea in fact has a long history (Jevons,

1871).

2.2 Reduction to Integer Linear Problems

Let us say we are given a set of sentences S in

C over a signature of unary (1-place) predicates

P1, P2, . . . , Pn, for which we aim to determine the

satisfiability.

If ψ is a formula let ±ψ be either ψ or ¬ψ.

We call the conjunction of the form ±P1(x) ∧
±P2(x) ∧ · · · ∧ ±Pn(x) an atomic 1-type over the

signature (P1, P2, . . . , Pn); in the sequel, we omit

the quantifier ªatomicº for brevity. We list the 1-

types over (P1, P2, . . . , Pn) in some fixed order

π1, π2, . . . , πN where N = 2n.

If A is a structure interpreting the signature

P1, P2, . . . , Pn, over some domain A, we define

the histogram of A ,denoted hist(A), to be the

N -tuple (w1, w2, . . . wN ) where for all i,

wi = |{a ∈ A : A |= πi[a]}|.

Figure 2: The variation of probability of satisfiability

with clause variable ratio for the counting fragment C

It is easy to see that any sentence s in the language

C can be naturally translated into a linear inequality

in variables w1, . . . , wn satisfied by the histogram

of a structure A just in case s is true in A. For

example, the sentence ªAt least K Pa are not Pbº

can be formulated as the inequality

N
∑

i=1

{wi : |= πi → (Pa(x) ∧ ¬Pb(x))} ≥ K, (1)

stating that the frequencies of those 1-types en-

tailing both Pa(x) and ¬Pb(x) sum to at least K.

We add the inequality
∑N

i=1wi ≥ 1 to rule out

the zero solutions (corresponding to the standard

assumption that the domain of quantification is non-

empty). In this way, given a set of sentences, S =
{s1, . . . , sm}, we can construct a system of linear

inequalities E = {E1, . . . , Em,
(
∑N

i=1wi ≥ 1
)

}
such that S is satisfiable if and only if E has a so-

lution over the natural numbers. Since this latter

problem has a well-known algorithmic solution, so

has the former.

2.3 Phase-change Region and Data

Construction

When considering the algorithmic solution of prob-

lems in logic, it is important to realise that not all

instances are equally difficult. A case in point is

provided by the well-known problem SAT: given a

set Γ of clauses in propositional logic, determine

whether Γ has a satisfying truth-value assignment.

(In this context, clause is a disjunction of proposi-

tion letters or negated proposition letters.) Consider

a problem instance with m clauses featuring a sig-

nature of size n (number of variables). If the clause

variable ratio α = m
n

is large, we have a highly con-

strained problem instance with few degrees of free-

dom; hence, the probability of satisfiability is close
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to zero. Conversely, if α is small, we have a rela-

tively unconstrained problem with many degrees of

freedom; hence, the probability of satisfiability is

close to unity. In either case, it is easy for a learn-

ing algorithm to determine satisfiability reliably.

Only for values in a narrow range of α commonly

referred to as the phase-change region, is the prob-

lem challenging (Selman et al., 1996; Mitchell and

Levesque, 1996). A similar phenomenon can be

observed for the counting fragment we considered

in this study. Figure 2 depicts the variation of the

probability of satisfiability with the clause-variable

ratio.

In our data construction framework, we fix a

large vocabulary V of English common count

nouns. When constructing a data point, we ran-

domly select a signature consisting of n elements

of V , and construct m sentences of the language

C over this signature. We systematically vary n

within the interval [5, 12] (nmin = 5, nmax = 12).

Through this variation, we investigate the relation-

ship between the probability of satisfiability and

the clause variable ratio α, aiming to establish

an appropriate range for the parameter α. Sub-

sequently, guided by our exploratory analysis, we

select specific α values to ensure that the proba-

bility of satisfiability falls within the predefined

interval [0.4, 0.6] (αmin = 0.4, αmax = 0.6). We

design our algorithm to generate numerical satis-

fiability problems with appropriate ranges for α,

n and K. We vary K between Kmin = 10 and

Kmax = 50, and utilise a set of professions (eg:

doctors, artists) as the vocabulary V . We translate

the set of generated sentences into a system of lin-

ear inequalities as explained above, and use the ILP

solver in the Z3 to determine whether this system

has a solution. Following this set-up, we construct

a training set of 130K instances and a test set with

12K instances2. A more detailed explanation of

the dataset is provided in Appendix A.

2.3.1 Data construction: Out-of-distribution

To evaluate Transformers’ ability for generalisation

to out-of-distribution data, we construct several out-

of-distribution datasets following two approaches.

In the first approach, we introduce perturbations

to the in-distribution test set. We employ this ap-

proach to construct data to test for vocabulary in-

variance and noise invariance. In the second ap-

proach, we construct out-of-distribution data by

2Link to the dataset and code is anonymised for blind-
review purposes.

Algorithm 1 Data Construction - Natural language

satisfiability

Input : Vocabulary of nouns V , number of variables
[nmin, nmax], numerical value range [Kmin,Kmax], clause
variable ratio α range [αmin, αmax]
Output : natural language satisfiability dataset D

1: D ← {}
2: repeat
3: n← randomly sample from [nmin, nmax]
4: v ← randomly sample n nouns from V
5: m← sample m s.t αmin ≤

m

n
≤ αmax

6: for j = 1 to m do
7: A,B ← randomly sample two nouns from v
8: tj ← randomly sample template from the counting

fragment C
9: K ← randomly sample from the range

[Kmin,Kmax]
10: sj ← substitute A,B,K for schematic variables

in tj
11: Ej ← translate sj to a linear inequality
12: end for
13: z ← Solver(E1, . . . , Em, (

∑N

i=1 wi ≥ 1))
14: if z is not None then
15: ℓ← True
16: else
17: ℓ← False
18: end if
19: D ← D ∪ {{s1, ..., sm}, ℓ}
20: until stop condition is met

introducing different input configurations. We em-

ploy this approach to construct data to test for nu-

merical invariance and scale invariance.

Vocabulary invariance: We introduce perturba-

tions to the test set by incorporating OOV nouns.

These perturbations are categorised into two dis-

tinct types. First, nouns within the sentences of the

test set are substituted with semantically similar

nouns that were not encountered during the fine-

tuning. Second, nouns within the sentences are

substituted with symbols adhering to a prescribed

format denoted as P_J , where J ∈ N
+ (eg: P_1,

P_2, . . . ). The perturbed test sets resulting from

the first and second approaches are designated as

Vocabprof and VocabPs, respectively.

Numerical invariance: We construct three sepa-

rate test sets employing Algorithm 1, distinguished

by the range within whichK varies. We employ the

ranges [100, 500], [1000, 5000], and [100, 5000],
and denote the resulting datasets by Num[100,500],

Num[1000,5000] and Num[100,5000], respectively.

Scale invariance: To explore the adaptability of

Transformers in tackling problems of larger scope,

we devise a distinct test set utilising Algorithm

1. We define the number of variables n to span
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from 13 to 16 (nmin = 13, nmax = 16), thereby

ensuring that the problem instances presented to the

models are more intricate than those encountered

during the fine-tuning process. Henceforth, the

generated dataset is referred to as Scale.

Noise invariance: To evaluate Transformers’ sus-

ceptibility to noise, we introduce perturbations to

problem instances within the test dataset. These

perturbations involve the introduction of sentences

that do not alter the satisfiability of the instances.

Specifically, given a problem instance q1 employ-

ing a signature v1, we generate an alternate satisfi-

ability problem instance q2 employing a mutually

exclusive signature v2. Consequently, the inclusion

of sentences from q2 into q1 does not influence the

satisfiability of q1. Henceforth, we refer to this per-

turbed dataset as Noise. Furthermore, we partition

the Noise dataset into two distinct subsets based

on the number of clauses present. If the number

of clauses m in a given instance exceeds the max-

imum number of clauses present in the training

set, we categorise that dataset as Noise>m, other-

wise, Noise≤m. We outline the out-of-distribution

datasets in more detail in Appendix B.

3 Experimental Setup

3.1 Fine-tuning

To examine Transformers’ ability to solve numer-

ical satisfiability problem instances, we fine-tune

two well-known Transformers that have a proven

track record in textual reasoning tasks: Flan-T5

(Chung et al., 2022) and Gemma (Team et al.,

2024).

Flan-T5 Flan-T5 is an instruction-fine-tuned

variant of the T5 model architecture (Wei et al.,

2022a) and is considered to be an improvement

to the vanilla T5 model. T5-based model archi-

tectures have a well-documented track record of

solving formal reasoning problems including sat-

isfiability (Madusanka et al., 2023b; Richardson

and Sabharwal, 2021; Clark et al., 2021). We

utilise the Flan-T5-base model with 220M pa-

rameters, Flan-T5-large with 770M parameters

and Flan-T5-XL model with 3B parameters.

Gemma Gemma is an open-source Transformer

model architected upon the foundation of the Gem-

ini models (Team et al., 2023). Gemma has

achieved state-of-the-art performance on various

language-related tasks when compared to models

of similar scale and even some larger models. For

this investigation, we employ the 2B parameter

version, referred to as Gemma-2b.

3.2 Zero-shot and Few-shot settings

In addition to fine-tuned models, we evaluate a

range of closed and open-source Large Language

Models (LLMs), including GPT-3.5-turbo (Kojima

et al., 2022), GPT-4 (OpenAI, 2023), and Mistral-

7B (Jiang et al., 2023) on a subset of 300 test exam-

ples using different prompting techniques. Recent

work has suggested that pre-trained LLMs might

exhibit emergent reasoning capabilities when the

number of parameters scales above a certain thresh-

old (Wei et al., 2022b). However, subsequent evi-

dence has started questioning such claims (Schaef-

fer et al., 2024), resulting in an open debate within

the research community. Here, we aim to con-

tribute to this debate by testing whether LLMs can

generalise to the numerical satisfiability task. The

prompts used for the experiments are shown in

Appendix C.

Zero-shot Inference In the zero-shot setting, we

simply prompt LLMs with instructions about the

task, asking the model to generate a ªTrueº or

ªFalseº answer according to whether the set of state-

ments provided as input is satisfiable or not.

Few-shot Inference In addition to the zero-shot

setting, we test the ability of LLMs to solve nu-

merical satisfiability problems when provided with

in-context examples (Brown et al., 2020). To this

end, given a test example, we employ a BM25 re-

trieval model (Robertson et al., 2009) to select the

top k most relevant examples and their correspond-

ing labels from the training set.

Chain-of-Thought Finally, we test LLMs via

Chain-of-Thought (CoT) prompting (Wei et al.,

2022c), where the models are explicitly queried

to generate a step-by-step explanation to derive the

final answer. Here, we limit our experiments to

GPT 3.5 and Mistral because of budget constraints.

4 Results and Discussion

4.1 In-distribution Evaluation

Although Transformers can be fine-tuned to

solve numerical satisfiability problem instances,

these models struggle in zero-shot/few-shot set-

tings. As shown in Table 1, fine-tuned Transform-

ers achieve adequate performance when solving in-

distribution numerical satisfiability problems. How-
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Model Accuracy F1 score

Fine-tuning

Flan-T5-XL 89.41 89.72
Gemma-2b 84.39 84.66

Zero-shot

Mistral-7b 49.66 65.60
GPT-3.5-turbo 49.00 53.78
GPT-4 53.60 64.42

Few-shot

Mistral-7b (k = 5) 54.33 50.54
Mistral-7b (k = 20) 57.00 52.04
GPT-3.5-turbo (k = 5) 51.67 49.65
GPT-3.5-turbo (k = 20) 49.33 47.59
GPT-4 (k = 5) 49.50 47.58
GPT-4 (k = 20) 57.14 58.25

Chain-of-Thought (CoT)

Mistral-7b 48.49 66.17
GPT-3.5-turbo 46.33 58.82

Table 1: Results on the in-distribution test set. Although

Transformers can be fine-tuned to solve numerical sat-

isfiability instances, pre-trained LLMs struggle in zero-

shot/few-shot settings.

ever, Transformers encounter notable challenges in

zero-shot and few-shot scenarios. Indeed, the ac-

curacy across all Transformer model architectures

in zero-shot and few-shot contexts closely approxi-

mates that of a random baseline. Notably, certain

models, such as Mistral-7b, consistently exhibit

an inclination to produce ªTrueº (satisfiable) for al-

most all problem instances. Moreover, our analysis

reveals the susceptibility of Transformers to the in-

fluence of examples provided for few-shot learning

and chain-of-thought, often leading to erroneous

conclusions. We hypothesise this is due to the intri-

cate nature of the numerical satisfiability problem.

Indeed, numerous cognitive studies underscore the

inherent difficulties humans encounter when tasked

with even rudimentary formal reasoning exercises

(Johnson-Laird and Bara, 1984; Bronkhorst et al.,

2020). Given that Transformers are trained on cor-

pora derived from human-generated content, it is

unsurprising that these models inherit this limita-

tion.

4.2 Out-of-Distribution Generalisation

Transformers’ insensitivity to vocabulary invari-

ance is bounded by semantic similarity. As

shown in Table 2, Transformers demonstrate pro-

ficiency in generalising to OOV instances when

the OOV nouns exhibit semantic similarity to

those present within the in-distribution data. Con-

versely, Transformers encounter difficulties when

confronted with OOV nouns lacking semantic

resemblance to their in-distribution counterparts.

Specifically, the Gemma-2b model exhibits minimal

robustness in scenarios where the vocabulary com-

prises nouns lacking semantic similarity, predicting

ªFalseº (unsatisfiable) across almost all problem in-

stances. Although Flan-T5-XL demonstrates com-

paratively greater resilience than Gemma, its per-

formance nevertheless registers a notable decline

under similar conditions. We hypothesise this is

due to Transformers’ inability to separate logical

semantics from non-logical semantics. Another

contributing factor to this decline in performance

could be the relatively lower term frequency associ-

ated with terms of type P_J compared to conven-

tional nouns describing professions. Prior research

has underscored the impact of term frequency on

model performance (Razeghi et al., 2022). How-

ever, given the substantial magnitude of the ob-

served drop in performance, we contend that the

more plausible cause is the lack of semantic simi-

larity rather than from lower term frequency.

Transformers exhibit limited numerical invari-

ance and exhibit learning superficial cues. As

depicted in Table 2, Transformers generalise well

when the range ofK is [100−500] or [1000−5000],
but encounter difficulties when the range of K is

[100 − 5000]. Although the performance of both

models is well above the random baseline for K

with a range [100−5000], they experience a drop of

10+ accuracy points. The numerical quantifiers im-

pose a comparative operation between the logical

and numerical elements involved in the expressions.

Consequently, we hypothesise that Transformers

prioritise the first digit over holistic consideration

of the entire numerical value. This observed phe-

nomenon underscores the fact that even the more

recent billion-parameter variants of Transformers

are susceptible to learning superficial cues, reminis-

cent of their earlier, smaller counterparts (McCoy

et al., 2019; Glockner et al., 2018). Moreover, this

limited generalisation ability to numerical invari-

ance coupled with their failure to adapt to OOV that

lacks semantic similarity indicates that these mod-

els still struggle to learn logical semantics. This

stands in stark contrast to the demonstrated pro-

ficiency of Transformers in grasping the logical

semantics associated with simpler reasoning prob-

lems, such as model-checking (Madusanka et al.,

2023a,b). Consequently, we posit that the Trans-
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Model
In-distribution

Vocabulary Invariance Numeracy Invariance
Vocabprof VocabPs Num[100−500] Num[1000−5000] Num[100−5000]

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Flan-T5-XL 89.41 89.72 86.48 86.83 73.85 67.85 85.27 85.75 83.46 83.82 78.55 79.84

Gemma-2b 84.39 84.66 79.60 79.41 50.61 2.85 79.13 79.95 76.23 77.34 68.05 70.18

Table 2: Results on vocabulary invariance and numerical invariance datasets. We found that Transformers exhibit

limited generalisation to vocabulary and numerical invariance.

Model
In-distribution

Scale Invariance Noise invariance
Scale Noise Noise≤m Noise>m

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Flan-T5-XL 89.41 89.72 78.38 78.14 72.08 65.15 73.41 68.70 70.77 61.24

Gemma-2b 84.39 84.66 73.44 72.95 68.64 61.98 69.15 64.58 68.15 59.15

Table 3: Results on scale invariance and noise invariance datasets. We found that Transformers exhibit minimal

generalisation to scale and noise invariance.

formers’ capacity to comprehend logical semantics

is intricately tied to the complexity inherent within

the reasoning tasks at hand.

Transformers fail to exhibit scale invariance.

As shown in Table 3, Transformers exhibit a fail-

ure to generalise effectively when confronted with

problem instances characterised by a higher num-

ber of variables than those encountered during train-

ing. This outcome aligns with prior investigations

into scale invariance, which have yielded analo-

gous findings (Schlegel et al., 2022; Madusanka

et al., 2024). We posit that this deficiency in scale

invariance arises from the Transformers’ inabil-

ity to learn rules of inference gleaned from natu-

ral language texts. As previously noted, prior re-

search suggests that Transformers attempt to solve

multi-step reasoning tasks through linearised path-

matching strategies (Dziri et al., 2023). Addition-

ally, during training and fine-tuning phases, Trans-

formers are known to acquire shortcuts via pattern-

matching (Liu et al., 2023). While this approach

may prove expedient for in-distribution evaluation,

it does not result in robust generalisation when sub-

jected to out-of-domain testing. Indeed, we posit

that this behaviour impedes the Transformers’ ca-

pacity to learn rules of inference, thereby constrain-

ing their ability to demonstrate scale invariance.

Transformers demonstrate sensitivity to noise.

As shown in Table 3, the introduction of noisy sen-

tences into problem instances precipitates a notable

decline in the performance of Transformers. When

the inclusion of noisy sentences extends the overall

problem length beyond the scope of the model’s

training data, the scenario resembles a variant of the

length generalisation problem. Previous research

has indicated Transformers’ propensity to struggle

with length generalisation (Anil et al., 2022; Press

et al., 2022), thus explaining the observed decline

for the Noise>m test set. However, even in sce-

narios where the problem length remains within

the bounds of the model’s training data, the perfor-

mance of Transformers still undergoes a significant

decline. Notably, there exists a negative correla-

tion between the performance of Transformers and

the number of noisy sentences introduced into the

problem instances. We posit that this phenomenon

arises from a fundamental shift in the underlying

problem structure induced by the introduction of

noisy sentences. For instance, consider the scenario

where sentences from problem q2, constructed with

a mutually exclusive vocabulary to problem q1 and

determined to be satisfiable, are incorporated into

problem q1. The resultant problem q comprises two

sub-problems for which the models have to derive

the satisfiability. We posit this change in problem

structure influences Transformers’ inability to ex-

hibit noise invariance.

Models of different scales exhibit analogous

generalisation patterns. As depicted in Fig-

ure 3, Transformers of varying sizes exhibit sim-

ilar patterns of generalisation. For instance,

the Flan-T5-base model achieves an accuracy

of 58.35%, while the Flan-T5-large model at-

tains 72.23%, both notably lower than the accu-

racy achieved by the Flan-T5-XL model, which
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Figure 3: Variation of accuracy level with the number of parameters for the Flan-T5 model. We employed

Flan-T5-base, Flan-T5-large and Flan-T5-XL models and found they exhibit similar generalisation patterns.

stands at 89.41%. However, their relative dis-

parities in generalisation performance to out-of-

distribution datasets mirror the pattern observed

with Flan-T5-XL. Previous investigations explor-

ing the impact of model size on generalisation

have yielded congruent findings (Anil et al.,

2022). It is noteworthy that despite experienc-

ing a marked decline in performance for out-of-

distribution datasets, the generalisation proficiency

of Flan-T5-XL remains significantly above the ran-

dom baseline. Nonetheless, we assert that Trans-

former models still have significant strides to make

before achieving the capability to learn rules of

inference and comprehend logical semantics.

5 Related Work

Extensive research has been dedicated to exploring

the generalisation capabilities of neural models, in-

cluding Transformers. These investigations encom-

pass a spectrum of generalisation forms, such as

length generalisation (Press et al., 2022; Anil et al.,

2022; Valentino et al., 2024), easy-to-hard gener-

alisation (Schwarzschild et al., 2021; Bansal et al.,

2022; Meadows et al., 2024), and compositional

task generalisation (Dziri et al., 2023). However,

there remains a notable gap in the literature con-

cerning the application of these models to textual

inference problems, particularly within the realm

of natural language satisfiability. Consequently, our

study aims to delve into the various facets of gen-

eralisation exhibited by Transformer models when

confronted with a variant of the natural language

satisfiability problem, known as the numerical sat-

isfiability problem.

Transformers have demonstrated impressive

performance on various formal reasoning tasks

(Richardson et al., 2020; Lin et al., 2019; Tafjord

et al., 2021; Creswell et al., 2023). All of these

reasoning tasks can be reduced to the problem of

determining the satisfiability of a set of sentences.

Neural approaches such as graph neural networks

have been used extensively to solve instances of

satisfiability problems (Xu et al., 2020; Cameron

et al., 2020; Selsam et al., 2019). Richardson and

Sabharwal (2021) extended this research into natu-

ral language by employing language fragments for

data construction. Their investigation also diverges

from prior research as they employ Transformers

rather than graph neural approaches. Schlegel et

al. (2022) and Madusanka et.al (2024) extended

this work into fragments of first-order logic. Build-

ing on these foundational contributions, the present

study investigates the capacity of Transformer ar-

chitectures to address numerical satisfiability prob-

lems. Our methodological approach is notably in-

spired by the work of Madusanka et al. (2024)

on natural language satisfiability, particularly their

strategy of sampling problem instances from the

phase-change region to generate instances of high

computational difficulty. To the best of our knowl-

edge, this work constitutes the first systematic ex-

ploration of the numerical satisfiability problem

within the context of Transformer-based models.

We underscore that this extension to numerical sat-

isfiability introduces non-trivial challenges, requir-

ing significant methodological adaptations. Fur-

thermore, our study distinguishes itself from exist-

ing literature by placing a specific emphasis on the

generalisation capabilities of transformer models,

an aspect that has not been explicitly addressed in

prior work on satisfiability.

6 Conclusion

We probe the generalisation ability of Transform-

ers on the satisfiability problem for a simple frag-

ment of English featuring numerical quantifica-

tion. We find that fine-tuned Transformers exhibit

limited generalisation to vocabulary and numeri-

cal invariance while exhibiting minimal scale and

noise invariance. Furthermore, our investigation
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indicates that Transformers in zero-shot and few-

shot settings find numerical satisfiability problems

more or less unsolvable. We emphasise that certain

model architectures, such as Flan-T5-XL, demon-

strate some robustness when assessed against out-

of-distribution (OOD) test sets. However, the level

of robustness is not sufficient to indicate that these

models have the ability to learn and understand log-

ical and mathematical rules. Therefore, we assert

that substantial research efforts are warranted to

improve Transformer models’ ability to generalise

to OOD data over a complex reasoning task, which

we leave for future work.

7 Limitations

Due to the empirical nature of our work, it suf-

fers from inductive dilemmas on three fronts. First,

while we explore several Transformer models with

established proficiency in formal reasoning tasks,

it remains conceivable that there exist other Trans-

former architectures whose behaviour diverges

from the empirical findings delineated in this study.

Second, in our study, we construct the numerical

satisfiability problems by employing language frag-

ments involving numerical quantifiers ªAt least Kº

and ªAt most Kº. However, it is important to ac-

knowledge that these quantifiers represent only a

subset of the broader spectrum of numerical quan-

tifiers in existence. Thus, there may exist alter-

native quantifiers for which Transformer models

exhibit differing behaviour. Third, we consider in-

context learning via few-shot examples and chain-

of-thought prompting defined through prompts pre-

sented in Appendix C.1. However, it is plausi-

ble that alternative prompting methodologies may

yield superior performance for Transformer mod-

els.
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A Appendix: Dataset Details

Formally the dataset for each objective takes the

form, {((S)(d), ℓ(d))}
|D|
d , where (S are set of sen-

tences concatenated together, and ℓ ∈ {True, False}

is the label. We have depicted an instance of a

Numerical satisfiability problem along with its per-

turbations (vocabulary and noise) in Figure 4

A.1 In-distribution datasets

In our experimental setup, we generated a train-

ing dataset comprising 130K instances and an in-

distribution testing dataset consisting of 12K in-

stances employing Algorithm 1. Across these

datasets, we varied the number of variables from

5 to 12, while adjusting the alpha ratio within the

range of 2.54 to 3.71. The alpha ratio was selected

based on an exploration of how the probability of

satisfiability correlates with the clause-variable ra-

tio. As detailed in the Methodology section, we

chose the alpha value such that the probability of

satisfiability falls within the range of 0.4 to 0.6,

ensuring that the resulting number of clauses falls

between 13 and 45. Additionally, we varied the

range of K, from 10 to 50. Furthermore, We em-

ployed a list of nouns comprised of professions

Size

Vocabulary invariance
Vocabprof 12000

VocabPs 12000

Numerical invariance
Num[100−500] 2000
Num[1000−5000] 2000
Num[100−5000] 2000

Scale invariance Scale 800

Nosie invariance
Noise 12000
Noise≤m 5921
Noise>m 6079

Table 4: The number of problem instances in each of

out-of-distribution test sets.

as our common noun vocabulary. The vocabulary

contains 155 nouns. We emphasise that the prob-

lem space is sufficiently large that no two problems

would be equal.

A.2 Out-of-distribution datasets

We constructed several out-of-distribution datasets,

and the size of each of them is detailed in Table 4.

The table 5 depicts mean, minimum, and maximum

problem instance lengths.

The size of the scale test set is low due to com-

putational time constraints involved in the data con-

struction setup. Indeed, an n-variable numerical

satisfiability problem translated to a 2n variable

integer linear problem that the integer linear solver

needs to solve.

B Appendix: Fine-tuning Details

We chose two transformer models of different archi-

tectures of fine-tuning3: Flan-T5 and Gemma. Both

models boast a commendable track record in tex-

tual entailment tasks and have demonstrated state-

of-the-art performance compared to other models

of comparable size. Flan-T5 model is based on the

T5 architecture and is an encoder-decoder model,

while Gemma is a decoder-only model (Vaswani

et al., 2017). Moreover, unlike Flan-T5, Gemma

leverages reinforcement learning from human feed-

back for instruction fine-tuning (Ouyang et al.,

2022). As the primary focus of our study is to

determine the extent to which transformer mod-

els demonstrate generalisation capabilities, we did

not perform extensive hyperparameter tuning on

in-distribution data. However, we did explore sev-

eral variations of hyperparameters, including batch

3We also fine-tune phi-2 model with 2.7B parameters.
However, the model did not optimise properly, therefore, we
excluded it from the experimental setup
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Figure 4: Instance of numerical satisfiability problem. We modify the vocabulary to form the vocabulary variance

dataset and add noise to form the noise invariance dataset as shown.

size and learning rate, and found that the resultant

performance remained largely equivalent across

these variations. We establish the following hyper-

parameter setup when fine-tuning.

Maximum sequence length: We used the maxi-

mum sequence 1024 for both Flan-T5 and Gemma

models. We did not rely on any truncation, as trun-

cating input could alter the satisfiability of the input

sentences.

Training epochs: For both Gemma-2b and

Flan-T5-XL models, we fine-tuned for two epochs.

The performance of the models stagnates af-

ter the very first epoch. For Flan-T5-base

and Flan-T5-large models, we fine-tuned for 5

epochs.

Gradient accumulation steps: 4

Batch size: Relying on the gradient checkpoint-

ing and gradient accumulation, we used 12 as the

batch size for Gemma-2b and Flan-T5-XL models,

while using 48 as the batch size for Flan-T5-base

and Flan-T5-large.

Learning Rate: We set the learning rate to 1×
10−5. We use the ADAM optimiser with the default

parameters ϵ = 1 × 10−8 , β1 = 0.99 and β2 =
0.999 .

dataset min max mean

Vocabprof 270 70 147.1

VocabPs 226 66 123.6

Num[100−500] 270 78 161.2
Num[1000−5000] 264 78 159.9
Num[100−5000] 270 78 158.2

Scale 360 198 272.9

Noise 474 150 276.3
Noise≤m 270 150 233.6
Noise>m 474 276 317.5

Table 5: minimum, maximum and mean number of

words (tokens) when separated by SPACE in each of the

test sets

Hardware: 1 Nvidia A100 GPU with 80GB of

RAM.

Each Transformer is fine-tuned to predict the

label (True/False: True if the set of sentences are

satisfiable and False if the set of sentences are unsat-

isfaible) by reducing the binary cross entropy loss

over the target using the Adam optimiser (Kingma

and Ba, 2015), and we used the HuggingFace im-

plementation in the fine-tuning process (Wolf et al.,

2019).
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C Zero-shot, Few-shot, and CoT Details

In order to run experiments on a zero-shot, few-

shot, and CoT settings with Mistral, GPT-3.5-turbo

and GPT-4, we adopted the Huggingface4 and Ope-

nAI5 inference APIs respectively. Here, we em-

ployed a non-deterministic setup and reported the

best results achieved by each model across 10 dif-

ferent runs. For the few-shot setting, we retrieved

the k most relevant examples from the training set

based on the BM25 score with the test instance

(Robertson et al., 2009). These examples are ap-

pended to the zero-shot prompt. We performed

experiments with a value of k equal to 5 and 20.

C.1 Prompts

Regarding the pre-trained models, we adopt the

following prompt for zero-shot and few-shot infer-

ence:

• ªYou are an expert in logical satisfiability and

numerical reasoning. Determine whether the

set of statements in the test example is satis-

fiable. Your answer must be ’The answer is

False’ if the test example is unsatisfiable, ’The

answer is True’ if the test example is satisfi-

able."

For few-shot inference, the prompt above is fol-

lowed by a list of training examples with their cor-

rect labels and the set of statements constituting the

test example.

To elicit step-by-step reasoning via Chain-of-

Thought, we adopt the following prompt:

• ªYou are an expert in logical satisfiability and

numerical reasoning. Determine whether the

set of statements in the test example is satisfi-

able. Think step-by-step and terminate your

reasoning with ’The answer is False’ if the

test example is unsatisfiable, ’The answer is

True’ otherwise.º

D Reducing other Quantifiers

The mechanism for reducing the numerical satis-

fiability problem to quantifiers included in Frag-

ment C can be easily adapted to other generalised

quantifiers with minor changes to Equation 1. Let

K,wi, πi, ±Pa(x) and ±Pb(x) and have the same

4
https://huggingface.co/docs/

inference-providers/en/index
5
https://openai.com/api/

definition as mentioned in the Methodology section.

Let W = (w1, . . . wN ) and,

λ(W) :=

N
∑

i=1

{wi : |= πi → (±Pa(x)∧±Pb(x))}

Then other quantifiers can be formulated as be-

low,

More than K: (More than K (non-)Pas are

(not) Pbs),

λ(W) > K,

Less than K: (Less than K (non-)Pis are (not)

Pjs),

λ(W) < K,

K: (K (non-)Pas are (not) Pbs),

λ(W) = K,

Most: (Most (non-)Pas are (not) Pbs),

λ(W) >

N
∑

i=1

{wi : |= πi → (±Pa(x)∧∓Pb(x))}

Few: (Few (non-)Pas are (not) Pbs),

λ(W) <

N
∑

i=1

{wi : |= πi → (±Pa(x)∧∓Pb(x))}

At least r/s (More than r
s

(non-)Pas are (not)

Pbs),

λ(W) ≥
r

s

N
∑

i=1

{wi : |= πi → ±Pa(x)}

Since the primary focus of this study is to investi-

gate the behaviour of Transformers when solving

numerical satisfiability problems rather than identi-

fying how their performance varies with different

quantifiers, we only focus on the quantifiers men-

tioned in Fragment C. Furthermore, we emphasise

the problem best suited to analyse the effect of

different generalise quantifiers is model checking

rather than satisfiability.

The mechanism can be further adapted to include

relative clauses with minor changes. Consider the

sentence ªAt leastK Pas who are non-Pbs are Pcsº,

it can be formulated as shown below,

N
∑

i=1

{wi : |= πi → (Pa(x)∧±Pb(x)∧Pc(x))} ≥ K

We exclude this type of complex structure con-

sidering the low performance acquired by most

Transformer models when confronted with simple

numerical satisfiability problems.
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