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Abstract

Recent studies on reasoning in language mod-

els (LMs) have sparked a debate on whether

they can learn systematic inferential principles

or merely exploit superficial patterns in the

training data. To understand and uncover the

mechanisms adopted for formal reasoning in

LMs, this paper presents a mechanistic inter-

pretation of syllogistic inference. Specifically,

we present a methodology for circuit discov-

ery aimed at interpreting content-independent

and formal reasoning mechanisms. Through

two distinct intervention methods, we uncover

a sufficient and necessary circuit involving

middle-term suppression that elucidates how

LMs transfer information to derive valid con-

clusions from premises. Furthermore, we inves-

tigate how belief biases manifest in syllogistic

inference, finding evidence of partial contami-

nation from additional attention heads responsi-

ble for encoding commonsense and contextual-

ized knowledge. Finally, we explore the gener-

alization of the discovered mechanisms across

various syllogistic schemes, model sizes and

architectures. The identified circuit is sufficient

and necessary for syllogistic schemes on which

the models achieve high accuracy (≥ 60%),

with compatible activation patterns across mod-

els of different families. Overall, our findings

suggest that LMs learn transferable content-

independent reasoning mechanisms, but that, at

the same time, such mechanisms do not involve

generalizable and abstract logical primitives,

being susceptible to contamination by the same

world knowledge acquired during pre-training.

1 Introduction

Language models (LMs) have led to remarkable

results across various natural language processing

tasks (Radford et al., 2018, 2019; Brown et al.,

2020; OpenAI, 2024; Jason et al., 2022; Bubeck

et al., 2023). This success has catalyzed research

interest in systematically exploring the reasoning

capabilities emerging during pre-training (Clark
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Figure 1: Conceptual representation of the circuit for

processing symbolic syllogisms: (Long Induction) Early

layers exhibit biases towards the wrong conclusion due

to long-range repetition of the first premise ªAll A are

Bº. (Duplication) Induction heads aggregate informa-

tion about duplicated middle terms. (Suppression) The

model inhibits middle-term information (i.e., ‘B’), sup-

pressing the long induction mechanism. (Mover) Token-

specific information is propagated to the last token po-

sition. The process culminates in the prediction shift

from ‘B’ to the correct token, ‘C.’

et al., 2020). Recent findings suggest that logical

and formal reasoning abilities may emerge in large-

scale models (et al., 2022; Kojima et al., 2022;

Wei et al., 2022) or through transfer learning on

specialized datasets (Betz et al., 2021). However,

ongoing debates question whether these models

apply systematic inference rules or reuse superfi-

cial patterns learned during pre-training (Talmor

et al., 2020; Kassner et al., 2020; Wu et al., 2024).
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This controversy underscores the need for a deeper

understanding of the low-level logical inference

mechanisms in LMs (Rozanova et al., 2024, 2023,

2022; Yanaka et al., 2020).

To improve our understanding of the internal

mechanisms, this paper focuses on mechanistic

interpretability (Olah et al., 2020; Nanda et al.,

2023), aiming to discover the core circuit respon-

sible for syllogistic reasoning. In particular, we

focus on categorical syllogisms with universal af-

firmative quantifiers (i.e., AAA-1, Barbara) mo-

tivated by two key factors. First, as observed in

natural logic studies (MacCartney and Manning,

2007), this form of syllogistic reasoning is preva-

lent in everyday language. Therefore, it is likely

that LMs are exposed to such reasoning schema

during pre-training. Second, AAA-1 is a form of

unconditionally valid syllogism independent of the

premises’ truth condition (Holyoak and Morrison,

2005). This characteristic offers a deterministic

and scalable task design, other than allowing us

to investigate the disentanglement between reason-

ing and knowledge representation (Bertolazzi et al.,

2024; Wysocka et al., 2025; Lampinen et al., 2024;

Valentino et al., 2025).

Through mechanistic interpretability techniques

such as Activation Patching (Meng et al., 2022) and

embedding space analysis (i.e., Logit Lens) (Nos-

talgebraist, 2020; Geva et al., 2022; Dar et al.,

2023), we investigate the following main research

questions: RQ1: How is the content-independent

syllogistic reasoning mechanism internalized in

LMs during pre-training?; RQ2: Are content-

independent mechanisms disentangled from spe-

cific world knowledge and belief biases?; RQ3:

Does the core reasoning mechanism generalize

across syllogistic schemes, different model sizes,

and architectures?

To answer these questions, we present a method-

ology that consists of 3 main stages. First, we

define a syllogistic completion task designed to as-

sess the model’s ability to predict valid conclusions

from premises and facilitate the construction of test

sets for circuit analysis. Second, we implement a

circuit discovery pipeline on the syllogistic schema

instantiated only with symbolic variables (Table

1, Symbolic) to identify the core sub-components

responsible for content-independent reasoning. We

conduct this analysis under two intervention meth-

ods: middle-term corruption and all-term corrup-

tion, aiming to identify latent transitive reason-

ing mechanisms and term-related information flow.

Third, we investigate the generalization of the iden-

tified circuit on concrete schemes instantiated with

commonsense knowledge to identify potential be-

lief biases and explore how the internal behavior

varies with different schemes and model sizes.

We present the following overall conclusions:

1. The circuit analysis reveals that LMs develop

specific inference mechanisms during pre-training,

finding evidence supporting a three-stage mech-

anism for syllogistic reasoning: (1) naive recita-

tion of the first premise; (2) suppression of dupli-

cated middle-term information; and (3) mediation

towards the correct output through the interplay of

mover attention heads (see Figure 1).

2. Further experiments on circuit transferabil-

ity demonstrate that the identified mechanism is

still necessary for reasoning on syllogistic schemes

instantiated with commonsense knowledge. How-

ever, a deeper analysis suggests that specific belief

biases acquired during pre-training might contam-

inate the content-independent circuit mechanism

with additional attention heads responsible for en-

coding contextualized world knowledge.

3. We found that the identified circuit is suffi-

cient and necessary for all the unconditionally valid

syllogistic schemes in which the model achieves

high downstream accuracy (≥ 60%) (see Ap-

pendix A for the list of schemes). This result sug-

gests that LMs learn reasoning mechanisms that

are transferable across different schemes.

4. The intervention results on models with dif-

ferent architectures and sizes (i.e., GPT-2 (Rad-

ford et al., 2019), Pythia (Biderman et al., 2023),

Llama (et al., 2024), Qwen (Yang et al., 2024))

show similar suppression mechanism patterns and

information flow. However, we found evidence

that the contribution of attention heads becomes

more complex with model sizes, further supporting

the hypothesis of increasing contamination from

external world knowledge.

Our study is conducted using Transformer-

Lens (Nanda and Bloom, 2022) on an Nvidia A100

GPU with 80GB of memory. The dataset and code

to reproduce our experiments are available online

to encourage future work in the field1.

2 Methodology

Our main research objective is to discover and

interpret the core mechanisms adopted by auto-

1
https://github.com/neuro-symbolic-ai/

Mechanistic-Interpretation-Syllogism
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Figure 2: The conceptual pipeline of the circuit discovery methodology. Figures (a)±(e) illustrate the stages in

processing a syllogistic argument: formalization (a), construction of clean (b) and corrupted inputs (c), activation

patching (d) and embedding space analysis (i.e., Logit Lens) (e). The uncovered symbolic circuit is evaluated to

determine whether the core reasoning schema operates independently from world knowledge or belief bias.

Premises (P1,P2) Conclusion (C)

Symbolic
All A are B.
All B are C.

Therefore,
all A are C.

Belief-consistent (True premises)
All men are humans.
All humans are mortal.

Therefore,
all men are mortal.

Belief-inconsistent (False premises)
All pilots are people.
All people are blond.

Therefore,
all pilots are blond.

Table 1: Examples of a syllogistic schema (i.e., AAA-1,

Barbara). The logical validity of a conclusion is only a

function of the reasoning schema, being independent of

the specific variables or truth condition of the premises.

regressive language models (LMs) when perform-

ing content-independent syllogistic reasoning. To

this end, we present a methodology that consists of

3 main stages. First, we define a syllogistic comple-

tion task that can be instrumental for our analysis.

Second, we leverage the syllogistic completion task

to implement a circuit discovery pipeline on a syl-

logistic schema instantiated only with symbolic

variables (Table 1, Symbolic). Third, we investi-

gate the generalization of the identified circuit on

concrete schemes instantiated with commonsense

knowledge and explore how the internal behavior

varies with different schemes and models.

2.1 Syllogism Completion Task

We design a syllogism completion task for assess-

ing the reasoning abilities of LMs, building upon

established approaches in the literature (Betz et al.,

2021; Wu et al., 2023). In particular, we focus on

categorical syllogisms with universal affirmative

quantifiers (i.e., AAA-1, Barbara) because of their

frequency in natural language and their content-

independent reasoning property. The syllogistic

argument is typically composed of two premises

(P1,P2) and a conclusion (C), with s and p de-

noting the subject and predicate terms in the con-

clusion (e.g. men and mortal), and m1 and m2

(e.g., humans) denoting the middle terms in the

two premises, with m1 ≡ m2 in the case of the

AAA-1 syllogism.

To evaluate syllogistic reasoning in LMs, we

formalize the completion task as language model-

ing, removing the final token p from the conclusion

(e.g., All men are humans. All humans are mortal.

Therefore, all men are), and comparing the proba-

bility assigned by the LM to p (e.g., mortal) and

the middle term m (e.g., humans). In general, an

LM is successful in the completion of a task if the

following condition applies:

P (p | [P1;P2; C\{p}]) > P (m | [P1;P2; C\{p}])

In our experiments, we measure the logit dif-

ference δ between the tokens p and m, defined

as δ(p,m) = logit(p) − logit(m), which approxi-

mates the log ratio of the conditional probabilities:

δ(p,m) ≈ log

(

P (p | [P1;P2; C \ {p}])
P (m | [P1;P2; C \ {p}])

)
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Dataset Construction. We conduct experiments

using two distinct datasets, symbolic and non-

symbolic, to derive comparative implications for

model reasoning capabilities. The symbolic dataset

is constructed by randomly sampling triples (e.g.,

A, B, and C) from the set of 26 uppercase letters

of the English alphabet. On the other side, the non-

symbolic dataset is constructed by replacing the

letters with words while preserving the syllogis-

tic schema. Here, we generate two different non-

symbolic sets: a belief-consistent set containing

true premises and a belief-inconsistent set contain-

ing false premises to address RQ2 (see Table 1).

To guarantee the truth condition of the premises,

we leverage GenericsKB (Bhakthavatsalam et al.,

2020), a knowledge base containing statements

about commonsense knowledge. The detailed gen-

eration process is in Appendix B.

2.2 Circuit Discovery

Our main objective is to find a circuit C for syllogis-

tic reasoning in a language model M. A circuit C
can be defined as a subset of the original model M
that is both sufficient and necessary for achieving

the original model performance on the syllogistic

completion task. In order to identify a circuit, we

employ activation patching together with circuit

ablation (Meng et al., 2022; Vig et al., 2020).

Activation Patching. This technique involves

modifying the activation of targeted components

and observing the resulting changes. Our study pri-

marily examines the activation of residual streams

and multi-head self-attention at the sequence level

to trace the term information flow. Activation patch-

ing includes three model runs (Clean, Corrupted

and Intervened) alongside a quantification process

to measure the effect of the interventions (see Fig-

ure 2(1)±(4)). Given a masked syllogistic input

x = [P1;P2; C \ {p}] as (s,m1,m2, p), which can

be read as ªAll s are m1. All m2 are p. Therefore,

all s are [mask]º, and its correct completion y = p,

the activation patching technique consists of the

following steps:

(1) Clean Run. For the target syllogistic input

(s,m1,m2, p), we record the baseline logit differ-

ence, δ+(p,m) from the forward pass output of the

model (Figure 2(1)).

(2) Corrupted Run. We re-run the model on a

corrupted input after applying a specific interven-

tion (e.g., changing the middle term m2) and record

the logit difference δ−(p,m) (Figure 2(3)).

(3) Intervened Run. We run the model with the

corrupted inputs again and replace the corrupted

activations with those from the clean runs to com-

pute the response from the remaining components

and measure the causal impact of the intervention.

Here, we measure the adjusted logit difference

δp(p,m) (Figure 2(2)).

(4) Quantification. We quantify the causal im-

pact of each intervention using a patching score

S following (Heimersheim and Nanda, 2024) as

shown in Figure 2(4). This score is further normal-

ized to [−1, 1].

We complement Activation Patching with known

methods for analysing hidden activations in trans-

formers, including Logit Lens (Nostalgebraist,

2020) with an input-agnostic approach (Dar et al.,

2023; Hanna et al., 2024). Additional technical

details can be found in Appendix C.

2.3 Causal Interventions

The choice of tokens to corrupt is a critical aspect of

the experimental design, and it is essential to estab-

lish an appropriate type of intervention that aligns

with the hypothesis being tested. In this study,

we employ two distinct interventions to isolate the

mechanisms related to the reasoning schema from

the propagation of specific token information:

(1) Middle-Term Corruption. To investigate

the reasoning mechanism employed in the syllo-

gism completion task, we primarily focus on the

transitive property of the middle term, (m1 →
m2)∧ (m1 ≡ m2). We hypothesize that disrupting

the transitive property will localize the component

responsible for syllogistic reasoning. Therefore,

our intervention method replaces the second mid-

dle term m2 with an unseen symbol m′
2, breaking

the equality and effectively corrupting the valid-

ity of the reasoning, pivoting the correct answer

towards m: (s,m1,m2, p) → (s,m1,m
′
2, p).

(2) All-Term Corruption. We examine how

term-related information flows to the last position

for the final prediction to identify potential mover

heads. To this end, we replace the original terms

(s,m1,m2, p) with different terms (s′,m′
1,m

′
2, p

′)
while keeping the answers unchanged. We hypothe-

size that if heads carry the information preferring p

over m for the valid prediction, the logit difference

will increase; otherwise, it will decrease.
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Figure 3: Visualization of the symbolic reasoning circuit identified in the model. (a) Attention output patching and (b)

residual stream patching using middle-term interventions highlight the role of attention head h11.10 in aggregating

information from the duplicated middle term to the predicate token position [p]. (c) Logit lens visualization of

the OV (output vector) of h11.10 across 26 uppercase letters reveals its suppressive effect on the attended token at

[p]. (d) Residual stream patching with all-term corruption indicates that key reasoning information is concentrated

at term token positions. (e)±(h) Average attention weights across the batch: (e) attention from token position [p],
attending strongly to [m2]; (f)±(h) attention from the last token position, identifying which heads (mover heads)

propagate term information to the output. For clarity, a dash (±) on the axis indicates the averaged values for tokens

appearing between terms.

2.4 Circuit Ablation and Evaluation

Once we discover a relevant circuit C, we evaluate

its necessity and sufficiency using mean ablation.

Specifically, we define a circuit C as necessary if

ablating the identified heads H in C and preserv-

ing the remaining components in M decreases the

original performance. Conversely, we define a cir-

cuit C as sufficient if preserving only the identified

heads H in C and ablating all the remaining heads

in the original model M is sufficient to obtain the

performance of M. To perform mean ablation, we

gradually average the target attention heads from

downstream to upstream layers and measure the

average logit difference δ(p,m) to assess the im-

pact of the ablation on M. Additional details are

included in Appendix D.

3 Mechanistic Interpretation

Empirical Setup. We select the LM for circuit

analysis based on a trade-off between model size

and performance. To this end, we measure the

accuracy of GPT-2 (Radford et al., 2019) at vari-

ous sizes (117M, 345M, 762M, and 1.5B) on the

syllogism completion task, aiming to identify po-

tential phase transition points where performance

changes significantly (Jason et al., 2022; Kaplan

et al., 2020). We observe a marked transition from

small to medium sizes, where average performance

across three datasets increases by 439.06% (see

Figure 6(a), Appendix E). The shift is even more

pronounced under the logit difference metric (see

Section 4.4 and Figure 6(b), Appendix E). Based on

these findings, we select GPT-2 MediumÐwhose

architecture is summarized in Appendix FÐfor

circuit discovery, and subsequently evaluate gen-

eralization across model sizes and architectures

(Sections 4.3 and 4.4).

3.1 Transitive Reasoning Mechanisms

Middle-term corruption reveals information

flow relevant to the transitive property. Fig-

ure 3(a-b) presents the results of the middle-term

intervention targeting attention heads and residual

stream. Figure 3(a), in particular, reveals the pos-

itive role of heads h11.10 and h19.1 (where hl.k

denotes the kth head in layer l). Moreover, we

observe an information propagation pattern from

the [m2] position to the [p] position (Figure 3(b)).

These observations allow us to hypothesize that in-

formation from [m2] is conveyed to [p] on the resid-

ual stream by attention head h11.10, which exhibits

a strong patching score around the layer responsible
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for the propagation. To verify this hypothesis, we

further investigate the attention weights between

[p] and [m2]. As expected, [m2] is the position

most highly attended by [p], with an average atten-

tion weights of 0.15 ± 0.07 (Figure 3(e)). These

results suggest that information is indeed moved

from [m2] to [p] on the residual stream subspace,

with h11.10 playing a crucial role in this mecha-

nism.

Duplicate middle-term information is aggre-

gated via induction heads. We further investi-

gate how information from [m2] is moved to [p],
positing that this relates to the model’s internal rea-

soning mechanism. We notice that at position [p],
the model can observe the complete AAA-1 syl-

logistic structure (Figure 2(a)) with middle-term

duplication. We hypothesize that this structural in-

formation for reasoning is collected at one position,

given that information refinement occurs at the spe-

cific position such as last token (Hanna et al., 2024;

Stolfo et al., 2023). To verify this, we employ path

patching (Wang et al., 2023), a more selective vari-

ant of activation patching, to trace the information

flow of head h11.10. Our results show that h11.10

operates based on several induction heads (Elhage

et al., 2021) (h5.8, h6.1, h6.15 and h7.2) formed at

[m2]. These heads attend to the [[m1] + 1] token

due to the m1 ≡ m2 conditioned matching opera-

tion, likely containing m1-related information from

previous token heads. We conclude, therefore, that

m1 and m2 information are aggregated at position

[p]. Additional details of the path patching results

are available in the Appendix G.

A suppressive mechanism is revealed through

Logit Lens. To better understand the internal

mechanism occurring at the [p] position, we inves-

tigate attention head h11.10. Having previously ex-

amined the attention pattern (composed of attention

weights), we now focus on the attention value and

output by analyzing the OV circuit (WV WO) (El-

hage et al., 2021) using the logit lens method (Nos-

talgebraist, 2020). Interestingly, the result in Fig-

ure 3(c) shows a clear negative diagonal pattern

suggesting that h11.10 strongly suppresses the logit

when attending to the same token as the correspond-

ing output. Given our previous findings that h11.10

reads information from the subspace of token [m2],
we conclude that it applies a suppressive mecha-

nism to m-related information and writes it back

to the residual stream’s subspace at [p]. If later

heads carry this information to the last token, this

mechanism becomes crucial for the model to arrive

at the correct answer. For simplicity, we name head

h11.10 as m-suppression head.

3.2 Term-Related Information Flow

Key information is moved from term-specific po-

sitions to the last position. Now, we use the all-

term intervention method to localize mover heads

that carry term-related information. In the residual

stream patching results (Figure 3(d)), we observe

the highest positive score at the [p] position, while

negative scores are most prominent at the [m1] and

[m2] positions, indicating that the information re-

siding in these positions indeed contributes to their

corresponding token prediction. This observation

aligns with the importance of token embedding

information at their respective positions given iter-

ative refinement on the residual stream (Simoulin

and Crabbé, 2021). A closer examination of the

last token position reveals that the negative effect

propagates from relatively early layers (approxi-

mately layer 10 onwards), yet positive effects are

from later layers (approximately layer 14 onwards),

incurring a positive shift of the model’s prediction

from m to p.

Information is carried by later positive and neg-

ative mover heads. Given the findings that the in-

formation for prediction resides in term-specific po-

sitions, we trace which attention heads transfer the

information from each term position ([p], [m1] and

[m2]) to the last token. We call these heads mover

heads as the existence of ªpositive or negative

mover headsº that carry or suppress information

from the specific token position to the last token

position (Wang et al., 2023; García-Carrasco et al.,

2024). To identify the sources of information flow,

we apply attention value-based patching and iso-

late nine notable mover heads (see Appendix H for

localization details). Among them, h14.14, h15.14,

and h18.12 act as positive copy heads, attending

strongly to [p], while h19.1 functions as a positive

suppression head, exhibiting high attention to [m2]
and [s] (see Figure 3(f)). In contrast, h9.9, h11.1,

h12.1, h17.2, and h23.10 serve as negative copy

heads, focusing primarily on [m1] (Figure 3(g))

or showing more diffuse pattern (Figure 3(h)).

A long induction mechanism in early layer

movers causes biases towards the middle term.

Notably, the early negative mover heads (h9.9,

h11.11 and h12.1 in Figure 3(g)) exhibit signifi-

cantly high attention to [m1]. This pattern indicates
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that these heads transfer information from the [m1]
position directly to the last token position, nega-

tively affecting the final prediction and biasing the

model towards m. We notice that this behavior

closely resembles that of induction heads (Elhage

et al., 2021) defined on bi-grams ([s][are]) rather

than uni-gram ([are]), supported by previous token

heads in upstream layers (e.g., h8.1).

3.3 Circuit Discovery Summary

Overall, we found that the mechanisms for syllo-

gistic inference involve the following phases:

(1) Long Induction: Early layers exhibit biases

towards the wrong conclusion due to long-range

repetition of the first premise ªAll A are Bº.

(2) Duplication: Induction heads aggregate in-

formation about duplicated middle terms in the

premises.

(3) Suppression: The model aggregates and in-

hibits middle-term information (i.e.,‘B’) suppress-

ing the long induction mechanism.

(4) Mover: Token-specific information is propa-

gated to the last position. The process ends in the

prediction shift from ‘B’ to the correct token ‘C’.

These results suggest that the circuit is charac-

terized by an internal error correction mechanism.

Interestingly, this mechanism is different from the

way human experts would reason on syllogistic

arguments through the systematic application of

abstract logical primitives and inference rules.

4 Circuit Evaluation

The circuit is sufficient and necessary for sym-

bolic arguments. To evaluate the comprehensive

correctness of the circuit, we assess necessity and

sufficiency via the ablation method described in

section 2. The ablation study in Figure 4(a) shows

that the identified circuit is both necessary and suf-

ficient, demonstrating a consistent performance

degradation when removing circuit components

and revealing a complete restoration of the original

model’s performance when considering only the

circuit’s subcomponents.

The circuit is robust to superficial variations.

We further verify the robustness of the symbolic

circuit to superficial and semantic-preserving per-

turbations. In particular, we modify the letters

into numbers (Figure 4(b)) and adopt semantically

equivalent quantifiers and related verbs (e.g., ªAll

(a) (b)

Accumulated ablated (added) Heads

Lo
gi

t D
iff

er
en

ce

Figure 4: Circuit ablation results for (a) correctness

and (b) robustness on the symbolic dataset. Solid lines

show numeric perturbation-based performance, dotted

lines indicate quantifier perturbation-based performance

in (b), and the dashed line shows the baseline logit

difference without knockouts. These results validate the

necessity, sufficiency, and robustness of the identified

symbolic reasoning circuit.

(b)(a)

Accumulated ablated (added) Heads

Lo
gi

t D
iff

er
en

ce

Figure 5: Circuit ablation results for evaluating trans-

ferability on non-symbolic datasets: (a) the belief-

consistent and (b) the belief-inconsistent. The dashed

line represents the baseline logit difference without

knockouts. In both cases, the symbolic circuit is neces-

sary, as ablating it reduces performance. However, the

circuit is only sufficient for belief-consistent data, as

recovery fails in belief-inconsistent settings, suggesting

interference from belief-bias.

... areº is converted into ªEach ... isº). The ab-

lation result demonstrates that both types of per-

turbations do not undermine the sufficiency and

necessity property of the circuit.

4.1 Circuit Transferability to Concrete

Arguments

The circuit is necessary for non-symbolic argu-

ments, yet not sufficient for belief-inconsistent

ones. We present ablation results for the two

generated non-symbolic datasets: belief-consistent

(Figure 5(a)) and belief-inconsistent (Figure 5(b)).

Notably, the symbolic circuit proves necessary for

both types of non-symbolic inputs, suggesting that

the logic derived from symbolic syllogisms remains
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essential even when natural words are substituted.

Regarding sufficiency, while belief-consistent data

show significant performance recovery, we observe

an inability to restore performance on the belief-

inconsistent set despite an increasing trend. These

results indicate that belief biases encoded in differ-

ent attention heads may play an important role.

Belief biases corrupt reasoning mechanisms.

To further investigate the impact of belief biases,

we again conduct intervention experiments. Specif-

ically, we observe that in the AAA-1 syllogism

schema (s,m1,m2, p), the subject token s should

be irrelevant for deriving the correct answer p

over m. Therefore, we leverage this property

to verify whether word-specific biases are intro-

duced when instantiating the schema with con-

crete knowledge. To this end, we perform ac-

tivation patching by corrupting the subject term,

transforming (s,m1,m2, p) to (s′,m1,m2, p), and

measuring the degradation in logit difference as

δ+(p,m)− δ−(p,m). Notably, the non-symbolic

setting exhibits a significant performance degrada-

tion of 0.66±1.27, representing a 299.96% change

from the baseline. In contrast, the symbolic setting

shows a minimal degradation of 0.00 ± 0.64, a

mere 0.35% drop. This drastic difference supports

our hypothesis that the knowledge acquired during

pre-training corrupts the content-independent rea-

soning circuit identified on the symbolic set with

additional attention heads.

4.2 Generalization to Syllogistic Schemes

We further aim to understand whether the symbolic

circuit is specific to the AAA-1 syllogism (Bar-

bara). To this end, we extend our experiment to

encompass all 15 unconditionally valid syllogisms

(see Appendix A and I for details about the syllo-

gistic schemes and more experimental results). To

evaluate the transferability to all 15 schemes, we

verify three main conditions, reported in Table 2:

(C1) Necessity, (C2) Sufficiency, and (C3) Positive

Logit Difference. We also measure the accuracy

of the completion task for each syllogism. From

Table 2, we observe that the circuit is sufficient and

necessary for all the syllogistic schemes in which

the model achieves high downstream accuracy (≥
60%), supporting the conclusion that the circuit

includes components that are crucial for the emer-

gence of syllogistic reasoning in general. Notably,

all three conditions are satisfied for the affirma-

tive syllogisms (AII-3, IAI-3, IAI-4), for which the

Mood-Figure C1 C2 C3 Acc

AII-3 (Datisi) ✓ ✓ ✓ 0.84
IAI-3 (Disamis) ✓ ✓ ✓ 0.68
IAI-4 (Dimaris) ✓ ✓ ✓ 0.68
AAA-1 (Barbara) ✓ ✓ ✓ 0.67

EAE-1 (Celarent) ✓ - ✓ 0.59
EIO-4 (Fresison) ✓ - ✓ 0.53
EIO-3 (Ferison) ✓ - ✓ 0.53

AII-1 (Darii) ✓ ✓ - 0.43
AOO-2 (Baroco) - - - 0.24
AEE-4 (Camenes) - - - 0.24
OAO-3 (Bocardo) ✓ - - 0.22
EIO-1 (Ferio) ✓ - - 0.18
EIO-2 (Festino) - - - 0.09
EAE-2 (Cesare) - - - 0.08
AEE-2 (Camestres) - - - 0.04

Table 2: Generalizability across unconditionally valid

syllogistic forms. Columns C1, C2, and C3 indicate

whether conditions are met (✓) or not (-): C1: Neces-

sity, C2: Sufficiency, C3: Positive Logit Difference.

‘Accuracy (Acc)’ shows performance on the completion

task for each syllogism. The results show that the model

achieves high downstream accuracy particularly for af-

firmative syllogisms.

model achieves an accuracy above 0.6.

4.3 Generalization to Model Sizes

Next, we expand our analysis to different sizes of

GPT-2 (small, large and XL). Here, the interven-

tion results show similar suppression mechanism

patterns and information flow across all models.

However, the residual stream of GPT-2 small in

the all-term corruption setup is reversed due to

its low downstream accuracy (see Appendix J for

additional details). Moreover, as the model size

increases, we found evidence that the contribution

of attention heads becomes more complex. We hy-

pothesize this might be caused by a stronger impact

of world knowledge with increasing size, as sug-

gested by the decrease in accuracy on the symbolic

dataset and the increase on the non-symbolic set

observed for the XL model (see Figure 6(a)±(b),

Appendix E).

4.4 Generalization to Model Families

We further extend our investigation to assess

whether a similar reasoning mechanism can be

identified across different LMs. Specifically, we

evaluate the circuit on: Pythia with 70M, 160M,

410M, and 1B parameters (Biderman et al., 2023);

Qwen 2.5 with 0.5B and 1.5B parameters (Yang

et al., 2024); Llama 3.2 with 1B parameters (et al.,

2024); and additionally, GPT-2-medium after be-
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Model S BC BI

Group 1: Erratic Pattern

Pythia-70M 0.19 0.02 0.02
Pythia-160M 0.00 0.12 0.21

Group 2: Compatible Pattern

Pythia-410M 0.99 0.40 0.51
Pythia-1B 0.30 0.31 0.43
Llama-3.2-1B 1.00 0.81 0.70

Group 3: Variant Pattern

Qwen2.5-0.5B 1.00 0.96 0.90
Qwen2.5-1.5B 1.00 0.99 0.90

Table 3: Accuracy comparison across different models:

symbolic (S), belief-consistent (BC), and inconsistent

(BI). Group 1 models exhibit erratic patterns, failing to

establish a stable reasoning mechanism. Group 2 mod-

els exhibit a compatible reasoning circuit with consistent

information flow and suppression. Group 3 exhibits a

functional but distinct suppression mechanism, where

suppression is applied at the last token position.

ing fine-tuned on argumentative texts for critical

thinking (Betz et al., 2021).

Our results reveal distinct grouping patterns. In

relatively small modelsÐsuch as Pythia 70M and

160MÐwe observe erratic activation patterns that

mirror the limitations seen in under-scaled models

like GPT-2 small. In contrast, models with more

than 0.5B parameters (namely, Pythia 410M, Pythia

1B, and Llama 3.2 1B) exhibit a compatible pat-

tern in terms of information flow and suppressive

mechanisms. Qwen exhibits a variant suppressive

mechanism, with the suppression head operating

at the last token position rather than [p]. Mean-

while, the fine-tuned GPT-2 medium model yields

activation patterns that are nearly indistinguishable

from its pre-trained counterpart, suggesting that the

core reasoning circuit originates from pre-training

rather than fine-tuning. Table 3 summarizes the ac-

curacy of each model across the Symbolic, Belief-

Consistent, and Belief-Inconsistent datasets (see

further circuit analysis details in Appendix K).

Overall, our results indicate that while the rea-

soning circuit generalizes effectively across suffi-

ciently scaled models, subtle architectural nuances

can lead to distinct but comparable dynamics.

5 Related Work

Mechanistic circuit analysis has emerged as a

promising approach to interpreting the internal

mechanisms of Transformers (Olah et al., 2020;

Nanda et al., 2023; Olsson et al., 2022; Wang et al.,

2023; García-Carrasco et al., 2024; Hanna et al.,

2024). Existing approaches investigating inter-

nal reasoning mechanisms mainly focus on math-

related tasks, elucidating the information flow for

answering mathematical questions (Stolfo et al.,

2023) and examining arithmetic operations (Quirke

and Barez, 2024). Most pertinent to our work,

Wiegreffe et al. (2025) provides a mechanistic in-

terpretation of multiple-choice question answering,

investigating attention head-level patterns. In gen-

eral, our mechanistic analysis complements recent

work investigating the challenges in processing rea-

soning arguments that contradict established beliefs

and whether the reasoning in LMs stems from in-

ternalized rules or memorized content (Ando et al.,

2023; Yu et al., 2023; Wu et al., 2024; Talmor et al.,

2020; Wu et al., 2024; Kassner et al., 2020; Haviv

et al., 2023; Feldman, 2020; Monea et al., 2024; Yu

et al., 2023; Wallat et al., 2020; Eisape et al., 2024).

To address this question, different mechanistic ap-

proaches have been adopted to localizing factual

associations (Meng et al., 2022; Geva et al., 2023;

Dai et al., 2022) or assessing conditions for gener-

alization (Wang et al., 2024). However, to the best

of our knowledge, we are the first to investigate

mechanisms for syllogistic reasoning.

6 Conclusion

In this study, we presented a comprehensive mech-

anistic interpretation of syllogistic reasoning in lan-

guage models. By combining activation patching,

embedding space analysis, and circuit ablation, we

uncovered a structured error-correction mechanism

characterized by the suppression of duplicated mid-

dle terms and the propagation of relevant infor-

mation via mover heads. Our findings show that

this circuit is necessary and sufficient for symbolic

syllogistic reasoning. Moreover, we demonstrated

that, while this reasoning mechanism generalizes

across syllogistic schemes, model architectures and

sizes, it remains susceptible to contamination from

belief biases when instantiated with natural lan-

guage inputs. Overall, our findings suggest that

LMs learn transferable reasoning mechanisms but

that, at the same time, such mechanisms might be

contaminated and suppressed by the same world

knowledge acquired during pre-training. Further

studies will be required to understand how the dis-

covered symbolic circuit can be effectively disen-

tangled from world knowledge to enable systematic

generalization in LMs’ reasoning.
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7 Limitations

It is important to acknowledge some of the limita-

tions of our study. First, our analysis is conducted

predominantly on the transitive property and term-

specific information and does not consider the full

spectrum of the reasoning dynamics that might ap-

pear in more complex scenarios which are hard to

model via causal intervention techniques. Second,

Our experimentation is confined to specific syllo-

gistic reasoning templates due to the intricate level

of granularity and the computational complexity

required in circuit analysis. Despite these limita-

tions, however, we believe our findings could offer

valuable insights into the reasoning mechanisms

adopted by language models for formal reasoning

and related biases, laying a solid foundation for

future research in this field.
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A Unconditionally Valid Syllogism

Schemes

We list all 15 unconditionally valid syllogisms (Ta-

ble 4).

B Dataset Generation

B.1 Symbolic

The symbolic dataset comprises sentences where

all terms in the premises are represented by abstract

symbols (uppercase alphabet letters). From the set

of all 26 uppercase alphabets, three-letter triples

(e.g., A, B and C) are randomly sampled. For each

triple, six permutated prompts and label pairs are

generated following syllogism templates designed

to minimise latent semantic interference among

alphabet symbol tokens.

B.2 Non-symbolic

The non-symbolic datasets are constructed based

on GenericsKB (Bhakthavatsalam et al., 2020), a

resource that provides a foundation for the evalua-

tion of sentence veracity with associated truthful-

ness scores (0-1). The dataset construction process

involves the following steps:

• Extraction: Select generic sentences with

a truthfulness score of 1 based on Generic-

sKB (Bhakthavatsalam et al., 2020), specifi-

cally those in the form A are B, using regular

expression.

• Syllogism Construction: We form univer-

sal affirmative syllogism arguments (Barbara)

based on a template by chaining sentences

where the predicate of one sentence logically

matches the subject of another.

• Constraints: We exclude terms tokenized

into multiple tokens to maintain consistency in

comparison with the symbolic dataset, which

is essential for coherent circuit analysis.

• Classification: To address issues of partial in-

clusion and syntactic ambiguity in constructed

syllogism arguments, we employ GPT-4 (Ope-

nAI, 2024) to classify whether arguments con-

tain only truthful premises and whether the

middle-terms are syntactically and semanti-

cally equivalent. This step helps us clas-

sify a belief-consistent dataset and a belief-

inconsistent dataset.
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Name Mood Figure Premise (m) Premise (M) Conclusion

Barbara AAA 1 ∀x(s,m) ∀x(m, p) ∀x(s, p)
All A are B. All B are C. All A are C.

Celarent EAE 1 ∀x(s,m) ∀x¬(m, p) ∀x¬(s, p)
All A are B. No B are C. No A are C.

Darii AII 1 ∃x(s,m) ∀x(m, p) ∃x(s, p)
Some A are B. All B are C. Some A are C.

Ferio EIO 1 ∃x(s,m) ∀x¬(m, p) ∃x¬(s, p)
Some A are B. No B are C. Some A are not C.

Camestres AEE 2 ∀x¬(s,m) ∀x(p,m) ∀x¬(s, p)
No A are B. All C are B. No A are C.

Cesare EAE 2 ∀x(s,m) ∀x¬(p,m) ∀x¬(s, p)
All A are B. No C are B. No A are C.

Baroco AOO 2 ∃x¬(s,m) ∀x(p,m) ∃x¬(s, p)
Some A are not B. All C are B. Some A are not C.

Festino EIO 2 ∃x(s,m) ∀x¬(p,m) ∃x¬(s, p)
Some A are B. No C are B. Some A are not C.

Disamis IAI 3 ∀x(m, s) ∃x(m, p) ∃x(s, p)
All B are A. Some B are C. Some A are C.

Datisi AII 3 ∃x(m, s) ∀x(m, p) ∃x(s, p)
Some B are A. All B are C. Some A are C.

Ferison EIO 3 ∃x(m, s) ∀x¬(m, p) ∃x¬(s, p)
Some B are A. No B are C. Some A are not C.

Bokardo OAO 3 ∀x(m, s) ∃x¬(m, p) ∃x¬(s, p)
All B are A. Some B are not C. Some A are not C.

Dimaris IAI 4 ∀x(m, s) ∃x(p,m) ∃x(s, p)
All B are A. Some C are B. Some A are C.

Camenes AEE 4 ∀x¬(m, s) ∀x(p,m) ∀x¬(s, p)
No B are A. All C are B. No A are C.

Fresison EIO 4 ∃x(m, s) ∀x¬(p,m) ∃x¬(s, p)
Some B are A. No C are B. Some A are not C.

Table 4: 15 Unconditionally valid syllogism schemes. The table lists the syllogisms by their traditional names,

moods, and figures, with formalized logical expressions on the first line and corresponding natural language

examples on the second line. The minor premise (m) is presented before the major premise (M) to emphasize the

transitive property in AAA-1 syllogism.

• Validation: We manually evaluate the align-

ment of classified arguments with human

belief-consistency (i.e., premises are true and

logic is valid).

This process ensures that our non-symbolic dataset

maintains logical equivalence with the symbolic

dataset while incorporating meaningful semantic

real-word concepts.

B.3 Data Statistics

For all experiments, we use 90 samples each for

both symbolic and non-symbolic arguments to bal-

ance analytical depth with computational efficiency.

This sample size sufficiently yields statistically sig-

nificant activation patching results (p < 0.05). We

organize data statistics for generated datasets (Ta-

ble 5).

C Embedding Space Analysis Details

One established method for analyzing hidden ac-

tivation in transformer language models is the

logit lens, which projects activation into embed-

ding space (Nostalgebraist, 2020; Elhage et al.,

2021; Geva et al., 2022). We focus on an input-

agnostic approach (Dar et al., 2023; Hanna et al.,
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Statistic SYM BC BI

Number of Samples 90 90 90

Token Sequence Length 15 15 15

Unique Terms (s) 26 87 86

Unique Terms (m) 26 70 35

Unique Terms (p) 26 59 64

Table 5: Summary of Dataset Statistics. SYM refers to

the symbolic dataset, BC refers to the non-symbolic

belief-consistent dataset, and BI refers to the non-

symbolic belief-inconsistent dataset.

2024), utilizing both unembedding (WU ) and em-

bedding (WE) matrices to construct a R|V |×|V | ma-

trix, where |V | denotes the model’s vocabulary

size. This study employs the OV circuit (Elhage

et al., 2021) of attention heads, formed by attention

value and output weights (WV WO), to understand

how source tokens generally influence output logits.

The OV circuit-based logit lens for attention head h

is formalized as WEW
h

V W
h

OWU ∈ R
|V |×|V |. Fol-

lowing the previous works (Elhage et al., 2021; Dar

et al., 2023), this formulation omits layer normal-

ization.

D Circuit Ablation Method Details

To measure the necessity and sufficiency of the

circuit C in the model M, we knock out attention

heads in H from the model M and measure the

average logit difference δ(p,m) along the batch.

We denote the logit difference in circuit state C as

δ(p,m, C) and every subset of heads set as H ⊂ H.

In order to verify the head’s necessity in the

model, we conduct a cumulative ablation of C from

total circuit M, progressing from downstream to

upstream layers. At each ablation step k, where

C∗
k = M\Hk and Hk denotes the set of ablated

attention heads up to step k as:

Ex∼X [δk(p,m, C∗
k)] where C∗

k = M\Hk

Conversely, we perform a cumulative addition of

attention heads for evaluating the sufficiency of the

circuit, starting from earlier layers and progressing

to later ones, while maintaining all other attention

heads in a mean-ablated state. At each addition

step j, where C∗
j = M\ (H \Hj) and Hj denotes

the set of added attention heads up to step j as:

Ex∼X [δj(p,m, C∗
j )] where C∗

j = M\ (H \Hj)

E Phase Transition

In Figure 6(a±b), we observe a notable phase tran-

sition from small to medium models in accuracy

and logit difference.

F GPT-2 Model Architecture

We provide a self-contained concise overview of

the GPT-2 model architecture, highlighting the

main components and their mathematical relation-

ships. Bias terms are not presented for the simplic-

ity. We refer the conventions of notation in Elhage

et al. (2021) and Geva et al. (2023).

Notation

• xi - One-hot encoded vector representing the

i-th token in the input sequence.

• pi - One-hot encoded vector representing the

i-th positional information.

• rli - Residual stream vector representing the

i-th token at layer l in the input sequence.

• W token
E ,W

pos
E - Token and positional embed-

ding matrices.

• Al
i - Output from the Multi-Head Self-

Attention sublayer

• M l
i - Output from Multi-Layer Perceptron

(MLP) sublayer.

• WQ,WK ,WV ,WO - Query, key, value, out-

put weight matrices of attention heads.

• W in,W out - Input and output weight matrices

of MLP feed-forward networks.

• d - Dimension of the attention head state em-

bedding vectors.

• D - Dimension of the hidden state embedding

vectors.

• N - Length of the input sequence.

• L - Total number of transformer layers.

• V - Vocabulary set of the model.

• σ and σ′ - Activation functions used in self-

attention and MLP sublayers, respectively.
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Figure 6: Accuracy and logit difference on the syllogism completion task across all different sizes of GPT-2 for

three different datasets.

Embedding Layer. Each token in the input se-

quence is transformed into an embedded represen-

tation by combining token-specific and positional

embeddings:

r0i = xiW
token
E + piW

pos
E

This operation initializes the input for the trans-

former layers, where r0i represents the initial em-

bedded state of the i-th token.

Residual Stream. The residual stream facilitates

the propagation of information across transformer

layers. It is updated at each layer by contributions

from the multi-head self-attention and multi-layer

perceptron sublayers:

rli = rl−1

i +Al
i +M l

i

Multi-Head Self-Attention Sublayer. This sub-

layer processes information by applying self-

attention mechanisms across multiple ‘heads’ of

attention, enabling the model to capture various

aspects of the input data, where σ represent the

non-linearity function:

Al
i =

∑

h∈H

(

σ

(

(rliW
h
Q)(r

l
iW

h
K)T

√
dK

)

(rliW
h
V )

)

W h
O

Each head computes a weighted sum of all tokens’

transformed states, focusing on different subsets of

sequence information.

Multi-Layer Perceptron Sublayer. Each to-

ken’s representation is further processed in a

position-wise manner by the MLP sublayer:

M l
i = σ′(rliW

in)(W out)T

The MLP modifies each token’s state locally, en-

hancing its ability to process information.

Layer Normalization. Before processing by self-

attention and MLP processing, each token’s state is

normalized to stabilize learning and reduce training

time:

LN(rli) = γ ⊙ rli − µl
i

√

(σl
i)
2 + ϵ

+ β

This step ensures that the activations across differ-

ent network layers maintain a consistent scale.

Prediction Head. The prediction head generates

logits for the next token prediction using the final

transformed states:

logitsN = LN(rLN )WU

The predicted token is chosen based on the sam-

pling method (e.g., greedy decoding) at the last

position N .

G Path Patching Details

Path patching, an generalized version of activation

patching, aims to compute direct effects among

model components rather than indirect effects dif-

fused from intervened components (Wang et al.,

2023). This method involves freezing non-targeted

activations during an initial forward pass, storing

the targeted activation state in intervention, and

then executing a subsequent forward pass with the

targeted activation state substituted by the stored

one. This approach isolates targeted component-to-

component effects, eliminating non-relevant inter-

actions. In our implementation, we employ a nois-

ing method where clean activations are replaced

with corrupted ones, resulting in negative scores

indicating positive contributions from correspond-

ing components. Our findings, illustrated in Figure
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7, reveal that h11.10 strongly operates based on

several heads: h5.8, h6.1, h6.15, and h7.2. Man-

ual investigation of attention patterns subsequently

confirmed these as induction heads (Elhage et al.,

2021).

Head

La
ye
r

La
ye
r

Figure 7: Path patching results for (Top) symbolic inputs

and non-symbolic inputs (Bottom) in the middle-term

corruption setup. Note that negative heads are positively

influencing heads, as we replace corrupted activation

with clean ones in our noising method.

H Localizing Mover Heads

To efficiently classify the numerous attention heads

(384 in GPT-2 medium) within the model, we cal-

culate the Positional Patching Difference (PPD) to

construct a four-quadrant analysis:

PPD = |S[p]| − |S[m1] + S[m2]|

This method involves intervening in the attention

value weights WV and constructs a distribution lay-

out of heads, providing a systematic classification

for quadrant groups. The layout is composed of the

PPD score on the x-axis and the patching score for

all sequence positions (S) on the y-axis.

Based on this PPD score quadrant layout analy-

sis, we categorize heads according to their quadrant

positions, revealing insights into their functional

roles:

(1) First quadrant (Positive Copy Candidates):

Heads with S > 0 and positive PPD, pre-

dominantly copying [p]-based information.

(2) Second quadrant (Positive Suppression Can-

didates): Heads with S > 0 but negative PPD,

predominantly suppressing [m]-based infor-

mation.

(3) Third quadrant (Negative Copy Candidates):

Heads with S < 0 and negative PPD, predom-

inantly copying [m]-based information.

(4) Fourth quadrant (Negative Suppression Can-

didates): Heads with S < 0 but positive PPD,

predominantly suppressing [p]-based informa-

tion.

The intervention of attention head values is

selected because all-term corruption maintains

the same positional alignment for all samples

(s,m1,m2, p) → (s′,m′
1,m

′
2, p

′), resulting in

minimal impact from attention head pattern in-

terventions composed by attention query and key.

Consequently, we can infer that the attention head

output patching results primarily are derived from

the attention value activation. This property en-

ables us to localize the source token positions from

which the term information is moved by attention

value patching.

Formally, when we denote the attention

query, key, value, and output weight matri-

ces as WQ,WK ,WV , and WO respectively,

and the residual stream vector as r, one

attention head output can be expressed as:

σ
(

(rWQ)(rWK)T
)

(rWV )WO, where σ repre-

sents the non-linearity function (softmax in GPT-2)

applied in the attention pattern.

To include only influential heads in the circuit,

we extracted outlier heads with an absolute patch-

ing score exceeding the threshold (τ ), defined by

the mean and standard deviation of all heads’ scores

as:

{h | |Sh| > τ} where τ = µ+ 2σ

Our analysis identifies 9 heads for the symbolic

circuit, as illustrated by red dots in Figure 8(a).

h14.14, h15.14, and h18.12 are classified as positive

copy candidates, while h19.1 is grouped as a pos-

itive suppression candidates. h9.9, h11.1, h12.1,

h17.2, and h23.10 are classified as negative copy

candidates. It is noteworthy that non-symbolic re-

sults reveal a more complex and noisy pattern in

the mover localization process (Figure 8(b)).

I Generalizability to Other Syllogisms

To assess the generalizability of our model, we

applied the circuit ablation method to all 15 uncon-

ditionally valid syllogisms (Table 4), and the result
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Figure 8: Distribution of attention heads in PPD-based quadrant analysis. (a) Results for symbolic inputs. (b) Results

for non-symbolic inputs. The x-axis represents normalized PPD scores, while the y-axis represents normalized

attention value-based patching scores (S). Red dots indicate attention heads above the threshold (τ ) of the patching

score.

is shown in Figure 9. Unconditionally valid syl-

logisms are logical arguments that maintain their

validity irrespective of the truth values of their

premises. The validity of these syllogisms is de-

termined solely by their logical form, which is

characterized by mood and figure combinations.

The mood of a syllogism is defined by the arrange-

ment of four proposition types ("All (A)", "No

(E)", "Some (I)", "Some ... not (O)") across its two

premises and conclusion. Conversely, the figure of

a categorical syllogism is determined by the struc-

tural arrangement of terms within the constituent

sentences. This approach enables the evaluation of

syntactic logic in isolation from contextual interfer-

ence and belief-bias effects.

J Generalizability Across Model Sizes

Our approach is guided by the universality hypoth-

esis, which suggests that similar representational

patterns and circuits emerge across models trained

on the same dataset (Olah et al., 2020; Kornblith

et al., 2019; Li et al., 2015). We assume that core

mechanisms should persist across these different

model sizes. Figure 10 presents the results of this

comparative analysis.

K Generalizability Across Different

Models

Figures 11 and 12 represent the results of applying

the same circuit analysis in different model fami-

lies. The m-suppression heads for each model were

manually selected based on their likelihood, deter-

mined by patching scores and positioning within

the activation pattern.
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Figure 9: Necessity and sufficiency performance results from circuit ablation method for all unconditionally valid

syllogistic forms. Labels (e.g., AII-3) denote mood and figure combinations.
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Figure 10: Comprehensive results of the symbolic circuit analysis across different model sizes. (a) Attention output

patching results and (b) residual stream patching results in the middle-term intervention setup. (c) OV circuit logit

lens results for m-suppression head, with input and output comprising 26 uppercase letters. (d) Residual stream

patching results in the all-term corruption setup. For clarity, a dash (±) indicates the averaged values for tokens

appearing between terms.
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Figure 11: Comprehensive results of the symbolic circuit analysis across different series of models (Pythia). (a)

Attention output patching results and (b) residual stream patching results in the middle-term intervention setup.

(c) OV circuit logit lens results for m-suppression head, with input and output comprising 26 uppercase letters.

(d) Residual stream patching results in the all-term corruption setup. For clarity, a dash (±) indicates the averaged

values for tokens appearing between terms.
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Figure 12: Comprehensive results of the symbolic circuit analysis across different series of models (Qwen2.5,

Llama3.2 and fine-tuned GPT-2 medium). (a) Attention output patching results and (b) residual stream patching

results in the middle-term intervention setup. (c) OV circuit logit lens results for m-suppression head, with input

and output comprising 26 uppercase letters. (d) Residual stream patching results in the all-term corruption setup.

For clarity, a dash (±) indicates the averaged values for tokens appearing between terms.
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