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Abstract: Objective (1): To develop and validate a machine learning (ML) model using
radiomic features (RFs) extracted from [18F]FDG PET-CT to predict abdominal aortic
aneurysm (AAA) growth rate. Methods (2): This retrospective study included 98 internal
and 55 external AAA patients undergoing [18F]FDG PET-CT. RFs were extracted from
manual segmentations of AAAs using PyRadiomics. Recursive feature elimination (RFE)
reduced features for model optimisation. A multi-layer perceptron (MLP) was developed
for AAA growth prediction and compared against Random Forest (RF), XGBoost, and Sup-
port Vector Machine (SVM). Accuracy was evaluated via cross-validation, with uncertainty
quantified using dropout (MLP), standard deviation (RF), and 95% prediction intervals (XG-
Boost). External validation used independent data from two centres. Ground truth growth
rates were calculated from serial ultrasound (US) measurements or CT volumes. Results (3):
From 93 initial RFs, 29 remained after RFE. The MLP model achieved an MAE ± SEM
of 1.35 ± 3.2e−4 mm/year with the full feature set and 1.35 ± 2.5e−4 mm/year with
RFE. External validation yielded 1.8 ± 8.9e−8 mm/year. RF, XGBoost, and SVM models
produced comparable accuracies internally (1.4–1.5 mm/year) but showed higher errors
during external validation (1.9–1.97 mm/year). The MLP model demonstrated reduced
uncertainty with the full feature set across all datasets. Conclusions (4): An MLP model
leveraging [18F]FDG PET-CT radiomics accurately predicted AAA growth rates and gen-
eralised well to external data. In the future, more sophisticated stratification could guide
individualised patient care, facilitating risk-tailored management of AAAs.
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1. Introduction
Abdominal aortic aneurysms (AAA) are defined as an aortic diameter over 3.0 cm,

they are often asymptomatic prior to potentially fatal complications such as dissection
or rupture [1]. Reported AAA prevalence varies depending on country and patient de-
mographics, affecting up to 2.2% and 2.5% of the American and European populations,
respectively [2]. The main risk factors for AAA include age, male gender, family history,
hypertension, hypercholesterolaemia and smoking [3–5]. Risk of rupture is increased in
patients with a vessel diameter greater than 5.5 cm, a growth rate above 1 cm/year and
female gender [6–9].

Advanced age and male sex have led to the adoption of a national screening programme
for men over 65 in the UK and US Preventive Services Task Force (USPSTF) recommending one-
time ultrasound screening in men aged 65 to 75 years who have ever smoked [10,11]. Current
AAA management guidelines advocate the use of diameter as a metric for risk stratification.
AAAs are monitored with ultrasound until they reach the intervention threshold of 5.5 cm. In
the UK, AAAs between 3.0–4.5 cm and 4.5–5.5 cm are monitored annually and every 3 months,
respectively. Ultrasound provides anatomical information at fixed time points but does not
predict potential growth rate. A biomarker to predict AAA growth and personalise surveillance
regimens or intervention thresholds is lacking in the field.

Previous studies have evaluated AAA metabolic activity using fluorine-18-2-deoxy-D-
glucose ([18F]FDG) positron emission tomography–computed tomography (PET-CT) as a
marker of pathological wall weakening [12,13]. There are conflicting data on the utility of
semi-quantitative analysis using standardised uptake value (SUV) metrics for prediction of
future AAA growth and rupture [12–17]. More sophisticated imaging feature analysis may
have greater potential to predict AAA growth. Radiomics is a process involving extraction
of high dimensional features from medical imaging allowing quantitative analysis of the
distribution and relationship of pixel grey levels [18]. This technique has been extensively
studied in the oncology setting for outcome prediction modelling [19–24]. There is currently
a paucity of data on the potential use of radiomic analysis for predictive modelling in non-
oncological settings. In particular, the use of radiomic features derived from [18F]FDG PET-
CT for prediction of AAA growth has not yet been reported to the best of our knowledge.

The aim of this study was to explore the utility of a machine learning (ML)-based
regression model utilising radiomic features extracted from [18F]FDG PET-CT to predict
future AAA growth rate.

2. Materials and Methods
A transparent reporting of a multivariable prediction model for individual prognosis or

diagnosis (TRIPOD) study design was employed to assess the possible benefit of [18F]FDG
PET-CT-derived radiomics in patients with AAA [25] (Supplementary Table S1). A sample
size estimation was performed using a medium effect size (Cohen’s d = 0.5), a significance
level of 0.05, and a statistical power of 90%, determining that a minimum of 42 paired
observations were required for adequate power.

2.1. Internal Patient Selection

An internal cohort consisting of data from consecutive patients with AAA who un-
derwent [18F]FDG PET-CT for investigation of suspected malignancy between January
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2009 and March 2020 who were subsequently enrolled in an AAA ultrasound surveillance
programme were identified retrospectively from the institutional Radiology Information
System (RIS) (CRIS, Wellbeing Software, https://www.cdnpacs.com/cris/ (accessed on
27 January 2025), Mansfield, UK). Additional independent cohorts from two external cen-
tres comprising prospectively identified patients diagnosed with AAA who had undergone
PET-CT imaging were also collated. Exclusion criteria included patients who had under-
gone surgery or endovascular AAA repair (EVAR) prior to PET-CT, studies with significant
motion artefact leading to mis-registration of the PET and CT components of the study and
patients with tumours involving the aneurysmal segment of the aorta. Patient demographic
details, clinical history, ultrasound follow-up data, treatment data, clinical outcome and
follow-up duration were obtained from the institutional electronic patient record.

2.2. Imaging Acquisition and Reconstruction Parameters

All internal PET-CT studies were performed as part of routine clinical care using
standardised departmental protocols. Imaging was acquired from skull base to upper
thighs. No iodinated contrast media was administered. Serum blood glucose was routinely
measured prior to imaging and if >10 mmol/L scanning was not performed. Patients fasted
for six hours prior to intravenous injection of 4 MBq/kg of fluorine-18 [18F]FDG.

Internal imaging prior to June 2010 was performed using a 16-slice Discovery STE
PET/CT scanner (General Electric (GE) Healthcare, Chicago, IL, USA) and from June 2010
to October 2015 on a 64-slice Philips Gemini TF64 scanner (Philips Healthcare, Best, Nether-
lands) or a Discovery 690 scanner (GE Healthcare, Chicago, IL, USA). After October 2015
a Discovery 710 scanner (GE Healthcare, Chicago, IL, USA) replaced the Philips scanner.
All machines used iterative reconstruction, computed tomography (CT) for attenuation
correction, applied scatter and randoms correction. Image reconstruction and acquisition
parameters are outlined in Table 1.

Table 1. Breakdown of PET-CT Scanners Used and Associated Timeframes.

Dates Scanner Reconstruction Scatter
Correction

Randoms
Correction Matrix Voxel Size (x, y, z)

January 2009–May 2010 GE Healthcare STE OSEM 1 Convolution
subtraction Singles 128 4.6875 × 4.6875 × 3.27

June 2010–October 2015 Philips Gemini TF64 BLOB-OS-TF 2 SS-SIMUL 4 DLYD 5 144 or 169 4 × 4 × 4

June 2010–March 2020 GE Healthcare
Discovery 690 VPFX 3 Model based Singles 192 3.65 × 3.65 × 3.27

May 2015–March 2020 GE Healthcare
Discovery 710 VPFX Model based Singles 192 3.65 × 3.65 × 3.27

1 OSEM: Ordered Subset Expectation Maximisation, 2 BLOB-OS-TF: Spherical Symmetric Basis Functions Ordered
Subset Time of Flight, 3 VPFX: Time of Flight Ordered Subset Expectation Maximisation, 4 SS-SIMUL: CT-based
attenuation correction and scatter correction, and 5 DLYD: delayed event subtraction.

To ensure alignment between PET and CT images, standard clinical practices at our
institution employed careful patient positioning and instructions to breath hold to min-
imise motion artefact. Whilst mis-registration is not infrequently encountered in some
body parts such as within the head and neck or lower thoracic regions; we rarely experi-
enced significant mis-registration between the PET and CT components of the abdominal
aorta being analysed. However, if this was an issue, the data were excluded from further
analysis to avoid inaccuracies. Furthermore, all examinations were reviewed by radiolo-
gists with a minimum of 3 years of experience under the supervision of a dual-certified
radiologist/nuclear medicine physician with over 15 years of experience in PET-CT.

Average AAA growth rates were calculated from the first and last antero-posterior
ultrasound measurements obtained from the AAA surveillance programme. Scan intervals

https://www.cdnpacs.com/cris/
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were dictated by AAA size as per national guidelines [10]. All scans were performed by
experienced sonographers or radiologists.

2.3. Image Pre-Processing

PET-CT imaging was exported in Digital Imaging and Communications in Medicine
(DICOM) format from the institutional picture archiving and communication system (PACS)
and converted to Neuroimaging Informatics Technology Initiative (NIfTI) format using the
dicom2nifti Python package (Icometrix, Chicago, IL, United States).

Volumes of interest (VOI) were manually drawn around the dilated segment of the
aorta (Figure 1a) and aortic arch blood pool (Figure 1b) using ITK-SNAP (Version 3.8.0,
http://www.itksnap.org (accessed on 27 January 2025)). The CT component of the PET-CT
was used to perform segmentation to provide accurate anatomical localisation. AAA VOI
segmentation included the wall and associated blood pool of the aneurysmal segment of
the abdominal aorta, aortic arch blood pool VOI segmentation included only the blood
pool with exclusion of the wall. Care was taken to avoid areas of tumour-related metabolic
activity if present. Segmentations were performed by a Radiologist with 3 years’ experience
under the supervision of a dual-certified Radiologist & Nuclear Medicine Physician with
>15 years’ experience of PET-CT.
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Figure 1. Axial fused [18F]FDG PET-CT images demonstrating a two-dimensional section of the
three-dimensional volume of interest. (a) Volume of interest drawn around the abdominal aortic
aneurysm. (b) Volume of interest drawn within the aortic arch blood pool.

2.4. Radiomic Feature Analysis

Radiomic features were extracted from the segmented VOI and analysed using
PyRadiomics (Version 2.2.0, https://github.com/AIM-Harvard/pyradiomics (accessed on
27 January 2025)). Radiomic analysis was performed using the PET series, with the fused
PET-CT series serving as a tool for accurate VOI placement through correct anatomical
localisation (Figure 1a). PET-CT data were split into bin sizes of 0.5, previous studies have
demonstrated better feature reproducibility and quantification when using fixed bin sizes
over fixed bin counts [26–28]. Additionally, spatial resampling using voxel dimensions
of 2 × 2 × 2 mm was performed to eliminate voxel size variation. Otherwise, default
hyperparameters were used unless stipulated in Supplementary Table S2.

A total of 18 first-order statistics and 75 textural features were extracted from the
segmented VOIs. All features used in the study conformed to the definition provided by
the Imaging Biomarker Standardization Initiative (IBSI) [29]. Among these, the “Maxi-
mum” first-order radiomic feature is mathematically equivalent to the commonly used

http://www.itksnap.org
https://github.com/AIM-Harvard/pyradiomics
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PET imaging metric, SUVmax, as it represents the highest voxel intensity within the seg-
mented region of interest [29,30]. Supplementary Tables S3 and S4 detail all extracted
radiomic features.

2.5. AAA Growth Rate Prediction Modelling

A multi-layer perceptron (MLP)-based regression model was developed to predict
AAA growth rate based on radiomic features within the AAA sac from the whole AAA
and aortic arch blood pool segmentations. Ground truth growth rate values for AAAs were
calculated from serial ultrasound measurements.

Ratios of AAA to aortic arch blood pool values for radiomic features were calculated to
compensate for blood pool uptake [30]. Normalising against the aortic arch blood pool, was
conducted to reduce confounding factors and enhances the specificity of radiomic feature
analysis. This approach is analogous to SUV normalisation commonly used in clinical PET
to enable more reliable interindividual comparisons. A recursive feature elimination (RFE)
algorithm based on Random Forest (RF) regression (available in Scikit-learn (Version 0.24)
Python library) was used to select the most discriminative set of radiomic features for
models predicting AAA growth rates [31,32]. Table 2 details the radiomic features of
highest importance. Subsequently, a MLP was developed for regressing AAA growth
rates using full and reduced sets of radiomic features. The MLP was implemented using
TensorFlow-Keras (Version 2.3) [33].

Table 2. Features Included in the Reduced Dataset Derived from RF-RFE.

Feature Class Feature Count Feature Names

First Order 4 90Percentile, Maximum, Uniformity, Variance
Gray Level Co-Occurrence Matrix 2 DifferenceAverage, Imc1

Gray Level Run Length Matrix 2 ShortRunHighGrayLevelEmphasis,
ShortRunLowGrayLevelEmphasis

Gray Level Size Zone Matrix 12

GrayLevelNonUniformity,
GrayLevelNonUniformityNormalised,

GrayLevelVariance,
HighGrayLevelZoneEmphasis,

LargeAreaEmphasis,
LargeAreaHighGrayLevelEmphasis,
LargeAreaLowGrayLevelEmphasis,

LowGrayLevelZoneEmphasis,
SizeZoneNonUniformity,

SizeZoneNonUniformityNormalised,
SmallAreaEmphasis,

SmallAreaHighGrayLevelEmphasis,
SmallAreaLowGrayLevelEmphasis,

ZoneEntropy, ZonePercentage, ZoneVariance
Neighbouring Gray Tone

Difference Matrix 5 Busyness, Coarseness, Complexity, Contrast,
Strength

The internal dataset was initially spilt into 70% training/validation and 30% testing.
K-fold cross-validation (K = 10) was subsequently used to split the former into 80% for
training and 20% for validating the machine learning (ML) model. This enabled assessment
of the reproducibility and generalisation capacity of the proposed model. The generated
models (from the K-fold cross-validation experiments) were output into a Hierarchical
Data Format 5 (HD5) file and evaluated against the test data. Figure 2 illustrates the
ML framework.
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Figure 2. A flow diagram illustrating the machine learning (ML) framework: AAA and aortic arch
blood pool regions are segmented for texture analysis, with radiomic features extracted from both. A
heatmap (green, yellow and red grid) visualises texture features, such as Grey-Level Co-occurrence
Matrix (GLCM) metrics. Dimensionality reduction (top right), as described in Section 2.5, uses
Recursive Feature Elimination (RFE) based on Random Forest regression to select 29 features from an
initial set of 93 radiomic features (details provided in Table 2). Both full and reduced feature sets are
then input into a neural network-based ML model (bottom right) to predict AAA growth rate. The
final outputs predict aneurysm growth rate.

2.6. Multi-Layer Perceptron (MLP) Architecture

The MLP architecture consisted of seven fully connected/dense layers, which alter-
nated with dropout layers (i.e., dropout was applied before every weight layer in the
MLP), as depicted in Figure 3. Dropout was used to regularise the network and pre-
vent the latter overfitting to the training data [34]. The hidden units in all layers of the
network (except the final layer) employed Rectified Linear Units (ReLU) as non-linear acti-
vation functions. Weights in all dense layers were initialised using the He normal method
(kernel_initialiser = ‘he_normal’ in Keras). Bias terms were initialised to small constant
values, typically zero, which is standard practice for ReLU-based networks.

The final layer of the MLP comprised a single output unit with a sigmoid activation
function, producing a single scalar value for the growth rate of each AAA. The regression-
MLP was trained using the standard back-propagation algorithm, by minimising the
mean-squared-error loss function (evaluated between the ground truth and predicted AAA
growth rates) using the root-mean-squared gradient propagation (RMSprop) optimiser
(with an initial learning rate = 0.01) [35]. This optimiser was chosen empirically as it
provided the best performance throughout cross-validation. The same network architecture
was employed for all experiments.
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Figure 3. Schematic overview of the MLP used throughout this study. ‘h’ represents the number of
hidden units in each layer, ‘dr’ represents intermediate dropout layers. All ‘dr’ applied a rate of 0.5
(50%). The features pass through seven fully connected dense layers of decreasing size: 256, 128, 64,
32, 16, 8, and 1 neuron in the output layer. Hidden layers use ReLU activations and are followed by
‘dr’ with a rate of 0.5. Each dense layer incorporates L2 reg (keras.regularisers.l2(0.01)). The final
output node applies a sigmoid activation to produce a continuous prediction of AAA growth rate.
Weight init is ‘he_normal’ for all dense layers. The model employs RMSprop (lr = 1e−2) and Huber
loss (delta = 1.0). Performance is evaluated using MAE (from keras.metrics).

2.7. Model Uncertainty Quantification

In addition to evaluating the accuracy of the regression model at predicting AAA
growth rates of samples in the held-out test set, the uncertainty in these predictions was
quantified using dropout during inference, for all cross-validation experiments [36]. Quan-
tifying model uncertainty provides a framework for identifying special/extreme cases, as
models are likely to return predictions with high uncertainties. In a clinical setting, this
would enable such special cases to be flagged for further investigation by the interpreting
clinician before drawing any conclusions based on the predictions alone. Consequently,
dropout during model inference was adopted as a Bayesian approximation of model
uncertainty in this study to provide a sense of the model’s confidence when predicting
growth rates of AAA samples. Model inference (keeping the dropout layers active) was
repeated 1000 times for each unseen test sample, using all models trained across the ten-fold
cross-validation experiments.

2.8. Evaluation Metrics

Prediction accuracy in a regression model unlike a classification model demonstrates
how close the predicted value is to the ground truth. A perfect model would achieve a
prediction error of 0. To quantitatively assess the uncertainty of models trained across
ten-fold cross-validation experiments using both the full and reduced feature sets, mean
absolute error (MAE) was employed. MAE quantifies the average absolute difference
between predicted and observed growth rates of AAAs. The standard deviation (SD) of
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MAE across folds was calculated to evaluate prediction consistency, while the standard
error of the mean (SEM) was computed to quantify the precision of the average MAE. In
addition, violin plots of the errors for the predicted growth rates were generated for each
test sample, relative to the ground truth. These plots were created from predictions of all
models with dropout during inference. Specifically, these plots summarise the variation in
growth rate predictions for each test sample (due to model uncertainty), across a total of
10,000 evaluations (i.e., 1000 independent predictions from 10 models trained across the
cross-validation experiments).

2.9. Additional Machine Learning Models

In addition to the MLP model, three other ML models: Random Forest (RF), XG-
Boost, and Support Vector Machine (SVM), were developed and evaluated for comparative
predictive performance. These models are well-established machine learning techniques
and have been extensively described in statistical learning literature [37]. These models
followed consistent data handling procedures, with identical training and test data splits
and the same K-fold cross-validation approach. RFE was applied across all models to select
the most relevant radiomic features. Uncertainty quantification was implemented using
dropout during inference for the MLP and RF models, while a 95% prediction interval (PI)
was calculated for XGBoost. All models were evaluated using mean absolute error (MAE)
as the primary metric. Among the tested models, the MLP model demonstrated the highest
predictive accuracy, making it the primary focus of this study. Key parameters and results
for RF, XGBoost, and SVM are provided in Supplementary Table S5.

2.10. External Validation

To evaluate model performance, an independent external validation dataset compris-
ing 55 patients was used for testing. The dataset, sourced from Addenbrooke’s Hospital
(Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK) and Edinburgh
Royal Infirmary (NHS Lothian, Edinburgh, UK), was used to assess the model’s predictive
accuracy, clinical utility, and applicability to a more diverse population [38,39].

Patients were recruited into two cohorts: those with asymptomatic AAA and an
age and sex-matched control group with atherosclerosis but no aortic aneurysm disease,
confirmed by non-contrast CT-derived aortic diameters. All control patients were recruited
in Cambridge, while patients with aneurysms were recruited from both sites. Inclusion
criteria for the AAA cohort included age over 50 years and aneurysm size between 3.0 and
5.5 cm on ultrasound. Inclusion criteria for the control cohort required clinically stable
cardiovascular disease for more than six months, defined as previous myocardial infarction,
stroke, or peripheral vascular disease. Exclusion criteria for both cohorts included type 1 or
type 2 diabetes with fasting glucose above 11 mmol/L, renal impairment (serum creatinine
> 250 µmol/L), contrast allergy, or inability to provide informed consent.

The external dataset used standardised image acquisition protocols (as per local Trust
policies) and underwent identical processing, spatial resampling, VOI segmentation, and
radiomic feature extraction (aligned to IBSI guidelines) as performed for the internal dataset.
AAA growth rates were derived from serial ultrasound measurements, enabling direct
comparison with internal dataset ground truths. Full details of image acquisition protocols
can be provided upon request.

2.11. Hardware Specifications

All image processing and network training was performed on a personal computer
(PC) running Microsoft Windows 10 (Microsoft Corporation, Redmond, WA, USA), AMD
Ryzen 7 1700 central processing unit (CPU) (Advanced Micro Devices Inc., Santa Clara,
CA, USA), 16 GB of 3333 MHz DDR4 SDRAM and a Zotac NVIDIA GeForce GTX 1070
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AMP Edition graphics processing unit (GPU) with 8 GB of GDDR5 (Zotac International,
Hong Kong) (NVIDIA Corporation, Santa Clara, CA, USA).

2.12. Statistical Analysis

Data preprocessing, descriptive statistics, and model evaluations were carried out
using NumPy 1.18.0, Pandas 0.25.3, and SciPy 1.4.0. Univariate comparisons were per-
formed using built-in functions in SciPy and statsmodels 0.10.2. Machine learning models,
including Random Forest, Support Vector Machine, and XGBoost, as well as Recursive Fea-
ture Elimination (RFE) for feature selection, were implemented using scikit-learn 0.22 and
XGBoost 0.90. Neural network modelling, including the multi-layer perceptron (MLP), was
conducted using the Keras 2.3.1 API with a TensorFlow 2.1.0 backend. Model performance
was evaluated using mean absolute error (MAE) and, where applicable, 95% prediction
intervals (PI). Figures were created using Matplotlib 3.1.2 and Plotly 4.4.1. A significance
level of p < 0.05 was applied for all hypothesis testing.

3. Results
The cohort comprised 153 patients, including 98 and 55 individuals in the internal and

external datasets, respectively. Overall, 82.4% (126/153) were male, and 17.6% (27/153)
were female, with a median age of 77 years (range: 58–105). For the internal dataset, median
follow-up was 3.1 years (range: 0.48–14.8), with a median of 7 ultrasound scans per patient
(range: 2–36). Among these patients, 3.3% (5/153) underwent open AAA repair, 0.7%
(1/153) had EVAR, and 96.1% (147/153) had no intervention; no AAA ruptures occurred.
Of the external dataset, only data relating to open AAA repair was available, reported in
21% (12/55) of cases. Additional details, including demographics and scanner usage, are
listed in Table 3a,b.

Table 3. (a): Patient Demographics; (b) Scanner Breakdown Table (Internal Data Only).

(a)

Total Internal External

No. of Patients 153 98 55
Male/female 126/27 77/21 49/6

Median Age, years 77 (range: 58–105) 76 (range: 61–92) 80 (range: 58–105)
Median follow-up time, years N/A 1 3 years (range: 0–15) N/A 1

Median number of follow-up
ultrasound scans N/A 1 7 (range: 2–36) N/A 1

Progression to open repair 17 5 12
Progression to EVAR N/A 1 1 N/A 1

Stable—no intervention N/A 1 147 N/A 1

(b)

Scanner Model Count

GE Healthcare Discovery 710 54
GE Healthcare Discovery 690 13
GE Healthcare Discovery STE 9

Philips Gemini TF64 22

1 N/A: not available.

The training dataset included 69 patients from the internal dataset, while the testing
datasets comprised 29 internal and 55 external patients. Gender distributions were consis-
tent across groups, showing no significant differences. However, there was a difference in
age between the external testing dataset and the training dataset. No significant differences
were found between the training and internal testing datasets for follow-up characteristics.
Table 4 outlines the demographic differences between training and testing datasets.
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Table 4. Training and Testing Demographics: Z-Scores and p-Values.

Training and
Validation

Internal
Testing

External
Testing

Statistical
Test Internal External

Z-Score p-Value Significance Z-Score p-Value Significance

Total Patients 69 29 55

Male/Female 57/12 20/9 49/6
Z-Test for

Two
Proportions

1.5024 0.1336
Not

significant
at p < 0.05

−1.57 0.1163
Not

significant
at p < 0.05

Median Age
(Years)

75.7
(60.0–91.8)

76.3
(60.7–90.7)

80.0
(58–105)

Mann–
Whitney
U-Test

−0.1323 0.8966
Not

significant
at p < 0.05

−4.55 5.34 ×
10−6

Significant
at p > 0.05 2

Median Follow-Up
Time (Years) 3.2 (0.57–12.6) 3.5

(0.48–14.8) N/A 1
Mann–

Whitney
U-Test

−0.0642 0.9522
Not

significant
at p < 0.05

N/A 1 N/A 1 N/A 1

Median Number of
Ultrasound Scans 7 (2–30) 6 (2–36) N/A 1

Mann–
Whitney
U-Test

1.5683 0.1164
Not

significant
at p < 0.05

N/A 1 N/A 1 N/A 1

1 N/A: not available; 2 significant difference as indicated by p > 0.05

A total of 93 radiomic features were extracted per patient using PyRadiomics, forming
the dataset used for model training and validation. The regression-MLP models trained
across ten-fold cross-validation experiments were evaluated on unseen internal test samples.
The statistical analysis, which assessed prediction accuracy, included calculations of the
mean absolute error (MAE) and its standard error of the mean (SEM), with the model
achieving an MAE of 1.35 ± 3.2e−4 mm/year. The average training and validation curves
for loss and accuracy, with prediction error standard deviations (computed across all
experiment folds) are shown in Figure 4a.
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To refine the models, features with least significance were eliminated using RF-based
RFE which yielded 29 features. As before, regression-MLP models were trained across
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ten-fold cross-validation experiments using these reduced sets of features. The models were
evaluated on the same set of unseen internal test samples as previously, resulting in a near
identical average accuracy of 1.35 ± 2.5e−4 mm/year. The average training and validation
curves for loss and accuracy, with prediction error standard deviations (computed across
all experiment folds) are illustrated in Figure 4c.

The MLP model was subsequently evaluated on unseen external test samples, achiev-
ing an accuracy of 1.8 ± 8.9e−8 mm/year. Of the other models tested, internal full feature,
internal RFE, and external validation accuracies were, respectively, as follows: for Random
Forest (RF), 1.5 ± 3.8e−4 mm/year (uncertainty: ± 0.05 mm/year), 1.48 ± 3.7e−4 mm/year
(uncertainty: ± 0.04 mm/year), and 1.95 ± 6.9e−4 mm/year (uncertainty: ± 0.06 mm/year);
for eXtreme Gradient Boosting, 1.42 ± 4.2e−4 mm/year (95% PI: [1.38, 1.46] mm/year),
1.40 ± 4.0e−4 mm/year (95% PI: [1.36, 1.44] mm/year), and 1.97 ± 7.1e−4 mm/year (95%
PI: [1.93, 2.01] mm/year); and for Support Vector Machine (SVM), 1.45 ± 4.1e−4 mm/year,
1.40 ± 3.9e−4 mm/year, and 1.90 ± 7.2e−4 mm/year.

Overall, the results from the study demonstrate that the model was able to predict
the growth rate of a AAA to an accuracy of between 1.35 and 1.8 mm/year, with minimal
variation in prediction values across internal and external datasets.

Using dropout during MLP model inference, uncertainty was quantified and its impact
on the variation in growth rate prediction accuracy, for each unseen internal test sample is
summarised by the violin plots shown in Figure 5 for models trained using the full and
reduced feature sets. Model uncertainty was generally higher when trained using the
reduced feature set (across all cross-validation experiments), relative to the full feature
set. This is verified by the higher median values and interquartile ranges for the MAE,
visible for all 29 internal and 55 external test samples when the full set of features were
used to train the models. Additionally, the kernel density estimates for the MAE for each
test sample show that predictive growth rate errors are most likely to occur in the range
of 1.30–1.40 mm/year when the full feature set is used, and 1.40–1.50 mm/year when the
reduced feature set is used.
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4. Discussion
This study tested several machine learning models using radiomic features derived

from [18F]FDG PET-CT to predict the growth rate of abdominal aortic aneurysms. Overall,
predictive accuracy was highest for a regression-MLP model. To the best of our knowledge,
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there are no previous studies to have investigated the use of [18F]FDG PET-CT to predict
the growth rate of abdominal aortic aneurysms.

Conventional PET-CT metrics, such as SUVmax, MTV, and TLG, are well-established
in oncological imaging for quantifying metabolic activity. SUVmax is frequently used
to assess tumour aggressiveness and response to therapy in a variety of cancers [40–42].
Similarly, MTV and TLG have been shown to predict treatment outcomes in an oncological
setting, reflecting tumour burden and metabolic activity, respectively [43]. However, their
application in vascular disease, including AAA prediction, remains limited and under-
explored. Moreover, studies investigating SUV metrics for predicting AAA growth and
rupture have reported conflicting results, likely due to variability in imaging protocols and
methodologies, which complicates their clinical utility in this context [12–17]. By contrast,
there is growing evidence supporting the predictive capability of textural radiomic parame-
ters in various cardiovascular disorders, offering nuanced insights into tissue heterogeneity
that conventional metrics may overlook [44,45]. Radiomic features may therefore offer an
advanced alternative by providing a detailed analysis of texture and structural patterns,
capturing subtle imaging biomarkers that reflect underlying pathophysiology. This en-
ables a deeper understanding of aneurysm behaviour and improves predictive accuracy
compared to traditional metrics such as SUV.

The regression-MLP model was trained to minimise the mean squared error loss
function, evaluated between predicted and ground truth aneurysm growth rates whilst
avoiding overfitting of the training data. Each fully connected layer of the MLP is preceded
by a dropout layer, which acts as a regulariser and prevents the model from overfitting
to the training data. The models trained with the full set of [18F]FDG PET-CT features
extracted and the reduced set identified using RF-RFE, both resulted in very similar average
growth rate prediction accuracy of 1.35 mm/year on the internal dataset. Dimensionality
reduction with RF-RFE showed no tangible improvement in the growth rate prediction
accuracy, although the uncertainty quantification experiments revealed that using a reduced
set of features increased model uncertainty (relative to using the full feature set). Based on
these results, it can be inferred that models trained using the full set of features are more
likely to predict AAA growth rates to a higher degree of confidence, than those trained
using the reduced feature set.

When evaluated on an unseen external dataset, the model achieved an accuracy of
1.8 mm/year, a result that falls within the 2 mm margin of accuracy typically considered
acceptable for technical variability [46,47]. Consistency across internal and external datasets
suggests the model’s potential for real-world application. Given that more rapid AAA
growth is associated with a higher rupture rate this model could provide a useful risk
stratification metric [8,9,48].

The RESCAN study, a meta-analysis of surveillance intervals for small AAAs, reported
an average annual growth rate of 1–2 mm per year [49]. While the reported error margin
in our study is comparable to this observed yearly growth rate, potentially limiting its
utility for precise short-term predictions, the model remains promising for longer-term
predictions, such as over 5 or 10 years. Cumulative predictions over such extended periods
could enable stratified monitoring strategies, focusing resources on patients at higher risk
of rapid growth and optimising clinical resource allocation.

Previous studies have explored automated segmentation methods to model AAA
growth using morphometric characteristics, biomarkers and computational fluid dynamics
(CFD) in conjunction with ML methods [7–9]. Hirata et al. described the use of a ML
model to predict AAA growth using aneurysm area and major axis diameter derived from
serial computed tomography angiography (CTA) studies [50]. Lee et al. developed a ML
model able to predict AAA diameter to within 2 mm in 85% and 71% of patients at 12 and
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24 months, respectively. They used ultrasound to explore flow-mediated dilatation (FMD)
of the brachial artery as a biomarker in combination with AAA diameter [51]. Rengarajan
et al. investigated a ML algorithm encompassing auto-segmentation of AAA on CTA and
prediction of rupture risk (9). This used a generalised additive model (GAM) with six
geometric and one biomechanical marker yielding an accuracy of 87%, 78% sensitivity and
92% specificity for AAA rupture risk classification [52]. More recently, Chandrashekar et al.
demonstrated that a linear regression model derived from geometric features, automatically
calculated from deep learning created segmentations, which could predict AAA growth to
within 2 mm in 87% of cases on CT [53]. However, due to the novel nature of the current
model, no meaningful direct comparison was able to be made with prior work.

Work by Lv et al. [54] investigated the use of radiomic features from perivascular
adipose tissue (PVAT) to enhance predictive performance for AAA growth. Their study
demonstrated that growing AAAs post-endovascular aneurysm repair (EVAR) exhibited
significantly higher surface area-to-volume ratios (0.70 vs. 0.63, p = 0.04) and more hetero-
geneous PVAT texture, with differences in dependence variance (29.88 vs. 26.96, p = 0.01)
and long-run emphasis (4.76 vs. 4.20, p = 0.01). Reported findings mirror previous research
in coronary artery disease, where PVAT radiomic features have been shown to improve
risk assessment for atherosclerotic progression. In CAD, heterogeneous PVAT texture has
been associated with increased inflammatory activity and vascular remodelling, leading to
the development of novel risk stratification methods [55,56]. By analogy, for incidentally
detected AAAs, as examined in this cohort, PVAT may reflect similar inflammatory or
mechanical changes in the vascular environment that are not captured by aneurysm sac
analysis alone. Integrating texture features from surrounding tissues like PVAT could there
provide a more comprehensive understanding of aneurysm behaviour and progression.
Furthermore, texture analysis, particularly metrics derived from grey-level co-occurrence
matrix (GLCM) and grey-level dependence matrix (GLDM), has also been increasingly
recognised for its role in predicting aneurysm behaviour [54,57]. For instance, studies have
shown that texture heterogeneity in thrombi and PVAT can reflect inflammatory activity and
vascular remodelling, which may contribute to aneurysm progression. Integrating texture
features from surrounding tissues like PVAT could therefore provide a more comprehensive
understanding of aneurysm behaviour beyond traditional morphometric measures.

The study by Lv et al. further highlighted the advantages of combining radiomic
features with clinical data in a multi-modal predictive model, which outperformed models
using radiomic or clinical data alone. Their clinico-radiological model achieved an area
under the curve (AUC) of 0.78 (95% CI: 0.65–0.91), significantly higher than models using
radiomic or clinical features alone (AUC = 0.69 for each) [58]. These findings may suggest a
merit to incorporating clinical parameters, such as cholesterol levels, blood pressure, and
patient history, to enhance the predictive accuracy of future models.

Whilst these preliminary results are promising, there are limitations to the study.
The ground truth was based on serial ultrasound measurements, which despite being the
standard-of-care investigation used for screening and follow-up for AAAs, are operator
dependent and unidimensional. [18F]FDG PET-CT is not routinely used to assess AAAs
unless there is concern for an infective or inflammatory process. The cohort in this study
was derived from patients with an AAA who were undergoing diagnostic evaluation for
suspected malignancy which may not reflect the general population with AAAs. Although
cases with tumours overlapping the aorta were excluded, the potential for systemic ma-
lignancy to subtly influence aneurysm wall tracer uptake cannot be entirely ruled out. A
future study could incorporate patient demographics, morphometric features, automatic
data-driven feature extraction from volumetric data and biomechanical finite element
analysis to enhance growth rate prediction accuracy and facilitate evaluation of risk of
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aneurysm rupture. The sample size of 153 and retrospective nature limits the power of
the study. For instance, accuracy would typically increase to a certain degree, with the
training dataset size, while external validation with a larger multi-centre dataset would
improve confidence in the prediction accuracy of the proposed approach, on unseen test
cases. In our study, the feature-to-sample ratio after dimensionality reduction resulted
in approximately 5.3 samples per feature. While this may be seen as a limitation under
the traditional ‘One in Ten Rule’ for mitigating overfitting, more recent literature suggests
that this rule may be overly conservative for advanced machine learning models [59]. The
application of ten-fold cross-validation and external validation in our study likely reduced
the risk of overfitting, but future studies with larger datasets are needed to fully address
this issue. Data augmentation was not employed in this study due to its retrospective
nature, which limited the feasibility of introducing synthetic or augmented data. The focus
was on analysing radiomic features directly extracted from existing PET-CT datasets. While
this approach ensured the integrity of the dataset, the absence of data augmentation may
have limited the model’s ability to generalise further. Future prospective studies incor-
porating data augmentation techniques could help to mitigate overfitting and improve
model performance. Furthermore, the absence of harmonisation techniques to address
potential variability between PET/CT scanners was not performed in this study. While
consistent imaging protocols were used, inter-scanner variability cannot be entirely ruled
out. Future studies incorporating harmonisation strategies, such as phantom calibration
or scanner-specific corrections, may enhance reproducibility and standardisation. Finally,
manual segmentation of the AAA and aortic blood pool is time consuming and not suit-
able for routine integration into clinical reporting workflow. An automatic segmentation
algorithm is under development, and this should aid further validation and potential
clinical translation.

5. Conclusions
In this initial exploratory study, an MLP-based regression model utilising [18F]FDG

PET-CT-derived radiomic features demonstrated the ability to predict AAA growth rate
with an accuracy of 1.35 mm/year. These promising initial results warrant validation in a
larger prospective multi-centre cohort. In the future, more sophisticated stratification could
guide individualised patient care facilitating tailored management of AAA.
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Abbreviations

AAA Abdominal Aortic Aneurysm
APC Article Processing Charge
BRC Biomedical Research Centre
CAD Coronary Artery Disease
CFD Computational Fluid Dynamics
CT Computed Tomography
EVAR Endovascular Aneurysm Repair
FDG Fluorine-18-2-Deoxy-D-Glucose
FMD Flow-Mediated Dilation
GAM Generalised Additive Model
GLCM Gray-Level Co-Occurrence Matrix
GLDM Gray-Level Dependence Matrix
IBSI Imaging Biomarker Standardization Initiative
MAE Mean Absolute Error
MLP Multi-Layer Perceptron
ML Machine Learning
PET-CT Positron Emission Tomography–Computed Tomography
PI Prediction Interval
PVAT Perivascular Adipose Tissue
RFE Recursive Feature Elimination
RF Random Forest
SD Standard Deviation
SVM Support Vector Machine

TRIPOD
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis

UK United Kingdom
US Ultrasound
VOI Volume of Interest
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