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AbstractÐFederated Learning (FL) is a privacy-preserving
machine learning technique that allows decentralized collabo-
rative model training across a set of distributed clients, by
avoiding raw data exchange. A fundamental component of FL
is the selection of a subset of clients in each round for model
training by a central server. Current selection strategies are
myopic in nature in that they are based on past or current
interactions, often leading to inefficiency issues such as straggling
clients. In this paper, we address this serious shortcoming by
proposing the RIFLES approach that builds a novel availability
forecasting layer to support the client selection process. We
make the following contributions: (i) we formalise the sequential
selection problem and reduce it to a scheduling problem and
show that the problem is NP-complete, (ii) leveraging heartbeat
messages from clients, RIFLES build an availability prediction
layer to support (long term) selection decisions, (iii) we propose
a novel adaptive selection strategy to support efficient learning
and resource usage. To circumvent the inherent exponential
complexity, we present RIFLES, a heuristic that leverages clients’
historical availability data by using a CNN-LSTM time series
forecasting model, allowing the server to predict the optimal
participation times of clients, thereby enabling informed selection
decisions. By comparing against other FL techniques, we show
that RIFLES provide significant improvement by between 10%-
50% on a variety of metrics such as accuracy and test loss. To
the best of our knowledge, it is the first work to investigate FL
as a scheduling problem.

Index TermsÐFederated learning , Scheduling, Availability,
Client Selection.

I. INTRODUCTION

With the proliferation of Internet of Things (IoT) devices,

users are increasingly collecting substantial amounts of per-

sonal data related to their daily activities. This extensive

data supports diverse applications, including human activity

recognition [1], [2] and healthcare monitoring [3], [4]. To

address privacy concerns inherent in handling such sensitive

data, Federated Learning (FL) has emerged as a revolutionary

decentralized machine learning paradigm, facilitating collab-

orative training of models across multiple clients without

compromising individual privacy [5]. By conducting compu-

tation directly on client devices, FL effectively addresses data

governance concerns while preserving privacy [6]. Initially

introduced by Google [7], FL has gained significant traction

across various fields, such as healthcare [8] and finance [9].

In a standard FL scenario, clients collaborate in model

training over multiple communication rounds, coordinated by

a central server. Typically only subsets of clients participate

per round to optimize resource utilization and to ensure model

representativeness [10]. The selection process can be initiated

by either the central server or by the client themselves, both

with their own disadvantages. For instance, server-initiated

client selection may inadvertently select clients that are un-

available during a particular training round, leading to wasted

resources or idle times [6], [7], [11]. On the other hand,

employing client-initiated selection could result in significant

communication overhead due to frequent and uncontrolled

model updates or introduce bias as faster or more active clients

disproportionately influence the global model [12], [13]. We

call these selection strategies myopic as they focus on client

selection for a given round only, eschewing a more general

approach where client participation may be considered across

several rounds depending on their respective availabilities.

As such, we study the following problem, called RIFLES:

Given the client availability prediction, is it possible to

schedule clients to improve FL performance? We first re-

duce the client scheduling (RIFLES) problem to a resource-

constrained task scheduling problem and prove RIFLES to be

NP-complete. To address the inherent associated complexity,

we propose a novel heuristic, which we called a greedy

heuristic (GH) for client scheduling. The heuristic, integrated

within a server-based middleware (called the RIFLES middle-

ware), leverages the fact that, in a distributed system, nodes

often transmit heartbeats to notify of their operational status.

RIFLES uses those heartbeats to develop a CNN-LSTM client

availability forecasting model to support an optimal client

selection strategy for each round.

We implement the RIFLES middleware and integrate two

different scheduling algorithms within RIFLES, to produce

two variants namely RIFLES-GH and RIFLES-LRU (Least

Recently Used). We compare the performances of these RI-

FLES variants against a number of existing FL techniques. Our

results show that RIFLES-GH and RIFLES-LRU significantly

improve on previous FL techniques by between 10% - 50%

on a range of metrics such as accuracy, test loss and client

participation among others, showing the efficiency of the

customisable RIFLES framework. On the other hand, RIFLES-

GH provides better performance than RIFLES-LRU. Table I

compares popular FL methods based on their abilities to ad-

dress key scheduling criteria, including adaptive round timing,

clients capability awareness, clients availability and historical

participation tracking. RIFLES outperforms these approaches



by tackling all these criteria, ensuring more efficient FL.

TABLE I: Comparison of RIFLES and FL baselines Based on

Scheduling Criteria.

Method
Capability

Awareness

Availability

Awareness

Historical

Participation

Awareness

Adaptive

Rounds

Timing

FedAvg [5] ✗ ✗ ✗ ✗

FedCS [14] ✓ ✗ ✗ ✗

REFL [15] ✓ ✓ ✗ ✗

RIFLES
(Our Method) ✓ ✓ ✓ ✓

II. RELATED WORK

Despite advancements in FL, many existing approaches still

rely on random client selection, resulting in suboptimal model

performance and inefficient resource utilisation, particularly

in the presence of client heterogeneity and varying avail-

ability [16], [17]. Over the years, researchers have proposed

various client selection strategies to address these challenges,

where the server selects a subset of clients (e.g., 10s of clients

from 1,000s of clients) to contribute to the global model in

each round. Existing client selection strategies vary widely

based on system and statistical objectives. Some approaches

prioritise clients with superior hardware and network capabili-

ties [14], while others focus on enhancing statistical efficiency

by selecting clients that contribute higher-quality updates [18],

[19]. For instance, FedCS [14] emphasises system and network

performance during client selection, whereas Oort [20] incor-

porates both system and statistical considerations to optimise

the selection process. TiFL [21] sorts clients into multiple tiers

(e.g., fast and slow tiers) for training.

There exists strategies facing underutilized resources and

reduced model coverage, especially under availability het-

erogeneity [15], [22]. The problem of unpredictable client

availability increases the risk of dropouts and stragglers,

underscoring the need for availability-aware approaches. To

address this challenge, several works have proposed innovative

solutions. Particularly, REFL [15] and FLASH [22] introduce

selection mechanisms that integrate client availability into the

selection process. These methods also efficiently integrate stale

updates, mitigating the negative consequences of availability

heterogeneity in FL. Nonetheless, current client selection

strategies encounter are mostly myopic, predicting availability

only for the next round while we propose an approach to

schedule clients over several rounds.

III. FEDERATED LEARNING: SYSTEM MODEL,

HYPOTHESIS AND OBJECTIVES

We consider a typical cross-device FL system comprising a

central server PS and multiple clients N . Clients periodically

signal availability (e.g., via heartbeats) and may follow pre-

dictable diurnal usage patterns; e.g., individuals who follow

daily or weekly routines at home or workplaces have reliable

patterns for predicting their availability. Furthermore, we as-

sumed the communication network to be reliable; messages

Fig. 1: Registration Mechanisms in FL: Client-Initiated (Pull

mechanism) vs. Server-Initiated (Push mechanism).

between the server and clients are eventually delivered. We

refer to the collective local training of a model on a given

client i as a job Ji and one instance of a local training of a

model on a client i as a task T
j
i (∈ Ji), where j represents

the jth training instance on client i.
Objective: Mathematically, the objective of FL can be stated
as follows: let pi be the probability of the client i involvement
in any given round. The probability pi differs between clients
due to variations in their devices availability times and system
constraints such as communication efficiency, defined as:

E[∆w] = η

N
∑

i=1

pi∇Fi(w).

where E[∆w] is the expected global model update at round, η
is the learning rate, N is the total number of clients, ∇Fi(w)
is the gradient of the local objective function for client i
at the current model w, pi is the probability that client i
participates in that round. Thus, the aggregated global model
update spanning all T rounds, summation of the anticipated
contributions from each client across all rounds, defined as:

E[∆W ] = η

T
∑

t=1

N
∑

i=1

pi∇Fi(w) = ηT

N
∑

i=1

pi∇Fi(w).

where, E[∆W ] is the expected global model update over T

rounds. This demonstrates higher pi biases updates and that

scheduling affects FL cost.

IV. LIMITATIONS OF EXISTING CLIENT SELECTION

STRATEGIES

In real-world FL settings, full client participation is im-

practical due to various factors, e.g., unstable connectivity,

limited resources or large client pools [10], [23], [24], making

effective client selection essential. Selection typically occurs

before each training round, with the server choosing clients

based on factors like resource status, device capabilities, data

quality or historical performance [18], [25], [26]. As results,

the client selection mechanism is typically one of two variants:

(i) Push mechanism (Server-Initiated mechanism) and (ii) Pull

mechanism (Client-Initiated mechanism).
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Fig. 2: Effect of varying availability fault rates on the perfor-

mance of REFL [15], a state-of-the-art FL technique.

• Push Mechanism: At the start of a round, the server

sends out requests to clients to check their availability.

Clients convey registration messages, indicating their

preparedness to participate. This mechanism is commonly

employed in synchronous FL, where the server collects

registration messages and picks a subset of clients for

the subsequent round according to predefined criteria

such as resource availability, data diversity or fairness

considerations, e.g., [15], [22], [27].

• Pull Mechanism: The clients autonomously determine

when to join in the training process by proactively

sending their status and capabilities to the central server.

This approach is frequently utilized in asynchronous FL.

When the server receives the registration message, it

immediately transmits the latest global mechanism to the

client for local updates, e.g., [13], [28].

Both mechanisms exhibit drawbacks stemming from inad-

equate scheduling insights and a lack of awareness of client

availability across training rounds on the server side, resulting

in myopic selection strategies. These may result in sub-optimal

performance as depicted in Figure 2 or there is a risk of

catastrophic staleness of the slow devices, especially under

large-scale FL [29]. Furthermore, if clients train on older

versions of the global model before a newer version becomes

available, the model’s convergence rate and accuracy could

decrease [25]. Although the server simultaneously initiates

participation requests in the push strategy, the availability of a

client can change after the selection phase, resulting in what

is termed as ªavailability faultsº [30].

Availability faults mean only a fraction of selected clients

participate per round [15], [31], disrupting training coordi-

nation, increasing dropout rates, slowing convergence, and

degrading global model quality [32], as shown in Figure 2.

Typical mitigation approaches suffer from relying on static

assumptions about client availability, which do not adapt to

dynamic client behavior. To address these gaps, we propose

the RIFLES approach, inspired by real-time systems, using a

time-series forecasting model to enable informed scheduling

across training rounds.

V. THEORY

In this section, we first formalise the RIFLES problem and

subsequently study the complexity of the client scheduling

problem. In the formalisation below, the parameter β, termed

as the local job execution proportion, captures the availability

proportion of a client for training across rounds. Setting β =
100% means that all clients needs to participate in every round.

On the other hand, the parameter α captures the proportion

of clients to participate in training in any given round, i.e.,

α = 100% means that all available clients need to participate

in training in every round.

Definition 1 (RIFLE Scheduling (RIFLES)). Given a number

n ∈ Z+ of clients {1, . . . , n}, a given set J = {J1, . . . , Jn} of

training jobs, where each job Ji ∈ J is a set of training tasks

T 1
i , . . . , T

K
i , with each task t having length l(t) = 1, a global

job selection proportion α, a local job execution proportion β

and a training deadline p ∈ Z+, does there exist an n-client

schedule ϕ for J that (i) meets the overall deadline p, (ii)

no more than (α · n) clients are executing tasks at any point

in time (i.e., in any time slot), (iii) at least (β ·K) tasks are

executed for each job Ji and (iv) all tasks T
j
i of job Ji execute

on the same client i?

Lemma 1 (RIFLES and class of NP). RIFLES is in NP.

Proof. To prove this, we need to verify the correctness of a

given possible solution R∗ of RIFLES in polynomial time.

To check conditions (i) - (v) requires checking all p periods

across all n clients, making the verification process O(pn).

We will now prove that RIFLES is NP-complete by showing

a reduction to the problem of resource-constrained schedul-

ing [33], which we define formally now.

Definition 2 (Resource-Constrained Scheduling (RCS)).

Given a set T of tasks, with each task t having length

l(t) = 1, a number m ∈ Z+ of processors, a number

r ∈ Z+ of resources, resource bounds Bi, 1 ≤ i ≤ r, resource

requirement Ri(t), 0 ≤ Ri(t) ≤ Bi, for each task t and an

overall deadline D ∈ Z+, does there exist an m-processor

schedule σ for T that meets the overall deadline D and obeys

the resource constraints, i.e., such that ∀u ≥ 0, if S(u) is the

set of all tasks t ∈ T for which σ(t) ≤ u < σ(t) + l(t), then

for each resource i, the sum of Ri(t) over all t ∈ S(u) is at

most Bi?

Lemma 2 (RIFLES and NP-hardness). RIFLES is NP-hard.

Proof. To prove that RIFLES is NP-hard, we first show a

mapping between RCS and RIFLES and then reduce RCS to

the RIFLES problem.
Mapping:

• ϕ 7→ σ
•

⋃n

i=1 Ji 7→ T
• α 7→ 100%
• β 7→ 100%
• p 7→ D
• 1 7→ r
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Fig. 3: Overview of the RIFLES Framework.

• αn 7→ B1

• 1p 7→ R1(t)

We now need to show that a solution for RIFLES exists if and

only if a solution for RCS exists.

⇐ We show how a solution for RIFLES, i.e., ϕ, can be

obtained from a solution for RCS, i.e., σ. Because σ

solves RCS, under the identified mapping, σ satisfies

conditions (i) - (iii) of RIFLES. However, condition (iv)

may not be satisfied and has to be resolved, as follows:

Condition (iv) is violated when a task T
j
i is executing on

a processor k( ̸= i) in any given slot τ . Thus, to enforce

condition (iv), for every slot τ in σ, any task T
j
i (of job

i) executing on a processor k( ̸= i) in any slot τ needs be

swapped with any task Tn
m executing on processor i in

τ (or moved if processor i is idle in τ). This procedure

is executed repeatedly until all tasks in a given slot are

executing on their correct processors, resulting in ϕ.

⇒ A solution ϕ of RIFLES trivially satisfies the require-

ments for RCS, resulting in σ.

Theorem 1 (RIFLES and NP-completeness). RIFLES is NP-

complete.

Proof. The proof follows from Lemmas 1 and 2.

VI. SYSTEM DESIGN

Given the complexity of client scheduling in FL, we in-

troduce RIFLES, a customizable FL stack designed to sup-

port various scheduling strategies. RIFLES incorporates an

availability forecasting layer on the server, leveraging periodic

heartbeat messages from clients to monitor and predict their

availability, as in distributed systems, supporting smarter long-

term selection and scheduling decisions. Figure 3 illustrates

the architecture and core components of RIFLES, which we

detail step-by-step from A to E.

A. Availability Prediction Using Heartbeat Updates

1) Availability Status Updates- Heartbeats Mechanism: In

RIFLES, we propose novel availability awareness mechanism

by leveraging the fact that clients often send heartbeats to

notify of their operational statuses. As such, we assume

that, once clients decide to participate in FL training, they

will periodically send their presence to the server in terms

of periodic timestamped heartbeats. We use a client’s hbt
i

(heartbeat) as a proxy for the client i’s current availability

status at given time t, carrying its availability information as

payload. The server sets hbt
i = 1, for client i at time t if the

client reports being connected to WiFi, sufficiently charged

and in an idle state, else hbt
i = 0. Due to issues, e.g., network

conditions and client mobility, we assume that most heartbeats

are transmitted reliably and only a small proportion ϵ may be

delayed or lost, capturing real-world conditions as RIFLES is

intended to operate in a WiFi setting, :

Heartbeats not received

Total heartbeats expected
≤ ϵ

where ϵ is a predefined threshold ensuring that heartbeat

loss remains within acceptable limits to maintain prediction

stability. To address lost heartbeats, timestamps are used to

map them to the correct time slots in the daily matrix, ensuring

accurate availability updates.
2) Daily Availability Matrix Structure: To comprehen-

sively capture client availability over time, we represent it as

a series of daily matrices M, defined as:

M =
{

M
(1),M(2), . . . ,M(d)

}

where M is the set of daily matrices, with each M
(d)

representing a specific day d in a total of D tracking days.

Each matrix M
d is of dimensions S×N , where S is the total

number of discrete time slots in a dayd and N , the number of

clients being tracked. Each time slot in S represents a fixed

interval ∆t (e.g., 2 minutes), resulting in:

S =
Day duration (in minutes)

∆t
=

1440

∆t
= 720 slots per day.

The entry Ad
i (s) in the matrix Md represents the availability

status of client i at time slot s in day d, where:

Ad
i (s) =

{

1, if client i is ºavailableº in slot s on day d.

0, if client i is ºunavailableº in slot s on day d.

For example, the availability matrix M
(d):

S Client 1 Client 2 Client 3 . . . Client N

1 A1

1
(1) A1

2
(1) A1

3
(1) . . . A1

N
(1)

2 A1

1
(2) A1

2
(2) A1

3
(2) . . . A1

N
(2)

3 A1

1
(3) A1

2
(3) A1

3
(3) . . . A1

N
(3)

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

S A1

1
(S) A1

2
(S) A1

3
(S) . . . A1

N
(S)

The value of Ad
i (s) is derived from the heartbeat signals

received from client i, as detailed next.

0 Idle status refers to a state where the device is not actively being used by
the user to run other applications, allowing it to perform computations without
disrupting their experience.
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3) Heartbeat Signal Processing: To determine the time
slot s corresponding to a heartbeat timestamp hbt, we use the
formula s =

⌈

t
∆t

⌉

; where t is the timestamp and ∆t is the
duration of each time slot. The heartbeat belongs to the 60th
time slot (s = 60). Once a heartbeat is received, its status
is considered valid for the next Wi time slots, where Wi is
a client-specific validity window. Thus, the availability status

A
(d)
i (s) is updated as follows:
• If hbt

i = 1 (client is available):

A
(d)
i (s) = 1, ∀s ∈ [s, s+Wi]

• If hbt
i = 0 (client is (un)available):

A
(d)
i (s) = 0, ∀s ∈ [s, s+Wi]

If a new heartbeat with the opposite status is received within
the validity window, the availability status is updated begin-
ning with the new heartbeat’s time slot onwards. In general,

we can formalize the availability status A
(d)
i (s) as:

A
(d)
i (s) =

{

status of hbti, if hb exists for all s ∈ [s, s+Wi]

0, otherwise

B. Availability Prediction Layer

1) CNN-LSTM Model as a Time Series Prediction Model:

The server processes the heartbeat data as daily matrices M
through the Availability Prediction Layer, utilizing a CNN-

LSTM model to identify clients’ availability for the next day.

The CNN-LSTM model architecture consists of a combination

of (CNN) and (LSTM) networks. The CNN is used to capture

spatial patterns in client availability across time slots within a

day, while the LSTM captures temporal dependencies across

multiple days.

• Spatial Feature Extraction with CNN: For each day d,

the CNN processes M
(d) to extract spatial features F

(d).

This captures local patterns of client availability within

the day, such as peak availability times.

• Temporal Dependency Modeling with LSTM: After that,

the sequence of feature vectors is utilise as input into the

LSTM network to model temporal dependencies across

days. The sequence {f (1), f (2), . . . , f (D)} is input into the

LSTM.

The model takes availability matrices from the past d days

as input, leveraging temporal information to predict future

availability PA for clients for the next day.

S Client 1 Client 2 Client 3 . . . Client N

1 PA1

1
(1) PA1

2
(1) PA1

3
(1) . . . PA1

N
(1)

2 PA1

1
(2) PA1

2
(2) PA1

3
(2) . . . PA1

N
(2)

3 PA1

1
(3) PA1

2
(3) PA1

3
(3) . . . PA1

N
(3)

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

S PA1

1
(S) PA1

2
(S) PA1

3
(S) . . . PA1

N
(S)

2) Responded Duration: A client’s eligibility for a training
round depends on its response time and availability duration,
ensuring compatibility with device heterogeneity and varying
capabilities. Let Cexpected(i) denote the expected duration for
client i to complete local training and return its update, esti-
mated by averaging its response times from past participation
rounds, as follows:

Cexpected(i) =

{

1
n

∑

j∈Si
Cresponse(i, j), if n > 0

Cinit, if n = 0

where, Cexpected(i) is the expected responded (computation

and communication ) duration for client i; n is the number of

rounds the client participated in. Cresponse(i, j) is the response

time in round j and Cinit is the initial response time estimate

when n = 0. Thus, continuously tracking and updating clients’

training duration is vital for constructing the eligibility matrix,

as it relies on both the prediction matrix and the clients’

training duration.

3) Eligibility Matrix Construction: The methodology for

evaluating client eligibility at a given slot s for executing a

training task is detailed in this section. This process is critical

for identifying optimal slots throughout the day for training

and selecting the most eligible set of clients for participation,

as illustrated in Figure 4. This eligibility matrix plays a pivotal

role in enabling the server to efficiently schedule clients for

the following day, ensuring effective client selection and load

balancing in federated training over time.

Fig. 4: Pipeline for Generating the Eligibility Matrix.

Considering the prediction matrix and response duration,

the following steps are performed for each client i ∈ N to

generate the eligibility matrix for the next day:

• For s = 0 to S, we calculate the number of consecutive

slots from s onward during which the client is predicted

to remain available PA = 1. This predicted availability

window is denoted as Λs
i for client i, representing the

number of slots during which the client is expected to

stay available after slot s.

• To ensure that client i can perform the training task, Λs
i ,

the predicted availability window starting from s, must be

sufficient. This depends on the expected duration required

for the task Cexpected(i), which is specific to client i, plus a

constant buffer k to account for potential communication

delays and network variability. The client i is considered

eligible at slot s if the following condition holds:

Λs
i ≥ Cexpected(i) + k ⇒ Ei(s) = 1

If this condition is met, the eligibility indicator Ei(s) is

set to 1, indicating that client i is available and may be

selected for training at slot s and Ei(s) = 1. In contrast,

if the condition is not met (i.e., if Λs
i is too short and not

covered Cexpected(i)), the eligibility indicator Ei(s) is set

5



to 0, indicating that client i is not available for training

at slot s:

Λs
i < Cexpected(i) + k ⇒ Ei(s) = 0

Be doing that, we convert the predicted availability matrix

into a more informative matrix, the Eligibility Matrix.

S Client 1 Client 2 Client 3 . . . Client N

1 E1(1) E2(1) E3(1) . . . EN (1)
2 E1(2) E2(2) E3(2) . . . EN (2)
3 E1(3) E2(3) E3(3) . . . EN (3)

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

S E1(S) E2(S) E3(S) . . . EN (S)

C. Adaptive Selection and Scheduling Policy

In RIFLES, selection and scheduling are critical processes

that involve deciding which clients will participate in con-

tributing their local updates to the global model based on

criteria like availability, capabilities, historical participation or

fairness when to optimally execute these training rounds.

In this section, we present two adaptive selection and

scheduling policies to showcase the customisable nature of

RIFLES: Greedy Heuristics (GH) and Least Recently Used

(LRU). Both policies utilize the eligibility matrix that aims to

enhance participation rates, accelerate convergence minimise

dropout rates, thereby improving the overall efficiency of FL

system

1) Greedy Heuristic (GH) Policy for Client Selection

and Slot Scheduling: The Greedy Heuristic (GH) policy

is designed to select clients and allocate time slots for a

predetermined number of training rounds R (e.g., 24 rounds

per day). Its goal is to maximize client participation, maintain a

minimum gap G between consecutive rounds (e.g., 2 slots) and

prioritize the inclusion of as many unique clients as possible

to promote data diversity. This approach prioritizes availability

while striving to optimize client diversity and participation

rates within the scheduling constraints. Therefore, as inputs

we had (i) Eligibility matrix, the binary matrix indicating

whether client i is eligible at slot s. (ii) Minimum gap G,

The minimum number of slots required between two selected

training slots. (iii) Threshold for participation numberKmin,

which indicates to the minimum number of clients required

to perform a training round. Its works as follows: Firstly,

calculates the number of eligible clients for each time slot

s by summing the eligible clients across all slots. This step

helps prioritize slots with the highest potential participation

for scheduling training rounds.

Eligible Clients(s) =
N
∑

i=1

E(i, s)

After that, we sort slots by count in descending order, based

on the count of Eligible Clients. We then select slots with a

gap constraint, by initializing an empty list for selected slots

and we then iterate over the sorted list of slots. For each slot

s, we check if it’s at least G slots away from all previously

selected slots. If it satisfies this condition and has enough

eligible clients(Eligible Clients(s) ≥ Kmin), we add that slot

to the selected slots list. This is continued until a sufficient

number of slots is selected or no further slot meets the criteria.

After selecting the optimal slots, we calculate the total number

of distinct clients covered across these slots. If not all of the

clients are included, we adjust the threshold or gap between

rounds to maximize the participation of as many unique clients

as possible. The unique clients are defined as those with a low

eligibility rate, meaning that those whose number of eligible

slots falls below a specified threshold α.

U = {i ∈ N | |EligibleSlotsi| < α}

where U represents the set of unique clients, N is the total set

of clients, EligibleSlotsi is the set of eligible slots for client i

and α is the predefined threshold for eligibility. These clients

are often overlooked in existing client selection approaches

due to their sporadic presence. By including them, the policy

promotes diversity in client selection, enabling the global

model to benefit from underrepresented data distributions

and preventing over-reliance on frequently available clients.

Finally, compute aggregation time for each round s ∈ S as

Aggs = maxi∈s Cexpected(i), ∀s ∈ S .

2) Least Recently Used (LRU) for Clients Selection:

It maintains a dynamic cache to track the order of client

participation, ensuring that clients with longer periods of

inactivity are given higher priority for selection. Its works

as follows: Establish an LRU cache Q as a deque with a

maximum length of the entire number of clients. Initially,

all clients are added to the cache in with the least recently

used clients at the beginning. After that, Sort slots by eligible

clients in descending order and select slots with gap constraint

For each selected slot s, determine the eligible clients from

eligibility matrix E:

Es = {i | E(s, i) = 1}

Then, filter Es based on the LRU order by selecting only

those clients who are in Q. This subset of least recently used

eligible clients is denoted as Ls:

Ls = {i ∈ Q | i ∈ Es}

Select up to Kmin clients from Ls, prioritizing those at the

front of the LRU cache Q, as they are the least recently used:

Λs = Ls[: Kmin]

where, Kmin is the required number of clients to participate

in the current round. Compute the aggregation time for each

round s ∈ S as Aggs = maxi∈s Cexpected(i), ∀s ∈ S .

D. Model Distribution and Aggregation

The server distributes the latest global model to selected

clients, who perform local training on their private data. After

training, clients send their updates back to the server, where

they are aggregated to form an updated global model.
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VII. EXPERIMENT SETUP

A. System Implementation

We conducted our experiments utilizing the FedScale frame-

work [11], [24] and leveraged an NVIDIA GPU cluster,

approx. 22GB GPU RAM, CUDA compute capability 7.5, to

simulate client training processes using PyTorch. Similar to

REFL [11], we employed the YoGi optimizer [34] for model

aggregation. For the system training configuration, we set the

number of clients to N = 100 with a client participation rate

of 0.1 across 1k communication rounds. Regarding the model-

specific training setups, for the WISDM dataset, we trained a

CNN using a batch size B of 32, a learning rate γ = 0.005
and a local training frequency of E = 1. For the CIFAR-

10 dataset, we trained a ResNet-18 model with a B = 32, a

γ = 0.05, and E = 1.

1) Simulating System Heterogeneity: To simulate computa-

tional heterogeneity among clients, we adopted a regression-

based approach inspired by prior work [22], [35]. We collected

hardware performance data from three representative devices

to train a regression model to estimates training speeds. For

communication heterogeneity, we used a dataset from [22]

containing down/upstream bandwidth measurements between

30 devices and the server.

2) Simulating Availability Heterogeneity: To generate real-

istic availability patterns for clients over a week, we generated

day 1 availability, as reference day, by create random availabil-

ity patterns for each client, with an increased availability factor

of 1.5× during nighttime hours (10 PM to 6 AM) to reflect

typical user behavior in real-world, where most individuals

tend to charge their devices at night and not used them. Then,

for subsequent days, we introduced a 20% chance for each

client to change their availability status hourly, simulating

natural fluctuations in user behavior. Moreover, we introduced

random short-term unavailability periods (e.g., clients going

offline for 10 minutes after being online for 30 seconds)

to mimic brief connectivity losses. Finally, each client was

randomly assigned a state trace and hardware capacity to

mimic real-world variability.

B. Application, Datasets and Models

We evaluate the performance across two application do-

mains: human activity recognition (HAR) and image clas-

sification. For HAR, we employ the WISDM dataset [36],

where each client receives samples from all 6 activity classes

with varying class distributions, simulating realistic and di-

verse usage conditions. For image recognition, we utilize the

CIFAR-10 dataset [37], introducing more severe heterogeneity

by applying a filter class ratio of 0.7 of 10 classes to further

challenge the learning process under non-IID settings.

C. Baselines

To evaluate the performance of RIFLES, we compare RI-

FLES against three baselines:

• Random [5]: This selection approach utilised by FedAvg,

the most classical synchronous approach, where ⌈β×N⌉
clients randomly selected during the selection phase.

TABLE II: Round of Arrival (RoA) at different accuracy

thresholds (50%, 75% and 90%) and the final accuracy.

Method WISDM Dataset

RoA@50% RoA@75% RoA@90% Acc@Deadline

Random 15 98 nan 72%

FedCS 13 59 nan 82%

REFL 9 44 326 90%

RIFLES (LRU) 3 16 138 95%

RIFLES (GH) 3 7 133 95%

• FedCS [14]: A framework that addresses heterogeneity

by selecting ⌈β × N⌉ clients, collecting resource infor-

mation and estimating speeds to select those capable of

downloading, training and uploading within the deadline.

• REFL [15]: A state-of-the-art FL framework that ad-

dresses resource and availability heterogeneity by eval-

uating device performance and leveraging client-reported

availability for selection. It selects ⌈β × N⌉ clients,

prioritizing those likely to be unavailable in upcoming

rounds.

D. Evaluation Metrics

To evaluate the overall performance of RIFLES vs baseline

approaches, we utilize the evaluation metrics include Accu-

racy@Deadline, measuring global model accuracy after 1k

rounds; Round of Arrival (RoA@x), indicating how quickly

the model reaches a specified accuracy; Completion Rate,

the percentage of clients successfully submitting updates by

deadline; Successful Rate, the percentage of clients completing

training tasks within each round; Dropout Rate, the percentage

of selected clients failing tasks and Unique Client Participation

Count, representing clients newly participating after a defined

number of previous rounds (e.g., 3 rounds).

VIII. RESULTS

A. Training Model Performance

Fig. 5 presents the test accuracy and loss over 1K rounds

on WISDM and 500 rounds on CIFAR-10 for RIFLES (GH,

LRU) and baseline methods, shown in the top and bottom

rows, respectively. As illustrated in Fig. 5a, RIFLES (GH)

achieves 94.6% accuracy within 500 rounds, outperforming

FedCS (82.5%) and REFL (88.3%) on WISDM, while RIFLES

(LRU) further improves to 95%; random selection lags at

71.7%. On CIFAR-10, as shown in Fig. 5b, RIFLES (GH)

reaches around 67% and RIFLES (LRU) 69%, compared

to FedCS 59%, REFL 60% and random selection 47%. In

both datasets, RIFLES demonstrate faster convergence, higher

stability and reduced overfitting risks, even under the relatively

more non-IID settings of CIFAR-10. Generally speaking,

RIFLES in both variants continuously maintains a 5±10%

superior accuracy and lower losses over all rounds than REFL

and FedCS. Table II illustrated that RIFLES achieves target

accuracy levels significantly faster than REFL and FedCS, on

WISDM. For example, RIFLES (GH) reaches 75% accuracy

in just 7 rounds and 90% in 133 rounds, compared to REFL’s

44 and 326 rounds, respectively. which demonstrate how
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(a) WISDM dataset (b) CIFAR-10 dataset

Fig. 5: Comparison of test accuracy and test loss of RIFLES against baseline models (Random, FedCS, REFL).

well RIFLES works to produce high-quality models with

significantly fewer communication rounds.

Fig. 6: Comparison of RIFLES and baselines across metrics
over communication rounds. Each point shows the rolling mean
over 24 rounds; shaded areas represent the standard deviation.

B. Resource Efficiency and System Robustness

Since our results are derived from emulation, We emu-

late resource usage using client counts and total time per

round, tracking client outcomes and summing computation and

communication times. Figure 6 illustrates the performance of

RIFLES (GH) and (LRU) in comparison to baseline meth-

ods (Random, FedCS and REFL) across resource efficiency

criteria. Although RIFLES (GH) and (LRU) continuously

sustain a stable count of selected clients per round (about

10), ensuring equitable participation, both variations attain

superior completion rates, averaging over 85% with negligible

fluctuation, surpassing all baseline approaches.

Figure 6, showing that both, (GH) and (LRU), maintain a

stable client count per round ( 10) and achieve high completion

rates exceeding 85%. Conversely, Random and FedCS demon-

strate reduced and more fluctuating completion rates. This

inefficiency results in the squandered computing and com-

munication resources, as the contributions from uncompleted

clients fail to enhance the global model. Moreover, RIFLES

attains the lowest dropout rates of all approaches, remaining

consistently below 50-60%, while dropout rates for Random

and FedCS often surpass 90% in some rounds.

Figures 8 demonstrate RIFLES’ superior client scheduling,

showing higher success rates than baselines while maintaining

diverse participation by including unique clients. This strategy

guarantees that clients possess sufficient time to fresher local

data before re-joining and broader client involvement, helping

reduce model bias in heterogeneous settings. Figure 7 depicts

the daily cumulative time,; while Random and FedCS suffer

from high lost time, REFL reduces it significantly. However,

RIFLES (GH) and RIFLES (LRU) achieve minimal lost time,

highlighting their efficiency in selecting reliable clients.
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S. Kumar, and H. B. McMahan, ªAdaptive federated optimization,º arXiv

preprint arXiv:2003.00295, 2020.

9



[35] L. L. Zhang, S. Han, J. Wei, N. Zheng, T. Cao, Y. Yang, and Y. Liu,
ªNn-meter: Towards accurate latency prediction of deep-learning model
inference on diverse edge devices,º in Proceedings of the 19th Annual

International Conference on Mobile Systems, Applications, and Services,
2021, pp. 81±93.

[36] G. M. Weiss, ªWisdm smartphone and smartwatch activity and biomet-
rics dataset,º UCI Machine Learning Repository: WISDM Smartphone

and Smartwatch Activity and Biometrics Dataset Data Set, vol. 7, pp.
133 190±133 202, 2019.

[37] A. Krizhevsky, V. Nair, and G. Hinton, ªThe cifar-10 dataset,º 2014.
[Online]. Available: http://www.cs.toronto.edu/kriz/cifar.html

10


