
A High-Precision and Robust Geometric Relationships-
Inspired Neural Network for the Inverse Kinematic
Modeling of the Tendon-Actuated Continuum Manipulator

Jinyu Duan, Jianxiong Hao, Pengyu Du, Bo Zhang, Zhiqiang Zhang,
and Chaoyang Shi*

1. Introduction

Continuum manipulators perform tasks that traditional rigid
manipulators cannot achieve due to their flexible and controllable
structures, smooth deformation curves, and infinite passive

degrees of freedom (DOF).[1–3] These fea-
tures endow continuum manipulators with
excellent structural compliance, environ-
mental adaptability, and flexible accessibility
in narrow, unstructured pathways.[4–6]

Therefore, continuum manipulators have
been applied in complex tasks, such as aero-
engine maintenance, search and rescue mis-
sions, and minimally invasive surgery.[7–14]

Among various configurations of continuum
manipulators, tendon-driven continuum
manipulators are the most widely utilized
in tasks such as thermal barrier coating
repair in aeroengine combustion cham-
bers[15] and natural orifice transluminal
endoscopic surgery.[16–18] Although the
trend of applying continuum manipulators
across various fields is increasingly evident,
challenges remain in achieving precise con-
trol in more complex and various application
scenarios.[19] Inverse kinematic modeling is
one of the crucial approaches for addressing
these challenges. However, complex tendon
routing, friction, large bending deforma-
tions, and significant hysteresis behaviors
lead to the inherent nonlinearities and
uncertainties, which pose substantial diffi-

culties in inverse kinematic modeling of continuummanipulators.
To overcome these difficulties and develop higher-precision and
more adaptive models, model-based and data-driven approaches
have been widely employed for the inverse kinematic modeling
of continuum manipulators.[1,3,20,21]
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Continuummanipulators can operate in complex environments where traditional
rigid manipulators fail. However, the modeling of inverse kinematics remains
challenging because of its inherent nonlinearities and various external condi-
tions. This work proposes an online learning control framework with a data cache
pool utilizing a constant-curvature model inspired neural network (CCMINN)
model to obtain the inverse kinematics model of tendon-actuated continuum
manipulators. The CCMINN model is a kind of geometric relationships-inspired
neural network, which is inspired by the geometric relationships within the
constant-curvature model. This model improves the ability of traditional fully
connected neural network models on high convergence speed and precision
through its constant-curvature inspiration layers. These layers embed geometry
insights into the neural network structure rather than loss functions like physics-
informed neural networks. The online learning framework enables CCMINN to
maintain high control accuracy in a variety of external load scenarios.
Experiments show average tracking errors of 1.4 mm, 1.38 mm, and 1.48 mm
(0.7%, 0.64%, and 0.74% of the continuummanipulator length) in the free space,
under constant and variable loading conditions, respectively. The results show
that combining the fast-converging CCMINN with an online learning control
framework enables high-precision and robust positioning control of continuum
manipulators under various external payloads.
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The model-based inverse kinematic modeling approaches
_primarily include classical geometry-based methods and
mechanics-based methods.[1,3] Geometry-based methods often
rely on constant-curvature (CC),[22,23] piecewise constant curva-
ture[24,25] assumptions, or Euler curves.[26] Despite their wide-
spread utilization, these models suffer from large errors due to
the inability to satisfy CC assumptions under the complex internal
friction phenomena and variable external payloads of continuum
manipulators. Mechanics-based models, including Cosserat rod
theory[27–29] and rigid-link models,[30–32] face difficulties in address-
ing the complex relationships arising from the insufficient stiffness
of continuum structures. The inability of model-based methods to
capture the intricate internal nonlinearities of continuum manip-
ulators, combined with the difficulty of accurately identifying
model parameters, exacerbates the errors in practical applica-
tions.[33,34] Furthermore, model-based methods are often tailored
to specific configurations of continuum manipulators, limiting
their generalizability and wide applicability.[10,19]

The data-driven modeling approaches have been widely used
in recent research. This is because the nonlinear relationships in
continuum manipulator motions are difficult to establish accu-
rately using specific mathematical models, while data-driven
modeling methods can well describe these relationships.
Neural networks have been widely applied to inverse kinematic
modeling of continuum manipulators because of their efficient
and accurate nonlinear fitting capabilities.[35–38] In some early
studies, traditional fully connected neural networks (FNNs) were
employed for inverse kinematics modeling of continuum
manipulators.[39–42] While FNNs improved the accuracy of
inverse kinematic modeling, they struggled to handle pro-
nounced nonlinear phenomena such as friction and hysteresis.
To further enhance the accuracy of neural networks in inverse
kinematic modeling, some recent studies have explored more
suitable neural network architectures for continuum manipula-
tors, such as those with time-series processing capabilities.[43–45]

These architectures are well-suited for addressing nonlinearities
arising from time-sequential problems such as hysteresis.

Additionally, physics-informed neural networks (PINNs)[46]

are a type of neural network model that uses data to fit the desired
physical model.[47,48] Their main feature is embedding physical
constraints (such as partial differential equations, boundary con-
ditions, and initial conditions) directly into the loss function of
the neural network, thereby reflecting the alignment with the
physical model. Some existing studies have applied PINNs for
inverse kinematics modeling of continuum manipulators and
have achieved good control performance.[49,50] Although
PINNs further integrate the neural network with continuum
manipulators’ structure at the loss function level, the model still
adopts conventional neural network architectures. During the
training process, the model ultimately converges to the vicinity
of the physical models embedded in the loss function. This char-
acteristic means that the control methods based on PINNs are
somewhat limited by the physical models’ accuracy, which
may lead to higher control errors compared with those methods
based on traditional neural networks.[50] Moreover, all these neu-
ral network-based modeling approaches require the prior collec-
tion of datasets for training. As a result, neural networks can only
fit the inverse kinematic mapping relationships of continuum
manipulators based on the conditions present during data

collection. When external factors such as environmental contact
or changes in distal tip loads occur, the precollected datasets fail
to reflect the current inverse kinematic relationships, leading to
large errors in the performance of trained neural
network models.

To address the above challenges of poor inverse kinematics
modeling accuracy and adaptability in various external loading
scenarios, a constant-curvature model inspired neural network
(CCMINN) was designed. In general, CCMINN is a kind of geo-
metric relationships-inspired neural network which is inspired
by the geometric relationships within the CC model. This neural
network achieves high-accuracy and high-convergence-speed
inverse kinematics modeling for tendon-driven continuum
manipulators. Furthermore, CCMINN was integrated into an
online learning control framework with a data cache pool,
enabling high-accuracy and robust distal tip position control
under diverse loading conditions. The proposed CCMINN com-
prises an input layer, feature extraction layers, CC inspiration
layers, and an output layer. The network takes the continuum
manipulator’s distal tip position as input and outputs the desired
cable lengths. Feature extraction layers consist of two fully
connected layers, each with 20 neurons, enabling CCMINN to
capture statistical features from the input data. This enhances
the neural network’s ability to fit nonlinear relationships, thereby
improving the accuracy of inverse kinematics modeling. A CC
inspiration layers are designed based on the CC model. In these
layers, the input and connection relationships of neurons explic-
itly represent the characteristic terms from the CC model,
embedding geometry insights into the neural network. By incor-
porating this CC-based structure, the layer reduces the time
required for the model to reconstruct the CC model, thereby
improving the convergence speed during training. The enhanced
convergence speed allows CCMINN to be further applied to an
online learning control framework with a data cache pool. This
pool records the continuum manipulator’s historical operational
data, mitigating random errors caused by frequent model
updates. The combination of the fast-converging CCMINN
and this robust online learning control framework enables the
continuum manipulator to adapt to various loading scenarios
beyond those considered during model pretraining, ensuring
robust and versatile operation.

2. Experimental Section

2.1. Hardware Configuration of the Continuum Robot System

The overview of the continuum robot system has been illustrated
in Figure 1. A spacing disk-type continuum manipulator was
applied for experimental validation of the proposed approach.
This continuum manipulator was operated via two pairs of sym-
metrically placed driving cables, which enabled bending motions
in both pitch and yaw directions. The cable displacements were
obtained by converting the rotary motion of the DC motors
(Maxon, DC16, Switzerland) into linear motion with four linear
modules. These displacements were recorded by incremental
optical encoders. A 3D optical measurement unit (NDI
Polaris, Ontario, Canada) measured the distal tip position of
the continuum manipulator with the distally attached marker.
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The measured position data was sent to the host computer (Core
i7 processor @ 2.80 GHz, NVIDIA GeForce GTX 1060 GPU @
1.50 GHz with 6 GB VRAM, and 16 GB RAM) for positioning
monitoring with a sampling rate of 60 Hz through a USB cable.
The host computer calculates, analyzes, and sends control com-
mands. A central motion controller received the control
signals from the host computer and forwards these commands
to the amplifiers (IMC, PENP, Germany) to drive these DC
motors. These amplifiers were integrated with a homemade cir-
cuit board for more convenient system debugging and real-time
control.

2.2. CC Model-Inspired Neural Network-Based Inverse
Kinematic Modeling

2.2.1. CC Assumption-Based Inverse Kinematic Modeling for
CCMINN Model Building

To develop the CCMINN model, the CC assumption-based
inverse kinematics modeling of the continuum manipulator
was initially undertaken. In our prior research,[44] the inverse
kinematics model of a single-segment continuum manipulator
was represented as follows

d1
d2
d3
d4

2
664

3
775 ¼

�θD cosφ
�θD sinφ
θD cosφ
θD sinφ

2
664

3
775þ s (1)

where s, θ, and φ respectively denote the length, bending angle,
and rotation angle of the continuum manipulator, di represents
the cable displacement of the i-th driving cable, and D is the dis-
tance from the driving cable to the center of the continuum
manipulator’s disk.

To explicitly construct the CC-inspired structure in the pro-
posed CCMINNmodel with the input data of the neural network,
the distal tip position x, y½ �T of the continuummanipulator needs
to be extracted from (1).

According to the geometric model of a single-segment contin-
uum manipulator, the rotation angle φ and bending angle θ

satisfy the following relationship.

cosφ
sinφ
θ

2
4

3
5 ¼ x

r
y
r

s
R

� �
T (2)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and R denotes the curvature radius of the

continuum manipulator, as shown in (Figure 2b).
Substituting (2) into (1), the expression involving x, y½ �T can be

derived as

d ¼ sD
rR

X þ s (3)

Where d ¼ d1, d2, d3, d4½ �T and X ¼ �x, � y, x, y½ �T .
Furthermore, utilizing the geometric relationships of similar

triangles as depicted in (Figure 2b), the following relationship
can be obtained.

rR ¼ 1
2
L2 (4)

where L is the chord length of the continuum manipulator, and
L2 ¼ x2 þ y2 þ z2. It should be noted that variables x, y, and z are
constrainted by the following geometric relationship

s ¼ r2 þ z2

r
atan

r
z

� �
(5)

Figure 1. Hardware configuration of the continuum robot system.

Figure 2. Illustration of a) the configuration variables and b) two similar
triangles of the 2-DOF continuum manipulator bending in the 3D space.
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Solving for the value of z from (5) is challenging and slow.
Therefore, an efficient approximation of atan(·)[51] is applied
for transforming (5) into the following cubic equation.

z3 � sz2 þ r2z� 0.281sr2 ¼ 0 (6)

The above equation allows to be efficiently calculated z directly
utilizing the root-finding formula of a cubic equation, eliminat-
ing the need to solve (5) iteratively, which will also accelerate the
computation of the neural network model in the following
section. Meanwhile, the slight error introduced by this approxi-
mation can be indirectly compensated during subsequent neural
network training.

Substituting (4) into (3), the inverse kinematics expression of
the single-segment continuum manipulator, which is expressed
explicitly in terms of X , can be derived as

d ¼ 2sD
L2

þ k
� �

X � ðkX � sÞ (7)

where k is a hyperparameter to be learned and does not require a
specific predefinition. This formula intuitively illustrates the
algebraic relationship between the inputs X and outputs d of
the CCMINN to be designed, making it relatively straightforward
to integrate the CC model into the neural network. This integra-
tion improved the neural network model’s accuracy while
enhancing its convergence speed. Introducing k not only explic-
itly reflects the linear relationship between d and X but also
increases the learnable parameters in the neural network model,
thereby enhancing the model’s learning capability.

2.2.2. CCMINN-Based Neural Network Architecture for Inverse
Kinematic Modeling

Based on the derived CC model above, the CCMINN model was
proposed to realize high-accuracy inverse kinematic modeling
with high convergence speed. According to (7), the CCMINN
model can be designed and structured as illustrated in Figure 3.

The proposed CCMINN model comprises four main compo-
nents: the input layer, feature extraction layers, CC inspiration
layers, and the output layer. The input layer takes the desired
distal tip position (X ∈ ℝ4�1) as input and forwards this infor-
mation to the feature extraction layers. These layers include two
fully connected layers containing 20 neural cells, and the internal
parameters and hyperparameters should be trained or tuned to
optimize feature extraction from the output of the input layer.
The extracted features were then passed on to the CC inspiration
layers that primarily consist of the nonlinear-inspired part (NLIP)
and the linear-inspired part (LIP). These two parts embody the
inverse kinematic mapping relationship as depicted in (7)
through neural cell structures, specifically

ON ¼ f N
2sD
L2

W 1 ⋅ J
� �

þ f NðW 2 ⋅ JÞ,

OL ¼ W 2 ⋅ J � s, y ¼ ON � OL

(8)

where ON and OL respectively denote the output of NLIP and
LIP, f N represents the activation function of NLIP and LIP,
respectively. In this work, tanh was chosen as f N . Jexpressed
the output of the feature extraction layers. W 1 and W 2 were
weights of these layers; these weights were treated as hyperpara-
meter k in (7), and the form of parameters 2sD=L2 and s was
inspired by the geometry relationship represented in (7). After
obtaining y by subtracting ON from OL, the CC inspiration layers
passed the result in the form of (7) through two fully connected

Figure 3. Inverse kinematic modeling based on the proposed CCMINN model.
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layers, each with four neurons, to generate an output. The output
layer received the input from the CC inspiration layers and ulti-
mately predicted cable displacements ðd ∈ ℝ4�1Þ. Hence, the
CCMINN model establishes a mapping relationship from the
distal tip position to the cable displacements of the continuum
manipulator.

Further analysis of (8) reveals that the proposed CC inspiration
layers not only explicitly incorporate prior knowledge of the sys-
tem but also enhance the convergence speed of the CCMINN
model through their excellent gradient properties. The gradients
of y with respect to the weights W 1 and W 2 are

∂y
∂W 1

¼ 1� tanh2 2sD
L2

W 1 ⋅ J
� �� �

⋅
2sD
L2

⋅ J,

∂y
∂W 2

¼ 1� tanh2 W 2 · Jð Þð Þ ⋅ J � J

(9)

For the weight W 1, 2sD=L2 is a relatively small value in the
tendon-driven continuum manipulators model (L ≫ D), which
keeps tanh(·) in the nonsaturated region. This enables W 1 to
update stably with a relatively large gradient. Meanwhile, for
the weight W 2, the presence of �J provided a stable gradient
update path. Even when the gradient contribution of the term
(1�tanh2(·)) diminished, W 2 can still update stably. These excel-
lent gradient properties further enhanced the convergence speed
of the CCMINN model.

The proposed CCMINNmodel explicitly incorporates prior geo-
metric knowledge through its CC inspiration layers. Compared
with traditional neural networks (e.g., traditional FNNmodel), this
approach ensured high accuracy in inverse kinematic modeling
while significantly reducing training convergence time. This accel-
erated convergence enabled the CCMINN model to be effectively
applied within the control framework with online learning of con-
tinuum manipulators, thereby enhancing its robustness and con-
trol precision, as will be discussed in the following section.

To verify that the proposed CCMINN model has advantages
in convergence speed compared with traditional neural networks
(such as feedforward neural networks, FNNs) while ensur-
ing high accuracy in the training process, offline training

experiments on the CCMINN model and the FNN model were
conducted. The dataset utilized came from an experiment with a
200mm continuum manipulator. The continuum manipulator’s
distal tip was driven to move along six circle trajectories with dif-
ferent diameters (fromΦ36 mm toΦ216 mm, with an interval of
36mm). The distal tip position data were collected with the 3D
optical measurement unit, and the tendon displacement data
were recorded simultaneously. Finally, a total of 4,025 sets of data
were obtained, which were randomly divided into training sets
(80%) and test sets (20%). The loss function utilized in the
training process is the mean absolute percentage error, and
its calculation formula is shown in (9).

Loss ¼ 100
n

X jypre � ytruej
ytrue

(10)

where ypre and yture, respectively, denote the prediction from the
neural network and ground truth.

The loss value variation and details of each neural network’s
training processes are presented in Figure 4 and Table 1. The loss
function value of the proposed CCMINN model finally reached
0.12, which was significantly lower than 0.22 of FNN. Comparing
the convergence speed of the two network models, the number of
training epochs required for CCMINN to reach 1% loss and 0.5%
loss was 6 and 43, respectively, which was only 46.15% and
17.55% of FNN. This advantage is due to the geometry inspira-
tion layer based on the CCmodel introduced by CCMINN, which
not only has a faster convergence speed but also has a lower ini-
tial loss function value (1.28, which was 1.29% of FNN). It should
be noted that the loss curve of FNN in the first 10 epochs had a
higher rate of change (9.22/epoch) because its higher initial loss
function value brings a higher gradient value, which had nothing
to do with the convergence speed of FNN itself. In those epochs,
which have the same range of loss function values, such as 1–40
epochs of CCMINN and 13–249 epochs of FNN (loss value from
0.99 to 0.22), the loss curve of CCMINN had a higher conver-
gence rate (0.013/epoch, which was 4.36 times faster than that
of the FNN). The experimental result indicates that the proposed
CCMINNmodel has advantages in convergence speed compared
with traditional neural networks

Figure 4. The variations of the loss function while training CCMINN and FNN in the offline training experiments.
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2.3. CCMINN-Based Online Learning Control Framework for
the Continuum Manipulator

A control framework that integrates an online learning method
for continuum manipulators was designed based on the pro-
posed CCMINN model to improve the robustness and precision
of this model across different operating environments. The over-
view of this control framework is shown in Figure 5. This control
framework consists of three main modules: the CCMINN mod-
ule, the online learning quality monitoring module, and the data
cache module. The CCMINN module takes the desired distal tip
position Xd as input and utilizes the CCMINN model to output
predicted cable displacements d, which control the continuum
manipulator’s distal tip to generate the actual distal tip position
Xa. The online learning quality monitoring module determines
the framework’s operational mode by calculating the Euclidean
distance between the desired and actual distal tip positions. If
this distance is below a predefined threshold, the framework
operates in online learningmode; otherwise, it switches to offline
application mode. The different modes primarily affect the oper-
ation of the data cache module. During the online learningmode,
the data cache module recorded real-time tendon displacements
d (output of the CCMINN module) and measured distal tip

positions Xm of the continuum manipulator as input–output
pairs (IO Pairs) in a data cache pool. This cache pool stored
the continuummanipulator’s historical operational data, helping
to mitigate random errors caused by frequent model updates.
When the capacity controller detects that the data cache pool
has reached a specified threshold, it shuffles and utilizes the
recorded data to conduct online learning on the CCMINN model
using the follow the regularized leader algorithm.[52] It should be
highlighted that all the recorded data reflected the current inverse
kinematic mapping relationship. Thus, this update made the
model parameters better fit the current inverse kinematic
relationship of the continuum manipulator, enhancing the
robustness and precision of the CCMINN model in various exe-
cution environments. In the offline application mode, the data
cache module does not interact with the CCMINN module, as
the CCMINN model can control the actual continuum manipu-
lator’s distal tip movement within a specified error threshold.

By utilizing the CCMINN-based control framework, when
changes occurred in the actual inverse kinematic relationship
of the continuummanipulator (e.g., due to variations in the distal
tip loads), the fast-converging CCMINN model effectively
updated to adapt to the latest mapping relationship. This capa-
bility enabled the control framework to achieve high robustness
and precision in positioning tasks for the continuum manipula-
tor across various execution environments.

3. Experiments and Results

3.1. Trajectory Tracking of the Continuum Manipulator Based
on the Proposed CCMINN-Based Control Framework in the
Free Space

In this section, two groups of trajectory tracking experiments
were conducted on a continuum manipulator in free space to
validate the feasibility of integrating the proposed CCMINN
model into an online learning control framework. Initially, the
high accuracy of this control framework is confirmed through

Table 1. Offline training experimental result of CCMINN and FNN.

Training metric CCMINN FNN

Initial loss value 1.28 99.52

Final loss value 0.12 0.22

Epochs to reach 1% loss 6 13

Epochs to reach 0.5% loss 43 245

Convergence rate (loss value from 0.99 to 0.22) 0.013/epoch 0.003/epoch

Notes: 1% loss and 0.5% loss represent the loss value which equal to 1 and 0.5,
respectively.

Figure 5. The proposed online learning framework with a data cache pool which is applied to the distal tip position control of continuum manipulators.
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the trajectory tracking experiment using the newly online
learning fast-converging CCMINN model. Furthermore, the
transferability of this model is also assessed by the experiments
with trajectories that differ from those used in training. The
mean value of the distal positioning error (MVDPE), which
compares the actual trajectory produced by the CCMINN-based
control framework to the desired trajectory, serves as the key per-
formance metric in these experiments.

3.1.1. Trajectory Tracking Experiment with the de novo Online
Learning CCMINN Model

To validate the feasibility of the proposed rapid-converging
CCMINN model within the online learning control framework
as outlined in the previous section, experiments were carried
out on three distinct desired trajectories. To avoid potential hard-
ware damage to the continuum robot from completely random
model outputs, this experiment used 100 sets of data generated
by the CC assumption-based model to pretrained the model with
only one epoch. For each trajectory, the data cache pool was set
with 100 sets of data, and the online learning was halted when
the relative MVDPE reached a threshold of 1%. Once online
learning was stopped, an open-loop trajectory tracking task

was performed for the same desired trajectory. Each trajectory
was repeated three times. Throughout the experiments, the
MVDPE trend in the CCMINN model’s online learning phase
and the MVDPE results for the open-loop trajectory tracking task
were recorded. The corresponding experimental results are pre-
sented in Figure 6 and Table 2.

In contrast, the traditional FNN model, when applied within
the same online learning framework, failed to complete the
online learning task. This model produced a large average
MVDPE value of 95.96 mm, which is 47.98% of the length
of the continuum manipulator, during the online learning pro-
cess. It should be pointed out that the variation in MVDPE for
the FNN model in the experiment mainly came from the
change of the desired trajectory because the distal tip of the con-
tinuum manipulator remained in almost the same position.
This failure is attributed to the slower convergence speed of
the traditional FNN model. The large amount of singular data
from the unconverged model caused the continuum manipula-
tor to remain in the same distal tip position under the con-
straints of limit protection (as illustrated in Figure 6b1–b3).
As a result, the data cache pool within the online learning
framework accumulated a large amount of repetitive data for
model training, further hindering the training process of the
traditional FNN model.

Figure 6. The tracking performances and the MVDPE variations of the proposed CCMINN model and FNN model in the trajectory tracking experiments
in the free space. a1–a3) The physical pictures on circle trajectory, rectangle trajectory, and triangle trajectory; b1–b3) the tracking performances and
details of each model during the online learning progress on circle trajectory, rectangle trajectory, and triangle trajectory; c1–c3) the MVDPE variations of
each model during the online learning progress on circle trajectory, rectangle trajectory, and triangle trajectory; d1–d3) the tracking performances and
details of each model in the offline application on circle trajectory, rectangle trajectory, and triangle trajectory; and e1–e3) the MVDPE of each model after
the online learning progress on circle trajectory, rectangle trajectory, and triangle trajectory.
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However, during the online learning process, the MVDPE
value for the continuummanipulator decreased across all desired
trajectories, with an average decrease of 92.74% across three tra-
jectories, eventually reaching the threshold for halting online
learning, which was a relative MVDPE of 1%. This demonstrates
that the proposed CCMINN model can be efficiently imple-
mented within the presented online learning framework because
of its high convergence speed. Furthermore, in the open-loop tra-
jectory tracking experiments that followed the online learning
phase, the MVDPE of the continuum manipulator reached
1.40mm (0.70% of the manipulator’s length). This large
improvement indicates that the CCMINN model, once trained
within this framework, can be applied with high precision in
the kinematic control of the continuum manipulator. This situa-
tion highlights the advantage of the CCMINNmodel’s rapid con-
vergence in online learning applications.

3.1.2. Transferability of the CCMINN-Based Control Framework
on the Other Trajectories

To assess the transferability of the CCMINN model across vari-
ous control trajectories different from those used in training,
three groups of transferability experiments were carried out.
The CCMINN models trained through online learning in
Experiment 3.1.1 Trajectory Tracking Experiment with the de novo
Online Learning CCMINN Model were utilized for open-loop tra-
jectory tracking tasks on new trajectories. Each trajectory was
repeated three times. The MVDPE results of the trajectory track-
ing experiments were recorded, and the experimental results are
illustrated in Figure 7 and Table 3.

It is evident that the continuummanipulator maintained a low
MVDPE when utilizing the transferred CCMINN model. On
average, across these three experiments, the MVDPE was
1.49mm, which is 0.75% of the length of the continuum manip-
ulator. This highlights that the proposed CCMINN model and
the CCMINN-based online control framework possess strong
transferability and are not limited to the initial training trajecto-
ries. A comprehensive analysis of the results from Experiments
3.1.1 and 3.1.2 for the same CCMINN model is detailed in
Table 3. For models trained on square trajectories, the

transferred MVDPE decreased from 1.50mm to 1.41mm, while
for those trained on circular trajectories, the transferred MVDPE
increased from 1.35 to 1.55mm. This variation is attributed to
the complexity of the desired trajectories, the square the most
complex and the circle the simplest. More complex trajectories
contain more mapping information, which allows the model
to better learn the rich mapping relationship. This underscores
the importance of selecting appropriately complex training trajec-
tories to ensure model convergence and achieve the desired pre-
cision in the final application.

3.2. Trajectory Tracking of the Continuum Manipulator Based
on the Proposed CCMINN-Based Control Framework with
External Loading

In this section, two groups of experiments were carried out on
the continuum manipulator platform to demonstrate the strong
robustness of the proposed CCMINN-based control framework
under both constant and variable external loading conditions
because of its ability to update the model parameters according
to current measured data.

3.2.1. Trajectory Tracking Experiment Under Constant Loads

The pretrained CCMINN model in the free space from
Experiment 3.1.1 Trajectory Tracking Experiment with the de novo
Online Learning CCMINN Model was further engaged in online
learning tasks for three new desired trajectories. The data cache
size was set equal to the number of trajectory points, and the
threshold for terminating online learning was consistent with
that used in Experiment 3.1.1. During this experiment, a weight
of 50 g was suspended at the distal tip of the continuum manip-
ulator, as illustrated in Figure 8a1. Each trajectory was repeated
three times. The experimental results are analyzed and presented
in Figure 8 and Table 4.

At the outset of the experiment, the continuum manipulator
exhibited a high MVDPE value, averaging 13.91mm across the
three trajectories, which is 6.96% of the manipulator’s length.
This error was due to the pretrained CCMINN model being

Table 2. Trajectory tracking experimental results of different models based on the proposed online control framework in the free space.

Desired trajectory Method FRMVDPE LRMVDPE RMVDPE Reduction MVDPE [mm] RMVDPE MaxVDPE [mm] RMaxVDPE

Circle CCMINN 9.27% 0.57% 93.85% 1.35 0.67% 3.42 1.71%

FNN 50.07% 50.11% / / / / /

Rectangle CCMINN 11.40% 0.94% 91.75% 1.50 0.75% 4.20 2.10%

FNN 51.49% 51.53% / / / / /

Triangle CCMINN 9.47% 0.69% 92.71% 1.36 0.68% 4.80 2.40%

FNN 42.33% 42.36% / / / / /

Mean value on three trajectories CCMINN 10.05% 0.73% 92.74% 1.40 0.70% 4.14 2.07%

FNN 47.96% 48.00% / / / / /

Note: RMVDPE and RMaxVDPE represent relative mean value of distal positioning error and relative max value of distal positioning error, respectively. FRMVDPE and
LRMVDPE, respectively, denote the mean value of distal positioning error of the first and last loop in the online learning progress for the proposed CCMINN model
(the first and third loop in the online learning process for the FNN model).
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Figure 7. The tracking performances and the tracking MVDPE variations of the proposed CCMINNmodel in the free space. a1–a6) The tracking perform-
ances and details of each trajectory; b1–b3) the MVDPE variations of each trajectory; (a1,a2) the tracking performances and details of CCMINN model
trained on circle trajectory; (a3,a4) the tracking performances and details of CCMINN model trained on rectangle trajectory; and (a5,a6) the tracking
performances and details of CCMINN model trained on triangle trajectory. Label A, B and C respectively denote the experiments using the CCMINN
model trained on circle trajectory, rectangle trajectory and triangle trajectory in Experiment 3.1.1.

Table 3. Trajectory tracking experimental results of transferability experiments in the free space.

Training trajectory Desired trajectory MVDPE [mm] RMVDPE MaxVDPE [mm] RMaxVDPE

Circle Rectangle 1.65 0.82% 4.99 2.50%

Triangle 1.46 0.73% 3.97 1.98%

Mean value on two trajectories 1.55 0.78% 4.48 2.24%

Rectangle Circle 1.12 0.56% 2.66 1.33%

Triangle 1.71 0.85% 4.17 2.08%

Mean value on two trajectories 1.41 0.71% 3.42 1.71%

Triangle Circle 1.35 0.67% 3.12 1.56%

Rectangle 1.68 0.84% 5.29 2.64%

Mean value on two trajectories 1.51 0.76% 4.21 2.10%

Notes: RMVDPE, MaxVDPE, and RMaxVDPE represent relative mean value of distal positioning error, max value of distal positioning error, and relative max value of distal
positioning error, respectively.
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Figure 8. The tracking performances and the MVDPE variations of the proposed CCMINNmodel in the trajectory tracking experiments under a constant
load. a1–a3) The physical pictures on circle trajectory, rectangle trajectory, and triangle trajectory; b1–b3) the tracking performances and details during the
online learning progress on circle trajectory, rectangle trajectory, and triangle trajectory; and c1–c3) the MVDPE variations during the online learning
progress on circle trajectory, rectangle trajectory, and triangle trajectory.

Table 4. Trajectory tracking experimental results of different models based on the proposed online control framework under constant loads.

Desired trajectory FMVDPE [mm] FRMVDPE FMaxVDPE [mm] FRMaxVDPE LMVDPE [mm] LRMVDPE LMaxVDPE [mm] LRMaxVDPE RMVDPE
Reduction

Circle 14.22 7.11% 16.15 8.07% 1.17 0.58% 2.91 1.46% 91.8%

Rectangle 13.68 6.84% 18.58 9.29% 1.64 0.82% 3.67 1.84% 88.00%

Triangle 15.05 7.52% 17.56 8.78% 1.34 0.67% 3.67 1.83% 91.9%

Mean value on three
trajectories

14.32 7.16% 17.43 8.72% 1.38 0.69% 3.42 1.71% 90.34%

Notes: RMVDPE, MaxVDPE, and RMaxVDPE represent relative mean value of distal positioning error, max value of distal positioning error, and relative max value of distal
positioning error, respectively; FRMVDPE and LRMVDPE, respectively, denote the mean value of distal positioning error of the first and last loop in the online learning progress
for the proposed CCMINN model.
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calibrated to the inverse kinematics of the continuum manipu-
lator in free space. When the distal load was altered, the inverse
kinematics relationship shifted, resulting in significant posi-
tional errors at the distal tip. As online learning progressed,
the relative MVDPE for each trajectory decreased significantly,
with an average reduction of 90.34% across the three trajectories,

ultimately reaching the predefined threshold for ending online
learning at 1%. This large reduction is attributed to the frame-
work’s capability to dynamically update the CCMINN model’s
parameters with current cable displacements and distal tip posi-
tions. Moreover, CCMINN has a sufficiently fast convergence
speed, enabling the model to quickly respond to adjustments

Figure 9. The tracking performances and the MVDPE variations of the proposed CCMINN model in the trajectory tracking experiments under a variable
load. a1,a2) The physical pictures experimental setup; b1–b3) the tracking performances and details during the online learning progress on circle tra-
jectory, rectangle trajectory, and triangle trajectory; and c1–c3) the MVDPE variations during the online learning progress on circle trajectory, rectangle
trajectory, and triangle trajectory.
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made to its parameters by the framework. The updated CCMINN
model can then accurately reflect the current inverse kinematics
of the continuum manipulator, thereby reducing the MVDPE
value. The experimental outcomes demonstrate that the pro-
posed CCMINN-based control framework can effectively update
the fast-converging CCMINN model’s parameters to match the
current inverse kinematics of the continuum manipulator under
a constant distal load. This advantage makes the control frame-
work possess high robustness, maintaining high distal position-
ing accuracy even when the load conditions differ from those of
the model’s pretraining environment.

3.2.2. Trajectory Tracking Experiment Under Variable Loads

Unlike Experiment 3.2.1 Trajectory Tracking Experiment under
Constant Loads, a weight of 50 g was attached to the distal tip
of the manipulator through a fixed pulley in this experiment,
as shown in Figure 9a1,a2. This configuration resulted in the
force direction applied to the manipulator’s distal tip continu-
ously changing throughout its motion. Each trajectory was
repeated three times. The experimental results are illustrated
in Figure 9 and Table 5. Despite the changing distal load, it
was observed that the relative MVDPE value for each desired
trajectory of the continuum manipulator decreased as online
learning progressed, with an average reduction of 89.39% across
the three trajectories, and ultimately reached the preset threshold
for terminating online learning at 1%. This indicates that the pro-
posed CCMINN-based control framework can effectively update
its model parameters to accommodate the varying inverse kine-
matics of the continuum manipulator under changing loads.
Together with the results from the previous experiment in this
section, it can be concluded that the proposed CCMINN-based
control framework is capable of swiftly adjusting the rapid-
converging CCMINN model’s parameters via online learning
to align with the current inverse kinematics of the continuum
manipulator under different distal load conditions. This ensures
robust and precise distal positioning control.

3.3. Discussion

The experimental results indicate that integrating the proposed fast-
converging CCMINNmodel with an online learning control frame-
work can effectively achieve high-precision and high-robustness

control tasks for the distal tip position of continuum manipulators
under various motion trajectories and load conditions. Moreover,
the superiority of the CCMINNmodel compared to the FNNmodel
has been demonstrated in experiments. Through the explicit incor-
poration of prior geometric knowledge based on a CC model in the
CC inspiration layers, the proposed CCMINN model possesses a
rapid convergence speed. This fast convergence speed allows the
CCMINN model to be applied in an online learning framework,
generating high-precision and strongly robust positioning control
results. The data cache pool in the online learning framework
records the continuum manipulator’s historical operational data,
mitigating random errors caused by frequent model updates.
During the experiments, the volume of this pool was set to 100.
While a larger cache volume can record more operational data,
thereby enhancing the model training accuracy, it also increases
data collection time and online learning time. This time increase
may lead to the control frameworks delayed response to changes
in the inverse kinematics of the continuummanipulator, which will
increase errors to some extent. Therefore, the appropriate cache vol-
ume size needs to be determined in practical applications. In trans-
ferability experiments (Experiment 3.1.2), it was observed that when
the proposed CCMINNmodel is trained on simple trajectories and
applied to complex ones, the error increases accordingly; con-
versely, the error decreases when trained on complex trajectories
and applied to simpler ones. This phenomenon suggests that
the complexity of training trajectories should be reasonably deter-
mined when formulating model training tasks to avoid application
failures due to overly simplistic training models.

4. Conclusion

A fast-converging CCMINN model is proposed to be incorpo-
rated into an online learning control framework with a data cache
pool, generating high-precision and strongly robust positioning
control performance of continuum manipulators under various
external payloads. The CC inspiration layers of this CCMINN
model combine the geometry knowledge of the CC model and
the neural network’s ability to fit nonlinear relationships, which
makes this model achieve high-convergence-speed and high-
accuracy inverse kinematics modeling for tendon-driven
continuum manipulators. Moreover, the proposed online learn-
ing control framework updates the rapid-converging CCMINN

Table 5. Trajectory tracking experimental results of different models based on the proposed online control framework under variable loads.

Desired trajectory FMVDPE
[mm]

FRMVDPE FMaxVDPE
[mm]

FRMaxVDPE LMVDPE
[mm]

LRMVDPE LMaxVDPE
[mm]

LRMaxVDPE RMVDPE
Reduction

Circle 14.26 7.13% 16.58 8.29% 1.14 0.57% 2.77 1.39% 91.99%

Rectangle 13.64 6.82% 16.72 8.36% 1.63 0.81% 4.03 2.01% 88.06%

Triangle 13.83 6.92% 17.03 8.52% 1.64 0.82% 3.68 1.84% 88.14%

Mean value on three
trajectories

13.91 6.96% 16.78 8.39% 1.48 0.74% 3.49 1.75 89.39%

Notes: RMVDPE, MaxVDPE, and RMaxVDPE represent relative mean value of distal positioning error, max value of distal positioning error, and relative max value of distal
positioning error, respectively; FRMVDPE and LRMVDPE, respectively, denote the mean value of distal positioning error of the first and last loop in the online learning progress
for the proposed CCMINN model.
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model with the recorded current inverse kinematics data, helping
it fit the precise inverse kinematics mapping relationships under
various external loading conditions. Additionally, the data cache
pool in this control framework records the continuum manipu-
lator’s historical operational data, reducing random errors caused
by frequent model updates, which benefits the high-precision
control tasks. In this work, the CC inspiration layers are based
on the CC assumption of single-segment continuum manipula-
tors. Converting the geometry model into an inverse kinematics
model of multisegment continuummanipulators will extend this
fast-converging CCMINN model and online learning control
framework to address high-precision and robust positioning con-
trol of multisegment continuum manipulators. Future research
will also incorporate multimodal sensing sources, including ten-
sion force and distal tip contact force, into the CCMINNmodel to
enhance the efficacy of inverse kinematics modeling in unstruc-
tured environments. Fiber Bragg grating-based sensing
techniques[53–55] will be developed and integrated to capture mul-
timodal sensing information, combining shape and force data.
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