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Joyce structures on spaces of quadratic differentials

TOM BRIDGELAND

Consider the space parametrising complex projective curves of genus g equipped with a quadratic
differential with simple zeroes. We use the geometry of isomonodromic deformations to construct a
complex hyperkähler structure on the total space of its tangent bundle. This provides nontrivial examples
of the Joyce structures introduced by the author in relation to Donaldson±Thomas theory.

14H60, 14H70

1 Introduction

Since Hitchin’s classic papers [1987a; 1987b], moduli spaces of Higgs bundles on algebraic curves have

appeared in many areas of pure mathematics and mathematical physics. Consider for definiteness the

space MC .E; ˆ/ parametrising SL2.C/ Higgs bundles .E; ˆ/ on a smooth complex projective curve C

of genus g > 1. Two of its most important features are

(i) a hyperkähler metric, defined using the non-Abelian Hodge correspondence, and

(ii) a proper map MC .E; ˆ/! H 0.C; !˝2
C
/, whose target parametrises quadratic differentials on C ,

and whose general fibres are abelian varieties, homeomorphic to .S1/6g�6.

In this paper we study a moduli space M.C;E;r; ˆ/which in some respects resembles a complexification

of MC .E; ˆ/. For a given integer g > 1 it parametrises the data of a curve C of genus g, together with

an SL2.C/ bundle E on C , equipped with both a flat connection r and a Higgs field ˆ. We construct

(i) a meromorphic complex hyperkähler metric, defined using isomonodromic flows, and

(ii) a map M.C;E;r; ˆ/! M.C;Q/ whose fibres are algebraic tori .C�/6g�6. The target M.C;Q/

of this map is the ªgeneric Hitchin baseº parametrising curves C of genus g equipped with a

quadratic differential Q 2 H 0.C; !˝2
C
/ with simple zeroes.

It is important to note that the complex hyperkähler metric we construct on M.C;E;r; ˆ/ is a much

simpler object than the hyperkähler metric on MC .E; ˆ/. In particular it is algebraic, in contrast to the

Hitchin metric, which is highly transcendental. A striking demonstration of this difference appears on

generalising to the setting where the Higgs fields and connections have poles of fixed orders [Zikidis

� 2025]. One can then take the curve C to have genus g D 0, and in simple examples the resulting

complex hyperkähler structures can be written explicitly in terms of rational functions [Bridgeland and

Masoero 2023]. No such explicit formulae are expected for the Hitchin metric.
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2696 Tom Bridgeland

We expect our construction to generalise to gauge groups other than SL2.C/ but this will require new

ideas. A key point in our construction is that the space of quadratic differentials H 0.C; !˝2
C
/ is the

cotangent fibre to the moduli space of curves. To generalise to the gauge group G D SLm.C/, for

example, would require a space of ªhigher complex structuresº whose cotangent fibre is the Hitchin

base
Lm

kD2 H 0.C; !˝k/. A natural candidate is provided by the work of Fock and Thomas [2021]. The

expectation is then that the total space of the cotangent bundle of this space should carry a meromorphic

Joyce structure generalising the one constructed here.

1.1 DT invariants and [GMN]

In a celebrated development, Gaiotto, Moore and Neitzke [Gaiotto et al. 2010; 2013] uncovered a deep

relation between the hyperkähler geometry of the moduli spaces MC .E; ˆ/ and the BPS invariants of

a class of four-dimensional N D 2 supersymmetric gauge theories known as theories of class S ŒA1�.

More precisely, they introduced a class of nonlinear Riemann±Hilbert (RH) problems defined by the BPS

invariants, and showed that their solutions describe twistor lines in the twistor space of MC .E; ˆ/. In

mathematical terms these BPS invariants can be understood as the Donaldson±Thomas (DT) invariants of

a certain three-dimensional Calabi±Yau (CY3) triangulated category [Bridgeland and Smith 2015].

Our interest in the moduli spaces M.C;E;r; ˆ/ stems from a general programme [Bridgeland 2019;

2021] which attempts to encode the DT invariants of a CY3 triangulated category in a geometric structure

on its space of stability conditions. This procedure is currently highly conjectural, and involves a class

of RH problems closely related to those considered by Gaiotto, Moore and Neitzke, and obtained from

them by a procedure known in physics as the conformal limit [Gaiotto 2014]. In this limit it appears that

the geometry of the Hitchin space considered in [Gaiotto et al. 2013] should be replaced by the simpler

geometry of the space M.C;E;r; ˆ/ considered here.

The geometric structure on spaces of stability conditions envisaged in [Bridgeland 2021] is a kind of

nonlinear Frobenius structure, and was christened a Joyce structure in honour of the paper [Joyce 2007],

where the main ingredients were first identified. In later work [Bridgeland and Strachan 2021] it was

shown that a Joyce structure on a complex manifold induces a complex hyperkähler structure on the

total space of its tangent bundle. The main result of this paper is a construction of a meromorphic Joyce

structure on the space M.C;Q/.

The space M.C;Q/ can be identified with a space of stability conditions on a CY3 category by the work

of Haiden [2024]. We leave for future research the problem of using the Joyce structure constructed

here to solve the RH problems of [Bridgeland 2019] defined by the DT invariants of Haiden’s category.

This would probably be more easily accomplished in the setting of meromorphic quadratic differentials

[Bridgeland and Smith 2015; Zikidis � 2025], using the Fock±Goncharov cluster structure on the wild

character variety [Fock and Goncharov 2006] and results from exact WKB analysis as in [Gaiotto et al.

2013]. One particular example was treated in detail in this way by Bridgeland and Masoero [2023], and

other partial results have been obtained by Allegretti [2019; 2021].

Geometry & Topology, Volume 29 (2025)



Joyce structures on spaces of quadratic differentials 2697

1.2 Summary of the construction

We fix a genus g > 1 throughout the paper. The space M.C;Q/ as defined above is a smooth Deligne±

Mumford stack or, if we work in the analytic category, a complex orbifold. Since this may be uncomfortable

for some readers, we shall also fix an integer ` > 0, and insist that all curves C are equipped with a level `

structure. This extra data plays no essential role in our constructions so we will omit it from the notation.

We always assume ` > 2, since this has the pleasant consequence that all moduli spaces appearing are

smooth quasiprojective varieties. But the reader happy with stacks can eliminate the level structures by

taking `D 1 and working instead with smooth Deligne±Mumford stacks.

Let us then introduce the smooth quasiprojective variety M D M.C;Q/ parametrising pairs .C;Q/

consisting of a smooth projective complex curve C , equipped as always with a level ` structure, and a

quadratic differential Q 2 H 0.C; !˝2
C
/ with simple zeroes. Associated to a point .C;Q/2 M is a smooth

spectral curve † cut out in the cotangent bundle T �
C

by the equation y2 D Q. The projection p W†! C

is a branched double cover with a covering involution � . The tangent space to M at the point .C;Q/

can then be identified with the anti-invariant cohomology group H 1.†;C/�. The dual of the integral

anti-invariant homology defines an integral affine structure T Z

M
� TM and we consider the quotient

X # D TM=T Z

M
. The fibre of the induced projection � W X # ! M over the point .C;Q/ is the quotient

of the group H 1.†;C�/� by the finite subgroup p�.H 1.C; f˙1g// and is isomorphic to .C�/6g�6.

A Joyce structure on M is essentially the data of a pencil of flat symplectic nonlinear connections h� on

the bundle � W X # ! M parametrised by � 2 C
�. The associated complex hyperkähler structure on X # is

then defined by taking the eigenspaces of the operators I;J;K to be the horizontal subbundles of TX #

defined by certain elements of this pencil. We construct the nonlinear connections h� as follows. We can

realise elements of H 1.†;C�/� as the holonomy of anti-invariant line bundles with connection .L; @/

on †. The usual spectral correspondence associates to L a Higgs bundle .E; ˆ/ on the curve C . Using

an extension of this correspondence to connections, valid under a genericity assumption on L, we can

use @ to induce a connection r on E. The required family of nonlinear connections h� is then given by

the isomonodromy flows for the connections r � ��1ˆ.

The complex hyperkähler structure we construct on M has poles; these arise from two interesting issues.

Firstly, the extension of the spectral correspondence to connections requires a genericity assumption

on the line bundle L. This relates to the theta divisor in the generalised Prym variety of the double

cover p W†! C . Secondly, given a fixed curve C equipped with a Higgs bundle .E; ˆ/, we need to lift

deformations of the quadratic differential Q D tr.ˆ2/ to deformations of the Higgs field ˆ. This relates

to the wobbly locus in the space of Higgs bundles; see [Donagi and Pantev 2009].

The extended spectral correspondence in our construction can be viewed as an abelianization procedure

for flat connections in the presence of a quadratic differential. In the case of meromorphic quadratic

differentials, this de Rham abelianization can be compared with the Betti abelianization of [Hollands

and Neitzke 2016; Nikolaev 2021], which depends on the choice of a spectral network on C . Their

Geometry & Topology, Volume 29 (2025)



2698 Tom Bridgeland

relationship is highly nontrivial, and in fact, if we take the spectral network to be the WKB triangulation of

the quadratic differential, one can view the solutions to the RH problems discussed above as intertwining

these two abelianisation procedures.

Plan of the paper The aim of the paper is to construct a meromorphic Joyce structure on the space

M D M.C;Q/. A Joyce structure on a complex manifold M is a combination of two ingredients: a

period structure and a pencil of nonlinear connections on the tangent bundle. The definitions of all these

terms can be found in Section 2.

The required period structure on M is well-known and is described in Section 3. In Section 4 we recall

the standard correspondence between Higgs bundles on C and line bundles on the spectral curve †, and

explain how it can be extended to bundles with connection. Section 5 introduces the essential diagrams

of moduli spaces which will be used to construct the pencil of nonlinear connections. We also prove two

crucial generic finiteness results.

In Section 6 we recall the Atiyah±Bott symplectic form on the moduli space of flat connections and prove

that our extended spectral correspondence preserves it. The meromorphic Joyce structure on M is finally

constructed in Section 7 using isomonodromic flows. In Section 8, we describe an interesting compatibility

relation between this Joyce structure and the Lagrangian submanifolds in M obtained by fixing the curve C .

We include in the appendix a summary of the scheme-theoretic definitions and constructions of the various

moduli spaces used in the main text.

Conventions and notation We use rather unconventional conventions for labelling moduli spaces. In

general a symbol MA.B/ denotes the moduli space of objects of type B on a fixed object A. So for

example MC .E; ˆ/ denotes the moduli space of SL2.C/ Higgs bundles .E; ˆ/ on a fixed curve C ,

whereas M.C;E; ˆ/ denotes the moduli space where C is also allowed to vary. We can only apologise

for the initially nonsensical appearance of statements such as ªTake a point .C;Q/ 2 M.C;Q/º, and

hope that this proves less of an inconvenience than having to constantly consult a dictionary of the large

number of moduli spaces that appear.

The paper contains many connections, both linear and nonlinear. Linear connections on a vector bundle E

are specified by their covariant derivative E ! E ˝�1 and are usually denoted by the symbols r or @.

Nonlinear connections on a map � W X ! M are specified by a bundle map ��.TM / ! TX and are

denoted by small latin letters h, j , etc. Throughout the paper we encounter families of connections

parametrised by � 2 C
�, which we refer to as pencils. Often the inverse � D ��1 would seem to be a more

natural parameter, but we will nonetheless use � since in the relations with mathematical physics this is

the most natural variable, relating variously to the string coupling, Planck’s constant, etc.

We work with both complex manifolds and algebraic varieties. Except in the appendix, all algebraic

varieties appearing are smooth and quasiprojective over C. We view them as a subcategory of the

category of complex manifolds. The derivative of a map of complex manifolds f W X ! Y is denoted

f� W TX ! f �.TY /. The map f is called étale if f� is an isomorphism.

Geometry & Topology, Volume 29 (2025)
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2 Joyce structures

This section introduces the notion of a Joyce structure on a complex manifold M. The definition arose

from a line of work in Donaldson±Thomas theory [Bridgeland 2021] which originated with a paper

of Joyce [2007]. We first define the notion of a pre-Joyce structure, which consists of a pencil of flat

symplectic nonlinear connections on the tangent bundle � W X D TM ! M. Following [Bridgeland and

Strachan 2021], we show that a pre-Joyce structure on M induces a complex hyperkähler structure on X.

This construction is well known in the twistor-theory literature, see for example [Dunajski and Mason

2000], and goes back to the work of PlebaÂnski [1975]. A Joyce structure is then defined to be a pre-Joyce

structure with certain extra symmetries. The description of these symmetries involves a strengthening of

the notion of an integral affine structure which we call a period structure.

2.1 Nonlinear connections

We begin by briefly summarising some basic facts about nonlinear connections in the sense of Ehresmann.

We work with complex manifolds and holomorphic maps, but everything in this section holds also in the

smooth setting.

Let � W X ! M be a holomorphic submersion of complex manifolds. Denote the fibres by Xm D��1.m/.

The derivative of � gives rise to a short exact sequence of vector bundles

(1) 0 ! TX=M
i

�! TX
���! ��.TM /! 0:

Definition 2.1 A nonlinear connection on the map � is a bundle map h W ��.TM / ! TX satisfying

�� ı h D 1.

Writing H D im.h/ and V D TX =M , the tangent bundle decomposes as a direct sum TX D H ˚ V. We

call tangent vectors and vector fields horizontal or vertical if they lie in H or V, respectively. Note that a

vector field u 2 H 0.M;TM / can be lifted to a horizontal vector field h.u/ 2 H 0.X;TX / by composing

the pullback ��.u/ 2 H 0.X; ��.TM // with the map h.

Consider a smooth path 
 W Œ0; 1�! M. Given a point x 2 X
.0/ we can look for a lifted path ˛ W Œ0; ı�! X

satisfying ˛�.d=dt/ D h.
�.d=dt// and ˛.0/ D x. Such a lift will exist for small enough ı > 0. For

t 2 Œ0; ı� we call ˛.t/ 2 X
.t/ the time t parallel transport of the point x along the path 
 . Given a point

x0 2 X
.0/ we can find a ı > 0 and open subsets Ut � X
.t/ with x0 2 U0, such that time t parallel

transport along 
 defines an isomorphism PT
 .t/ W U0 ! Ut for each t 2 Œ0; ı�.

Geometry & Topology, Volume 29 (2025)



2700 Tom Bridgeland

Given complex manifolds M and N there is a connection on the projection map �M W M � N ! M

induced by the canonical splitting TM�N D ��
M
.TM /˚ ��

N
.TN /. A connection h on � W X ! M is

called flat if it is locally isomorphic to a connection of this form. More precisely:

Definition 2.2 The connection h is flat if the following equivalent conditions hold :

(i) For every x 2 X there are local coordinates .x1; : : : ;xn/ on X at x, and .y1; : : : ;yd / on M at �.x/,

such that xi D ��.yi/ and h.@=@yi/D @=@xi for 1 6 i 6 d .

(ii) The subbundle H D im.h/� TX is involutive: ŒH;H �� H .

Suppose given a relative symplectic form �� 2 H 0.X;^2T �
X=M

/ on the map � . It restricts to a

symplectic form �m 2 H 0.Xm;^
2T �

Xm
/ on each fibre Xm. Note that since TX = im.h/ D TX=M , the

relative form �� can be lifted uniquely to a form � 2 H 0.X;^2T �
X
/ satisfying ker.�/D im.h/. We say

that the connection h preserves �� if, for any path 
 W Œ0; 1�! M, the partially defined parallel transport

maps PT
 .t/ W X
.0/ ! X
.t/ take �
.0/ to �
.t/.

Lemma 2.3 (i) The connection h preserves �� precisely if iv1
iv2
.d�/ D 0 for any two vertical

vector fields v1; v2 2 H 0.X;TX =M /.

(ii) If the connection h is flat , then it preserves �� precisely if d�D 0.

Proof The first statement is [Gotay et al. 1983, Theorem 4]. For the second, take three vector fields

u1;u2;u3 on X and consider the expression defining d�.u1;u2;u3/. We can assume that each ui is

either horizontal or vertical. Since ih.�/D 0 for any horizontal vector field h, and horizontal vector fields

are closed under the Lie bracket, we have d�.u1;u2;u3/D 0 as soon as two of the ui are horizontal.

The claim then follows from (i).

Suppose that a discrete group G acts freely and properly on X preserving the map � . Then Y D X=G is

a complex manifold and the quotient map q W X ! Y is étale. There is an induced submersion � W Y ! M

and a factorisation � D �ıq. A connection h W ��.TM /! TX will be called G-invariant if g� ıh D h for

all g 2 G. There is then an induced connection j W ��.TM /! TY on �, uniquely defined by the condition

that q� ı h D q�.j /. We say that the connection h descends along the quotient map q.

2.2 Pre-Joyce structures

Let M be a complex manifold and let � W X D TM ! M be the total space of the tangent bundle of M.

There is a canonical isomorphism � W��.TM /! TX=M obtained by composing the chain of identifications

(2) ��.TM /x D TM;�.x/ D TTM;�.x/;x D TX�.x/;x D TX =M;x;

Geometry & Topology, Volume 29 (2025)
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and we set v D i ı �. A connection h W ��.TM /! TX on � then defines a family of such connections

h� D h C ��1v parametrised by � 2 C
�. We call such a family a �-pencil of connections.

0 // TX =M
i

// TX
��

// ��.TM /

h�

��

�

gg

// 0

Suppose that M is equipped with a holomorphic symplectic form ! 2 H 0.M;^2T �
M
/. Via the isomor-

phism � we obtain a relative symplectic form �� 2 H 0.X;^2T �
X=M

/. We say that a connection on � is

symplectic if it preserves �� .

Definition 2.4 A pre-Joyce structure on a complex manifold M consists of

(i) a holomorphic symplectic form ! on M, and

(ii) a nonlinear connection h on the tangent bundle � W X D TM ! M,

such that for each � 2 C
�, the connection h� D h C ��1v is flat and symplectic.

To clarify this definition we now describe it in local coordinates, although the resulting expressions will

play no role in what follows. Given a local coordinate system .z1; : : : ; zn/ on M there are associated

linear coordinates .�1; : : : ; �n/ on the tangent spaces TM;m obtained by writing a tangent vector in the

form
P

i �i � .@=@zi/. We thus get induced local coordinates .zi ; �j / on the space X D TM . In these

coordinates, v.@=@zi/D @=@�i .

We always assume that the coordinates zi are Darboux, in the sense that

! D
1

2

X

p;q

!pq � dzp ^ dzq;

with !pq a constant skew-symmetric matrix. We denote by �pq the inverse matrix.

The fact that the connection h is flat and symplectic ensures that we can write it in Hamiltonian form

(3) h

�

@

@zi

�

D
@

@zi
C

X

p;q

�pq �
@Wi

@�p
�
@

@�q
;

for functions Wi W X ! C. The connection h� is then flat for all � 2 C
� if we can take Wi D @W =@�i for

a single function W W X ! C, which moreover satisfies

(4)
@2W

@�i@zj
�
@2W

@�j@zi
D

X

p;q

�pq �
@2W

@�i@�p
�
@2W

@�j@�q
:

The function W is called the PlebaÂnski function, and the partial differential equations (4) are known as

PlebaÂnski’s second heavenly equations [Dunajski and Mason 2000].
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2.3 Complex hyperkähler structures

By a complex hyperkähler structure on a complex manifold X we mean the data of a holomorphic metric

g W TX ˝TX ! OX , together with endomorphisms I;J;K 2 EndX .TX / satisfying the quaternion relations

I2 D J 2 D K2 D IJK D �1;

which preserve g, and which are parallel for the holomorphic Levi-Civita connection r:

(5) g.R.u1/;R.u2//D g.u; v/; r.R D 0; R 2 fI;J;Kg:

Such structures have appeared before in the literature, often under different names.

Let M be a complex manifold with a holomorphic symplectic form !. A nonlinear connection h on the

tangent bundle � W X D TM ! M gives a decomposition

(6) TX D im.v/˚ im.h/Š ��.TM /˝C C
2:

We can define a metric g W TX ˝ TX ! OX by taking the tensor product of ��.!/ with the standard

symplectic form on C
2, and an action of the quaternions on TX by identifying the complexification of

the quaternions H ˝R C with the algebra EndC.C
2/. With appropriate conventions this leads to the

formulae

(7)
I ı h D i � h; J ı h D �v; K ı h D i � v;

I ı v D �i � v; J ı v D h; K ı v D i � h;

which should be interpreted as equalities of maps ��.TM /! TX , and

(8) g.h.u1/; v.u2//D 1
2
!.u1;u2/; g.h.u1/; h.u2//D 0 D g.v.u1/; v.u2//:

It is easily checked that g is preserved by the endomorphisms I;J;K.

The following result implies in particular that a pre-Joyce structure on a complex manifold M induces a

complex hyperkähler structure on the total space X D TM .

Theorem 2.5 The endomorphisms I;J;K are parallel for the Levi-Civita connection r associated to g

precisely if the connection h� is flat and symplectic for all � 2 C
�.

Proof We begin with a general remark. Let g W TX �TX ! OX be a metric on a complex manifold X with

associated Levi-Civita connection r. Let R 2 EndX .TX / be an endomorphism which is compatible with g

and satisfies R2 D �1. We can then define a 2-form � on X by setting �R.u1;u2/D g.R.u1/;u2/. Let

H � TX denote the Ci eigenbundle of R. Then standard proofs from Kähler geometry apply unchanged

in this holomorphic context to give implications

(9) r.R/D 0 D) ŒH;H �� H; r.R/D 0 () d�R D 0:

Geometry & Topology, Volume 29 (2025)



Joyce structures on spaces of quadratic differentials 2703

Return now to the setting above. For � 2 C
� we introduce the endomorphism

(10) J� D I � i��1.J C iK/:

A simple calculation using the definitions (7) shows that J 2
� D �1, and that the Ci eigenbundle of J�

coincides with H� D im.h�/.

As in Section 2.2, the symplectic form ! on M induces a relative symplectic form �� on the projection

� W X ! M. Moreover, as explained before Lemma 2.3, there is then a unique 2-form �� on X satisfying

the conditions

(11) ker.��/D H� and ��.v.u1/; v.u2//D !.u1;u2/;

where u1;u2 are arbitrary vector fields on M. Another calculation using (7) and (8) shows that this form

is given explicitly by the formula

(12) �� D ��2 ��C C 2i��1 ��I C��; where �˙ D�J ˙iK :

We can now prove the theorem. Suppose first that I;J;K are parallel. Then J� is parallel for all � 2 C
�,

and applying (9) with R D J� we find that ŒH�;H� � � H� and hence that h� is flat. Since �� is also

parallel and hence closed, applying Lemma 2.3 shows that h� is symplectic. Conversely suppose that for

all � 2 C
� the connection h� is flat and symplectic. Then by Lemma 2.3 again, d�� D 0 for all � 2 C

�,

and this easily implies that d�R D 0 for R 2 fI;J;Kg. By (9) we conclude that I;J;K are parallel.

2.4 Period structures

Let M be a complex manifold and H a holomorphic vector bundle on M. By a lattice in H we mean a

locally constant subsheaf of abelian groups HZ � H such that the multiplication map H
Z ˝Z OM ! H

is an isomorphism. There is an induced flat linear connection r on H whose flat sections are C-linear

combinations of the sections of HZ.

Definition 2.6 A period structure on a complex manifold M consists of

(P1) a lattice T Z

M
� TM , whose associated flat connection we denote by r, and

(P2) a vector field Z 2 �.M;TM / satisfying r.Z/D id.

Let .T Z

M
;r;Z/ be a period structure on a complex manifold M and take a basepoint p 2 M. A basis

of the free abelian group T Z

M;p
extends uniquely to a basis of r-flat sections �1; : : : ; �n of TM over a

contractible open neighbourhood p 2 U � M. Writing the vector field Z in the form Z D
P

i zi � �i

then defines holomorphic functions zi W U ! C, and condition (P2) implies that .z1; : : : ; zn/ is a local

coordinate system on M, and that �i D @=@zi . Note in particular that the connection r is necessarily

torsion-free.

Geometry & Topology, Volume 29 (2025)



2704 Tom Bridgeland

Recall that an integral affine structure on a complex manifold M consists of a lattice T Z

M
� TM whose

associated flat connection r is torsion-free [Kontsevich and Soibelman 2006]. A local coordinate

system .z1; : : : ; zn/ is then called integral affine if the tangent vectors @=@zi lie in the lattice T Z

M
. Such

coordinate systems are uniquely defined up to affine transformations of the form zi 7!
P

j aij zj C vi

with .aij / 2 GLn.Z/ and .vi/ 2 C
n.

Given a period structure on a complex manifold M we obtain an integral affine structure by forgetting

the vector field Z. A system of integral affine coordinates .z1; : : : ; zn/ will be called integral linear if

Z D
P

i zi � .@=@zi/. Such coordinate systems are uniquely defined up to linear transformations of the

form zi 7!
P

j aij zj with .aij / 2 GLn.Z/. Thus a period structure can be thought of as an integral linear

structure.

Using the connection r, we can lift the vector field Z 2 �.M;TM / to a horizontal vector field E 2

�.X;TX /. Let us consider the case when there is a C
� action on the manifold M whose generating vector

field is Z. There is a C
� action on X D TM obtained by combining the induced action of C

� on X D TM

with the rescaling action on the fibres of � W X D TM ! M of weight �1. If mt W M ! M denotes the

action of t 2 C
� on M, this is the action for which t 2 C

� sends v 2 TM;m to .mt /�.t
�1v/ 2 TM;mt .v/.

Lemma 2.7 The generating vector field for this C
� action on X is the horizontal lift E.

Proof If we take a system of integral linear coordinates .z1; : : : ; zn/ on M then by definition Z D
P

i zi � .@=@zi/. Taking associated coordinates .zi ; �j / on X D TM as before the r-horizontal lift of Z

is the vector field E D
P

i zi � .@=@zi/ on X. The C
� action on X induced by that on M is given by

.zi ; �j / 7! .tzi ; t�j /. Composing with the contraction in the fibres we obtain the action .zi ; �j / 7! .tzi ; �j /,

whose generating vector field is E.

Definition 2.8 A period structure with skew form on a complex manifold M consists of a period structure

.T Z

M
;r;Z/, together with a skew-symmetric form

(13) � W T �
M � T �

M ! OM ;

such that �=2� i takes integral values on the lattices .T Z

M
/� � T �

M
.

The pairing � is necessarily parallel for the flat connection r, and it follows that it defines a holomorphic

Poisson structure on M. We will be particularly interested in the case when the kernel of � is zero.

Viewing � as a linear map T �
M

! TM , its inverse defines a complex symplectic form ! 2 H 0.M;^2T �
M
/.

2.5 Joyce structures

Let M be a complex manifold with a period structure .T Z

M
;r;Z/. The rescaled lattice .2� i/T Z

M
� TM

acts on X D TM by translations in the fibres. We introduce the quotient

(14) X # D T #
M D TM=.2� i/T Z

M :

We also consider the involution � W X ! X which acts by �1 on the fibres of � W X ! M.
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Definition 2.9 Let M be a complex manifold , and let � W X D TM ! M denote the total space of the

holomorphic tangent bundle. A Joyce structure on M consists of

(a) a period structure with skew form .T Z

M
;Z;r; �/ on M, and

(b) a pre-Joyce structure .!; h/ on M,

satisfying the following conditions:

(J1) The symplectic form ! is the inverse of the skew form �.

(J2) The connection h is invariant under the action of the lattice .2� i/T Z

M
� TM .

(J3) If E is the r-horizontal lift of the vector field Z, then for any vector field v on M

(15) h.ŒZ; v�/D ŒE; h.v/�:

(J4) The connection h is invariant under the action of the involution � W X ! X.

Note that once the period structure with skew form .T Z

M
;Z;r; �/ on M is fixed, the Joyce structure

involves only one further piece of data, namely the nonlinear connection h. For the Joyce structures

appearing in this paper the period structure is elementary and well-known, so all our work will go into

defining the nonlinear connection h.

Let us express the conditions of Definition 2.9 in terms of a local coordinates as in Section 2.2. If we

take a system of integral linear coordinates .z1; : : : ; zn/ on M then by definition Z D
P

i zi � .@=@zi/.

Taking associated coordinates .zi ; �j / on X D TM as before, the r-horizontal lift of Z is the vector field

E D
P

i zi � .@=@zi/ on X. The symmetries (J2)-(J4) then translate into the following conditions on the

PlebaÂnski function:

@2W

@�p@�q
.zi ; �j C 2� ikj /D

@2W

@�q@�q
.zi ; �j /;(16)

W .�zi ; �j /D ��1W .zi ; �j /;(17)

W .zi ;��j /D �W .zi ; �j /;(18)

where .k1; : : : ; kn/ 2 Z
n and � 2 C

�.

The construction we describe in this paper produces what we shall call a meromorphic Joyce structure.

This means that the connection h has poles on certain subsets of X. More precisely, there is an effective

divisor D � X, and h is defined by a bundle map h W ��.TM /! TX .D/ satisfying

(19) .�� ˝ OX .D// ı h D 1��.TM / ˝ sD ;

where sD W OX ! OX .D/ is the canonical inclusion. This means that when expressed in terms of local

coordinates as above, the PlebaÂnski function W .zi ; �j / is a meromorphic function.
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3 The period structure on the space of quadratic differentials

For the rest of the paper we fix an integer g > 1 and a level ` > 2. As discussed in Section 1.2 we insist

that all curves C are equipped with a level ` structure, although we suppress this from the notation. In

this section we introduce the space M D M.C;Q/, which will form the base of our Joyce structure.

It parametrises pairs .C;Q/ consisting of a smooth projective curve C of genus g equipped with a

level ` structure, and a quadratic differential Q 2 H 0.C; !˝2
C
/ with simple zeroes. Any such pair .C;Q/

determines a branched double cover p W†! C , which we call the spectral curve. We construct a period

structure with skew form on M, and give a moduli-theoretic description of the fibres of the map (14) in

terms of line bundles with connection on †.

3.1 Moduli space of quadratic differentials

Let us begin by recalling the definition of a level structure. Given a smooth complex projective curve C

of genus g, the homology group H1.C;Z=`/ is a free Z=`-module of rank 2g. The intersection form

defines a nondegenerate skew-symmetric form

(20) h�;�iW H1.C;Z=`/� H1.C;Z=`/! Z=`:

A level ` structure on C is a basis .˛1; : : : ; ˛g; ˇ1; : : : ; ˇg/ for H1.C;Z=`/ which is symplectic, in the

sense that h˛i ; j̨ i D 0 D hˇi ; ǰ i and h˛i ; ǰ i D ıij .

Let M.C / denote the moduli space of smooth complex projective curves of genus g equipped with a

level ` structure. As we recall in the appendix, given our assumptions g > 1 and ` > 2 this is a smooth

quasiprojective complex variety of dimension 3g � 3.

The tangent space to M.C / at a curve C is the cohomology group H 1.C;TC /, and Serre duality gives

H 0.C; !˝2
C
/ D H 1.C;TC /

�, so the cotangent bundle T �
M.C /

parametrises pairs .C;Q/ consisting of

a smooth complex projective curve C equipped with a level ` structure, together with an element

Q 2 H 0.C; !˝2
C
/. We define M.C;Q/� T �

M.C /
to be the open subset of pairs .C;Q/ for which Q has

simple zeroes. Then M D M.C;Q/ is a smooth quasiprojective complex variety of dimension 6g � 6.

3.2 Spectral curve

Let C be a smooth complex projective curve of genus g, and Q 2 H 0.C; !˝2
C
/ a quadratic differential

with simple zeroes. The spectral curve † associated to the pair .C;Q/ is the smooth projective curve cut

out inside the total space of the cotangent bundle T �
C

by the equation y2 D Q. The projection .x;y/ 7! x

defines a branched double cover p W † ! C , and there is a covering involution � W † ! † defined by

.x;y/ 7! .x;�y/. The assumption that Q has simple zeroes ensures that † is smooth, and the fact that

Q has at least one zero implies that † is connected.
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Denote by R �† the branch divisor of the map p W†! C . It has degree 4g � 4, so by the Riemann±

Hurwitz formula the spectral curve† has genus 4g�3. The dual of the derivative of p defines a canonical

section s W p�.!C /! !† fitting into a short exact sequence

(21) 0 ! p�.!C /
s

�! !† ! OR ! 0:

On the other hand the square-root of p�.Q/ defines a section of p�.!C / with simple zeroes on R, and

hence a short exact sequence

(22) 0 ! O†
�

�! p�.!C /! OR ! 0:

We define the invariant and anti-invariant homology groups

H1.†;Z/
˙ D f
 2 H1.†;Z/ W ��.
 /D ˙
 g;

and similarly for the cohomology groups H 1.†;Z/˙, H 1.†;C/˙, etc. There is a short exact sequence

of free abelian groups

(23) 0 ! H1.†;Z/
� ! H1.†;Z/

p��! H1.C;Z/! 0;

the map p� being surjective because p is ramified.

Taking maps of (23) into Z shows that the image of p� W H 1.C;Z/ ! H 1.†;Z/ coincides with the

subgroup H 1.†;Z/C. The anti-invariant homology group H1.†;Z/
� is therefore free of rank 6g � 6.

We also consider the extended group

zH 1.†;Z/� WD HomZ.H1.†;Z/
�;Z/D H 1.†;Z/=H 1.C;Z/:

3.3 Period structure

Introduce the vector bundle H ! M whose fibre over a point .C;Q/ is the vector space H 1.†;C/�.

It contains a lattice H
Z � H whose fibres are the groups zH 1.†;Z/�. The associated flat connection

rGM on H is the Gauss±Manin connection. The dual bundle H
� has fibres H1.†;C/

� and contains the

dual lattice .HZ/� with fibres H1.†;Z/
�. The intersection form defines a parallel skew-symmetric form

on H
�, which takes integral values on .HZ/�.

For each point .C;Q/ 2 M, the tautological 1-form y dx on T �C restricts to a 1-form � 2 H 0.†; !†/

satisfying �˝2 D p�.Q/ and ��.�/ D ��. This should not be confused with the section � appearing

in (22): there is a relation �D s ı�. The de Rham cohomology class associated to � is an element of

H 1.†;C/�, and the resulting map

(24) ı W M ! H; .C;Q/ 7! Œ�� 2 H 1.†;C/�;

is a holomorphic section of the bundle H.
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Theorem 3.1 [Veech 1990] The covariant derivative of ı with respect to the Gauss±Manin connection

defines an isomorphism rGM.ı/ W TM ! H.

Taking a basis .
1; : : : ; 
n/ � H1.†;Z/
� at some point .C;Q/ 2 M and extending to nearby points

using the Gauss±Manin connection gives locally defined functions on M

(25) zi D Z.
i/D .Œ��; 
i/D

Z


i

p

Q for 1 6 i 6 n:

Theorem 3.1 is then the statement that these functions are local coordinates on M. Note that the associated

linear coordinates �i D .dzi ;�/ on the fibres of the bundle TM ! M considered in Section 2.2 correspond,

under the isomorphism of Theorem 3.1, to the functions on the fibres of the bundle H ! M given by

pairing with the classes 
i .

We can use the isomorphism of Theorem 3.1 to transfer the data .HZ;rGM; ı/ from the bundle H to

the tangent bundle TM . This defines a period structure .T Z

M
;r;Z/ on M for which the periods (25)

are integral linear coordinates. The required identity r.Z/D id holds by definition. The intersection

form on H
� induces a skew-symmetric form T �

M
� T �

M
! OM which takes integral values on the lattice

.T Z

M
/� � T �

M
. We obtain a period structure with skew form by taking � to be this form multiplied

by 2� i . Since the intersection form is nondegenerate, the inverse to � defines a symplectic form

! 2 H 0.M;^2T �
M
/.

3.4 Prym variety and abelian connections

We denote by J.C / and J.†/ the Jacobians of the curves C and †. Set

J.†/� D fM 2 J.†/ W M ˝ ��.M /Š O†g; J 2.C /D fP 2 J.C / W P˝2 Š OC g:

The pullback map p� W J.C /! J.†/ is injective [Mumford 1974, Section 3], and we identify J.C / with

its image. The Prym variety is defined by either of the two quotients

(26) P .†/D J.†/=J.C /D J.†/�=J 2.C /:

To see that the two quotients in (26) are indeed the same, consider the map j W J.†/� ! J.†/=J.C /

induced by the inclusion J.†/� � J.†/. Then j is surjective because for any M 2 J.†/ we can write

M D N ˝2, and then
M D .N ˝ ��.N �//˝ .N ˝ ��.N //:

The first factor clearly lies in J.†/�, and it is proved in [Mumford 1974, Section 3] that the second lies

in J.C /. The kernel of j is the intersection J.C /\ J.†/� � J.†/, and since any element M 2 J.C /

satisfies ��.M /D M, this coincides with J 2.C /.

We also consider the spaces J #.C / and J #.†/ of line bundles with connection. We can again identify

J #.C / with the image of the pullback map p� W J #.C /! J #.†/. We set

J #.†/� D f.M; @/ 2 J #.†/ W .M; @/˝ ��.M; @/Š .O†; d/g:
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Note that if .N; @N / is a line bundle with connection on C , and P˝2 Š N , then there is a unique

connection @P such that .P; @P /
˝2 Š .N; @N /. In particular, each P 2 J 2.C / has a unique connection @P

satisfying .P; @P /
˝2 D .OC ; d/, and we can therefore identify J 2.C / with a subgroup of J #.†/. We

define

(27) P #.†/D J #.†/=J #.C /D J #.†/�=J 2.C /;

with a similar argument as before showing that these two quotients are equal.

The exact sequence (23) shows that

zH 1.†;C�/� WD HomZ.H1.†;Z/
�;C�/Š H 1.†;C�/=H 1.C;C�/:

The Riemann±Hilbert isomorphism J #.†/Š H 1.†;C�/ then induces an isomorphism

(28) P #.†/Š zH 1.†;C�/�:

3.5 Anti-invariant branched connections

Let F be a vector bundle on the spectral curve†. By a branched connection on F we mean a meromorphic

connection @ W F ! F ˝!†.R/ with simple poles on the branch divisor R �†. The line bundle O†.R/

has a canonical branched connection d W O†.R/! O†.R/˝!†.R/ induced by the de Rham differential

applied to functions on † with poles on R. This connection has a simple pole with residue �1 at each

point of R.

The short exact sequence (22) induces an isomorphism p�.!C / Š O†.R/. We therefore obtain a

canonical branched connection d� on p�.!C /. It is uniquely defined by the condition that � is a flat

map of bundles with meromorphic connection .O†; d/! .p�.!C /; d�/. We say that a line bundle with

branched connection .L; @/ on † is anti-invariant if

(29) .L; @L/˝ ��.L; @L/Š .p�.!C /; d�/:

It follows that @ has a simple pole with residue �1
2

at each point of R.

Let J #
br.†/ denote the space of line bundles L on † equipped with anti-invariant branched connections @.

The group J 2.C /� J #.†/ acts on this space by tensor product, and in analogy with (27) we define

P #
br.†/D J #

br.†/=J
2.C /:

Lemma 3.2 There is a canonical isomorphism P #.†/Š P #
br.†/.

Proof Tensor product gives J #
br.†/ the structure of a torsor over J #.†/�, so choosing a point .L0; @0/2

J #
br.†/ gives a noncanonical identification of the two spaces

(30) .L; @/ 2 J #.†/ 7! .L; @/˝ .L0; @0/ 2 J #
br.†/

�;

Geometry & Topology, Volume 29 (2025)



2710 Tom Bridgeland

which descends to the quotients by J 2.C /. To obtain a canonical bijection, take a spin structure !1=2
C

on C

and let @0 be the unique branched connection on L0 D p�.!
1=2
C
/ satisfying .L0; @0/

˝2 D .p�.!C /; d�/.

Since !1=2
C

is uniquely defined up to the action of J 2.C /, the resulting isomorphism P #.†/Š P #
br.†/ is

canonically defined.

4 The spectral correspondence

Let us fix a smooth projective curve C of genus g and a quadratic differential Q 2 H 0.C; !˝2
C
/ with

simple zeroes. Let p W†! C be the associated spectral curve with its covering involution � . There is

a very well-known correspondence relating SL2.C/ Higgs bundles on C to anti-invariant line bundles

on †. In this section we show how to extend this construction to include connections. The existence of

this extension seems to be little known, although it is discussed by Donagi and Pantev [2009, Section 3.2]

and also appears in a paper of Arinkin [2005].

4.1 Definition

The SL2.C/ spectral correspondence [Hitchin 1987a, Section 8; Beauville et al. 1989, Section 3] defines

a bijection between

(i) rank 2 vector bundles E on C , with det.E/Š OC , equipped with a Higgs field ˆ W E ! E ˝!C

with tr.ˆ/D 0 and 1
2

tr.ˆ2/D Q, and

(ii) line bundles L on † satisfying L ˝ ��.L/Š p�.!C /.

The line bundle L is obtained from the eigendecomposition of the pullback of the Higgs field p�.ˆ/. In

the reverse direction, the line bundle L is sent to the bundle E D p�.L/ equipped with the Higgs field ˆ

which is the pushforward of the map 1 ˝� W L ! L ˝ p�.!C /.

We shall need an extension of this correspondence involving connections on the bundles L and E D p�.L/.

More precisely, the extension relates

(i) connections r on E inducing the trivial connection on det.E/Š OC ,

(ii) anti-invariant branched connections @ on the line bundle L.

We do not claim that this correspondence is a bijection in general, but it does define a birational map of

the relevant moduli spaces: see Theorem 5.1 below.

The extended correspondence is defined as follows. Take a bundle E D p�.L/ on C and a connection r

on E as in (i). The natural transformation p�p�.L/! L gives rise to a short exact sequence

(31) 0 ! p�.E/
f

�! L ˚ ��.L/! OR ! 0:
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Since the map f is an isomorphism away from the divisor R � †, there is a unique meromorphic

connection zr on L ˚ ��.L/ with poles along R such that the map f becomes a map of bundles with

meromorphic connection p�.E;r/ ! .L ˚ ��.L/; zr/. The local calculation in the next subsection

shows that the poles of zr at the points of R are simple. Taking the component of zr along L then gives

the required branched connection @.

To prove that .L; @/ satisfies (29), take determinants of (31) to get a map det.f / W O† ! L ˝ ��.L/.

The support of the cokernel is precisely R and it follows for degree reasons that coker.det.f //D OR.

The sequence (22) then shows that we can identify L ˝ ��.L/ with p�.!C / in such a way that the map

det.f / coincides with the map �. But then det.zr/D @˝1C1˝��.@/ is related to the trivial connection

det.p�.r// by the meromorphic gauge change �, and hence coincides with d� .

4.2 Local computation at branchpoint

Consider a �-invariant neighbourhood U � † of a branchpoint p 2 R. Choose a local coordinate

w W U ! C satisfying ��.w/ D �w, and hence w.p/ D 0. Choose also a local nonvanishing section

s 2 H 0.U;L/. In terms of the basis of sections .s; ��.s// we can write the induced connection zr on

L ˚ ��.L/ in the form

zr D d C

�

˛.w/ ˇ.w/


 .w/ ı.w/

�

dw;

where ˛; ˇ; 
; ı W U ! C are meromorphic functions defined in a neighbourhood of 0 2 C, and regular

away from 0. The invariance of the pullback connection on p�.E/ implies that 
 .w/D �ˇ.�w/ and

ı.w/D �˛.�w/.

The sequence (31) shows that a section of p�.E/ over U is determined by sections of L and ��.L/

which agree at the branchpoint p. Since derivatives of regular sections of p�.E/ are also regular sections

of p�.E/ we can write

zr @
@w

�

1

1

�

D

�

˛.w/Cˇ.w/

�˛.�w/�ˇ.�w/

�

D

�

cC

cC

�

C O.w/;(32)

zr @
@w

�

w

�w

�

D

�

1

�1

�

Cw

�

˛.w/�ˇ.w/

˛.�w/�ˇ.�w/

�

D

�

c�

c�

�

C O.w/;(33)

with c˙ 2 C. It follows that ˛.w/ and ˇ.w/ have at worst simple poles at w D 0 and we can therefore

write

˛.w/D �
a

2w
C c C O.w/; ˇ.w/D

b

2w
� d C O.w/;

with a; b; c; d 2 C. Equation (32) then implies that b D a and d D c, and (33) implies that a C b D 2.

Thus
˛.w/D �

1

2w
C c C O.w/; ˇ.w/D

1

2w
� c C O.w/;

for some element c 2 C. In particular, zr has simple poles on R. The induced branched connection on L

is given by @D d C˛.w/ dw.
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4.3 Explicit description

It will be useful later to have a more detailed description of the extended spectral correspondence described

in Section 4.1.

The functor p� W Coh.†/ ! Coh.C / has a left adjoint p� and a right adjoint p!. They are related by

p!.�/D p�.�/˝!†=C , where !†=C D !† ˝ p�.!_
C
/ is the relative dualising sheaf. The short exact

sequence (21) induces an identification of !†=C with O†.R/. We can then identify p! with the functor

p�.�/˝ O†.R/. There are natural transformations

(34) � W p� ı p� ! 1; � W 1 ! p! ı p�:

Let L be a line bundle on †. Setting f D .�L; ���.L// and g D .�L; ���.L// gives maps

(35) p�.E/
f

�! L ˚ ��.L/
g

�! p�.E/˝ O†.R/:

We claim that they are mutually inverse away from the ramification divisor:

Lemma 4.1 Let sR W O† ! O†.R/ denote the canonical inclusion. Then

(36) g ıf D 1p�.E/ ˝ sR; f ˝!†=C ı g D 1L˚��.L/ ˝ sR:

Proof As in the previous section we can view local sections of p�.E/ as consisting of pairs of local

sections u of L and v of ��.L/ whose restrictions to the branch divisor R coincide. Then �L W p�.E/! L

sends such a pair to the local section u, and �L.�R/ W L.�R/ ! p�.E/ sends a local section u of L

which vanishes on R to the pair .u; 0/. The result follows.

The extended correspondence is defined by viewing the maps f and g as meromorphic gauge transfor-

mations, and using them to transfer the connection p�.r/ from p�.E/ to L ˚ ��.L/. We then take the

first component to obtain a meromorphic connection @ on L with poles along R. The connection @ is

therefore given by the composite map

(37) L
�L�! p�.E/˝ O†.R/

p�.r/˝1C1˝d
���������! p�.E/˝ O†.R/˝!†.R/

�L˝!†.2R/
�������! L ˝!†.2R/:

Here d denotes the canonical branched connection on O†.R/ induced by the de Rham differential, as in

Section 3.5. Note that although the resulting connection @ a priori has double poles along R, the local

calculation in Section 4.2 shows that these poles are in fact of order one.

5 Two diagrams of moduli spaces

In this section we introduce a diagram of moduli spaces which will play a key role in our construction of

the Joyce structure on the space M.C;Q/. These moduli spaces parametrise smooth projective curves C

of genus g equipped with various extra structures involving vector bundles, Higgs fields and connections.
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We defer discussion of the existence and basic properties of the moduli spaces to the appendix. The main

result of this section focuses on the two most interesting maps in our diagram: ˛ and ˇ�. We show that

the first is birational and the second is generically étale.

5.1 The diagrams

We use the following notation:

� C is a complex projective curve of genus g, equipped with a level ` structure.

� Q 2 H 0.C; !˝2
C
/ is a quadratic differential on C with simple zeroes.

� p W†! C is the spectral curve defined by the quadratic differential Q.

� E is a stable rank 2 vector bundle on C with trivial determinant.

� ˆ is a trace-free Higgs field on E such that 1
2

tr.ˆ2/ has simple zeroes.

� r is a connection on E inducing the trivial connection on det.E/.

� L is a line bundle on † such that L ˝ ��.L/Š p�.!C / and p�.L/ is stable.

� @ is an anti-invariant branched connection on L.

Let us fix a parameter � 2 C
� and contemplate the diagram

(38)

M.C;E;r; ˆ/

˛

ww

ˇ�

''

M.C;Q;L; @/

�3

��

M.C;Q;E;r/

�2

��

�0

// M.C;E;r/

�1

��

M.C;Q/ oo
D

// M.C;Q/
�

// M.C /

Each moduli space parametrises the indicated objects, and the maps �; �0 and �i are the obvious projections.

Note that M.C / and M.C;Q/D M are the moduli spaces appearing in Section 3.1. The map ˛ is the

extended spectral correspondence discussed in the previous subsection, and ˇ.�/ is defined by the rule

ˇ�.C;E;r; ˆ/D
�

C; 1
2

tr.ˆ2/;E;r � ��1ˆ
�

:

We refer the reader to the appendix for further details on the moduli spaces appearing in (38). Given

our standing assumptions g > 1 and ` > 2, all the spaces appearing are smooth quasiprojective complex

varieties which co-represent the relevant moduli functors.

Consider the bundle H
# D H=.2� i/HZ over M with fibres zH 1.†;C�/�. Under the isomorphism of

Theorem 3.1 it corresponds to the quotient (14). We now consider a second diagram of spaces, which can
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be attached to the left-hand side of (38):

(39)

T #
M

rGM.ı/
//

�5

��

H
#

�4

��

M.C;Q;L; @/

�3

��

�
oo

M oo
D

// M oo
D

// M.C;Q/

Note that the fibre of the map �3 over a pair .C;Q/ is the open subset of the space J #
br.†/ defined by the

condition that p�.L/ is stable. The map � is then given on fibres by the composite of the quotient map

J #
br.†/! P #

br.†/ with the isomorphism of Lemma 3.2 and the Riemann±Hilbert isomorphism (28). It is

an étale map of complex manifolds.

5.2 Generic finiteness results

The following result contains the two main nontrivial facts we will need for the construction of our Joyce

structure.

Theorem 5.1 Fix a genus g > 1 and a level ` > 2. Then

(i) the map ˛ is birational , and

(ii) the map ˇ� is generically étale.

Proof Note first that the sources and targets of the maps ˛ and ˇ� are smooth quasiprojective varieties

of the same dimension. By generic smoothness and the dimension theorem, for (i) it will be enough

to prove that the general fibre of ˛ is a single point, and for (ii) that the general fibre of ˇ� is finite, or

equivalently, that ˇ� is dominant.

For (i), suppose we have two connections on E giving rise to the same connection on L. In terms of

the local computation of Section 4.2 this means that we have two possible ˇi with the same ˛, and in

particular, the same c 2 C. Then the difference ˇ2.w/�ˇ1.w/ is regular and vanishes at the branchpoint

w D 0. Globally the difference .ˇ2.w/�ˇ1.w// dw corresponds to a section ��.L/! L ˝!†. But

since † has genus 4g � 3, and R has degree 4g � 4

(40) �.��.L/;L ˝!†.�R//D �.!†.�R//D .4g � 3/� 1 � .4g � 4/D 0;

and it follows that for generic L any such section is zero.

For (ii), note first that by the relation r� D r � ��1ˆ, the source of ˇ� may be equivalently viewed as

parametrising C;E; ˆ and r�, and therefore ˇ� is a base-change of the map

(41) 
 W M.C;E; ˆ/! M.C;E;Q/

defined by Q D 1
2

tr.ˆ2/. That this map is dominant follows from the proof of [Beauville et al. 1989,

Theorem 1]. Namely, we first extend 
 by dropping the condition that Q has simple zeroes, and then

show that the resulting map is dominant. But by the results of [Laumon 1988], for each curve C there

exists a bundle E for which the fibre of 
 over the point .C;E; 0/ is a single point.
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Note that the proof of Theorem 5.1 actually gives more: the open locus over which the map ˛ is birational

intersects each fibre ��1
3
.m/, and similarly, the open locus over which the map ˇ� is étale intersects each

fibre ��1
2
.m/. We record this as:

Corollary 5.2 Let C be a smooth projective curve of genus g > 1, and Q 2 H 0.C; !˝2
C
/ a quadratic

differential with simple zeroes. Let p W†! C be the associated spectral curve. Then for each � 2 C
�, the

composite ˇ� ı˛�1 defines a dominant rational map

(42) 
� W M†.L; @/Ü M.E;r/

between the moduli space of anti-invariant branched connections on †, and the moduli space of rank 2

connections on C with trivial determinant.

6 Symplectic forms and their preservation

In this section we introduce the relevant symplectic forms on the moduli spaces and show that our maps

preserve them.

6.1 The Atiyah±Bott symplectic form

Let E be a bundle on C and r W E ! E ˝!C a connection. There is an associated de Rham complex

(43) 0 ! EndOC
.E/

r
�! EndOC

.E/˝!C ! 0:

We denote by H
i
dR.C;r/ the i th hypercohomology of this complex. The long exact sequence in hyperco-

homology gives relations

(44) H
0
dR.C;r/D H 0.C;EndOC

.E//; H
2
dR.C;r/D H 1.C;EndOC

.E/˝!C /;

and a short exact sequence

(45) 0 ! H 0.C;EndOC
.E/˝!C /! H

1
dR.C;r/! H 1.C;EndOC

.E//! 0:

Consider the moduli space FlatC .r/ of rank r stable bundles on C equipped with a flat connection. It is a

smooth, quasiprojective scheme whose tangent space at a point .E;r/ is the group H
1
dR.C;r/. There is

a canonical isomorphism
R

C W H 1.C; !C /! C. The Atiyah±Bott form is the composite of the wedge

product

(46) H
1
dR.C;r/� H

1
dR.C;r/

^
�! H

2
dR.C;r/

with the canonical maps

(47) H
2
dR.C;r/

Š
�! H 1.C;EndOC

.E/˝!C /
tr

�! H 1.C; !C /

R

C
�! C:
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There is a forgetful map

(48) � W FlatC .r/! BunC .r/

to the moduli space of rank r , degree 0 stable bundles on C . The tangent space at a point of BunC .r/ is

the cohomology group Ext1C .E;E/. The map � is an affine bundle for the vector bundle over BunC .r/

with fibres HomC .E;E ˝!C /, which can be identified with the cotangent bundle of BunC .r/ using the

Serre duality pairing

(49) HomC .E;E ˝!C /� Ext1C .E;E/! Ext1.E;E ˝!C /
tr

�! H 1.C; !C /

R

C
�! C:

The short exact sequence (1) defined by the derivative of the map � can be identified with (45), and the

following result is then immediate.

Lemma 6.1 The Atiyah±Bott form on FlatC .r/ is uniquely characterised by the following two properties:

(i) The fibres of the map (48) are Lagrangian.

(ii) At any point .E;r/ the induced pairing between the vertical tangent space for the map (48) and the

cotangent space T �
E

BunC .r/ is the Serre duality pairing (49).

Note that in the case of bundles of rank r D 1 the de Rham complex for .E;r/ becomes the usual de Rham

complex of C and hence H
1
dR.C;r/D H 1.C;C/. The Atiyah±Bott pairing can then be identified with

the intersection form.

6.2 Properties of traces

Let X be a variety, and E a vector bundle on X. Taking the trace of endomorphisms defines a map

tr W EndOX
.E/! OX . Tensoring by a line bundle L and taking cohomology gives linear maps

(50) trE W Extp
X
.E;E ˝ L/! H p.X;L/:

In the proof of Theorem 6.2 we shall need the following properties of these maps, whose proofs we leave

to the reader:

(T1) Given bundles E;F and a line bundle L, and elements g 2 Extp
X
.E;F / and h 2 Extq

X
.F;E ˝ L/,

there is an identity

(51) trE.h ı g/D trF ..g ˝ L/ ı h/ 2 H pCq.X;L/:

(T2) Given a bundle E and line bundles L;M and elements f 2 Extp
X
.E;E ˝L/ and g 2 Extq

X
.L;M /,

there is an identity

(52) g ı trE.f /D trE..1E ˝ g/ ıf /:
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(T3) Suppose given two bundles E1;E2 and a line bundle L, and an element f 2 Extp
X
.G;G ˝ L/,

where G D E1 ˚ E2. Let si W Ei ! G be the canonical inclusions, and �i W G ! Ei the canonical

inclusions. Then

(53) trG.f /D trE1
.�1 ıf ı s1/C trE2

.�2 ıf ı s2/:

(T4) Given a map of varieties f W X ! Y , a bundle E on Y , a line bundle L on Y and an element

s 2 Extp.E;E ˝ L/, there is an identity

(54) trf �.E/.f
�.s//D f �.trE.s// 2 H p.X; f �.L//:

6.3 Preservation of symplectic forms

Each of the maps �1; : : : ; �5 appearing in the diagram (38) and (39) carries a natural relative symplectic

form, and we claim that the horizontal maps in these diagrams preserve these forms. For the most part

these statements are rather obvious, but Theorem 6.2 below is quite nontrivial.

Let us consider each vertical map in turn. For the map �3 we take the Atiyah±Bott form for rank 1

bundles with connection, restricted to the subset of anti-invariant connections. The tangent space to the

fibres is H 1.†;C/� and the symplectic form is just the usual intersection form. We then take the same

form on �4 and by definition of the symplectic form ! on M this induces the required relative symplectic

form on the map �5.

The map �1 is equipped with a relative form whose restriction to each fibre is the Atiyah±Bott form

discussed above. Note that since we are in the SL2.C/ setting we should impose trace-free conditions

appropriately. Since the right-hand square in (38) is Cartesian this induces a relative symplectic form on

�2. In terms of the map 
� D ˇ� ı˛�1 of Corollary 5.2 what is then left to prove is

Theorem 6.2 The pullback of the Atiyah±Bott form on MC .E;r/ by the rational map 
� is twice the

Atiyah±Bott form on M†.L; @/.

Proof We freely use notation from Section 4.3. At the level of bundles 
� is defined by E D p�.L/. We

have a map of short exact sequences in which all vertical arrows are isomorphisms

Hom†.L;L ˝!†/0 // T.L;@/M†.L; @/ // Ext1†.L;L/0

p�

��

HomC .E;E ˝!C /0


�;�

OO

// T.E;r/MC .E;r/


�;�

OO

// Ext1C .E;E/0

Take L an anti-invariant line bundle on † and set E D p�.L/. Take elements

(55) v 2 HomC .E;E ˝!C /; w 2 Hom1
†.L;L/:
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We assume that tr.v/D 0 and w is anti-invariant, meaning that w˝ 1��.L/ C 1L ˝��.w/D 0. What we

must show is that

(56)
Z

C

trE.v ı p�.w//D

Z

†

trL.˛�.v/ ıw/:

By construction, ˛�.v/ is given by the composite

(57) L
�L�! p�.E/˝!†=C

p�.v/˝!†=C
��������! p�.E/˝!†

�L˝!†
����! L ˝!†:

Thus we have

(58)
Z

†

trL.˛�.v/ ıw/D

Z

†

trL.�L ˝!†=C ı p!.v/ ı�L ıw/:

On the other hand, using the relation
R

C  D
R

†.s ı p�. //, valid for all elements  2 H 1.C; !C /, we

can write
Z

C

trE.v ı p�.w//D

Z

†

s ı p� trE.v ı p�.w//

.T 4/
D

Z

†

s ı trp�.E/.p
�.v/ ı p�p�.w//(59)

.T 2/
D

Z

†

trp�.E/

�

.1p�.E/ ˝ s/ ı p�.v/ ı p�p�.w/
�

(60)

D

Z

†

trp�.E/.g ıf ı p�.v/ ı p�p�.w//

.T 1/
D

Z

†

trL˚��.L/.f ˝!†=C ı p!.v/ ı p!p�.w/ ı g/(61)

.T 3/
D

Z

†

trL.�L ˝!†=C ı p!.v/ ı�L ıw/(62)

C

Z

†

tr��.L/.���.L/ ˝!†=C ı p!.v/ ı���.L/ ı ��.w//;

where we used the naturality of � as well as (T3) in the final step. The same argument together with the

assumption trE.v/D 0 shows that

(63)
Z

†

trL.�L ˝!†=C ı p!.v/ ı�L/C

Z

†

tr��.L/.���.L/ ˝!†=C ı p!.v/ ı���.L//D 0:

For line bundles, (T2) shows that the trace of the composite is the composite of the traces. Using the

assumption that w is anti-invariant we see that the two terms in (62) are equal, which proves the claim.

7 Construction of the Joyce structure

In this section we finally construct the required meromorphic Joyce structure on the complex manifold

M D M.C;Q/. The key ingredient is the isomonodromy connection on the map �1, which is both flat

and symplectic. We pull this back across the diagrams (38) and (39) using the generic finiteness results of

Theorem 5.1. This then gives the required nonlinear connections h� on the tangent bundle of M.
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7.1 Nonlinear connections

Let � W X ! Y be a smooth map of varieties. We can define the notion of a nonlinear connection on �

exactly as before. Namely, the derivative of � gives a short exact sequence

0 ! TX =M
i

�! TX
���! ��.TY /! 0;

and we define a nonlinear connection on � to be a map of bundles h W��.TY /! TX satisfying �� ıh D id.

Let D � X be an effective Cartier divisor with corresponding section sD W OX ! OX .D/. We define a

meromorphic connection on � with poles along D to be a map of bundles h W��.TY /! TX .D/ satisfying

.�� ˝ OX .D// ı h D 1��.TY / ˝ sD .

We shall need the following simple facts, whose proofs we leave to the reader:

(C1) Suppose given smooth maps � W X ! Y and � W Y ! Z and connections h W ��.TY /! TX on �

and j W ��.TZ /! TY on �. Then the composite h ı��.j / W ����.TZ /! TX is a connection on

the map � ı� W X ! Z.

(C2) If � W X ! Y is étale then ��1
� W ��.TY /! TX is the unique connection on � .

(C3) Given a Cartesian square
W

�

��

g
// X

�
��

Z
f

// Y

with � smooth, and a connection h W ��.TY / ! TX on � , there exists a unique connection

j W ��.TZ /! TW on � such that

(64) g� ı j D g�.h/ ı ��.f�/ W �
�.TZ /! g�.TX /:

(C4) Suppose given a smooth map � W X ! Y and an open subset U � X. Denote the inclusion map by

i W U ! X, and set �0 D � ı i . Then any connection h0 W ��
0
.TY /! TU on �0 extends to a mero-

morphic connection on � . More precisely, there is an effective divisor D � X and a meromorphic

connection h W ��.TY /! TX .D/ on � with poles along D such that i�.h/D idTU
˝i�.sD/ ı h0.

7.2 Isomonodromy connection

Return to the diagram (38), and recall that we are imposing the condition that the bundles E are stable.

In particular, the map

(65) �1 W M.C;E;r/! M.C /

is smooth. There is a flat nonlinear connection on this map known as the isomonodromy connection and

constructed as follows. There is a map

(66) �0 W M.C;E/! M.C /
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whose fibre over a curve C is the space of SL2.C/ local systems on C . The relative Riemann±Hilbert

correspondence [Deligne 1970, Theorem 2.23] gives an open embedding � W M.C;E;r/ ! M.C;E/

sending a bundle with connection .E;r/ to its monodromy local system. The fact that the universal

family of curves over M.C / is locally trivial as a family of smooth surfaces defines a Gauss±Manin

connection on �0, which by pullback along � then induces the isomonodromy connection on �1.

We shall need two properties of the isomonodromy connection. Firstly, despite the fact that the monodromy

map � is highly transcendental, the isomonodromy connection is nonetheless an algebraic object. The

basic reason is that the condition for a relative connection .E;r/ on a family of curves curve f W C! T to

be isomonodromic can be rephrased as the lifting of the relative flat connection on the bundle E over C to

an actual flat connection, and the isomonodromy connection then arises from a zero curvature condition.

A more abstract approach using crystals was explained by Simpson [1994b, Section 8].

The second property of the isomonodromy connection we need is that it is symplectic. Goldman [1984]

proved that the Riemann±Hilbert map � takes the Atiyah±Bott symplectic form on MC .E;r/ to a natural

symplectic form on the character variety defined using group cohomology. The only important point

for us is that this second symplectic form is defined topologically, and is therefore independent of the

complex structure on C . It follows that the parallel transport maps for the isomonodromy connection

preserve the Atiyah±Bott symplectic form on the fibres of �1.

The right-hand square in (38) is Cartesian so we can pull back the isomonodromy connection using (C3)

to obtain a connection on �2. Using (C1), (C2) and Theorem 5.1 we obtain a connection on an open

subset of �3. Note that the bundle of groups J 2.C / over M.C / acts by tensor product on the upper row

of the diagram (38). Tensoring .E;r/ by an element .P; @P / 2 J 2.C / multiplies the monodromy by a

homomorphism H1.C;Z/! f˙1g. This action clearly preserves the isomonodromy connection, and the

connection on �3 therefore descends along the map � appearing in (39). Using (C4) we can extend it to a

meromorphic connection. Continuing across this diagram, we finally obtain a meromorphic connection h�

on a dense open subset of �5 W T #
M

! M.

7.3 Joyce structure

In the last section we showed how to construct, for each � 2 C
�, a nonlinear connection h� on a dense

open subset of �5. This connection is flat and symplectic because it is a pullback of the isomonodromy

connection. To produce a pre-Joyce structure it remains to prove that as � 2 C
� varies these connections

form a �-pencil, ie that h� D h C ��1v, where h D h1.

Consider the automorphism

r� W M.C;E;r; ˆ/! M.C;E;r; ˆ/; .C;E;r; ˆ/ 7! .C;E;r C ��1ˆ;ˆ/:

Then ˇ� D ˇ1 ı r��, and it follows that h� D .r�/� ı h as maps of bundles ��.TM /! TX . It will be

enough to show that .r�/� D id C��1.v ı��/.
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Recall the tautological differential � 2 H 0.†; !†/ of Section 3.1 whose periods (25) around a basis of

cycles .
1; : : : ; 
n/� H1.†;Z/
� define local flat integral coordinates zi on M. After transferring along

the birational map ˛, the map r� becomes

r� W M.C;Q;L; @/! M.C;Q;L; @/; .C;Q;L; @/ 7! .C;Q;L; @C ��1�/:

Thus r� is the operation of tensoring .L; @L/ 2 J #
br.†/ with .O†; d C ��1�/ 2 J #.†/�. Note that

the monodromy of this second connection around a cycle 
i is just exp.��1zi/. We now transfer the

automorphism r� across the diagram (39). The map � takes a point of the space M.C;Q;L; @/ to the

monodromy of the product (30). Thus taking fibre coordinates �i as in Section 2.2, we finally arrive at

the automorphism of X D TM given in local coordinates by �i 7! �i C ��1zi , and the claim follows.

The final step is to check the compatibility between the period structure and the pre-Joyce structure.

Conditions (J1) and (J2) of Definition 2.9 hold by construction. It remains to consider (J3) and (J4).

For (J3) we consider the C
� action on M D M.C;Q/ for which t 2 C

� acts by t � .C;Q/D .C; t2 � Q/.

Combining the induced action on X D TM with the rescaling action on the fibres as in the paragraph

before Lemma 2.7 gives a C
� action on X D TM . It is not hard to see that this descends to X #, and that

when transferred across the diagrams (38) and (39) it becomes the C
� action on M.C;E;r; ˆ/ which

sends ˆ 7! tˆ and leaves .C;E;r/ fixed. We denote by mt W M ! M and nt W X ! X the resulting

actions of t 2 C
�. Note that the involution � W X ! X coincides with n�1.

After Lemma 2.7, to check (J3) it will be enough to show that for any vector field v on M we have

.nt /�.h.v//D h..mt /�.v//. Taking t D �1 this will also imply (J4). To prove this identity it is enough

to show that .nt /�.h.v// is a horizontal vector field for h. But this is clear by construction of h since in

the diagram (38), �0 ı nt D �0.

7.4 Restriction to the zero-section

It was explained in [Bridgeland and Strachan 2021, Section 3.2] that the involution property (iii) above

implies that, when restricted to the zero-section M � X D TM , the holomorphic Levi-Civita connection of

the complex hyperkähler structure on X induces a flat, torsion-free connection rJ on the tangent bundle

of M. This connection was referred to in [Bridgeland 2021, Section 7] as the linear Joyce connection,

and is given in coordinates by

(67) rJ
@

@zi

�

@

@zj

�

D
X

p;q

�qp �
@3W

@�i@�j@�p

ˇ

ˇ

ˇ

�D0
�
@

@zq
:

Note, however, that locating the poles of the Joyce structure constructed above is a subtle problem, and

in particular it is not clear whether the structure is regular along the zero-section M � X D TM . This

submanifold M � X is the fixed locus of the involution �, and when transferred across the diagram (39)

corresponds to the multisection of �3 consisting of points satisfying .L; @L/
˝2 D .p�.!C /; @can/. Un-

derstanding the properties of the Joyce structure at these points is difficult however, because they lie in
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the exceptional locus of the birational map ˛. Note that in the one example that has been computed in

detail [Bridgeland and Masoero 2023], the connection rJ is indeed well-defined, and turns out to be

quite natural.

8 Good Lagrangian submanifolds

The spaces of complex and Kähler parameters on a compact Calabi±Yau threefold are expected to appear

as complex Lagrangian submanifolds in the stability space of the associated CY3 triangulated category. It

has been a longstanding question to try to abstractly characterise these submanifolds in stability space;

see eg [Bridgeland 2009, Section 7]. In this section we give a general definition of a good Lagrangian

submanifold B � M in the base of a Joyce structure. We then prove that for the Joyce structures

constructed in Section 7, the submanifolds in M D M.C;Q/ obtained by fixing the curve C and varying

the quadratic differential Q are good Lagrangians in this sense.

8.1 General definition

Consider a Joyce structure on a complex manifold M and a complex Lagrangian submanifold B � M.

Consider the normal bundle � W NB ! B fitting into the sequence

(68) 0 ! TB
i

�! TM jB
k

�! NB ! 0:

Recall the pencil of connections h� D h C ��1v on the bundle � W X D TM ! M. For any complex

submanifold B � M, and any ��1 2 C, the connection h� restricts to a connection h�jB on the bundle

XB D TM jB ! B.

Definition 8.1 A complex Lagrangian submanifold B �M will be called good if the restricted connection

h�jB descends via the map k W XB ! NB to a connection n on the normal bundle � W NB ! B.

To explain this condition in more detail, take x 2 XB with �.x/D b 2 B. The bundle map k defines a

map of complex manifolds k W XB ! NB , and we set y D k.x/ 2 NB .

(69)

X

�
��

XB

��

?
_oo

k
// NB

�
��

M B?
_oo oo

D
// B

Given a vector w 2 TbB � TbM the connection h� defines a lift h�.w/ 2 TxXB � TxX, and we define

n.w/D k�.h�.w// 2 TyNB . Note that n.w/ is independent of �, since k�.v.w//D 0. The condition of

Definition 8.1 is that n.w/ depends only on y 2 NB , not on the element x 2 XB satisfying k.x/ D y.

When this condition holds, the map n defines a connection on � W NB ! B.

Lemma 8.2 If B � M is a good Lagrangian then the induced connection n on the normal bundle

� W NB ! B is flat.
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Proof Recall that if f W M ! N is a map of complex manifolds, and u; w are vector fields on M;N ,

respectively, then u; w are said to be f -related if f�.um/D wf .m/ for all m 2 M. Given vector fields

u1;u2 on M which are f -related to vector fields w1; w2 on N, it is easily checked that Œu1;u2� is

f -related to Œw1; w2�. We will apply this to the map k W XB ! NB .

Given a vector field u on B, we can extend it to a vector field on M which we also denote by u. We can

then use the connection h� to lift it to the vector field h�.u/ on X. The restriction of this vector field to

XB is a vector field on XB , and is independent of the chosen extension. The good Lagrangian condition

states that this vector field on XB is k-related to a vector field on NB , which by definition is n.u/.

The connection h� being flat is the condition that for any vector fields u1;u2 on M we have h�.Œu1;u2�/D

Œh�.u1/; h�.u2/�. But then it follows that h�.Œu1;u2�/ is k-related to Œn.u1/; n.u2/�, which by definition

of n implies that n.Œu1;u2�/D Œn.u1/; n.u2/� and hence that the connection n is flat.

To express the good Lagrangian condition more concretely, take local Darboux coordinates .z1; : : : ; z2d /

on M and assume that B � M is given by the equations zdC1 D � � � D z2d D 0, and that !pq D ˙1 if

q�p D˙d and is otherwise zero. Lifting the vector fields @=@zi with 16 i 6d from M to X as in (3) gives

(70) vi D
@

@�i
; hi D

@

@zi
C

d
X

jD1

�

@2W

@�i@�jCd

�
@

@�j
�
@2W

@�i@�j
�

@

@�jCd

�

:

Applying the projection k W TM jB ! NB amounts to setting @=@�i D 0 for 1 6 i 6 d . The condition

of Definition 8.1 is then that for 1 6 i 6 d the result of this projection should be independent of the

coordinates �i for 1 6 i 6 d . This is equivalent to

(71)
@3W

@�i@�j@�k

D 0 for 1 6 i; j ; k 6 d

along the locus zdC1 D � � � D z2d D 0.

There is a canonical real structure on the tangent bundle TM whose fixed locus T R

M
� TM is the real

span of the integral affine structure T Z

M
� TM . We call a complex Lagrangian B � M nondegenerate if

TB \ T R

M
jB D .0/� TM jB . When this holds, the restriction of the map k to the lattice T Z

M
jB � TM jB is

injective, and we denote its image by N Z

B
� NB . When the Lagrangian B is both good and nondegenerate,

the connection n of Lemma 8.2 descends to a connection on the projection � W NB=N
Z

B
! B whose fibres

are compact tori C
d=Z2d Š .S1/2d .

8.2 Class S ŒA1� examples

Consider the Joyce structure on the space M D M.C;Q/ constructed in this paper. Let us fix a curve

C 2 M.C / and consider the Lagrangian submanifold B D MC .Q/ � M which is the corresponding

fibre of the projection � WM.C;Q/!M.C /. Thus B � H 0.C; !˝2
C
/ parametrises quadratic differentials

on C with simple zeroes.
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Note that if Q0 2 H 0.C; !˝2
C
/ is a quadratic differential on C , then p�.Q0/ vanishes to order two along

the branch divisor R �†. It follows that the tangent space to B at a point .C;Q/ can be identified with

H 0.†; !†/
� via the map

(72) TbB D H 0.C; !˝2
C
/! H 0.†; !†/

�; Q0 7! p�.Q0/=2�;

where � is the tautological 1-form on † appearing in (24). Under the isomorphism of Theorem 3.1 the

sequence (68) then corresponds to the Hodge filtration

(73) 0 ! H 0.†; !†/
� i

�! H 1.†;C/�
k

�! H 1.†;O†/
� ! 0:

It follows from the isomorphism (28) that the fibres

(74) H 1.†;O†/
�= zH 1.†;Z/D P ].†/=H 0.†; !†/

�

of the map � W NB=N
Z

B
! B are the Prym varieties P .†/ appearing in Section 3.4.

Lemma 8.3 For each curve C the submanifold B D MC .Q/� M D M.C;Q/ is a good Lagrangian.

The horizontal leaves of the induced meromorphic flat connection on � W NB=N
Z

B
! B are defined by the

condition that E D p�.L/ is constant.

Proof We use the notation MC .Q;L; @/ to denote the space parametrising data .Q;L; @/ on the fixed

curve C , and similarly for MC .Q;E;r�/, etc. Let w be a vector field on B � M and let u D h�.w/

be the lift to a vector field on XB � X. Transferring across the diagram (39) we can consider u to be

a vector field on MC .Q;L; @/, and we must show that it descends to the space MC .Q;L/. That is,

the flow of the line bundle L under u should be independent of the connection @. Passing through the

diagram (38) we can view u as a vector field on MC .Q;E;r�/, and we must show that it descends to

the space MC .Q;E/.

By definition, the connection h� on the projection �2 is pulled back from the isomonodromy connection

on �1. Since ��.w/D 0, it follows that �0
�.u/D 0. That is, u is obtained by keeping the pair .E;r�/

on C fixed as Q varies with w. It is then clear that u descends to MC .Q;E/, and the result follows.

Consider the diagram of moduli spaces

(75)

NB=N
Z

B

�

��

MC .Q;L/
�

oo

��

�
// MC .E; ˆ/

��

B oo
D

// MC .Q/ oo
D

// MC .Q/

Here � is the isomorphism defined by the usual spectral construction sending a line bundle L on † to

the Higgs bundle .E; ˆ/ on C , and � is induced by the corresponding map from (39). The forgetful

map MC .E; ˆ/0 ! MC .E/ can be identified with the cotangent bundle of MC .E/, and according to

Lemma 8.3, when transferred across the diagram (75), the fibres of this map become the horizontal leaves

of the connection n.
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Appendix Definition of the moduli spaces

In this section we give detailed constructions of the moduli spaces appearing in the diagram (38). All

schemes are over Spec.C/. We fix a genus g > 1 and a level ` > 2 throughout. We use the terminology

bundle for locally free sheaf of finite rank, and line bundle for invertible sheaf.

A.1 Curves with level structure

A family of genus g curves is a smooth proper map of schemes f W C ! S of relative dimension 1 whose

geometric fibres are connected and of genus g. Given a map of schemes s W S 0 ! S we can pull back the

family by forming the Cartesian diagram

(76)

C
0

f 0

��

t
// C

f
��

S 0 s
// S

Given a family of genus g curves f WC! S as above, there is a locally constant sheaf of free Z=`-modules

Vf D R
1f�.Z=`/ on S . This construction commutes with base-change: given a diagram (76) there is a

canonical isomorphism Vf 0 Š s�.Vf /. In particular, the pullback of Vf to a C-valued point of S is the

cohomology group H 1.C;Z=`/Š .Z=`/˚2g of the corresponding genus g curve C . The intersection

form on these cohomology groups defines a skew-symmetric Z=`-bilinear form

(77) $f W Vf �Vf ! Z=`:

Let V be the free Z=`-module on the symbols a1; b1; : : : ; ag; bg equipped with the standard skew-

symmetric form defined by

(78) $.ai ; aj /D 0 D$.bi ; bj / and $.ai ; bj /D ıij for 1 6 i; j 6 g:

A level ` structure on the family f is defined to be an isomorphism of Z=`-modules � W V ! H 0.S;Vf /

relating the forms $ and $f . Given a diagram (76), a level ` structure on the family f defines a

pulled-back level structure on the family f 0 in the obvious way.

Two families of curves fi W Ci ! S with level ` structure �i are isomorphic if there is an isomorphism

g W C1 ! C2 satisfying f2 ı g D f1 and preserving the level structures in the obvious way. There is a

functor M.g; `/ W .Sch=C/op ! Sets by sending a scheme S to the set of isomorphism classes of families

of genus g curves over S equipped with level ` structure.

Theorem A.1 When g > 1 and ` > 2, the functor M.g; `/ is represented by a smooth quasiprojective

scheme M.g; `/.

Proof This appears to be standard, although it is hard to find a complete proof in the literature.

Grothendieck [1962, Section 2] shows that M.g; `/ is representable by an algebraic space for `� 0, and
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attributes to Serre the statement that ` > 2 is sufficient. Mumford, Fogarty and Kirwan [Mumford et al.

1994, Theorem 7.9] prove the analogous result on moduli spaces of abelian varieties, which implies that

M.g; `/ is representable by a quasiprojective scheme for ` � 0, and they again attribute to Serre the

statement that ` > 2 is sufficient.

The closed points of M.g; `/ parametrise smooth projective genus g curves C equipped with a choice of

symplectic basis in the homology group H1.C;Z=`/.

A.2 Quadratic differentials

Given a family of genus g curves f W C ! S we denote by !C=S the relative cotangent bundle. Given a

Cartesian diagram (76) there is a canonical isomorphism !C0=S 0 Š g�.!C=S /.

If C is any fibre of f then Serre duality gives H 1.C; !˝2
C
/D H 0.C;TC /

� D 0. Using cohomology and

base-change it follows that f�.!
˝2
C=S

/ is a vector bundle on S . By a quadratic differential on the family of

curves f we mean a section of this vector bundle. Note that

(79) H 0.S; f�.!
˝2
C=S

//D H 0.C; !˝2
C=S

/:

Applying this construction to the universal family of curves defines a vector bundle E on the space

M.g; `/.

Define a functor Quad.g; `/ W Sch =Cop ! Sets by sending a scheme S to the set of isomorphism classes

of families of genus g curves equipped with level structures and quadratic differentials.

Lemma A.2 The functor Quad.g; `/ is represented by smooth quasiprojective variety Quad.g; `/ which

is the total space of the vector bundle E over M.g; `/.

The closed points of Quad.g; `/ parametrise smooth projective genus g curves C equipped with a choice

of symplectic basis in the homology group H1.C;Z=`/ and a quadratic differential Q 2 H 0.C; !˝2
C
/.

Consider a family of genus g curves f W C ! S and a section Q 2 H 0.S; !˝2
C=S

/. The relative critical

locus of Q is a closed subscheme of C, and since f is proper, its image is a closed subscheme in S . This

construction commutes with base-change. Applying it to the universal family defines a closed subscheme

of Quad.g; `/. We define Quad0.g; `/ � Quad.g; `/ to be the complementary open subscheme. By

definition, a closed point of Quad.g; `/ lies in this open subscheme precisely if the corresponding

quadratic differential Q 2 H 0.C; !˝2
C
/ has simple zeroes.

A.3 Bundles, Higgs fields and flat connections

Let f W C ! S be a family of genus g curves over a scheme S . We now give the definitions of the relative

moduli spaces of bundles, Higgs bundles and flat connections we will need.
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A family of rank r bundles on f is simply a rank r bundle E on C. Two such families Ei are equivalent

if there is a line bundle L on S and an isomorphism � W E1 ! E2 ˝f �.L/. A family E is said to have

trivial determinant if the associated family of rank 1 bundles ^r .E/ is equivalent to the trivial family OC.

A family of rank r Higgs bundles is a bundle E on C equipped with a relative Higgs fieldˆ WE !E˝!C=S .

Two such families .Ei ; ˆi/ are equivalent if there is an isomorphism � W E1 ! E2 ˝ f �.L/ which

intertwines ˆ1 and ˆ2 ˝ 1f �.L/. A family .E; ˆ/ has trivial determinant if the associated family of

rank 1 Higgs bundles .^r .E/;^r .ˆ// is equivalent to the trivial family .OC; 0/. (This is the usual

condition that the Higgs bundle has zero trace.)

A family of rank r flat connections on f is a bundle E on C equipped with a relative connection r W E !

E ˝!C=S . Two such families .Ei ;ri/ are equivalent if there is an isomorphism � W E1 ! E2 ˝f �.L/

which is flat for the induced relative connection on HomOC
.E1;E2 ˝ f �.L//. A family .E;r/ has

trivial determinant if the corresponding family of rank 1 flat connections .^r .E/;^r .r// is equivalent to

the trivial family .OC; d/.

In all cases we say that a family on C as stable if the restriction of the bundle E to each geometric

fibre of f is stable. Note that for Higgs bundles and flat connections this is strictly stronger than the

usual notion of stability. We use the stronger notion to ensure that the forgetful maps appearing in the

diagram (38) are well-defined. Since stability is an open condition it corresponds to passing to open

subsets of the usual moduli spaces.

Fix again a family of genus g curves f W C ! S and assume S to be of finite type over C. There is a

functor

(80) Bun.C=S; r/ W .Sch=S/op ! Sets

which sends a map m W T ! S to the set of equivalence classes of stable families of rank r bundles with

trivial determinant on the pulled back family fT WC�S T ! T . We define moduli functors Higgs.C=S; r/

and Flat.C=S; r/ in the same way.

Theorem A.3 The functors Bun.C=S; r/, Higgs.C=S; r/ and Flat.C=S; r/ are co-representable by

schemes Bun.C=S; r/, Higgs.C=S; r/ and Flat.C=S; r/ respectively. Each of these schemes is smooth and

quasiprojective over S . The obvious forgetful maps Higgs.C=S; r/! Bun.C=S; r/ and Flat.C=S; r/!

Bun.C=S; r/ are smooth.

Proof The co-representability follows from the results of Simpson [1994a]. The other statements are

easy and well-known.

We apply these results to the universal family of curves over the moduli space M.g; `/. We denote the

resulting moduli spaces as Bun.g; `; r/, Higgs.g; `; r/ and Flat.g; `; r/. They are smooth quasiprojective

schemes. Note for example that Bun.g; `; r/ co-represents the functor which sends a scheme S to the set
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of equivalence classes of pairs .f;E/ consisting of a family of genus g curves f W C ! S and a stable

family of rank r bundles with trivial determinant E over f . Similar remarks apply to Higgs.g; `; r/ and

Flat.g; `; r/.

Given a family of Higgs fields ˆ W E ! E ˝!C=S on a family of genus g curves f W C! S we can define

a quadratic differential Q 2 H 0.C; !˝2
C=S

/ by setting Q D 1
2

tr.ˆ2/. This defines a map

(81) Higgs.g; `; r/! Quad.g; `/;

and we define Higgs0.g; `; r/ to be the inverse image of the open subset Quad0.g; `/ of quadratic

differentials with simple zeroes.

A.4 Anti-invariant branched connections

Consider a family of genus g curves f W C ! S equipped with a quadratic differential Q 2 H 0.S; !˝2
C=S

/

with no relative critical points. We can form a double cover p W†! C by writing the equation y2 D Q

inside the total space of the bundle !C=S . This construction commutes with base-change in the obvious

way. There is a covering involution � W †! † and a branch divisor R � † which is flat over S . The

composite g D f ı p W†! S is a family of smooth genus 4g � 3 curves.

A family of branched connections on g W † ! S is a line bundle L on † equipped with a relative

meromorphic connection @ W L ! L ˝!†=S .R/. Two such families .Li ; @i/ are equivalent if there is

a line bundle N on S and an isomorphism � W L1 ! L2 ˝ g�.N / which is flat for the induced relative

meromorphic connection on HomO†
.L1;L2 ˝g�.N //. A family of branched connections .L; @/ is anti-

invariant if the branched connection .L; @/˝��.L; @/ is equivalent to the family of branched connections

.p�.!C /; @can/.

There is a functor

(82) Flatbr.†=S/ W .Sch =S/op ! Sets

which sends a map m W T ! S to the set of equivalence classes of anti-invariant families of branched

connections on the pulled back family gT W†�S T ! T .

Theorem A.4 The functor Flatbr.†=S/ is representable by a scheme Flatbr.†=S/ which is smooth and

quasiprojective over S .

Proof For moduli spaces of flat connections with logarithmic singularities we can refer to Nitsure [1993],

but since we are dealing with rank 1 connections this is really over-kill. For a more elementary approach

we can pass to an étale cover of the functor Flatbr.†=S/ by adding the data of a square-root of the line

bundle !C=S . Then, as in the proof of Lemma 3.2, we can replace the branched connections .L; @L/ with

regular connections .M; @M /.

Geometry & Topology, Volume 29 (2025)



Joyce structures on spaces of quadratic differentials 2729

We can apply the above construction to the universal family over S D Quad0.g; `/. We denote the

resulting moduli space by Flatbr.g; `/. It is a smooth quasiprojective variety. It represents the functor

which sends a scheme S to the set of equivalence classes of quadruples .f;Q;L; @/ consisting of a family

of genus g curves f W C ! S equipped with a quadratic differential Q 2 H 0.C; !˝2
C=S

/ with simple zeroes,

and a family of anti-invariant branched connections .L; @/ on the associated family of spectral curves

g W†! S .

A.5 Moduli spaces and maps

We can now define the moduli spaces and maps appearing in (38). Firstly we set M.C /D M.g; `/ and

M.C;Q/D Quad0.g; `/. Then we take rank r D 2 and set M.C;E/D Bun.g; `; 2/ and

(83) M.C;E;r/D Flat.g; `; 2/; M.C;E; ˆ/D Higgs0.g; `; 2/:

We define M.C;E;r; ˆ/ to be the fibre product of the obvious forgetful maps

M.C;E;r; ˆ/

��

// M.C;E; ˆ/

��

M.C;E;r/ // M.C;E/

Similarly we define M.C;Q;E;r/ as the fibre product

M.C;Q;E;r/

��

// M.C;Q/

��

M.C;E;r/ // M.C /

Finally we take M.C;Q;L; @/ to be the open subvariety of Flatbr.g; `/ defined by the condition that

E D p�.L/ is stable. Each of these spaces are smooth quasiprojective varieties.

The maps in the diagram (38) are just the obvious forgetful maps, with the exception of ˛ and ˇ�.

To define ˛ we follow the same procedure in the text in the relative setting. To define ˇ� note that

ˇ� Dˇ1 ır� , where r� is the automorphism of the space M.C;E;r; ˆ/ defined by r 7! r C��1ˆ. The

map ˇ1 is given by the rule .C;E;r; ˆ/ 7! .C;Q;E;r/ and is induced using the above fibre-product

diagrams from the map (81).
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