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Understanding the 3D evolution of urban environments at high resolution through space and time is 
crucial for targeting sustainable development and enhancing resilience to hazards but usually requires 
expensive commercial satellite or aerial imagery. This leads to data scarcity and analytical biases in 
countries without access to these capabilities. Here we use high (1.5 m) resolution digital elevation 
models (DEMs) derived from satellite imagery to measure the vertical component of three cities in 
the Global South (Nairobi, Kathmandu and Quito), which we evaluate against published datasets of 
modelled heights. Building heights could be determined to < 1 m mean absolute error (MAE) using 
the DEMs, and 2.2–7.0 m MAE using a deep learning model trained to predict heights using high-
resolution satellite imagery. Google’s Open Buildings 2.5D Temporal Dataset further improved on our 
deep learning models for two of the three cities, although tended to overestimate building heights. 
Constraining the building-scale vertical dimension of urban growth creates new opportunities to 
quantify population distributions, assess natural hazard exposure and vulnerabilities, and evaluate 
material consumption for sustainable development. Deep learning derived building heights begin to 
address global inequalities in data availability but should be evaluated locally alongside reference data 
to determine biases.

The global trend of urbanisation creates cities that are expanding horizontally and vertically, with building stocks 
that are redeveloping through time1–3. The 3D form of urban areas is intrinsically linked to factors including 
population distribution4,5natural and anthropogenic hazards6disaster risk management7,8building materials 
consumption9and socio-economic processes and governance10,11. Vertical expansion can conserve land, 
mitigating the consumption of greenspaces, as well as optimising infrastructure compared to sprawled cities. 
However, formal and informal development can increase population exposure to natural hazards by densifying 
built-up areas. The ability to resolve building-level detail across a city is essential to capture the associated impacts 
on flood routing12,13. Similarly, the vertical component of cities creates microclimates that change as a function 
of building height due to the interaction between solar radiation shielding and airflow turbulence14which also 
affects pollution dispersion15. Building heights also reflect population distributions and informal development, 
which often occurs in more hazardous areas such as on steep slopes or adjacent to river channels, which means 
these communities are disproportionately affected by natural hazards16–18. Population data underpin the analytics 
and monitoring for international frameworks including the sustainable development goals (SDGs) and the 
Sendai Framework for Disaster Risk Reduction4,19. However, the lack of globally consistent and high-resolution 
population data remains a barrier for integration with increasingly detailed hazard models20,21. Spatially and 
temporally consistent building-scale mapping is crucial for advancing both top-down census disaggregation 
approaches and bottom-up methods of estimating population distribution22–24.

The horizontal expansion of urban areas is well studied, but the vertical elongation of cities is a growing facet 
of the built environment that is less well quantified globally. Satellite-based mapping of horizontal urban growth 
mapping has been commonplace for several decades, with global products revealing the horizontal sprawl of 
cities25–27 and population distributions19,28,29. However, built-up area classifications do not account for the 
spatial distribution, density, and volume of buildings. Whilst building footprints are often mapped by national 
organisations, such datasets are often lacking or dated in low- and middle-income countries. Open access 
datasets such as OpenStreetMap (OSM) are a valuable source of building footprints; however, the completeness 
is similarly biased towards high-income countries30. Recent advances have produced regional-scale building 
footprint and height datasets derived using deep learning approaches applied to high and medium resolution 
satellite imagery that can mitigate spatial and temporal biases31–33. These models offer to reduce the requirement 
for access to expensive commercial satellite data, aerial imagery, or LIDAR surveys, which are typically required 
to build 3D city models. However, deep learning training datasets are similarly spatially biased to areas of data 
availability, for example North America and Europe32,34which highlights the importance of local validation in 
cities with diverse building forms and structural materials.
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To advance efforts in accurately quantifying the vertical dimensions of cities, we aim to comprehensively 
evaluate existing data products of building footprints and height, alongside our own contribution of height 
observations and model predictions. We perform city-scale assessments of building footprints and heights 
by integrating high-resolution satellite-derived digital elevation models (DEMs) with altimetry data. This 
integrated approach enables us to evaluate the accuracy of building height estimations at the city level using both 
observational (DEM-derived) and modelling (deep learning) techniques. This differs from other studies, where 
the absence of building height inventories means reference heights for accuracy assessments are estimated using 
the number of stories multiplied by a fixed floor height, for example 3 m35,36which does not reflect the complexity 
of residential, commercial, and industrial building types. To achieve our aim, we: (1) assess the completeness and 
quality of open access building footprints; (2) create unique 3D city models for Nairobi, Quito, and Kathmandu 
using high-resolution satellite imagery; and (3) train and test the applicability of a deep learning workflow to 
estimate building, benchmarked against published datasets. Our study cities (Supplementary Fig. 1, 2) formed 
part of the Tomorrow’s Cities project, which aimed to reduce and address inequalities in future urban disaster 
risk37. They vary in land cover, topographic relief, population density, architectural form, and the prevalence of 
informal settlements. They also reflect contexts where 3D city models are critical for effective urban planning 
and informing disaster risk reduction strategies, yet where limited historical access to high-resolution imagery 
poses challenges for data quality and completeness.

Results
Building footprint datasets
We observed high variability in the total count and area of building footprints in open access datasets (Fig. 1; 
Table 1). Google Open Buildings v3 (GOB) had the largest count and areal coverage of buildings across the three 
study cities. OSM and the Microsoft’s Bing Maps Global ML Building Footprints (GMLBF) were more closely 
aligned for Nairobi and Kathmandu but not for Quito, where the difference across all three datasets was greatest. 
In Quito, the building count was over 1.1 million in the GOB dataset compared to 64,309 in OSM, with a large 
difference in total building area of 101 km2 and 15 km2 respectively (Table 1). The differences in total building 
area between the three building footprint datasets were 36%, 148% and 52% for Nairobi, Quito, Kathmandu 
respectively. The size of buildings mapped in each dataset also varied, with GOB having the smallest median 
building size for all cities (55–62 m2, and GMLBF having the greatest (100–530 m2 (Table 1). Although we did 
not perform a building-scale comparison of each dataset due to their unknown timestamps, comparison with the 
World Settlement Footprint 2019 data shows the spatially variable completeness of each dataset (Supplementary 

Fig. 1.  Cumulative counts (a–c) and areas (d–f) for building footprint datasets covering each city. Buildings 
with an area greater than 1,000 m2 are not shown but are included in the summary statistics (Table 1).
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Fig. 3). This also highlights potential spatial biases, such as the omission of the Mukuru informal settlement in 
the GMLBF, detection in GOB, and partial mapping in OSM. The settlement is a large area of closely spaced and 
adjoining small buildings.

Building height observations and modelling
The dominant spatial patterns in building height variation were similar between the 3D datasets (Fig. 2). However, 
the building heights of He et al.38 featured more data gaps, particularly over Kathmandu (Fig. 2g). These gaps, 
which were represented by a height value of 0 m in the dataset, precluded a comparison of this dataset with the 

Fig. 2.  Example built-up area heights shown for areas of Nairobi (first row), Kathmandu (second row), and 
Quito (third row). The Pleiades-derived heights in this study (a, e, i) are shown alongside other open access 
datasets for visual comparison (b–d), (f−h), (j–l). Figure created in QGIS 3.28.1039.

 

OpenStreetMap (OSM) Bing (GMLBF) Google Open Buildings (GOB)

Number of 
buildings

Total area 
(km2)

Median building 
size (m2)

Number of 
buildings

Total area 
(km2)

Median building 
size (m2)

Number of 
buildings

Total area 
(km2)

Median 
building 
size 
(m2)

Nairobi 415,179 50.70 60 265,313 58.32 117 692,352 73.17 55

Quito 64,309 15.20 119 417,057 77.67 530 1,189,978 100.97 55

Kathmandu 378,838 37.15 79 283,761 51.76 100 825,251 63.58 62

Table 1.  Comparison of open-access Building datasets for each city.

 

Scientific Reports |        (2025) 15:29913 3| https://doi.org/10.1038/s41598-025-15929-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


satellite laser altimeter ICESat-2 reference heights. The reference heights were derived for 25 buildings in each 
city and had a mean uncertainty of 0.5 m ± 0.3 m. The Pleiades-derived building heights from stereo optical 
satellite imagery were closest to the ICESat-2 reference heights across all three cities, with a mean absolute error 
(MAE) of < 1 m in all cases (Fig. 3; Table 2). The Open Buildings Temporal (OBT) dataset achieved the second-
highest accuracy for Nairobi and Kathmandu with a MAE of 2.5 m and 1.2 m respectively, followed by the deep 
learning Pix2Pix Model E derived in this study (Table 2). Pix2Pix Model E was trained on six high-resolution 
images of both Nairobi and Kathmandu (Supplementary Table 1) and featured a MAE ranging from 2.2 to 7.0 m. 
Outliers were particularly evident for this model in Kathmandu and Nairobi (Fig. 3) (R2 = 0.37 and 0.51). A 
linear regression between ICESat-2 and the OBT dataset was more constrained (R2 = 0.83–0.95), although OBT 
displayed a bias to overpredict building heights in Nairobi and Quito, which was not evident in Kathmandu 
(Fig. 3a). Evaluation of these buildings in Quito did not reveal any apparent reason for the overestimation and 
the buildings were generally residential building blocks with flat roofs (Supplementary Table 2). The largest 
difference was for a high-rise residential block, where OBT overpredicted the height by 24 m, yet the Pleiades-
derived height was within 1 m of the reference. The magnitude of the differences suggests the discrepancy was 
not due to redevelopment/ construction of buildings between the reference data and OBT data acquisition, and 
is potentially related to the imagery used by OBT for the inferencing, which are not known.

Since the ICESat-2 reference heights were limited to 25 observations for each city, we also subtracted the 
gridded building height models from the Pleiades observations to derive differences. OBT predicted higher 
building heights compared to the Pleiades data for Nairobi and Quito (Fig. 4), with a median difference of -2.18 
and − 2.09 m respectively (Table 3). This was less evident for Kathmandu, which had a median difference of 
-0.7 m. This trend of overprediction was similar to the comparison of building heights with the ICESat-2 data 
(Table 2). Overall, the error metrics including MAE and normalised median absolute deviation (NMAD) were 
generally lower when compared to the validation using ICESat-2 reference heights (Table  2). Errors ranged 
from 1.91–3.77 m MAE and 2.02–3.88 m NMAD for all models and all cities (Table 3). However, at the scale 
of individual buildings or clusters of buildings, notable spatial biases were apparent in the modelled building 
heights relative to the Pleiades satellite data (Supplementary Fig. 5). This was less apparent in the Kathmandu 
dataset where the distribution of building heights across the city was more homogenous with fewer tall buildings 
(> 50 m).

City

Mean absolute error (m)

Pleiades Open buildings temporal

Pix2Pix model

A B C D E

Nairobi 0.92 2.49 10.26 7.72 9.79 9.34 7.02

Kathmandu 0.96 1.21 5.62 4.64 3.78 3.64 4.63

Quito 0.94 3.34 4.50 4.81 3.58 4.68 2.16

Table 2.  Comparison of observed (derived from ICESat-2) and predicted Building heights. n = 25 for each city.

 

Fig. 3.  ICESat-2 derived (observed) and predicted building heights for Nairobi (a), Quito (b), and Kathmandu 
(c). n = 25 for each city. Buildings > 30 m tall (n = 1 for Quito and n = 3 for Nairobi) are not shown but are 
included in the linear regression. Pleiades (green), Open Buildings Temporal (blue), and Pix2Pix Model E 
(black) predictions are shown.
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Discussion
Our study revealed large heterogeneity in the completeness of open access building footprints for all three study 
cities. Building counts varied by hundreds of thousands of buildings and area coverage differed by tens of square 
kilometres (Fig. 1; Table 1). The disparity was also variable between the cities, with Quito featuring the largest 
variation across the datasets. These inconsistencies highlight the challenges in using building footprint datasets 
without site-specific validation. Total building counts were expected to be more variable than area coverage, 
since distinguishing the boundaries of individual buildings is difficult, and can be subjective when they are 
in close proximity, adjoining, or feature variable and connected typologies. This variation is represented in 
models predicting building footprints, since some will predict a single polygon for a building that is comprised 
of multiple connected structures, whereas others will assign a polygon for each connected element, resulting in 
a higher total building count and generally smaller buildings. For example, we found a smaller median building 
size in the GOB dataset (55–62 m2 compared to the GMLBF (100–530 m2 (Table 1). Building area coverage is 
more comparable and should be most affected by the acquisition date of the underlying data used to derive the 
inventory. The dates of this imagery are not specified for GOB and are in the range of 2014–2023 for GMLBF31,32. 
OSM is similarly biased to areas with greater availability of high-resolution satellite imagery30,40. In our study, 
satellite data was acquired within a one-year window for Quito and Kathmandu, and two years for Nairobi, which 
means that the building heights are temporally constrained to a known period, although new developments are 
still likely to have occurred in this time.

Deriving 3D city models remains an important challenge across lower- and middle-income countries, where 
a lack of national mapping capacity, combined with rapid urbanisation, creates dynamic cities that are not 
represented in open datasets41. This is despite the importance of building inventories across disciplines and 
for progressing Sustainable Development Goals30,42including for estimating population distributions and for 
disaster risk reduction5,7,43. High-resolution DEMs were required to derive building heights with sub-metre 
accuracy; however, deep learning derived models of building heights were accurate to within several metres and 
offer a valuable mechanism to address global inequalities in data availability30. However, we identified a tendency 
of OBT to over-predict building heights by several metres in Nairobi and Quito, highlighting the importance 
of site-specific validation when using large-scale global or regional datasets (Fig. 3; Table 3). Nonetheless, it 

City Model Median Mean Standard deviation MAE NMAD

Nairobi

Open Buildings Temporal − 2.18 − 2.10 2.95 1.91 2.02

Pix2Pix (E) − 0.77 − 1.24 5.41 3.25 2.86

He et al.38 − 0.49 0.07 5.92 3.77 3.64

Quito

Open Buildings Temporal − 2.09 − 2.26 2.81 1.92 2.09

Pix2Pix (E) 0.59 0.66 3.79 2.53 2.61

He et al.38 − 1.78 − 2.28 5.21 3.58 3.75

Kathmandu

Open Buildings Temporal − 0.73 − 0.54 2.66 2.03 2.40

Pix2Pix (E) − 1.23 − 1.26 4.22 3.09 3.47

He et al.38 1.07 0.64 4.54 3.38 3.88

Table 3.  Difference in modelled Building heights relative to Pleiades-derived heights.

 

Fig. 4.  Violin and boxplots showing building height difference of the Open Buildings Temporal (blue), PixPix 
Model E (white), and He et al.38 datasets differenced from the Pleiades data.

 

Scientific Reports |        (2025) 15:29913 5| https://doi.org/10.1038/s41598-025-15929-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


was able to outperform our application of the Pix2Pix model for two of the three study cities, despite use of 
local satellite imagery for training. Since OBT was derived from open-access Sentinel-2 imagery, it could offer a 
longer-term solution to updating city models through time.

Limitations and implications
Our comparison of open-access building footprint datasets revealed large inconsistencies in building counts and 
area coverage at city scales. Similarly, although we performed a local coregistration of building height datasets, 
differences in their creation methodologies and the variable acquisition geometry of input imagery means shifts 
in the apparent positions of buildings will still be present, which could bias the building height estimates for 
taller buildings.

The lack of ground truth building heights in our study cities, which reflect low- and middle-income countries, 
contributes to uncertainty. Therefore, we used both high-resolution Pleiades-derived estimates of building 
heights and independent ICESat-2 altimetry data for validation. However, spatial biases could still be present. 
For example, the Digital Terrain Model (DTM) generation procedure involves interpolating a surface between 
pixels identified as ground, which can be difficult to resolve in in dense urban areas, mixed with the presence of 
vegetation. It is also more problematic in photogrammetric DEM construction when compared to LIDAR44,45. 
Nonetheless, comparison of the city-wide DSM with ICESat-2 data demonstrated sub-metre accuracy 
(Supplementary Fig. 4). Additionally, we were able to identify ICESat-2 photon profiles passing over buildings 
and adjacent ground to derive a spatially distributed reference dataset with a mean uncertainty of 0.5 m ± 0.3 m. 
The global availability of ICESat-2 data means such approach is scalable and can be semi-automated2,46although 
manual inspection as used in our study may be preferred to reduce uncertainties by selecting only photons that 
represent a clear roof or ground return47.

Resolving the vertical component of cities at a large scale is becoming increasingly important and recent 
studies have demonstrated methodologies to achieve this at medium to coarse resolution1,3,41. However, closing 
the data gaps to provide high-resolution, building-scale height estimates for Global South countries will provide 
wide-ranging benefits, especially as natural hazard extremes become more prevalent. Our study demonstrates 
that while deep leaning methodologies can provide good predictions at city-scales, high-resolution satellite data 
offers the most accurate estimates. Increased acquisition and accessibility of these data over Global South cities 
is a priority to both inform local validation and ensure deep learning approaches do not develop and propagate 
biases due to the lack of Global South training data.

Conclusions
Overall, our findings show that both building footprints and height datasets are still not well constrained 
spatially and temporally for our study cities in the Global South, despite the critical requirement for these data 
across disciplines. There is a contrast between the accessibility of these datasets in countries with established 
mapping agencies, and the limited accessibility of high-resolution imagery in developing countries to develop 
similar inventories. Our study shows the value of such data to generate DEMs with sufficient resolution to 
extract building heights. The Pleiades DEMs used in this study compared well to independent ICESat-2-derived 
building heights, which were required as validation in the absence of ground-truth data. Without aerial or 
LIDAR surveys, tri-stereo satellite data are an effective way of deriving city-scale high-resolution DEMs. These 
data also provided a unique reference dataset, allowing us to evaluate published building height datasets at a 
building-scale, across three cities. However, the commercial nature of this data creates access restrictions. Deep 
learning model predictions of building heights demonstrate that errors on the order of several metres (one 
building story) can be achieved at city-scales. These models can be distributed for application to new satellite 
imagery to update 3D city models through time without requiring new DEMs. However, spatial and temporal 
biases in building-scale predictions, for example related to building typology, require further investigation as 3D 
city models become established and used across disciplines.

Methods
Study area
This study formed part of the Tomorrow’s Cities project, which developed a decision support framework to 
support pro-poor, risk-informed urban planning37,48. The geographic extent of the study covered the urban areas 
of Nairobi, Quito, and Kathmandu (Supplementary Fig. 1). The cities are exposed to a diverse range of natural 
hazards including earthquakes and flooding (all cities), landslides (Quito and Kathmandu), volcanic activity 
(Quito), and fires (Nairobi).

DEM production and accuracy assessment
Pleiades satellites were tasked for to collect tri-stereo images over each city to produce high-resolution DEMs 
(Supplementary Fig.  2). Multiple acquisitions were required to capture the city extents with minimal cloud 
cover. Acquisitions ranged from 12/02/2020–07/03/2022 for Nairobi, 05/11/2019–28/07/2020 for Quito, and 
27/10/2019–13/01/2020 for Kathmandu (Supplementary Table 3). Panchromatic (~ 0.7 m) and multi-spectral 
(~ 2.8 m red-green-blue and near-infrared) imagery were acquired and delivered with radiometric processing to 
reflectance and provided with rational polynomial coefficients (RPCs)49,50. Areas of cloud cover were manually 
masked from the analysis (Supplementary Fig. 2).

The photogrammetry software Agisoft Metashape v.2.1.151 was used to generate point clouds from the tri-
stereo Pleiades acquisitions. High quality settings, which downscales each image by a factor of four, were used to 
establish coincident tie points and align each image in space. First, the panchromatic and multispectral imagery 
were aligned in one chunk to produce a sparse point cloud. Second, the sparse cloud was then filtered to remove 
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outliers using Metashape’s gradual selection tools to reduce the tie point root mean square error to ≤ 0.5 pixels. 
Third, the software generates depth maps representing the distance of each pixel from the sensor. These were 
used to construct a dense point cloud using the panchromatic imagery and the point cloud was used to create a 
1.5 m resolution digital surface model (DSM).

The panchromatic images were pan-sharpened using the Gram-Shmidt algorithm in ArcGIS Pro v.2.8 using 
default settings for the Pleiades sensor and output at 0.5  m resolution. Additionally, a digital terrain model 
(DTM) was created from the dense point cloud using LASTools (v.13/02/2024) and the lasground_new tool with 
a 50 m step size (-metro parameter). An advantage of using tri-stereo imagery to generate elevation models in 
urban areas is improved ground detection amongst buildings52; however a large step size is required to span large 
buildings including warehouses for example, which were present in our study cities53. A trade-off is that ground 
detection could be overly smoothed or misdetected in on sloping ground. Therefore, the elevation difference 
between the DSM and DTM was used to derive the relative heights of all surface features including buildings, 
which we independently validated using Ice, Cloud and land Elevation Satellite (ICESat-2) laser altimetry data 
as described below.

ICESat-2 laser altimetry data were used to independently check the accuracy of the Pleiades-derived DEMs, 
since it has a higher vertical accuracy than the error expected from a Pleiades DEM created without ground 
control points (> 3–5 m)54,55. High Confidence returns from the Advanced Topographic Laser Altimeter System 
(ATLAS) instrument ATL03 Global Geolocated Photon Height data were extracted for the study areas with a 
date range within ± 1 year of the Pleiades acquisitions for each city56,57. Photons, which are transmitted and 
measured by the instrument approximately every 70 cm57were filtered to exclude slopes steeper than 20° and 
aggregated into mean 5 m grid cells. The Pleiades DEMs and gridded ICESAT-2 data were coregistered following 
the x, y, z shift correction of Nuth and Kääb58 and then differenced over the study areas. Forested landcover 
derived from ESA World Cover data59 was excluded from the registration and differencing since ICESat-2 would 
be expected to produce mixed elevation returns from both the canopy and ground, whereas Pleiades DSM would 
generally represent the canopy top.

Open access Building datasets
Outlines of building footprints, which are often observed in satellite or aerial imagery as the roof footprint, are 
required to derive assign building-level height estimates. We compared open-access building footprint datasets 
for each city to identify city-scale biases in completeness, including OSM60Microsoft Bing’s Global ML Building 
Footprints (GMLBF)32and Google Open Buildings v3 (GOB)31. OSM generally contains community-contributed 
manually digitised building outlines61whereas GMLBF and GOB are derived using deep learning models applied 
to high-resolution satellite imagery. The precise dates of the imagery used to create the datasets are usually not 
reported. For example, GMLBF is extracted from imagery spanning 2014–2024, and GOB used the most recent 
imagery available at the time. Updates to OSM depend on the availability of data to support mapping, but also 
the interests of contributors61,62. Since the date of each dataset varies, building-level comparison are difficult 
and also require consideration of positional offsets between building footprints extracted from different data. 
Therefore, we focussed on city-scale comparison of the data. A comparison of each datasets with the temporally 
consistent World Settlement Footprint 2019 data is presented in Supplementary Fig. 3 to show spatial trends in 
completeness63. GOB included a relative confidence attribute and we removed buildings with a score < 0.65 to 
exclude the most unreliable detections31.

Datasets providing 3D building height information are generally aggregated to grid cells e.g. 30 m38 or 100 
m3,27which can cover multiple buildings. However, the recent release of Google’s Open Buildings 2.5D Temporal 
dataset contains deep learning predictions of per building heights with a spatial resolution of 4 m (note that the 
data are upsampled to 0.5 m resolution before release34. We used the building presence and height data with the 
timestamp best aligning with the Pleiades acquisition covering the core area of each city (2021 for Nairobi, 2020 
for Quito, and 2019 for Kathmandu)(Fig. 1). Additionally, we also used the global 3D urban area dataset of He 
et al.38 for comparison in our study. This dataset was gridded at 30 m resolution and was derived by combining 
built-up area datasets with heights assigned using a normalised ALOS World 3D DEM38,64. The most recent 
timestamp of the data was 2010, which we used in our comparison. All datasets were masked to the same built-
up area extent before comparison, which is detailed in the section ‘Building height modelling and observations’.

Building height modelling and observations
A series of Pix2Pix paired image deep learning models were trained to predict building heights from satellite 
imagery. The Pix2Pix approach is based on the conditional generative adversarial networks (cGAN) and uses a 
paired set of images, in our case a true colour satellite image and a corresponding DSM, to learn a translation 
between the input image and output65. We used Pleiades acquisitions over each city that were orthorectified 
using a DTM. This meant that buildings were not warped into their correct geographic position and the off nadir 
viewing geometry of the satellite image was preserved, which is typical of the Google Satellite Basemap imagery 
that is available globally. The transferability of a model trained in this way would therefore be greater, since high-
resolution satellite imagery basemaps are typically not orthorectified with corresponding high-resolution DSMs. 
However, it means there is greater uncertainty in the alignment of building footprints between different datasets, 
particularly for taller buildings, which are offset depending on the off-nadir viewing geometry of the satellite.

To prepare the imagery for training the Pix2Pix models, we transformed the red-green-blue (true colour) 
bands of the Pleiades imagery to 8-bit unsigned integer format by clipping the minimum and maximum 0.25% 
of the histogram. Additionally, the DSM–DTM difference raster representing the building heights was scaled 
to 8-bit unsigned integer format, retaining only building heights ≤ 100 m, which was also the threshold used in 
the Open Buildings 2.5D Temporal dataset34. The Pix2Pix models were then trained on 512 × 512 pixel (256 m) 
chips with a 256 pixel stride (overlap), representing the true colour image and paired pixel elevations in a WGS84 
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coordinate system. For each model, a different combination and quantity of satellite images were used as training 
data from Nairobi and Kathmandu to test the impact of training data size on model quality (Supplementary 
Table 1). No imagery from Quito was used in the model training so this city could be used as an independent 
test case. The models were trained for up to 100 epochs using the ResNet-34 backbone, 10% of the training data 
reserved for validation, and an automatically determined optimal learning rate.

In the absence of ground-truth measurement of building heights, a reference dataset of building heights 
was created for 25 buildings in each city using same ICESat-2 data described earlier. We manually identified 
ICESat-2 profiles over buildings with both a clear ground and roof photon return. The mean elevation values of 
these ground and roof heights were differenced to produce a building height estimate, referred to as the ICESat-2 
reference. Measurement uncertainty was derived as the square root of the sum of the squares of the standard 
deviation of each the roof and ground photon elevations. To maximise comparability between each dataset, we 
manually checked that the ICESat-2 reference points intersected the correct building in the Open Buildings 2.5D 
Temporal dataset. Additionally, we coregistered the Pix2Pix model inferences to using the Open Buildings 2.5D 
Temporal dataset using the AROSICS local image co-registration function66. The ICESat-2 reference building 
heights were compared to heights in the Open Buildings 2.5D Temporal dataset and inferences from the Pix2Pix 
models by sampling the mean raster elevation values in a 2 m buffer around the ICESat-2 reference measurement 
point. Since the ICESat-2 reference buildings represented a small sample (n = 25) for each city, we also compared 
the city-wide building height data (Fig. 2) to the Pleiades DSM-DTM heights. For the comparison with the Open 
Buildings 2.5D Temporal dataset, we retained building presence predictions with a ≥ 0.45 confidence score34 and 
used these as a mask to difference corresponding pixels in the Pleiades data. Since the dataset of He et al.38 was 
gridded at 30 m resolution, we first aggregated the same masked Pleiades data to a 30 m grid using a mean 
operator. Zero height values were masked from He et al.38 and the remaining pixels were differenced from the 
aggregated Pleiades data. We did not derive pixel-level comparisons with the WSF3D dataset (Fig. 2) since this 
dataset was gridded to 100 m and was derived by taking the median of building centroid elevations in each 
cell3meaning it was not directly comparable with the other datasets.

Data availability
The derived data and deep learning models will be downloadable from the Zenodo repository: ​[​h​t​t​p​s​:​/​/​z​e​n​o​d​o​.​
o​r​g​/​r​e​c​o​r​d​s​/​1​3​7​8​8​4​4​7​]​(​h​t​t​p​s​:​/​z​e​n​o​d​o​.​o​r​g​/​r​e​c​o​r​d​s​/​1​3​7​8​8​4​4​7​)​.​​
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