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Abstract

Background Real-world data can inform healthcare decisions by allowing evaluation of nuanced treatment strategies.

Longitudinal observational data enable the assessment of dynamic treatment regimes (DTRs), strategies that adapt

treatment over time based on patient history, but require causal inference methods to address time-varying confounding.

Longitudinal Targeted Minimum Loss-Based Estimation (LTMLE) is a machine learning-based double-robust approach

for improved causal effect estimation.

Methods We apply LTMLE to longitudinal registry data to evaluate the impact of erythropoiesis-stimulating agents

(ESAs) in the clinical management of low to intermediate-1 risk Myelodysplastic Syndrome (MDS). We define DTRs

based on clinically relevant decision rules (e.g. commencing treatment when the haemoglobin level falls below a

threshold) and compare them to static treatment regimes (always or never giving ESAs). Outcomes include mortality

and health-related quality of life (HRQoL) measured by EQ-5D scores.

Results The static regime of never administering ESAs resulted in declining counterfactual EQ-5D scores and

increasing mortality risk over time. In contrast, both the static regime of continuous administration of ESAs and the

use of dynamic regimes improved the EQ-5D scores and tended to reduce mortality, although the mortality differences

were not statistically significant.

Conclusions The paper provides a case study application of the LTMLE method to evaluate realistic treatment

policies under time-varying confounding. The findings support the potential benefits of dynamic treatment strategies

for the management of MDS, highlighting the importance of personalised treatment adaptation. The study contributes

methodological insights into the applications of LTMLE in small-sample, long-follow-up settings relevant to health

technology assessment and policy-making.

Keywords

longitudinal targeted minimum loss-based estimation; Super Learner; time-dependent confounding, EQ-5D, mortality

Highlights

• This study applies the longitudinal targeted minimum loss estimation (LTMLE) method to evaluate the

causal effect of static and dynamic treatment strategies using longitudinal observational data.

• We demonstrate the use of the LTMLE method to assess the impact of erythropoiesis stimulating agents

(ESAs) on quality-of-life and mortality in patients with low to intermediate-1 risk Myelodysplastic

Syndromes (MDS).

• The findings suggest that patients treated under dynamic ESAs treatment regimes show an improved quality-

of-life measured by EQ-5D scores and survival compared to those treated under the static treatment regime

of never administering ESAs.

• This study contributes to the methodological literature by showcasing the application of the LTMLE method

in a small-sample, long-follow-up setting with time-varying confounding, informing health technology

assessment and policy decisions.
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Introduction

Longitudinal observational data offer important opportu-

nities to generate evidence for comparative effectiveness

research. In fact, real-world observational data are increas-

ingly being used to inform policymaking in health care,

including regulatory decisions and the evaluation of health

technology. When evidence from randomised controlled tri-

als (RCTs) is unavailable, well-designed real-world stud-

ies are an acceptable substitute to estimate policy-relevant

parameters such as the average treatment effect (ATE).

With rich longitudinal data that capture treatment sequences,

patient outcomes, and covariates that influence treatment

initiation/ switching decisions, researchers can evaluate real-

istic treatment protocols, the so-called dynamic treatment

regimes (DTRs). Unlike static treatment regimes, where the

sequence of treatments is pre-specified, DTRs allow the

decisions to initiate, continue, or switch treatments over

time to depend on changing patient characteristics and their

treatment responses over time1±3. As such, they better reflect

clinical decision-making and have greater relevance for prac-

tice and policy.

Causal inference from observational data must address

the risk of confounding, among other potential sources of

bias4. Confounding occurs when there are variables that

simultaneously affect treatment assignment decisions and

health outcomes. Time-varying confounding occurs when

the value of certain variables changes over time, influencing

both future treatment decisions (e.g. continuation, dose

modification, switching) and outcome. This challenge is

particularly relevant in longitudinal studies where exposure

to treatment and potential confounders are repeatedly

measured over time. Traditional approaches such as

inverse probability weighting (IPW)5 and G-estimation6

address this challenge but rely on correct specification of

either the treatment model (IPW) or the outcome model

(G-estimation). Double-robust methods model both the

treatment mechanism and the outcome mechanism, and can

provide unbiased treatment effect estimates if at least one of

the two underlying models is correctly specified7.

Targeted minimum loss-based estimation (TMLE) is

a double-robust semiparametric framework that improves

flexibility by combining outcome and treatment models8±10.

TMLE can incorporate Machine Learning (ML) to increase

the likelihood of correct model specification of the

outcome and the treatment mechanisms, while retaining

valid statistical inference, including the estimation of

standard errors and confidence intervals11,12. TMLE has

been used initially to estimate the effects of treatment at

a single time point when all potential confounders are

baseline variables13±15. The approach has been extended

to longitudinal data, where time-varying confounding is a

primary concern10, and has been successfully applied to

estimate the average causal effects of sustained treatment

exposures12,16±18.

Longitudinal targeted minimum loss-based estimation

(LTMLE) is a double-robust method that addresses time-

varying confounding; it yields consistent estimates if either

the treatment mechanism or the outcome regressions are

correctly specified, and achieves greater efficiency than

IPW when both models are correctly specified. Despite its

potential and the availability of a tutorial that facilitates its

practical implementation through the ltmle R package19,

there are still relatively few published applications of

LTMLE using real-world data (RWD) in contexts directly

relevant to health technology assessment (HTA) decision-

making.

This paper aims to introduce readers and potential users

to LTMLE by illustrating its use in evaluating realistic

treatment protocols, a setting relevant to HTA. Using lon-

gitudinal data from the European Myelodysplastic Syn-

dromes Registry (EUMDS), we apply LTMLE to evalu-

ate the effects of alternative treatment regimes involving

erythropoiesis-stimulating agents (ESAs) in patients with

low to intermediate-1 risk myelodysplastic syndromes (LR-

MDS).

In clinical practice, the use of ESAs in LR-MDS is

often adjusted over time based on the patient’s response,

measured by haemoglobin levels and transfusion needs, as

their rigid use can lead to reduced responsiveness, increased

thromboembolic risk, and higher treatment costs20. If

patients no longer respond to ESAs, their MDS disease status

would be reassessed to exclude the possibility of progression.

By comparing these strategies to static treatment rules that

pre-specify the entire sequence of ESAs administration, e.g.

initiate ESAs and continue to administer them - regardless of

changing patient characteristics - we aim to identify more

efficient, clinically relevant treatment strategies that better

reflect real-world decision-making.

As a case study, we estimate the causal effects of static

and dynamic treatment strategies on patients’ health-related

quality of life (HRQOL) measured by the EQ-5D instrument

and mortality risks. Rather than providing a technical

tutorial, which already exists19, our goal is to demonstrate

the practical relevance and interpretability of the LTMLE

method for evaluating treatment strategies using RWD.

The remainder of the paper is structured as follows: the

next section introduces the case study, data, and estimation

approach; this is followed by the results of our case study.

The final section offers a discussion of our findings and the

limitations of our study.

Data and Methods

Case Study: Myelodysplastic Syndromes

Myelodysplastic syndromes (MDS) are a family of rare

clonal marrow stem-cell disorders, more common in the

elderly21. At diagnosis, around 75% of patients are

classified as having LR-MDS according to the International

Prognostic Scoring System (IPSS), which stratifies patients

into risk categories: low, intermediate-1, intermediate-2, and

high based on bone marrow blast percentage, cytogenetic

abnormalities, and number of cytopenias. LR-MDS patients

generally have a better prognosis and longer survival

than higher-risk groups. The primary goals of treatment

in the LR-MDS group are to manage the symptoms of

anaemia and improve HRQoL. Anaemia can lead to chronic

fatigue and diminished physical, emotional, and cognitive

functioning, particularly in older individuals with other

comorbidities22,23. Red blood cell transfusions (RBCTs)

can temporarily reduce anaemia symptoms but may lead

to transfusion dependency and iron overload, which can
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cause organ damage to the liver and heart, with subsequent

complications23±25.

Evidence suggests that early initiation of ESAs in

transfusion-independent LR-MDS patients can delay the

need for RBCT, maximise their efficacy in terms of response

rates and duration, improving HRQoL22,26. The current

guidelines now recommend ESAs as first-line treatment for

LR-MDS patients with symptomatic anaemia27*, although

the evidence base regarding the effectiveness of ESAs in

everyday clinical practice and particularly in the older

population remains limited. In spite of published treatment

protocols, routine practice varies in respect to when

clinicians initiate ESAs, the haemoglobin (Hb) levels

threshold at which they initiate it, and whether they

administer ESAs prior or after RBCT. Importantly, this

variability in clinical practice is observed both across

countries and within the same healthcare system.

This case study aims to contribute to the evidence base

by applying the LTMLE method to assess the impact of

different ESAs treatment protocols Ð both initiation and

discontinuation rules Ð on HRQoL and mortality in LR-

MDS patients.

The EUMDS Registry Data

The European Myelodysplastic Syndromes Registry

(EUMDS, https://eumds.org/; ID: NCT00600860)

is a population-based registry launched in 2008 that

prospectively collects detailed patient- and disease-specific

information every six months from newly diagnosed MDS

patients (within 100 days of diagnosis) recruited from

secondary and tertiary care centres across sixteen European

countries plus Israel30. The registry includes all MDS

subtypes classified according to WHO criteria31,32, although

this study focuses on patients with LR-MDS. Patients in

EUMDS are followed up until withdrawal (for any reason)

or death.

Our study sample includes patients who met the following

criteria: diagnosed with LR-MDS, ESAs treatment naÈıve

at baseline (i.e. have not received ESAs but may have

received RBCTs prior to diagnosis), and without isolated

chromosome 5q deletion (non-del(5q))². We focus on LR-

MDS patients as they are the primary candidates for ESAs

therapy.

The follow-up period for this analysis spans from 19

March 2008 to 1 September 2019. Follow-up was truncated

at the end of 2019 to avoid potential bias from changes in

clinical practice, healthcare access, and mortality patterns

associated with the COVID-19 pandemic. The large scale

and duration of follow-up of EUMDS data makes it possible

to estimate the long-term effect of the early introduction of

ESAs on HRQoL and mortality in this population.

Notation and the Causal Model

Consider a longitudinal dataset containing n individuals

followed from baseline (t = 0) at six-month intervals up to

time T , where T varies across individuals in our sample.

Participants may die or drop out before or at T . At each time

point t, we study two outcomes Yt: (1) HRQoL measured by

the EQ-5D instrument, and (2) mortality status.

The treatment indicator A1t denotes whether a patient

receives ESAs at the follow-up visit time t. The censoring

indicator A2t is equal to 1 if the patient is censored at

the visit time t and 0 otherwise. Time-varying confounding

occurs when a variable Lt affects both treatment A1t and the

outcome of interest Yt+1, and is itself affected by previous

treatment A1t−1.

We constructed the causal model characterising our

setting by reviewing the clinical literature34 and conducting

a focus group discussion with clinicians. An illustrative

Directed Acyclic Graph (DAG) is presented in Figure 1.

For our research question, baseline confounders L0 include

patient age and the MDS-specific comorbidity index (low,

intermediate, or high risk)³. We define two time-varying

confounders: haemoglobin (Hb) level La
t
, and transfusion

independence Lb
t
, defined as no prior RBCT or fewer than

two units of RBCT in the previous six months. We also

define a set of time-varying covariates that are not considered

confounders as they do not affect treatment decisions

but may be helpful in modeling the HRQoL outcomes

and mortality risk. They include: (1) a binary indicator

for bone marrow blasts ≥5%; (2) Karnofsky performance

status (0±100 scale, with higher values indicating better

function) that efficiently measures geriatric patients’ health

and functional status; (3) platelet count categories (1 if

platelets ≥ 100, 2 if 50 ≤ platelets < 100, 3 if platelets <
50, with a unit of 109/L); and (4) absolute neutrophil count

(with a unit of 109/L). These variables are excluded from

Figure 1 for simplicity.

Figure 1. Directed Acyclic Graph

L0 A10 Y1 L1 A11 Y2

A20 A21

Figure 1 shows the relationships between treatment (A1t),
censoring (A2t), outcomes (Yt), and confounders (Lt) in

∗In the U.S., following the COMMANDS trial 28,29, luspatercept is

administered as first-line, with ESAs as second-line. However, ESAs remain

the first-line in most other countries.
†Patients with isolated 5q deletions were excluded because they are typically

managed with lenalidomide as first-line treatment, rather than ESAs, and

thus follow a different clinical pathway not comparable to other LR-MDS

subtypes 33.
‡Della Porta (2011) 34 found that comorbidity has a significant impact on

overall survival and non-leukemic death in patients with very low-, low-

and intermediate-risk MDS, underscoring its relevance when deciding on a

treatment strategy in MDS patients
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time order. The treatment and censoring nodes are preceded

by time-varying confounders Lt at time t and followed by

the outcome Yt+1 at time t+ 1. For simplification, we only

show the relationships in the first two time periods (t = 0, 1).

We also reflect the time ordering in our notation, where we

encode the observed data as n independent and identically

distributed copies of O:

O = (L0,A10,A20,Y1,L1,A11,A21, . . . ,

LT ,A1T ,A2T ,YT+1) (1)

Baseline confounders L0 precede the first treatment

decision A10, and no censoring occurs at or before baseline,

therefore A20 = 0. The first post-treatment outcome

observed is Y1.

In the analysis of mortality, the outcome Yt is a binary

variable equal to 1 if death occurs at or before the time period

t, and 0 otherwise. As all patients are alive at baseline, we

define Y0 = 0. Here, the censoring indicator A2t = 0 means

that an individual has not withdrawn from the sample at or

before time t.

In the analysis of HRQoL, Yt is defined as the EQ-

5D-3L index, calculated using country-specific tariffs35,36.

Censoring is defined differently for HRQoL analysis, with

A2t = 1 indicating that an individual has left the sample

due to either death or withdrawal at or before time t,
and 0 otherwise. This differential definition of censoring is

necessary because, as described in the following section,

selection bias due to censoring is addressed by combining

the treatment interventions of interest with a static censoring

intervention that counterfactually prevents censoring.

Table 1. Summary statistics at baseline

Baseline Variable Value

Receive ESAs, n (%) 65 (8%)

EQ-5D scores, mean (SD) 0.71 (0.22)

Age (years), mean (SD) 73.22 (9.78)

MDS comorbidity index: low risk,n (%) 522 (64%)

MDS comorbidity index: intermediate risk,n (%) 293 (36%)

Hb level (g/dL), mean (SD) 9.20 (1.21)

Karnofsky performance status,mean (SD) 81.30 (15.52)

Bone marrow blasts ≥ 5%, n (%) 73 (9%)

Platelets ≥ 100 (109/L), n (%) 636 (78%)

50 ≤ Platelets < 100 (109/L), n (%) 106 (13%)

Platelets count < 50 (109/L), n (%) 82 (10%)

Absolute neutrophil count (109/L), n (%) 3.05 (2.88)

RBCT units in current period, mean (SD) 1.64 (3.43)

Transfusion dependent, n (%) 41 (5%)

Notes: Values are reported as mean (standard deviation) for continuous variables,

and n (%) for binary variables. Total sample size is 815 at the baseline.

Treatment Protocols Under Evaluation

Our analysis considers joint interventions on treatment (A1t)
and censoring (A2t), where At = (A1t,A2t) represents the

joint treatment-censoring intervention node at time t. The

static censoring component requires A2t = 0 (uncensored)

for all t < t∗ with t∗ ∈ 1, ...,T + 1. For the HRQoL analysis

(where censoring includes death), this implies counterfactual

maintenance of survival and study participation through

t; for mortality analysis, it ensures continued study

participation without administrative censoring through t.
This specification emulates a randomised trial where we

Figure 2. Static Treatment Regimes, Illustrated as a Decision

Tree

Notes: Blue shapes represent covariates that are used as inputs in the

dynamic treatment regimes, and yellow shapes represent treatment actions.

intervene to prevent informative censoring, allowing for the

estimation of causal effects without selection bias19.

We define action at as an intervention in the treatment-

censoring node At: at = 1 corresponds to setting A1t to 1
(administer ESAs) and A2t to 0 (keep patient uncensored),

while at = 0 indicates setting A1t to 0 (not administer

ESAs) and as before, A2t to 0 (keep patient uncensored).

Throughout, the ªstatic treatment regimeº refers to fixed

sequences of actions, while the ªDTRº denotes rules where

the action in A1t depends on time-varying covariates Lt

while maintaining always setting A2t to 0.

Specifically, in our study the static treatment regime

ªalways give ESAsº corresponds to a sequence of treatment-

censoring interventions at fixed at 1 from the baseline to a

selected time period t∗ − 1 before the end of follow-up (t∗ =
1, ..,T + 1): (a0 = 1, a1 = 1, ...., at∗−1 = 1). Similarly, the

static treatment regime ªnever give ESAsº corresponds to

fixing all values of at at 0 as (a0 = 0, a1 = 0, ..., a∗
t
− 1 =

0). Figure 2 illustrates the two static treatment regimes.

In contrast, DTRs aim to capture more realistic,

personalised treatment protocols. Such protocols allow the

initiation, continuation, or discontinuation of ESAs over

time to depend on changing patient characteristics and their

previous responses to treatment. We study five DTRs that

differ in their strategies for initiating and continuing ESAs,

which were developed during focus group discussions with

clinical experts.

Figure 3 presents a simplified decision tree that illustrates

an example DTR at the first two time points: time 0 (baseline)

and time 1 (the first clinical visit after baseline). At baseline,

a patient who is transfusion-dependent (TD) is required to

start ESAs if their Hb levels fall below a given threshold of

8 g/dL (DTR1) or 9 g/dL (DTR2), namely if Hb ≤ 8 g/dL

or ≤ 9 g/dL, and should stay off ESAs otherwise. Patients

who are non-transfusion-dependent (non-TD) are required to

initiate ESAs at a higher Hb threshold of 10 g/dL, namely if

Hb ≤ 10 g/dL. Then, in the next period, patients who have

already started ESAs are required to continue ESAs if they

have responded well to treatment. Response is defined based

on transfusion dependency and Hb status. A TD patient

is considered a responder if they become non-TD after

receiving ESAs and their Hb levels do not decline. A non-TD

patient is a responder if they remain non-TD after ESAs and

the Hb level has not declined. Patients who respond continue

receiving ESAs; non-responders discontinue treatment. For

each subsequent visit, we apply the same treatment initiation

rule for patients who have not yet started ESAs by a

given visit, and apply the same treatment continuation/

discontinuation rule for patients who have already started

ESAs. The remaining regimes (DTR3±DTR5) only consider

Prepared using sagej.cls
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Hb levels and do not take transfusion dependency status into

account when initiating ESAs, and responses to ESAs are

defined based solely on increases in Hb levels after treatment.

Specifically, they give ESAs if the patient has an Hb level

≤ 10 (DTR3) or 9 (DTR4) or 8 (DTR5) g/dL, continuing

ESAs if the patient’s Hb level increases. These rules were

developed in consultation with clinical experts to ensure that

had relevance to their practices. To save space, we present the

results for DTR1, which is also the DTR shown in Figure 3,

in the main paper, and report results for DTR2±DTR5 in the

Appendix.

Figure 3. Dynamic Treatment Regime 1, Illustrated as a

Decision Tree

Notes: TD stands for transfusion-dependent patients; HB stands for

haemoglobin levels; ESA is the treatment of interest. Blue shapes represent

covariates that are used as inputs in the dynamic treatment regimes, and

yellow shapes represent treatment actions.

Causal Parameters and Identification

Assumptions

Our causal parameter of interest is the intervention-specific

mean E[Y d
t∗
]. Y d

t∗
is the potential outcome that would

be observed in a selected time period before the end

of follow-up (t∗ = 1, ..,T + 1) if an individual - perhaps

contrary to the fact - followed a particular longitudinal

intervention d (a static or dynamic treatment regime) up

to t∗ − 1. Intuitively, the expectation of this potential

outcome captures the average outcome in the population if

everyone followed a given treatment protocol. We evaluate

the counterfactual outcomes for the two static treatment

regimes and the dynamic regime defined earlier. Due to

the static censoring intervention component of all treatment

regimes, our estimand in the EQ-5D analysis reflects the

mean EQ-5D that would be observed if, perhaps contrary to

the fact, patients remained alive and adhered to the treatment

regime until t∗ − 1.

As E[Y d
t∗
] is a counterfactual quantity, without further

assumptions it cannot be estimated from the observed data. If

we simply summarised the observed outcomes for those who

actually followed this treatment protocol, our results would

be biased due to baseline and time-varying confounding.

Two crucial assumptions are necessary to identify E[Y d
t∗
]:

the sequential randomisation assumption6 and the positivity

assumption. Under sequential randomisation, conditional on

the observed histories of treatment and confounders, the

potential outcome in each time period is independent of the

preceding treatment status. This is the longitudinal version

of the ªno unmeasured confoundersº assumption, implying

that after controlling for baseline covariates and the observed

histories of treatment and confounders, the next treatment

decision is ªas good as randomº. The positivity assumption

requires that each observation has a positive probability of

following the rule d at each time point. For static regimes,

this means that each patient in our study must have a positive

probability of receiving (or not receiving) ESAs in each time

period.

Estimation via LTMLE

General approach Here, we briefly describe the estima-

tion approach using LTMLE. The quantity E(Yd(t
∗)) can

be written as a sequence of recursively defined condi-

tional expectations, using the longitudinal G-computation

formula10. This formulation allows for the estimation of the

counterfactual mean through a series of sequential regres-

sions. In summary, at each time point, the outcome Y (t)
is predicted conditional on the observed past covariates and

treatment values, where the treatment is set according to the

predefined longitudinal treatment protocol d. This procedure

allows for the adjustment of time-varying confounding in a

sequential manner. First, only confounding in the last time

period is adjusted for by regressing the observed outcome

on the treatment variable and confounders in the previous

period only, as would be done in a study with only baseline

confounding. Then, predictions from this regression are

obtained, where the treatment variable is set to the value

that would be required by the longitudinal treatment protocol

under evaluation. These predictions are subsequently used as

the outcome in the next regression, where the treatment vari-

able and confounders in the previous period are controlled

for, and predictions are made again. This process is repeated

until only the baseline confounders need to be adjusted for,

and the expected counterfactual outcome is estimated as the

average of the final predictions.

This approach could be subject to misspecification bias

if it relied solely on the correct specification of the

sequential regressions. A doubly robust and semi-parametric

version of this sequential regression estimator can be

constructed by including a covariate, which is usually a

weight, that uses information from the treatment assignment

mechanism37. The LTMLE estimator performs this double-

robust adjustment in each iterated regression, by updating

the predictions with a covariate that is a function of the

estimated propensity score. The resulting estimator is doubly

robust and consistent if either the treatment mechanism or the

sequential regressions are correctly specified10.

To reduce reliance on parametric assumptions and

improve model flexibility, ML algorithms are recommended

to estimate both the treatment mechanism and the outcome

regressions. The LTMLE accommodates the use of the

Super Learner (SL), an ensembling ML algorithm that

employs cross-validation to build the best weighted

combination of candidate algorithms, instead of selecting

only one method38. Compared to parametric models such

as generalized linear models (GLMs), SL can capture

complex, non-linear relationships in the data. Although

GLMs may produce lower variance when correctly specified,

SL typically reduces bias and improves overall predictive

accuracy, highlighting the trade-off between bias and

variance in estimator selection.
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Implementation We implement the LTMLE method to

estimate the counterfactual values of the EQ-5D index and

the mortality risks for a series of time periods t∗, under the

two static treatment regimes (ªnever give ESAº and ªalways

give ESAsº) and five DTRs developed in consultation with

clinicians.

In terms of model specifications, baseline and time-

varying confounders are included in both outcome models

(sequential regressions) and treatment models (propensity

score estimation), as they affect both patient outcomes and

treatment decisions. Table 1 reports the summary statistics of

variables at baseline. Additional time-varying covariates (see

the list of the covariates in the section Notation and Causal

Model) are included in the outcome models for predicting

HRQoL and mortality risks, as they are assumed to affect

the patient outcomes but not the treatment decisions. Time-

varying covariates were also included in the censoring model

in HRQoL anlaysis, where censoring includes both mortality

and withdrawal.

We use both parametric GLMs and the SL algorithms

to estimate components of the treatment and censoring

mechanisms, as well as the outcome mechanisms. The

SL library includes: GLM, Stepwise regression39, neural

networks, generalized additive models40, Elastic net41. In

this case study, SL yielded smaller variances around the

counterfactual mean parameters; thus SL-based results are

reported in the main analysis.

To improve model specifications, reduce model complex-

ity and potential overfitting, we include only one lag of time-

varying covariates and confounders (rather than full histo-

ries) and adjust for baseline covariates in all models. Missing

values are imputed using the method of the last observation

carried forward. The 95% confidence intervals and the stan-

dard errors are based on the estimated influence curve and

are correct asymptotically when both treatment mechanisms

and outcome mechanisms are consistently estimated. The

LTMLE models are implemented using the ltmle package

in R, version 4.1.1.

Results

We report results separately for static regimes and the DTRs,

focusing on estimates obtained using the SL algorithm.

In our case study, LTMLE combined with SL algorithm

produce lower variance in the estimated counterfactual

means and offer greater flexibility than parametric GLMs.

Graphical summaries are presented below, with detailed

tables available in the Appendix.

After excluding patients with no information on EQ-5D

scores across all visits, we have a study sample at baseline

of 815 individuals for both the HRQoL and the survival

analyses. There are six months between each visit. Table 2

reports the number of patients who followed each of the

treatment regimes under investigation at each time point.

Most patients follow the static regime ªnever give ESAsº.

The number of patients following the DTR1 is higher than the

number of patients following the static rule of always giving

ESAs, which is in line with expectations, as a dynamic rule is

more realistic than the static rule. The numbers of followers

for the other DTRs are not presented here, but DTR1 has the

largest number of patients following the assigned treatment

strategy among the five dynamic rules.

Less than 50 patients follow either DTR1 or the static

regime of always administering ESAs after time period 5
(that is, 2.5 years post-baseline). This is consistent with the

clinician’s feedback that, on average, the effectiveness of

ESAs lasts two years, and clinicians cease administering

ESAs to patients if they no longer respond to treatment.

Therefore, we concentrate on the estimates for the first five

time periods. The sample size decreases over time due to

patients withdrawing from the registry and due to death.

Table 2. Distribution of patients following different treatment

regimes

time 0 1 2 3 4 5

Static1: always give ESAs

follow 65 54 46 37 28 24

not follow 750 724 631 541 471 396

Static0: Never give ESAs

follow 750 624 525 442 375 316

not follow 65 154 152 136 124 104

DTR1

follow 233 170 109 76 55 46

no ESAs 168 126 85 65 51 44

ESAs 65 44 24 11 4 2

not follow 582 608 568 502 444 374

not censor 815 778 677 578 499 420

death 0 11 58 107 148 179

censor 0 26 80 130 168 216

total sample 815 815 815 815 815 815

Note: The bottom panel shows, for each time period, the number of individuals

still in the sample (i.e., not censored), the number of deaths, and other censoring

events. Among those remaining, we report how many followed or did not follow

each treatment rule. For DTR1, we also show how many received ESAs among

those following the rule.

Health-Related Quality of Life

In this section, we present the LTMLE estimated counter-

factual mean EQ-5D index values under the static regimes

and DTRs, evaluated at visits 1-5. These results represent the

expected EQ-5D outcomes that would have been observed

had the patient population, possibly contrary to fact, followed

each specified regime.

In Figure 4, we report the estimated counterfactual mean

EQ-5D values for patients under the dynamic treatment

regime (DTR1, subfigure 4a), as well as under the static

regimes of ªalways give ESAsº (Static1, subfigure 4c) and

ªnever give ESAsº (Static0, subfigure 4f). We estimate the

ATEs by contrasting the counterfactual mean EQ-5D scores

between Static1 and Static0, and between DTR1 and either

Static0 or Static1. The counterfactual mean EQ-5D index

values are the lowest under the Static0 regime, showing

a decreasing trend over time, while the highest values are

observed under DTR1. The trajectories of HRQoL remain

relatively stable over time for the Static1 and DTR1 regimes.

We estimate the ATEs by contrasting the counterfactual

mean EQ-5D scores between Static1 and Static0, and

between DTR1 and either Static0 or Static1. Subfigure 4e

shows that there are significant benefits in terms of HRQoL

measured at the 1st, 2nd and 5th time periods for Static1

compared to Static0. Under DTR1, patients have significantly

higher EQ-5D index values in the 2nd and 5th time points

compared to under Static0 (subfigure 4d). The difference
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in counterfactual mean EQ-5D scores between Static1 and

DTR1 is not statistically significant (subfigure 4b). Full point

estimates and confidence intervals for these causal contrasts

are available in the Appendix.

Mortality Analysis

Figure 5 presents the LTMLE-estimated counterfactual

probabilities of death under each treatment regime. It

is important to note that we estimate the counterfactual

probability of death at each time point, rather than the

total survival time (time-to-death) or cumulative survival

curves. Patients under the Static0 regime (subfigure 5f)

exhibit the greatest increase in the counterfactual mortality

risk over time, followed by those under the Static1 regime

(subfigure 5c). The slowest increase in mortality risk is

estimated for patients under the DTR1 (subfigure 5a).

Pairwise causal contrasts indicate that there is no

statistically significant difference in the counterfactual

probability of death between the Static1 and the Static0

regimes, largely due to the high variance of the estimates.

Patients following the DTR1 are estimated to have lower

counterfactual mortality risks than those under either static

regime; however, these differences, as measured by the

ATEs, do not reach statistical significance. Nonetheless, the

observed trends in these counterfactual contrasts support

the hypothesis that a more realistic, personalised treatment

protocol such as DTR1 may be associated with better

survival outcomes. A full summary of estimated mortality

probabilities across all treatment strategies and pairwise

comparisons between them is provided in Appendix Table

A3.

Discussion and Limitations

The paper applies the LTMLE to longitudinal data from the

EUMDS registry to evaluate both static and dynamic ESAs

treatment strategies in patients with LR-MDS. We estimate

counterfactual mean EQ-5D index values and counterfactual

mortality risks, as well as the ATEs comparing different static

regimes and DTRs. We utilise SL-based estimation because

of its improved flexibility and, in our setting, lower variance

compared to parametric models.

The presence of time-varying confounding is a key

concern, as LR-MDS has a heterogeneous evolution. Patients

may or may not respond; the disease can progress quickly,

and treatment decisions depend on evolving Hb levels and

transfusion dependenceÐboth influenced by prior ESAs

use. After accounting for such time-varying confounding,

we find no significant differences in mortality risk across

treatment strategies. However, patients following DTRs

(where treatment initiation and continuation depend on Hb

levels and transfusion status) and those always receiving

ESAs show higher EQ-5D index values than patients never

treated with ESAs. These findings suggest that DTRs may

achieve similar or even better outcomes than the static

treatment strategy of continuously administering ESAs,

supporting the relevance of personalised care pathways in

MDS.

To address potential selection bias from informative right-

censoring, particularly due to death, our analyses emulate

a hypothetical randomised experiment in which censoring

- due to either death or withdrawal from the study - is

prevented until the time point selected to evaluate the

counterfactual outcomes42. While the causal interpretability

of results under this conceptual intervention Ð where

deaths are disallowed Ð has been debated, this approach

remains an accepted solution to selection bias in longitudinal

studies (see e.g. Neugebauer et al. (2014)43 and Kreif et

al. (2021)44). Alternative strategies to handle selection bias

include composite outcomes incorporating death, principal

stratification, and competing risks frameworks (see Young et

al. (2020)45 for a review).

As with any observational analysis, our estimates may

be biased by unmeasured confounding. While the LTMLE

framework, combined with ML, aims to adjust for measured

confounders flexibly and robustly, it cannot account for

variables not captured in the dataset. As patients’ prognosis

changes rapidly and the EUMDS data is only collected

every six months, there may be some residual confounding,

such as new comorbidities that may affect both treatment

decisions over time and the outcome of interest. In

such cases, formal tools for sensitivity analysis can be

helpful in evaluating the robustness of results to potential

residual confounding. Currently, most available methods

for assessing sensitivity to unmeasured confounding are

designed for simpler parametric models and are not

readily applicable to longitudinal settings with time-varying

treatment and censoring46, especially when using data-

adaptive estimation procedures like the LTMLE method.

Further methodological development is needed in this area.

Applying LTMLE with limited sample size and prolonged

follow-up presents challenges, including attrition and

reduced support for complex models. Most previous LTMLE

applications have used large samples and fewer time

points11,12,16,17,43,47±49. Our study contributes to the smaller

body of work that shows that LTMLE can still produce

informative results in modest samples with extended follow-

up50,51. Simulation studies and applied analyses have

indicated that the precision of LTMLE estimates improves

with larger sample sizes and more frequent observations

across follow-up time points, but even with small sample

sizes, the results remain relatively stable and robust51.

Another source of bias that should be considered is

the potential for measurement error. Clinicians report

that dose adjustments of ESAsÐrather than abrupt

discontinuationÐare common in practice for nonresponders,

but such granularity is not recorded in the registry.

In this paper, LTMLE is employed to estimate discrete-

time mortality risks and we do not construct a full survival

curve. However, this is possible with LTMLE, as the method

is more broadly applicable to time-to-event outcomes.

An illustration is provided by Neugebauer (2014)43 who

estimate the effects of dynamic treatment regimes by

contrasting their counterfactual survival curves, constructed

from estimates of discrete-time hazards.

Although our results do not identify a clearly optimal

ESAs strategy when comparing different DTRs, due to

sample uncertainty, our findings suggest that these regimes

are at least as effective as static treatment policies where

patients receive continuous treatment with ESAs, and may

offer improved HRQoL with less overtreatment.
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More broadly, our study contributes to the literature by

applying a robust longitudinal causal inference method to

evaluate the effectiveness of ESA in MDS - a setting where

RCT evidence is limited and time-varying confounding is

often overlooked. With appropriate methodology, observa-

tional data can provide credible and policy-relevant insights.
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(a) DTR1

(b) DTR1 vs. Static1
(c) Static1

(d) DTR1 vs. Static0 (e) Static1 vs. Static0 (f) Static0

Figure 4. Estimated Counterfactual Mean EQ-5D Scores and ATEs
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Figure 5. Estimated Counterfactual Mortality Probabilities and ATEs
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Estimating the Causal Effect of Realistic Treatment

Strategies Using Longitudinal Observational Data:

Supplementary Materials

Table A1: Estimates of Static Treatment Regimes

time 1 2 3 4 5

Health-Related Quality of Life (HRQoL) Analysis
ATE (Static1 vs. Static0 ) 0.06** 0.07** 0.04 0.01 0.09***

SE 0.03 0.03 0.03 0.03 0.02
Y (Static1 ) 0.77 0.77 0.75 0.69 0.75
SE 0.02 0.03 0.02 0.03 0.02
Y (Static0 ) 0.70 0.70 0.70 0.68 0.66
SE 0.01 0.01 0.01 0.01 0.01
Mortality Analysis
ATE (Static1 vs. Static0 ) 0.02 -0.04 0.01 -0.06 -0.12
SE 0.05 0.05 0.08 0.07 0.09
Y (Static1 ) 0.10 0.11 0.23 0.21 0.22
SE 0.05 0.05 0.08 0.07 0.09
Y (Static0 ) 0.08 0.15 0.22 0.27 0.33
SE 0.01 0.01 0.02 0.02 0.02

Note: 1. * 90% signiőcant, ** 95% signiőcant, *** 99% signiőcant. SE = standard error, Y =
counterfactual outcome, ATE = average treatment effect. 2. The table presents the LTMLE estimates
of counterfactual mean EQ-5D index values (upper panel) and counterfactual mortality risks (lower
panel) for patients following the static treatment rules of always giving ESA (Static1) or never giving
ESA (Static0). ATEs were estimated by comparing the counterfactual mean outcomes of patients
following the Static1 to Static0.



Table A2: Estimates of Dynamic Treatment Regimes: HRQoL Analysis

time 1 2 3 4 5

Y (DTR1 ) 0.78 0.76 0.76 0.69 0.75
SE 0.04 0.03 0.03 0.03 0.02
Y (DTR2 ) 0.78 0.76 0.76 0.69 0.77
SE 0.04 0.03 0.03 0.03 0.02
Y (DTR3 ) 0.77 0.77 0.77 0.70 0.76
SE 0.03 0.03 0.03 0.02 0.02
Y (DTR4 ) 0.69 0.69 0.69 0.67 0.67
SE 0.01 0.01 0.01 0.01 0.01
Y (DTR5 ) 0.71 0.73 0.72 0.71 0.68
SE 0.01 0.03 0.02 0.02 0.02
ATE (DTR1 vs. Static0 ) 0.07** 0.06** 0.06* 0.01 0.09***

SE 0.04 0.03 0.03 0.03 0.02
ATE (DTR1 vs. Static1 ) 0.00 0.00 0.02 0.01 -0.01
SE 0.01 0.02 0.02 0.02 0.02
ATE (DTR2 vs. Static0 ) 0.07* 0.07** 0.06* 0.02 0.11***

SE 0.04 0.03 0.03 0.03 0.02
ATE (DTR2 vs. Static1 ) 0.01 0.00 0.02 0.00 0.00
SE 0.02 0.02 0.02 0.03 0.02
ATE (DTR3 vs. Static0 ) 0.07* 0.07** 0.06** 0.02 0.10***

SE 0.04 0.03 0.03 0.03 0.02
ATE (DTR3 vs. Static1 ) 0.00 0.00 0.02 -0.01 0.00
SE 0.03 0.02 0.02 0.03 0.02
ATE (DTR4 vs. Static0 ) -0.01 -0.01 -0.01 -0.01 0.01
SE 0.01 0.01 0.01 0.01 0.01
ATE (DTR4 vs. Static1 ) -0.08*** -0.08*** -0.05* -0.02** -0.09***

SE 0.02 0.03 0.03 0.03 0.03
ATE (DTR5 vs. Static0 ) 0.00 0.03 0.02 0.02 0.02
SE 0.00 0.02 0.02 0.02 0.01
ATE (DTR5 vs. Static1 ) -0.06** -0.04 -0.03 0.01 -0.08**

SE 0.03 0.04 0.03 0.03 0.04
ATE (DTR1 vs. DTR2 ) 0.00 0.00 -0.01** 0.00 -0.01***

SE 0.00 0.00 0.00 0.00 0.00
ATE (DTR1 vs. DTR3 ) 0.01 0.00 -0.01 0.00 0.00
SE 0.01 0.00 0.00 0.00 0.01
ATE (DTR1 vs. DTR4 ) 0.08** 0.07** 0.07** 0.02 0.09***

SE 0.04 0.03 0.03 0.03 0.02
ATE (DTR1 vs. DTR5 ) 0.07* 0.04 0.04 -0.01 0.06***

SE 0.04 0.04 0.03 0.03 0.02

Note: 1. * 90% signiőcant, ** 95% signiőcant, *** 99% signiőcant. SE = standard error, Y = counterfactual mean outcome,
ATE = average treatment effect. 2. The table presents the LTMLE estimates of counterfactual mean EQ-5D scores for patients
following the őve dynamic treatment rules (DTR1-5). ATEs were estimated by comparing the counterfactual mean EQ-5D
scores of patients following a speciőc DTR to those following the static rule of always giving ESA (Static1) or to those following
the static rule of never giving ESA (Static0), or by comparing the counterfactual mean mortality risks of patients following
different DTRs.
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Table A3: Estimates of Dynamic Treatment Regimes: Mortality Analysis

time 1 2 3 4 5

Y (DTR1 ) 0.06 0.07 0.10 0.11 0.13
SE 0.06 0.10 0.13 0.16 0.20
Y (DTR2 ) 0.07 0.06 0.10 0.12 0.13
SE 0.06 0.09 0.13 0.16 0.20
Y (DTR3 ) 0.14 0.12 0.15 0.14 0.14
SE 0.07 0.07 0.10 0.13 0.18
Y (DTR4 ) 0.16 0.16 0.18 0.21 0.25
SE 0.07 0.06 0.07 0.10 0.12
Y (DTR5 ) 0.14 0.15 0.19 0.28 0.31
SE 0.06 0.04 0.05 0.07 0.07
ATE (DTR1 vs. Static0 ) -0.01 -0.09 -0.12 -0.16 -0.20
SE 0.06 0.10 0.13 0.16 0.20
ATE (DTR1 vs. Static1 ) 0.00 -0.04 -0.12 -0.13 -0.08
SE 0.08 0.10 0.13 0.15 0.20
ATE (DTR2 vs. Static0 ) 0.00 -0.09 -0.12 -0.15 -0.20
SE 0.06 0.09 0.13 0.16 0.20
ATE (DTR2 vs. Static1 ) -0.01 -0.05 -0.15 -0.12 -0.08
SE 0.08 0.09 0.13 0.15 0.19
ATE (DTR3 vs. Static0 ) 0.06 -0.03 -0.07 -0.12 -0.19
SE 0.07 0.07 0.10 0.13 0.18
ATE (DTR3 vs. Static1 ) 0.02 0.01 -0.08 -0.08 -0.09
SE 0.06 0.06 0.09 0.12 0.17
ATE (DTR4 vs. Static0 ) 0.08 0.01 -0.03 -0.06 -0.08
SE 0.07 0.06 0.07 0.10 0.12
ATE (DTR4 vs. Static1 ) 0.05 0.07 -0.03 -0.02 0.02
SE 0.08 0.07 0.10 0.11 0.13
ATE (DTR5 vs. Static0 ) 0.07 -0.01 -0.02 0.01 -0.03
SE 0.06 0.04 0.05 0.07 0.07
ATE (DTR5 vs. Static1 ) 0.03 0.05 -0.01 0.04 0.09
SE 0.06 0.06 0.08 0.09 0.11
ATE (DTR1 vs. DTR2 ) 0.00 0.01 0.01 0.00 0.00
SE 0.02 0.01 0.07 0.05 0.07
ATE (DTR1 vs. DTR3 ) -0.06 -0.05 -0.05 -0.05 -0.02
SE 0.08 0.04 0.10 0.04 0.05
ATE (DTR1 vs. DTR4 ) -0.06 -0.10** -0.10 -0.10 -0.12
SE 0.10 0.02 0.13 0.15 0.19
ATE (DTR1 vs. DTR5 ) -0.05 -0.08 -0.11 -0.16 -0.18
SE 0.08 0.10 0.14 0.16 0.18

Note: 1. * 90% signiőcant, ** 95% signiőcant, *** 99% signiőcant. SE = standard error, Y =
counterfactual mean outcome, ATE = average treatment effect. 2. The table presents the LTMLE
estimates of counterfactual mean mortality risks for patients following the őve dynamic treatment rules
(DTR1-5). ATEs were estimated by comparing the counterfactual mean mortality risks of patients
following a speciőc DTR to those following the static rule of always giving ESA (Static1) or to those
following the static rule of never giving ESA (Static0), or by comparing the counterfactual mean
mortality risks of patients following different DTRs.
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Figure A1: Comparing counterfactual mean EQ-5D scores of patients following DTR2 and static
treatment regimes

(a) DTR2 (b) DTR2 vs. Static1 (c) DTR2 vs. Static0

Figure A2: Comparing counterfactual mean EQ-5D scores of patients following DTR3 and static
treatment regimes

(a) DTR3 (b) DTR3 vs. Static1 (c) DTR3 vs. Static0

Figure A3: Comparing counterfactual mean EQ-5D scores of patients following DTR4 and static
treatment regimes

(a) DTR4 (b) DTR4 vs. Static1 (c) DTR4 vs. Static0

Figure A4: Comparing counterfactual mean EQ-5D scores of patients following DTR5 and static
treatment regimes

(a) DTR5 (b) DTR5 vs. Static1 (c) DTR5 vs. Static0
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Figure A5: Comparing counterfactual mortality probabilities of patients following DTR2 and static
treatment regimes

(a) DTR2 (b) DTR2 vs. Static1 (c) DTR2 vs. Static0

Figure A6: Comparing counterfactual mortality probabilities of patients following DTR3 and static
treatment regimes

(a) DTR3 (b) DTR3 vs. Static1 (c) DTR3 vs. Static0

Figure A7: Comparing counterfactual mortality probabilities of patients following DTR4 and static
treatment regimes

(a) DTR4 (b) DTR4 vs. Static1 (c) DTR4 vs. Static0

Figure A8: Comparing counterfactual mortality probabilities of patients following DTR5 and static
treatment regimes

(a) DTR5 (b) DTR5 vs. Static1 (c) DTR5 vs. Static0
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