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Abstract

Background Real-world data can inform healthcare decisions by allowing evaluation of nuanced treatment strategies.
Longitudinal observational data enable the assessment of dynamic treatment regimes (DTRs), strategies that adapt
treatment over time based on patient history, but require causal inference methods to address time-varying confounding.
Longitudinal Targeted Minimum Loss-Based Estimation (LTMLE) is a machine learning-based double-robust approach
for improved causal effect estimation.

Methods We apply LTMLE to longitudinal registry data to evaluate the impact of erythropoiesis-stimulating agents
(ESAs) in the clinical management of low to intermediate-1 risk Myelodysplastic Syndrome (MDS). We define DTRs
based on clinically relevant decision rules (e.g. commencing treatment when the haemoglobin level falls below a
threshold) and compare them to static treatment regimes (always or never giving ESAs). Outcomes include mortality
and health-related quality of life (HRQoL) measured by EQ-5D scores.

Results The static regime of never administering ESAs resulted in declining counterfactual EQ-5D scores and
increasing mortality risk over time. In contrast, both the static regime of continuous administration of ESAs and the
use of dynamic regimes improved the EQ-5D scores and tended to reduce mortality, although the mortality differences
were not statistically significant.

Conclusions The paper provides a case study application of the LTMLE method to evaluate realistic treatment
policies under time-varying confounding. The findings support the potential benefits of dynamic treatment strategies
for the management of MDS, highlighting the importance of personalised treatment adaptation. The study contributes
methodological insights into the applications of LTMLE in small-sample, long-follow-up settings relevant to health
technology assessment and policy-making.

Keywords
longitudinal targeted minimum loss-based estimation; Super Learner; time-dependent confounding, EQ-5D, mortality

Highlights

* This study applies the longitudinal targeted minimum loss estimation (LTMLE) method to evaluate the
causal effect of static and dynamic treatment strategies using longitudinal observational data.

* We demonstrate the use of the LTMLE method to assess the impact of erythropoiesis stimulating agents
(ESAs) on quality-of-life and mortality in patients with low to intermediate-1 risk Myelodysplastic
Syndromes (MDS).

 The findings suggest that patients treated under dynamic ESAs treatment regimes show an improved quality-
of-life measured by EQ-5D scores and survival compared to those treated under the static treatment regime
of never administering ESAs.

* This study contributes to the methodological literature by showcasing the application of the LTMLE method
in a small-sample, long-follow-up setting with time-varying confounding, informing health technology
assessment and policy decisions.
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Introduction

Longitudinal observational data offer important opportu-
nities to generate evidence for comparative effectiveness
research. In fact, real-world observational data are increas-
ingly being used to inform policymaking in health care,
including regulatory decisions and the evaluation of health
technology. When evidence from randomised controlled tri-
als (RCTs) is unavailable, well-designed real-world stud-
ies are an acceptable substitute to estimate policy-relevant
parameters such as the average treatment effect (ATE).
With rich longitudinal data that capture treatment sequences,
patient outcomes, and covariates that influence treatment
initiation/ switching decisions, researchers can evaluate real-
istic treatment protocols, the so-called dynamic treatment
regimes (DTRs). Unlike static treatment regimes, where the
sequence of treatments is pre-specified, DTRs allow the
decisions to initiate, continue, or switch treatments over
time to depend on changing patient characteristics and their
treatment responses over time '~>. As such, they better reflect
clinical decision-making and have greater relevance for prac-
tice and policy.

Causal inference from observational data must address
the risk of confounding, among other potential sources of
bias*. Confounding occurs when there are variables that
simultaneously affect treatment assignment decisions and
health outcomes. Time-varying confounding occurs when
the value of certain variables changes over time, influencing
both future treatment decisions (e.g. continuation, dose
modification, switching) and outcome. This challenge is
particularly relevant in longitudinal studies where exposure
to treatment and potential confounders are repeatedly
measured over time. Traditional approaches such as
inverse probability weighting (IPW)> and G-estimation®
address this challenge but rely on correct specification of
either the treatment model (IPW) or the outcome model
(G-estimation). Double-robust methods model both the
treatment mechanism and the outcome mechanism, and can
provide unbiased treatment effect estimates if at least one of
the two underlying models is correctly specified”.

Targeted minimum loss-based estimation (TMLE) is
a double-robust semiparametric framework that improves
flexibility by combining outcome and treatment models®~'°.
TMLE can incorporate Machine Learning (ML) to increase
the likelihood of correct model specification of the
outcome and the treatment mechanisms, while retaining
valid statistical inference, including the estimation of
standard errors and confidence intervals'"'>. TMLE has
been used initially to estimate the effects of treatment at
a single time point when all potential confounders are
baseline variables'*'5. The approach has been extended
to longitudinal data, where time-varying confounding is a
primary concern'’, and has been successfully applied to
estimate the average causal effects of sustained treatment
exposures 21018,

Longitudinal targeted minimum loss-based estimation
(LTMLE) is a double-robust method that addresses time-
varying confounding; it yields consistent estimates if either
the treatment mechanism or the outcome regressions are
correctly specified, and achieves greater efficiency than
IPW when both models are correctly specified. Despite its
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potential and the availability of a tutorial that facilitates its
practical implementation through the 1tmle R package ',
there are still relatively few published applications of
LTMLE using real-world data (RWD) in contexts directly
relevant to health technology assessment (HTA) decision-
making.

This paper aims to introduce readers and potential users
to LTMLE by illustrating its use in evaluating realistic
treatment protocols, a setting relevant to HTA. Using lon-
gitudinal data from the European Myelodysplastic Syn-
dromes Registry (EUMDS), we apply LTMLE to evalu-
ate the effects of alternative treatment regimes involving
erythropoiesis-stimulating agents (ESAs) in patients with
low to intermediate-1 risk myelodysplastic syndromes (LR-
MDS).

In clinical practice, the use of ESAs in LR-MDS is
often adjusted over time based on the patient’s response,
measured by haemoglobin levels and transfusion needs, as
their rigid use can lead to reduced responsiveness, increased
thromboembolic risk, and higher treatment costs 20 1f
patients no longer respond to ESAs, their MDS disease status
would be reassessed to exclude the possibility of progression.
By comparing these strategies to static treatment rules that
pre-specify the entire sequence of ESAs administration, e.g.
initiate ESAs and continue to administer them - regardless of
changing patient characteristics - we aim to identify more
efficient, clinically relevant treatment strategies that better
reflect real-world decision-making.

As a case study, we estimate the causal effects of static
and dynamic treatment strategies on patients’ health-related
quality of life (HRQOL) measured by the EQ-5D instrument
and mortality risks. Rather than providing a technical
tutorial, which already exists 19 our goal is to demonstrate
the practical relevance and interpretability of the LTMLE
method for evaluating treatment strategies using RWD.

The remainder of the paper is structured as follows: the
next section introduces the case study, data, and estimation
approach; this is followed by the results of our case study.
The final section offers a discussion of our findings and the
limitations of our study.

Data and Methods

Case Study: Myelodysplastic Syndromes

Myelodysplastic syndromes (MDS) are a family of rare
clonal marrow stem-cell disorders, more common in the
elderly?!. At diagnosis, around 75% of patients are
classified as having LR-MDS according to the International
Prognostic Scoring System (IPSS), which stratifies patients
into risk categories: low, intermediate- 1, intermediate-2, and
high based on bone marrow blast percentage, cytogenetic
abnormalities, and number of cytopenias. LR-MDS patients
generally have a better prognosis and longer survival
than higher-risk groups. The primary goals of treatment
in the LR-MDS group are to manage the symptoms of
anaemia and improve HRQoL. Anaemia can lead to chronic
fatigue and diminished physical, emotional, and cognitive
functioning, particularly in older individuals with other
comorbidities>>?*>. Red blood cell transfusions (RBCTSs)
can temporarily reduce anaemia symptoms but may lead
to transfusion dependency and iron overload, which can



cause organ damage to the liver and heart, with subsequent
complications >,

Evidence suggests that early initiation of ESAs in
transfusion-independent LR-MDS patients can delay the
need for RBCT, maximise their efficacy in terms of response
rates and duration, improving HRQoL?>?°. The current
guidelines now recommend ESAs as first-line treatment for
LR-MDS patients with symptomatic anaemia’*, although
the evidence base regarding the effectiveness of ESAs in
everyday clinical practice and particularly in the older
population remains limited. In spite of published treatment
protocols, routine practice varies in respect to when
clinicians initiate ESAs, the haemoglobin (Hb) levels
threshold at which they initiate it, and whether they
administer ESAs prior or after RBCT. Importantly, this
variability in clinical practice is observed both across
countries and within the same healthcare system.

This case study aims to contribute to the evidence base
by applying the LTMLE method to assess the impact of
different ESAs treatment protocols — both initiation and
discontinuation rules — on HRQoL and mortality in LR-
MDS patients.

The EUMDS Registry Data

The FEuropean Myelodysplastic Syndromes Registry
(EUMDS, https://eumds.org/; ID: NCT00600860)
is a population-based registry launched in 2008 that
prospectively collects detailed patient- and disease-specific
information every six months from newly diagnosed MDS
patients (within 100 days of diagnosis) recruited from
secondary and tertiary care centres across sixteen European
countries plus Israel’’. The registry includes all MDS
subtypes classified according to WHO criteria’'-*?, although
this study focuses on patients with LR-MDS. Patients in
EUMDS are followed up until withdrawal (for any reason)
or death.

Our study sample includes patients who met the following
criteria: diagnosed with LR-MDS, ESAs treatment naive
at baseline (i.e. have not received ESAs but may have
received RBCTs prior to diagnosis), and without isolated
chromosome 5q deletion (non-del(5q))". We focus on LR-
MDS patients as they are the primary candidates for ESAs
therapy.

The follow-up period for this analysis spans from 19
March 2008 to 1 September 2019. Follow-up was truncated
at the end of 2019 to avoid potential bias from changes in
clinical practice, healthcare access, and mortality patterns
associated with the COVID-19 pandemic. The large scale
and duration of follow-up of EUMDS data makes it possible
to estimate the long-term effect of the early introduction of
ESAs on HRQoL and mortality in this population.

Notation and the Causal Model

Consider a longitudinal dataset containing n individuals
followed from baseline (f = 0) at six-month intervals up to
time 7', where T' varies across individuals in our sample.
Participants may die or drop out before or at 7. At each time
point ¢, we study two outcomes Y;: (1) HRQoL measured by
the EQ-5D instrument, and (2) mortality status.
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The treatment indicator A1, denotes whether a patient
receives ESAs at the follow-up visit time ¢. The censoring
indicator A2, is equal to 1 if the patient is censored at
the visit time ¢ and O otherwise. Time-varying confounding
occurs when a variable L; affects both treatment A1, and the
outcome of interest Y;, 1, and is itself affected by previous
treatment Al;_.

We constructed the causal model characterising our
setting by reviewing the clinical literature** and conducting
a focus group discussion with clinicians. An illustrative
Directed Acyclic Graph (DAG) is presented in Figure 1.
For our research question, baseline confounders Lq include
patient age and the MDS-specific comorbidity index (low,
intermediate, or high risk)*. We define two time-varying
confounders: haemoglobin (Hb) level L, and transfusion
independence L?, defined as no prior RBCT or fewer than
two units of RBCT in the previous six months. We also
define a set of time-varying covariates that are not considered
confounders as they do not affect treatment decisions
but may be helpful in modeling the HRQoL outcomes
and mortality risk. They include: (1) a binary indicator
for bone marrow blasts >5%; (2) Karnofsky performance
status (0—100 scale, with higher values indicating better
function) that efficiently measures geriatric patients’ health
and functional status; (3) platelet count categories (1 if
platelets > 100, 2 if 50 < platelets < 100, 3 if platelets <
50, with a unit of 10°/L); and (4) absolute neutrophil count
(with a unit of 10° /L). These variables are excluded from
Figure 1 for simplicity.

Figure 1. Directed Acyclic Graph

Figure 1 shows the relationships between treatment (A1;),
censoring (A2;), outcomes (Y;), and confounders (L;) in

*In the U.S., following the COMMANDS trial 2%, luspatercept is
administered as first-line, with ESAs as second-line. However, ESAs remain
the first-line in most other countries.

TPatients with isolated 5q deletions were excluded because they are typically
managed with lenalidomide as first-line treatment, rather than ESAs, and
thus follow a different clinical pathway not comparable to other LR-MDS
subtypes 3.

Della Porta (2011)* found that comorbidity has a significant impact on
overall survival and non-leukemic death in patients with very low-, low-
and intermediate-risk MDS, underscoring its relevance when deciding on a
treatment strategy in MDS patients
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time order. The treatment and censoring nodes are preceded
by time-varying confounders L, at time ¢ and followed by
the outcome Yy at time ¢ + 1. For simplification, we only
show the relationships in the first two time periods (¢ = 0, 1).
We also reflect the time ordering in our notation, where we
encode the observed data as n independent and identically
distributed copies of O:

O = (Lo, Alg, A2, Y1, Ly, Aly, A2, .. .,

Ly, Alp, A27,Y711) (1)

Baseline confounders L, precede the first treatment
decision A1y, and no censoring occurs at or before baseline,
therefore A2y = 0. The first post-treatment outcome
observed is Y;.

In the analysis of mortality, the outcome Y; is a binary
variable equal to 1 if death occurs at or before the time period
t, and 0 otherwise. As all patients are alive at baseline, we
define Yy = 0. Here, the censoring indicator A2, = 0 means
that an individual has not withdrawn from the sample at or
before time ¢.

In the analysis of HRQoL, Y; is defined as the EQ-
5D-3L index, calculated using country-specific tariffs >3,
Censoring is defined differently for HRQoL analysis, with
A2; =1 indicating that an individual has left the sample
due to either death or withdrawal at or before time ¢,
and 0 otherwise. This differential definition of censoring is
necessary because, as described in the following section,
selection bias due to censoring is addressed by combining
the treatment interventions of interest with a static censoring
intervention that counterfactually prevents censoring.

Table 1. Summary statistics at baseline

Action at time 0 Action at time 1 Action attime 2  Action at time 3

Patient has not
had ESA before

Figure 2. Static Treatment Regimes, lllustrated as a Decision
Tree

Notes: Blue shapes represent covariates that are used as inputs in the
dynamic treatment regimes, and yellow shapes represent treatment actions.

intervene to prevent informative censoring, allowing for the
estimation of causal effects without selection bias '

We define action a; as an intervention in the treatment-
censoring node A;: a; = 1 corresponds to setting Al; to 1
(administer ESAs) and A2; to O (keep patient uncensored),
while a; = 0 indicates setting Al; to 0 (not administer
ESAs) and as before, A2; to 0 (keep patient uncensored).

Throughout, the “static treatment regime” refers to fixed
sequences of actions, while the “DTR” denotes rules where
the action in Al; depends on time-varying covariates L;
while maintaining always setting A2; to 0.

Specifically, in our study the static treatment regime
“always give ESAs” corresponds to a sequence of treatment-
censoring interventions a; fixed at 1 from the baseline to a
selected time period t* — 1 before the end of follow-up (¢* =
1,.., T4+ 1) (ag =1,a1 =1,....,; a1 = 1). Similarly, the
static treatment regime “never give ESAs” corresponds to
fixing all values of a; at 0 as (ap = 0,a; =0,...,a; — 1 =
0). Figure 2 illustrates the two static treatment regimes.

In contrast, DTRs aim to capture more realistic,
personalised treatment protocols. Such protocols allow the
initiation, continuation, or discontinuation of ESAs over

time to depend on changing patient characteristics and their

Baseline Variable Value
Receive ESAs, n (%) 65 (8%)
EQ-5D scores, mean (SD) 0.71 (0.22)
Age (years), mean (SD) 73.22 (9.78)
MDS comorbidity index: low risk,n (%) 522 (64%)
MDS comorbidity index: intermediate risk,n (%) 293 (36%)
Hb level (g/dL), mean (SD) 9.20 (1.21)
Karnofsky performance status,mean (SD) 81.30 (1 5.52)
Bone marrow blasts > 5%, n (%) 73 (9%)
Platelets > 100 (10°/L), n (%) 636 (78%)
50 < Platelets < 100 109/L n (%) 106 (13%)
Platelets count < 50 109/L n (%) 82 (10%)
Absolute neutrophil count 109/L n (%) 3.05 (2.88)
RBCT units in current period, mean (SD) 64 (3 43)
Transfusion dependent, n (%) 41 (5%)

previous responses to treatment. We study five DTRs that
differ in their strategies for initiating and continuing ESAs,
which were developed during focus group discussions with
clinical experts.

Figure 3 presents a simplified decision tree that illustrates
an example DTR at the first two time points: time 0 (baseline)
and time 1 (the first clinical visit after baseline). At baseline,
a patient who is transfusion-dependent (TD) is required to
start ESAs if their Hb levels fall below a given threshold of
8 g/dL (DTRI) or 9 g/dL (DTR2), namely if Hb < 8 g/dL
or <9 g/dL, and should stay off ESAs otherwise. Patients
who are non-transfusion-dependent (non-TD) are required to

Notes: Values are reported as mean (standard deviation) for continuous variables,
and n (%) for binary variables. Total sample size is 815 at the baseline.

Treatment Protocols Under Evaluation

Our analysis considers joint interventions on treatment (A1)
and censoring (A2;), where A; = (Al;, A2;) represents the
joint treatment-censoring intervention node at time ¢. The
static censoring component requires A2; = 0 (uncensored)
forallt < t* witht* € 1,...,T 4 1. For the HRQoL analysis
(where censoring includes death), this implies counterfactual
maintenance of survival and study participation through
t; for mortality analysis, it ensures continued study
participation without administrative censoring through t.
This specification emulates a randomised trial where we
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initiate ESAs at a higher Hb threshold of 10 g/dL, namely if
Hb < 10 g/dL. Then, in the next period, patients who have
already started ESAs are required to continue ESAs if they
have responded well to treatment. Response is defined based
on transfusion dependency and Hb status. A TD patient
is considered a responder if they become non-TD after
receiving ESAs and their Hb levels do not decline. A non-TD
patient is a responder if they remain non-TD after ESAs and
the Hb level has not declined. Patients who respond continue
receiving ESAs; non-responders discontinue treatment. For
each subsequent visit, we apply the same treatment initiation
rule for patients who have not yet started ESAs by a
given visit, and apply the same treatment continuation/
discontinuation rule for patients who have already started
ESAs. The remaining regimes (DTR3—-DTR5) only consider



Hb levels and do not take transfusion dependency status into
account when initiating ESAs, and responses to ESAs are
defined based solely on increases in Hb levels after treatment.
Specifically, they give ESAs if the patient has an Hb level
< 10 (DTR3) or 9 (DTR4) or 8 (DTR5) g/dL, continuing
ESAs if the patient’s Hb level increases. These rules were
developed in consultation with clinical experts to ensure that
had relevance to their practices. To save space, we present the
results for DTRI, which is also the DTR shown in Figure 3,
in the main paper, and report results for DTR2-DTR5 in the
Appendix.

Time 0 Confounderattime 0 Confounderattime 0  Actionattime0  Confounder at time 1 Action at time 1

m == B B

=

Figure 3. Dynamic Treatment Regime 1, lllustrated as a
Decision Tree

Notes: TD stands for transfusion-dependent patients; HB stands for
haemoglobin levels; ESA is the treatment of interest. Blue shapes represent
covariates that are used as inputs in the dynamic treatment regimes, and
yellow shapes represent treatment actions.

Causal Parameters and Identification
Assumptions

Our causal parameter of interest is the intervention-specific
mean E[Y2]. V¢ is the potential outcome that would
be observed in a selected time period before the end
of follow-up (t* =1,..,7 + 1) if an individual - perhaps
contrary to the fact - followed a particular longitudinal
intervention d (a static or dynamic treatment regime) up
to t* — 1. Intuitively, the expectation of this potential
outcome captures the average outcome in the population if
everyone followed a given treatment protocol. We evaluate
the counterfactual outcomes for the two static treatment
regimes and the dynamic regime defined earlier. Due to
the static censoring intervention component of all treatment
regimes, our estimand in the EQ-5D analysis reflects the
mean EQ-5D that would be observed if, perhaps contrary to
the fact, patients remained alive and adhered to the treatment
regime until t* — 1.

As E[YZ] is a counterfactual quantity, without further
assumptions it cannot be estimated from the observed data. If
we simply summarised the observed outcomes for those who
actually followed this treatment protocol, our results would
be biased due to baseline and time-varying confounding.
Two crucial assumptions are necessary to identify E[Y;¢]:
the sequential randomisation assumption® and the positivity
assumption. Under sequential randomisation, conditional on
the observed histories of treatment and confounders, the
potential outcome in each time period is independent of the
preceding treatment status. This is the longitudinal version
of the “no unmeasured confounders” assumption, implying
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that after controlling for baseline covariates and the observed
histories of treatment and confounders, the next treatment
decision is “as good as random”. The positivity assumption
requires that each observation has a positive probability of
following the rule d at each time point. For static regimes,
this means that each patient in our study must have a positive
probability of receiving (or not receiving) ESAs in each time
period.

Estimation via LTMLE

General approach Here, we briefly describe the estima-
tion approach using LTMLE. The quantity F(Y4(¢t*)) can
be written as a sequence of recursively defined condi-
tional expectations, using the longitudinal G-computation
formula '’. This formulation allows for the estimation of the
counterfactual mean through a series of sequential regres-
sions. In summary, at each time point, the outcome Y (¢)
is predicted conditional on the observed past covariates and
treatment values, where the treatment is set according to the
predefined longitudinal treatment protocol d. This procedure
allows for the adjustment of time-varying confounding in a
sequential manner. First, only confounding in the last time
period is adjusted for by regressing the observed outcome
on the treatment variable and confounders in the previous
period only, as would be done in a study with only baseline
confounding. Then, predictions from this regression are
obtained, where the treatment variable is set to the value
that would be required by the longitudinal treatment protocol
under evaluation. These predictions are subsequently used as
the outcome in the next regression, where the treatment vari-
able and confounders in the previous period are controlled
for, and predictions are made again. This process is repeated
until only the baseline confounders need to be adjusted for,
and the expected counterfactual outcome is estimated as the
average of the final predictions.

This approach could be subject to misspecification bias
if it relied solely on the correct specification of the
sequential regressions. A doubly robust and semi-parametric
version of this sequential regression estimator can be
constructed by including a covariate, which is usually a
weight, that uses information from the treatment assignment
mechanism?’. The LTMLE estimator performs this double-
robust adjustment in each iterated regression, by updating
the predictions with a covariate that is a function of the
estimated propensity score. The resulting estimator is doubly
robust and consistent if either the treatment mechanism or the
sequential regressions are correctly specified ',

To reduce reliance on parametric assumptions and
improve model flexibility, ML algorithms are recommended
to estimate both the treatment mechanism and the outcome
regressions. The LTMLE accommodates the use of the
Super Learner (SL), an ensembling ML algorithm that
employs cross-validation to build the best weighted
combination of candidate algorithms, instead of selecting
only one method?®. Compared to parametric models such
as generalized linear models (GLMs), SL can capture
complex, non-linear relationships in the data. Although
GLMs may produce lower variance when correctly specified,
SL typically reduces bias and improves overall predictive
accuracy, highlighting the trade-off between bias and
variance in estimator selection.
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Implementation We implement the LTMLE method to
estimate the counterfactual values of the EQ-5D index and
the mortality risks for a series of time periods ¢t*, under the
two static treatment regimes (“never give ESA” and “always
give ESAs”) and five DTRs developed in consultation with
clinicians.

In terms of model specifications, baseline and time-
varying confounders are included in both outcome models
(sequential regressions) and treatment models (propensity
score estimation), as they affect both patient outcomes and
treatment decisions. Table 1 reports the summary statistics of
variables at baseline. Additional time-varying covariates (see
the list of the covariates in the section Notation and Causal
Model) are included in the outcome models for predicting
HRQoL and mortality risks, as they are assumed to affect
the patient outcomes but not the treatment decisions. Time-
varying covariates were also included in the censoring model
in HRQoL anlaysis, where censoring includes both mortality
and withdrawal.

We use both parametric GLMs and the SL algorithms
to estimate components of the treatment and censoring
mechanisms, as well as the outcome mechanisms. The
SL library includes: GLM, Stepwise regression’’, neural
networks, generalized additive models*?, Elastic net*'. In
this case study, SL yielded smaller variances around the
counterfactual mean parameters; thus SL-based results are
reported in the main analysis.

To improve model specifications, reduce model complex-
ity and potential overfitting, we include only one lag of time-
varying covariates and confounders (rather than full histo-
ries) and adjust for baseline covariates in all models. Missing
values are imputed using the method of the last observation
carried forward. The 95% confidence intervals and the stan-
dard errors are based on the estimated influence curve and
are correct asymptotically when both treatment mechanisms
and outcome mechanisms are consistently estimated. The
LTMLE models are implemented using the 1tmle package
in R, version 4.1.1.

Results

We report results separately for static regimes and the DTRs,
focusing on estimates obtained using the SL algorithm.
In our case study, LTMLE combined with SL algorithm
produce lower variance in the estimated counterfactual
means and offer greater flexibility than parametric GLMs.
Graphical summaries are presented below, with detailed
tables available in the Appendix.

After excluding patients with no information on EQ-5D
scores across all visits, we have a study sample at baseline
of 815 individuals for both the HRQoL and the survival
analyses. There are six months between each visit. Table 2
reports the number of patients who followed each of the
treatment regimes under investigation at each time point.
Most patients follow the static regime “never give ESAs”.
The number of patients following the DTR] is higher than the
number of patients following the static rule of always giving
ESAs, which is in line with expectations, as a dynamic rule is
more realistic than the static rule. The numbers of followers
for the other DTRs are not presented here, but DTRI has the
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largest number of patients following the assigned treatment
strategy among the five dynamic rules.

Less than 50 patients follow either DTRI or the static
regime of always administering ESAs after time period 5
(that is, 2.5 years post-baseline). This is consistent with the
clinician’s feedback that, on average, the effectiveness of
ESAs lasts two years, and clinicians cease administering
ESAs to patients if they no longer respond to treatment.
Therefore, we concentrate on the estimates for the first five
time periods. The sample size decreases over time due to
patients withdrawing from the registry and due to death.

Table 2. Distribution of patients following different treatment
regimes

time 0 1 2 3 4 5
Static1: always give ESAs

follow 65 54 46 37 28 24
not follow 750 724 631 541 471 396
Static0: Never give ESAs

follow 750 624 525 442 375 316
not follow 65 154 152 136 124 104
DTR1

follow 233 170 109 76 55 46
no ESAs 168 126 85 65 51 44
ESAs 65 44 24 11 4 2
not follow 582 608 568 502 444 374
not censor 815 778 677 578 499 420
death 0 11 58 107 148 179
censor 0 26 80 130 168 216
total sample 815 815 815 815 815 815

Note: The bottom panel shows, for each time period, the number of individuals
still in the sample (i.e., not censored), the number of deaths, and other censoring
events. Among those remaining, we report how many followed or did not follow
each treatment rule. For DTR1, we also show how many received ESAs among
those following the rule.

Health-Related Quality of Life

In this section, we present the LTMLE estimated counter-
factual mean EQ-5D index values under the static regimes
and DTRs, evaluated at visits 1-5. These results represent the
expected EQ-5D outcomes that would have been observed
had the patient population, possibly contrary to fact, followed
each specified regime.

In Figure 4, we report the estimated counterfactual mean
EQ-5D values for patients under the dynamic treatment
regime (DTRI, subfigure 4a), as well as under the static
regimes of “always give ESAs” (Staticl, subfigure 4c) and
“never give ESAs” (StaticO, subfigure 4f). We estimate the
ATEs by contrasting the counterfactual mean EQ-5D scores
between Staticl and StaticO, and between DTRI and either
StaticO or Staticl. The counterfactual mean EQ-5D index
values are the lowest under the StaticO regime, showing
a decreasing trend over time, while the highest values are
observed under DTRI. The trajectories of HRQoL remain
relatively stable over time for the Staticl and DTR] regimes.

We estimate the ATEs by contrasting the counterfactual
mean EQ-5D scores between Static] and StaticO, and
between DTRI and either StaticO or Staticl. Subfigure 4e
shows that there are significant benefits in terms of HRQoL
measured at the 1st, 2nd and 5th time periods for Staticl
compared to StaticO. Under DTRI, patients have significantly
higher EQ-5D index values in the 2nd and 5th time points
compared to under StaticO (subfigure 4d). The difference



in counterfactual mean EQ-5D scores between Staticl and
DTRI is not statistically significant (subfigure 4b). Full point
estimates and confidence intervals for these causal contrasts
are available in the Appendix.

Mortality Analysis

Figure 5 presents the LTMLE-estimated counterfactual
probabilities of death under each treatment regime. It
is important to note that we estimate the counterfactual
probability of death at each time point, rather than the
total survival time (time-to-death) or cumulative survival
curves. Patients under the StaticO regime (subfigure 5f)
exhibit the greatest increase in the counterfactual mortality
risk over time, followed by those under the Staticl regime
(subfigure 5c). The slowest increase in mortality risk is
estimated for patients under the DTR/ (subfigure 5a).

Pairwise causal contrasts indicate that there is no
statistically significant difference in the counterfactual
probability of death between the StaticI and the StaticO
regimes, largely due to the high variance of the estimates.
Patients following the DTRI are estimated to have lower
counterfactual mortality risks than those under either static
regime; however, these differences, as measured by the
ATEs, do not reach statistical significance. Nonetheless, the
observed trends in these counterfactual contrasts support
the hypothesis that a more realistic, personalised treatment
protocol such as DTRI may be associated with better
survival outcomes. A full summary of estimated mortality
probabilities across all treatment strategies and pairwise
comparisons between them is provided in Appendix Table
A3.

Discussion and Limitations

The paper applies the LTMLE to longitudinal data from the
EUMDS registry to evaluate both static and dynamic ESAs
treatment strategies in patients with LR-MDS. We estimate
counterfactual mean EQ-5D index values and counterfactual
mortality risks, as well as the ATEs comparing different static
regimes and DTRs. We utilise SL-based estimation because
of its improved flexibility and, in our setting, lower variance
compared to parametric models.

The presence of time-varying confounding is a key
concern, as LR-MDS has a heterogeneous evolution. Patients
may or may not respond; the disease can progress quickly,
and treatment decisions depend on evolving Hb levels and
transfusion dependence—both influenced by prior ESAs
use. After accounting for such time-varying confounding,
we find no significant differences in mortality risk across
treatment strategies. However, patients following DTRs
(where treatment initiation and continuation depend on Hb
levels and transfusion status) and those always receiving
ESAs show higher EQ-5D index values than patients never
treated with ESAs. These findings suggest that DTRs may
achieve similar or even better outcomes than the static
treatment strategy of continuously administering ESAs,
supporting the relevance of personalised care pathways in
MDS.

To address potential selection bias from informative right-
censoring, particularly due to death, our analyses emulate
a hypothetical randomised experiment in which censoring
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- due to either death or withdrawal from the study - is
prevented until the time point selected to evaluate the
counterfactual outcomes**. While the causal interpretability
of results under this conceptual intervention — where
deaths are disallowed — has been debated, this approach
remains an accepted solution to selection bias in longitudinal
studies (see e.g. Neugebauer et al. (2014)* and Kreif et
al. (2021)*). Alternative strategies to handle selection bias
include composite outcomes incorporating death, principal
stratification, and competing risks frameworks (see Young et
al. (2020)* for a review).

As with any observational analysis, our estimates may
be biased by unmeasured confounding. While the LTMLE
framework, combined with ML, aims to adjust for measured
confounders flexibly and robustly, it cannot account for
variables not captured in the dataset. As patients’ prognosis
changes rapidly and the EUMDS data is only collected
every six months, there may be some residual confounding,
such as new comorbidities that may affect both treatment
decisions over time and the outcome of interest. In
such cases, formal tools for sensitivity analysis can be
helpful in evaluating the robustness of results to potential
residual confounding. Currently, most available methods
for assessing sensitivity to unmeasured confounding are
designed for simpler parametric models and are not
readily applicable to longitudinal settings with time-varying
treatment and censoring®®, especially when using data-
adaptive estimation procedures like the LTMLE method.
Further methodological development is needed in this area.

Applying LTMLE with limited sample size and prolonged
follow-up presents challenges, including attrition and
reduced support for complex models. Most previous LTMLE
applications have used large samples and fewer time
points '1+1216:17:4347-49 " Oyr study contributes to the smaller
body of work that shows that LTMLE can still produce
informative results in modest samples with extended follow-
up’!. Simulation studies and applied analyses have
indicated that the precision of LTMLE estimates improves
with larger sample sizes and more frequent observations
across follow-up time points, but even with small sample
sizes, the results remain relatively stable and robust'.

Another source of bias that should be considered is
the potential for measurement error. Clinicians report
that dose adjustments of ESAs—rather than abrupt
discontinuation—are common in practice for nonresponders,
but such granularity is not recorded in the registry.

In this paper, LTMLE is employed to estimate discrete-
time mortality risks and we do not construct a full survival
curve. However, this is possible with LTMLE, as the method
is more broadly applicable to time-to-event outcomes.
An illustration is provided by Neugebauer (2014)* who
estimate the effects of dynamic treatment regimes by
contrasting their counterfactual survival curves, constructed
from estimates of discrete-time hazards.

Although our results do not identify a clearly optimal
ESAs strategy when comparing different DTRs, due to
sample uncertainty, our findings suggest that these regimes
are at least as effective as static treatment policies where
patients receive continuous treatment with ESAs, and may
offer improved HRQoL with less overtreatment.
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More broadly, our study contributes to the literature by
applying a robust longitudinal causal inference method to
evaluate the effectiveness of ESA in MDS - a setting where
RCT evidence is limited and time-varying confounding is
often overlooked. With appropriate methodology, observa-
tional data can provide credible and policy-relevant insights.
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BESsTIMATING THE CAUSAL EFFECT OF REALISTIC TREATMENT
STRATEGIES USING LONGITUDINAL OBSERVATIONAL DATA:
SUPPLEMENTARY MATERIALS

Table Al: Estimates of Static Treatment Regimes

time 1 2 3 4 5
Health-Related Quality of Life (HRQoL) Analysis
ATE (Staticl vs. StaticO) 0.06** 0.07** 0.04 0.01 0.09%**

SE 0.03 0.03 0.03 0.03 0.02
Y (Static1) 0.77 0.77 0.75 0.69 0.75
SE 0.02 0.03 0.02 0.03 0.02
Y (Static0) 0.70 0.70 0.70 0.68 0.66
SE 0.01 0.01 0.01 0.01 o0.01
Mortality Analysis

ATE (Static1 vs. StaticO) 0.02 -0.04 0.01 -0.06 -0.12
SE 0.05 0.05 0.08 0.07 0.09
Y (Static1) 0.10 0.11 0.23 0.21 0.22
SE 0.05 0.05 0.08 0.07 0.09
Y (Static0) 0.08 0.15 0.22 0.27 0.33
SE 0.01 0.01 0.02 0.02 0.02

Note: 1. * 90% significant, ** 95% significant, *** 99% significant. SE = standard error, ¥ =
counterfactual outcome, ATE = average treatment effect. 2. The table presents the LTMLE estimates
of counterfactual mean EQ-5D index values (upper panel) and counterfactual mortality risks (lower
panel) for patients following the static treatment rules of always giving ESA (Staticl) or never giving
ESA (Static0). ATEs were estimated by comparing the counterfactual mean outcomes of patients
following the Staticl to StaticO.



Table A2: Estimates of Dynamic Treatment Regimes: HRQoL Analysis

time 1 2 3 4 5

Y (DTR1) 0.78 0.76 0.76 0.69 0.75

SE 0.04 0.03 0.03 0.03 0.02

Y (DTR2) 0.78 0.76 0.76 0.69 0.77

SE 0.04 0.03 0.03 0.03 0.02

Y (DTR3) 0.77 0.77 0.77 0.70 0.76

SE 0.03 0.03 0.03 0.02 0.02

Y (DTR4) 0.69 0.69 0.69 0.67 0.67

SE 0.01 0.01 0.01 0.01 0.01

Y (DTR5) 0.71 0.73 0.72 0.71 0.68

SE 0.01 0.03 0.02 0.02 0.02
ATE (DTR1 vs. StaticO0) 0.07** 0.06** 0.06* 0.01 0.09%**
SE 0.04 0.03 0.03 0.03 0.02
ATE (DTR1 vs. Static1) 0.00 0.00 0.02 0.01 -0.01
SE 0.01 0.02 0.02 0.02 0.02
ATE (DTR2 vs. Static0) 0.07* 0.07** 0.06* 0.02 0.11***
SE 0.04 0.03 0.03 0.03 0.02
ATE (DTR2 vs. Static1) 0.01 0.00 0.02 0.00 0.00

SE 0.02 0.02 0.02 0.03 0.02
ATE (DTR3 vs. Static0) 0.07* 0.07** 0.06**  0.02 0.10%**
SE 0.04 0.03 0.03 0.03 0.02
ATE (DTRS3 vs. Static1) 0.00 0.00 0.02 -0.01 0.00

SE 0.03 0.02 0.02 0.03 0.02
ATE (DTR4 vs. Static0) -0.01 -0.01 -0.01 -0.01 0.01

SE 0.01 0.01 0.01 0.01 0.01
ATE (DTR4 vs. Static1) -0.08*** -0.08*%** _.0.05* -0.02%*  _0.09***
SE 0.02 0.03 0.03 0.03 0.03
ATE (DTRS5 vs. Static0) 0.00 0.03 0.02 0.02 0.02

SE 0.00 0.02 0.02 0.02 0.01
ATE (DTRS5 vs. Staticl) -0.06** -0.04 -0.03 0.01 -0.08**
SE 0.03 0.04 0.03 0.03 0.04
ATE (DTR1 vs. DTR2) 0.00 0.00 -0.01*%* 0.00 -0.01%**
SE 0.00 0.00 0.00 0.00 0.00
ATE (DTR! vs. DTR3) 0.01 0.00 -0.01 0.00 0.00

SE 0.01 0.00 0.00 0.00 0.01
ATE (DTR1 vs. DTR4) 0.08** 0.07** 0.07**  0.02 0.09%**
SE 0.04 0.03 0.03 0.03 0.02
ATE (DTR1 vs. DTR5) 0.07* 0.04 0.04 -0.01 0.06***
SE 0.04 0.04 0.03 0.03 0.02

Note: 1. * 90% significant, ** 95% significant, *** 99% significant. SE = standard error, Y = counterfactual mean outcome,
ATE = average treatment effect. 2. The table presents the LTMLE estimates of counterfactual mean EQ-5D scores for patients
following the five dynamic treatment rules (DTR1-5). ATEs were estimated by comparing the counterfactual mean EQ-5D
scores of patients following a specific DTR to those following the static rule of always giving ESA (Staticl) or to those following
the static rule of never giving ESA (Static0), or by comparing the counterfactual mean mortality risks of patients following

different DTRs.




Table A3: Estimates of Dynamic Treatment Regimes: Mortality Analysis

time 1 2 3 4 5

Y (DTR1) 0.06 0.07 0.10 0.11 0.13
SE 0.06 0.10 0.13 0.16 0.20
Y (DTR2) 0.07 0.06 0.10 0.12 0.13
SE 0.06 0.09 0.13 0.16 0.20
Y (DTR3) 0.14 0.12 0.15 0.14 0.14
SE 0.07 0.07 0.10 0.13 0.18
Y (DTR4) 0.16 0.16 0.18 0.21 0.25
SE 0.07 0.06 0.07 0.10 0.12
Y (DTR5) 0.14 0.15 0.19 0.28 0.31
SE 0.06 0.04 0.05 0.07 0.07
ATE (DTR1 vs. StaticO) -0.01 -0.09 -0.12 -0.16 -0.20
SE 0.06 0.10 0.13 0.16 0.20
ATE (DTR1 vs. Static1) 0.00 -0.04 -0.12 -0.13 -0.08
SE 0.08 0.10 0.13 0.15 0.20
ATE (DTR2 vs. Static0) 0.00 -0.09 -0.12 -0.15 -0.20
SE 0.06 0.09 0.13 0.16 0.20
ATE (DTR2 vs. Static1) -0.01 -0.05 -0.15 -0.12 -0.08
SE 0.08 0.09 0.13 0.15 0.19
ATE (DTRS3 vs. StaticO) 0.06 -0.03 -0.07 -0.12 -0.19
SE 0.07 0.07 0.10 0.13 0.18
ATE (DTRS3 vs. Static1) 0.02 0.01 -0.08 -0.08 -0.09
SE 0.06 0.06 0.09 0.12 0.17
ATE (DTR4 vs. StaticO) 0.08 0.01 -0.03 -0.06 -0.08
SE 0.07 0.06 0.07 0.10 0.12
ATE (DTR4 vs. Static1) 0.05 0.07 -0.03 -0.02 0.02
SE 0.08 0.07 0.10 0.11 0.13
ATE (DTRS5 vs. StaticO) 0.07 -0.01 -0.02 0.01 -0.03
SE 0.06 0.04 0.05 0.07 0.07
ATE (DTRS5 vs. Static1) 0.03 0.05 -0.01 0.04 0.09
SE 0.06 0.06 0.08 0.09 0.11
ATE (DTR1 vs. DTR2) 0.00 0.01 0.01 0.00 0.00
SE 0.02 0.01 0.07 0.05 0.07
ATE (DTR! vs. DTR3) -0.06 -0.05 -0.05 -0.05 -0.02
SE 0.08 0.04 0.10 0.04 0.05
ATE (DTR1 vs. DTR4) -0.06 -0.10** -0.10 -0.10 -0.12
SE 0.10 0.02 0.13 0.15 0.19
ATE (DTR1 vs. DTR5) -0.05 -0.08 -0.11 -0.16 -0.18
SE 0.08 0.10 0.14 0.16 0.18

Note: 1. * 90% significant, ** 95% significant, *** 99% significant. SE = standard error, Y =
counterfactual mean outcome, ATE = average treatment effect. 2. The table presents the LTMLE
estimates of counterfactual mean mortality risks for patients following the five dynamic treatment rules
(DTR1-5). ATEs were estimated by comparing the counterfactual mean mortality risks of patients
following a specific DTR to those following the static rule of always giving ESA (Static1) or to those
following the static rule of never giving ESA (Static0), or by comparing the counterfactual mean
mortality risks of patients following different DTRs.




Figure Al: Comparing counterfactual mean EQ-5D scores of patients following DTR2 and static
treatment regimes

R

(a) DTR2 (b) DTR2 vs. Staticl (c) DTR2 vs. Static0

Figure A2: Comparing counterfactual mean EQ-5D scores of patients following DTR3 and static
treatment regimes
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Figure A3: Comparing counterfactual mean EQ-5D scores of patients following DTR4 and static
treatment regimes
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Figure A4: Comparing counterfactual mean EQ-5D scores of patients following DTR5 and static
treatment regimes
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Figure A5: Comparing counterfactual mortality probabilities of patients following DTR2 and static
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tment regimes
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Figure A6: Comparing counterfactual mortality probabilities of patients following DTR3 and static
treatment regimes
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Figure A7: Comparing counterfactual mortality probabilities of patients following DTR4 and static

tre

atment regimes
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Figure A8: Comparing counterfactual mortality probabilities of patients following DTR5 and static
treatment regimes
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