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ABSTRACT Predictive maintenance aims to reduce operational costs by anticipating and preventing system
failures or inefficiencies. While high-performance AI models such as neural networks offer accurate pre-
dictions, their lack of transparency limits their usefulness for guiding interventions. Conversely, explainable
AI (XAI) models provide insight but often at the expense of accuracy. This paper proposes a framework
for cost-based evaluation of interpretable AI models in predictive maintenance, using both classification
and regression contexts. We establish criteria to determine when the benefit of interpretability outweighs
any reduction in accuracy and show that the utility of XAI is bounded by the relative cost of maintenance
versus failure. These findings offer practical tools for assessing the business case for interpretable models
in predictive maintenance and related domains. In research, the criteria enable cost-based evaluation and
comparison of alternative machine learning methods for regression and classification.

INDEX TERMS Cost-effectiveness, cost-efficiency, explainable AI, predictive maintenance.

I. INTRODUCTION
The ‘Fourth Industrial Revolution’ is characterized by rapid
technological advancements, paradigm-shifting changes, and
transformative impacts across industries [1]. Central to this
transformation is the evolution of engineering maintenance
strategies that leverage technologies such as artificial intel-
ligence (AI) and machine learning (ML) to optimise the
performance of critical systems [2], [3].
AI enables organisations to predict malfunctions and opti-

mise maintenance schedules, reducing both downtime and
associated costs. However, while advanced models such as
neural networks offer high predictive accuracy, they often
lack transparency, making it difficult for decision-makers to
understand and trust their outputs [4], [5], [6]. This lack of
explainability can limit the adoption of AI in critical decision-
making scenarios [7], where trust and insight are essential.

In response, interest has grown in Explainable AI (XAI),
which prioritises interpretability alongside performance.
Interpretablemodels, however, often underperform compared
to black-box alternatives, leading to the perception of a ‘trade-
off’ between predictive accuracy and explainability [8].
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We examine this perceived trade-off between predictive
performance and interpretability, proposing that these two
qualities can be jointly evaluated in terms of their contribution
to overall cost performance. In this view, explainability is
not merely an aesthetic or regulatory concern, but a factor
with measurable economic impact. We reframe the trade-off
as a cost-benefit problem: interpretability must justify its
value by offsetting any performance loss through improved
decision-making, reduced error costs, or gains in operational
efficiency.

This perspective aligns with the view that predictive main-
tenance (PdM) aims to reduce the ‘‘financial and time costs
of upkeep’’ [9] through more effective and efficient main-
tenance. Accordingly, we evaluate AI-based PdM systems
in terms of their expected financial return. In this con-
text, we define cost-efficiency as the ability to deliver a
net reduction in operating costs, and cost-effectiveness as a
basis for selecting the most appropriate form of PdM among
alternatives.

Two research questions are addressed to establish criteria
that determine when the value of interpretability offsets a loss
of predictive accuracy:

1. Using measures of predictive accuracy, what level of
explanatory benefit is required for an XAI model to be
cost-efficient? (RQ1)
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2. How can measures of predictive accuracy be used
to express the relative cost-effectiveness of different
models? (RQ2)

Our motivation is to develop practical, cost-based evaluation
criteria to strengthen the credibility of our future investiga-
tions and provide a basis for comparison with other work.
There is a growing body of work exploring the application
of explainable AI in predictive maintenance across indus-
trial sectors. In the energy domain, for example, explainable
models have been used to improve the transparency of
fault detection in wind turbines [10]. In aerospace, post-
hoc feature significance of deep learning RUL predictors for
turbofan engines has been used to relate individual sensor
features estimates of degradation [11]. Similarly, in manu-
facturing, feature significance has been proposed to provide
interpretable insights, allowing managers to align predic-
tive recommendations with operational priorities [12]. These
examples illustrate that explainability is not only a theoretical
concern but has practical implications.

While we derive criteria for cost-effectiveness within the
context of PdM, the underlying principles are expected to
be applicable to other domains. In areas such as healthcare,
finance, and risk management, the definition of cost differs,
but information that supports better outcomes or reduces the
consequences of errors can hold greater value than marginal
gains in predictive accuracy.

Section II addresses the cost-efficiency of classification
models (both binary and multi-class), and Section III con-
siders cost-effectiveness for classifiers. Regression models
play an important role in PdM, particularly for estimations of
Remaining Useful Life (RUL). An approach for applying our
criteria to regressors is presented in Section IV. A discussion
and our conclusions follow in SectionsV andVI, respectively.

II. CLASSIFICATION COST-EFFICIENCY
It is widely asserted that understanding an AI system’s rea-
soning enhances its adoption and effective use. However,
academic research rarely translates this premise into action-
able criteria for real-world deployment. Implementing AI
in practice involves significant investments of time, money,
and resources. This section presents an interpretation of
cost-efficiency for both binary and multi-class classifiers,
with the goal of developing criteria to evaluate the utility of
explanatory models.

The following symbols are used throughout our analysis:

• TP: The number of failures correctly identified.
• FN: Failures incorrectly predicted as non-failures.
• TN: Correctly identified non-failures.
• FP: Non-failures incorrectly identified as failures.
• f: the estimated cost of an unexpected failure.
• m: the estimated cost of maintenance to prevent a pre-
dicted failure.

To present the equations in a clear and concise manner,
we define several derived quantities:

• Precision - the proportion of positive predictions that are
accurate: TP/(FP + TP)

• Recall - the proportion of true failures that are correctly
predicted: TP/(FN + TP)

• Falsehood ratio (FR) – the number of false positives as
a proportion of actual failures: FP/(FN + TP)

• Failure Mitigation Cost Ratio (FMCR): the cost of
maintenance to address a predicted failure prior to an
explanation as a proportion of the expected cost of a
failure: m/f .

• Explanatory factor, α: the ratio of expected cost of
maintenance guided by an explanation to the cost of
maintenance with no explanation.

A. BINARY CLASSIFICATION
For a predictive maintenance model to be cost-efficient the
costs of preventative maintenance to address ‘predicted’ fail-
ures must be less than the costs that would have been incurred
if the ‘actual’ failures had occurred. That is, the savings from
addressing predicted failures (true positives) must outweigh
the cost of unnecessary maintenance (false positives). This
condition can be expressed as:

TP ∗ (f − m) > FP ∗ m

Rewritten as: TP ∗ (1 − m/f ) > FP ∗ m/f
And simplified to:

m
f

<
TP

TP + FP
(1)

In statistical terms, Equation (1) shows that a model is
cost-efficient if its precision exceeds the ratio of the preven-
tative maintenance cost to the cost of failure. This represents
a conservative or worst-case scenario - one that assumes
every predicted failure leads directly to maintenance action.
In practice, a predicted failure is often followed by inspec-
tion before an intervention. If, λ represents the fraction of
the maintenance cost required for an inspection the adjusted
condition for cost-efficiency becomes:

m
f

<
TP

TP + λFP
(2)

This adjusted threshold reflects that false positives may
trigger lower-cost inspections rather than full maintenance
procedures. For the purposes of further analysis in this
paper, we adopt Equation (1) as a baseline indicator of
cost-efficiency. This avoids a speculative assumption about
organizational practices or inspection protocols and offers
conservative assessments of feasibility.

The ratiom/f recurs in equations throughout this paper. The
baseline ratio, prior to any explanatory insight, is referred to
as the ‘Failure Mitigation Cost Ratio’ (FMCR).

In evaluating XAI models, we propose that explanations
may reduce the estimated maintenance cost, m, by enabling
more precise or selective maintenance. A reduction in m
lowers the precision threshold required for cost-efficiency
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(Equation 1), improving the economic viability of explana-
tory models.

This simple precision-based cost-efficiency condition sup-
ports two practical assessments. First, for a model with
known precision, it allows us to determine the reduction in
maintenance cost that explanations must enable to achieve
cost-efficiency. Second, given an estimated reduction in
maintenance cost, it indicates the target precision that should
guide model development Both assessments provide early
indicators of the viability of predictivemaintenance solutions.
They can assist stakeholders to determine whether investment
in XAI development is likely to yield practical value.

B. MULTI-CLASS CLASSIFICATION
Equation (1) can be applied to each class within a multi-class
model. In this section we use the findings from the work of
Vergara et al. [13] that compared the predictive performance
of various machine learning techniques to identify faults in an
internal combustion engine. We focus on the cost-efficiency
of the neural network (NN) and linear regression (LR) mod-
els, using confusion matrices reported by [13] (Figs. 1 and 2.)

FIGURE 1. Linear regression confusion matrix from [13] for engine fault
diagnosis.

FIGURE 2. Neural network confusion matrix from [13] for engine fault
diagnosis.

Examining predictions for fault 1, we see that NN clearly
outperforms LR – all instances were identified and only
three false predictions were made. NN’s precision of 0.9986

suggests that predictive maintenance would only be cost inef-
ficient if the cost of maintenance exceeded the cost of failure.

LR’s precision of 0.6470 is significantly inferior. However,
LR is a transparent algorithm and may provide actionable
insights into the cause of the fault, reducing the time and
resources required for repairs. If it leads to a 35.3% reduction
in maintenance costs, LR would become as cost-efficient
as the Neural Network despite its weaker predictive
performance.

Evaluating model utility at class level provides nuanced
insight into each model’s strengths. A broader assessment of
overall utility can be obtained by aggregating class-specific
results, weighted by the prevalence of each class.

III. CLASSIFICATION COST-EFFECTIVENESS
The proposed cost-effectiveness ratio (CER) enables compar-
ison of multiple models relative to a common benchmark.
We calculate the ratio of a model’s expected cost reduction
to the cost reduction for a perfect black-box predictor.

For perfect prediction of a binary classification of a main-
tenance need, the cost reduction is the cost of failure less the
cost of required maintenance for each actual failure:

Perfect predictor cost saving = (FN + TP) ∗ (f − m)

For an imperfect predictor the expected saving is:

Model ′s cost saving= TP ∗ (f − m) − (FP∗m)

Defining our cost-efficiency ratio (CER) to be:

CER =
Model ′s expected cost saving
Perfect predictor cost saving

(3)

We can state that:

CER =
TP ∗ (f − m) − (FP ∗ m)
(FN + TP) ∗ (f − m)

(4)

It is expected that the failure cost, f, will be consistent for
both models. If we assume that maintenance costs are also
consistent, division of numerator and denominator by (f – m)
gives:

CER =
TP

(FN + TP)
−

FP
(FN + TP)

∗
m

(f − m)

The first element TP/(FN + TP) is recognised as the recall
statistic. The quantity FP/(FN + TP) represents false pre-
dictions as a proportion of the true number of classes,
we have named this ratio the falsehood ratio, FR. Finally, the
m/(f − m) quantity has been rewritten in terms of the
FMCR (m/f ):

CER = recall − FR ∗
FMCR

(1 − FMCR)
(5)

Equation 4 describes CER for a black-box model. However,
if the model under test provides an explanation to reduce
maintenance costs, in equation 4, the numerator’s value of m
will be reduced. We have added an explanatory factor (α) to
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represent the ratio between the reduced cost and the original
cost to equation 3:

CER =
TP ∗ (f − αm) − (FP ∗ αm)

(FN + TP) ∗ (f − m)
(6)

Now, dividing numerator and denominator by (f – m) gives:

CER =
TP ∗ (f − αm)

(FN + TP) ∗ (f − m)
−

FP
(FN + TP)

∗
αm

(f − m)

Which, when expressing in terms of FMCR, recall and false-
hood ratio, gives:

CER =recall ∗
(1 − αFMCR)
(1 − FMCR)

− FR ∗
αFMCR

(1 − FMCR)

This can be simplified a little for:

CER =
recall − α ∗ FMCR ∗ (recall + FR)

1 − FMCR
(7)

While more complex, this expression captures the trade-off
between predictive performance and interpretability. The
numerator is a balance of performance metrics and the
explanatory factor α. However, the introduction of α as a
second context-specific variable limits generalisation of indi-
vidual CER values across different applications.

Equations 4 and 4.1 only apply when maintenance and
failure costs differ. This is not considered a weakness as
there is no business case for predictive maintenance in that
scenario. A CER of greater than one is possible when expla-
nations reduce maintenance costs sufficiently for the model
to outperform perfect but unexplained predictions.

Negative CER values indicate that amodel introducesmore
cost than benefit. The gradient of FMCR / (1 – FMCR) is
positive, as FMCR increases the negative component of the
denominator may dominate.

A. COST-EFFECTIVENESS ILLUSTRATION
Continuing the use of the LR and NN results from
Section II-B, we evaluate the cost-effectiveness ratio for each
model at a range of FMCR values, Fig 3.

The NN model is close to an optimal predictor (recall at
1.0 and only 3 false positives) and scores consistently well
across the range of FMCR values.

FIGURE 3. Variation of cost-effectiveness ratio with constant explanation
factor (α D 1) for different failure mitigation cost ratios.

In comparison, the effectiveness of the LRmodel decreases
significantly as FMCR increases due to the increasing cost
of maintenance for false positives. At the cost-efficiency
threshold of FMCR (0.647) LR’s cost-effectiveness becomes
negative as the cost of servicing all predicted failures now
exceeds the value of preventing actual failures. We propose
that an upper limit exists for FMCR, beyond which an
XAImodel cannot achieve the cost-effectiveness of a more
accurate predictor, since the cost of unnecessary main-
tenance exceeds the benefit of correctly predicted failure
prevention.

When considering how cost-effectiveness varies with
explanation cost factor (α), we see a linear relationship. This
is illustrated in Fig. 4 for FMCR values of 0.6, 0.5, and 0.4.
Intersection of NN and LR lines indicate when LR matches
NN’s cost-effectiveness for values of α.

Notably, when α equals the precision of the model, the
CER calculation simplifies to the recall, explaining the inter-
section at α = 0.647. Additionally, as FMCR increases the
influence of α becomes more pronounced, with a steeper
CER-to-α gradient. The FMCR to α relationship is analysed
further in Section IV-A where cost-effectiveness is illustrated
for regression models.

FIGURE 4. Variation of cost-effectiveness ratio with explanation
factor (α) for different failure mitigation cost ratios.

IV. REGRESSION COST MEASURES
Unlike classifiers, which produce categorical outputs that
can be directly mapped to misclassification costs (e.g., false
positives and false negatives), regressionmodels yield contin-
uous predictions. In predictive maintenance, the relationship
between prediction error and cost is often asymmetric and
non-linear.

As a result, summary statistics used to evaluate pre-
dictive accuracy can be misleading when the aim is
cost-reduction rather than predictive accuracy. For example,
in predictive maintenance applications, a regression model
might estimate Remaining Useful Life (RUL) for a com-
ponent. Over-estimating RUL risks failure before the
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component is serviced, leading to unplanned downtime,
safety risks, and corrective maintenance costs. Conversely,
under-estimating RUL may lead to premature replacement,
resulting in unnecessary maintenance costs and wasted
resources. In some cases, a small over-estimate may incur
greater costs than a much larger under-estimate.

While expected costs can be calculated by applying an
asymmetric cost function to each test prediction and summing
the results, this approach depends on a bespoke model for
case-by-case estimation of explanatory benefit. Additionally,
it does not address RQ2, which seeks to express relative
cost-effectiveness in terms of predictive performancemetrics,
enabling systematic comparison of models.

To enable assessment without bespoke modelling and to
address RQ2, we propose a time-window framework to
reinterpret regression outcomes within a classification-like
structure. In practice, maintenance operations involve lead
times: planning, scheduling, and logistics often require that
actions be initiated days in advance. For instance, if a pre-
dictive system is reviewed weekly to schedule servicing and
order parts for the following week, then a two-week time
window (covering both the current review period and the
subsequent execution window) represents a meaningful oper-
ational timescale.

While existing research has emphasized prognostic accu-
racy metrics such as prognostic horizon and α–λ accu-
racy [14], these focus primarily on prediction accuracy,
rather than operational utility. In contrast, our proposed time-
window-based evaluation aligns with business requirements,
safety regulations, and budgeting timeframes, among others.

By defining a time-window, continuous RUL predictions
can be categorised: components that fail within the window
are labelled as ‘‘Fail’’, while those surviving beyond it are
labelled ‘‘OK’’. From this we can construct a confusion
matrix comparing predictions against actual results and apply
the criteria previously derived for classifiers.

In the context of predictive maintenance, a time-window
representing a period of interest is considered appropriate to
categorise continuous value predictions. In other domains,
different criteria may be more appropriate, potentially gen-
erating multiple class categories (rather than a binary split).

A detailed, context-specific cost model may still be
required to justify significant investments. However, the pro-
posed time-window evaluation offers a practical mechanism
to identify candidate models, guide further development, and
reduce the burden of early-stage evaluation.

A. ILLUSTRATION OF COST ANALYSIS FOR REGRESSION
It is rare for the source data to create a confusion matrix based
on a specific time window to be published alongside a paper.
To illustrate the concept described above, we generated two
sets of predictions: one for amore accurate model to represent
a black-box predictor, and one for a less accurate model to
represent an explainable AI (XAI) model. A right-skewed
distribution of ‘actual’ Remaining Useful Life (RUL) values

for 300 samples was simulated in Python, with normally
distributed random errors of different magnitude applied.

Standard regression metrics for the two prediction sets
(Table 1) show that the black-boxmodel outperforms the XAI
model across all regression metrics.

TABLE 1. Comparison of performance metrics.

To evaluate cost-effectiveness, a 14-day time window was
applied to both sets of predictions, classifying components
predicted to fail within the window as positive cases. Confu-
sion matrices for each model, based on actual failures during
the same period, are shown in Fig 5.

FIGURE 5. Confusion matrices for both models generated for a 14-day
time window.

In calculating CER there are two context-specific vari-
ables: α (the reduction in expected reduction in cost
attributable to an explanation) and FMCR (the relative cost
of maintenance compared to the cost of a failure). Both these
variables have a significant effect on the cost-effective ratio
(CER). To investigate the FMCR-α relationship we deter-
mined the α value required for the XAI model to achieve the
same cost-effectiveness as the black-box model at a range of
values for FMCR. The results are plotted on Fig. 6.
As FMCR reduces, the negative term in the CER calcula-

tion reduces and a model’s recall statistic dominates. Lower
α values are needed for cost-effectiveness equality. When α

is zero, the CER equation simplifies to recall/(1 − FMCR).
This represents the maximum possible cost-effectiveness an
explainable model can achieve; it assumes that explanations
bring maintenance costs to zero. If this value is still lower
than a competing model’s CER, then no level of explanation
is sufficient to match a stronger predictor.

For the analysed data, if FMCR falls below 0.22, the XAI
model is unable to match the CER of the black-box model.
This is proposed as a general principle. The threshold value
is context specific, but for an XAI model to be more cost
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FIGURE 6. FMCR’s effect on magnitude of explanatory factor α required
for CER equality with a more accurate predictor.

effective than amore accurate but less interpretable alter-
native, there is a minimum FMCR value.

Our analysis found that for FMCR of 0.5, a 37% reduc-
tion in maintenance costs (i.e. α =0.63) is required for the
explanatory model to match the black-box model. Further,
with a 54% reduction in maintenance costs, the XAI model
is more cost effective than a perfect black-box model; CER
grew greater than 1.0.

V. DISCUSSION
It is intuitive that cost-efficiency is related to precision (how
many predicted positives are true) and cost-effectiveness is
related to recall (how many actual positives are identified).
The criteria derived here enhance that intuition by incorpo-
rating costs and context-specific factors to define expressions
that enable quantitative comparison.

For cost-efficiency, model precision is identified as an
upper limit for the ratio m/f . For an XAI model, m/f can
be expressed as (α ∗FMCR). This establishes a relationship
for a maximum FMCR (FMCRmax) at which an XAI model
can be cost-efficient:

FMCRmax =
precision

explanatory factor, α
(8)

Assuming that maintenance is cheaper than failure, FMCR is
less than one. So, if the explanatory factor is less than preci-
sion, there is no effective restriction on FMCR; the proportion
of true positives and the reduced maintenance cost ensure
cost-efficiency. When α is greater than precision, equation 5
provides a clear criterion for validation of cost-efficiency
using context-specific values.

This requirement for cost-efficiency, based on precision
and FMCR, is complemented by the cost-effectiveness ceil-
ing based on recall and FMCR of Section IV-A. Combined,
these relationships establish upper and lower bounds for
FMCRwithin which an XAI model is capable of comparative
cost-effectiveness. Maintenance costs must be sufficiently
high for actionable insights to generate significant cost sav-
ings. Equally, costs must be low enough for the cost of

false positives to be outweighed by savings from prevented
failures.

In Section II-A we adopted equation (1), ignoring the
likelihood that false positive cost is lower than maintenance
for true positives, as an inspection could identify that main-
tenance is not required. Applying the reasoning used for
equation 1.1, we derive:

CER =
recall − α ∗ FMCR ∗ (recall + λFR)

1 − FMCR
(9)

where λ is the inspection cost as a fraction of the maintenance
cost. This will increase the upper FMCR limit for a model to
be cost-effective. If we assume that stronger predictors gener-
ate fewer false positives, it will also improve an explanatory
model’s cost-effectiveness relative to its comparator.

The introduction of another context-specific variable, λ,
in addition to the explanatory factor and FMCR, underscores
that CER values apply to specific operational settings. This
dependence on situational parameters may limit the practical
utility of CER if working practices and costs vary frequently.

Finally, while these relationships provide comparative per-
formance measures, it is important to note that absolute
performance metrics depend on the consistency of class dis-
tributions between the evaluation dataset and the real-world
prediction environment. Variations in class balance between
these datasets can alter the confusion matrix composition,
leading to misleading cost estimates. Therefore, ensuring
consistent class prevalence is critical for reliable estimation
of actual costs and benefits.

In summary, XAI model utility in PdM depends not only
on performance metrics like precision and recall but also on
contextual cost ratios and operational factors. The derived
relationships provide a structured, quantifiable basis for eval-
uating if an XAI model can generate meaningful cost savings
under real-world constraints.

VI. CONCLUSION
This study demonstrates how model precision and recall cor-
respond to cost-efficiency and cost-effectiveness in predictive
maintenance settings. In quantifying these relationships,
we position XAI’s explanations as cost-reducing insights and
incorporate the value of explanations into criteria.

The purpose ofRQ1was to establish a test for the feasibil-
ity of an AI model contributing to a predictive maintenance
system. We found that the condition for cost-efficiency of a
predictive maintenance AI model is that the expected cost of
maintenance, m, relative to the cost of a failure, f , is less than
the model’s precision (equation 1):

m
f

< precision

RQ2 was designed to provide a basis for comparison of
candidate models. Our response is based on a calculation of
cost benefit compared to an ideal predictor. A calculation
of the Cost-Effectiveness Ratio (CER) enables comparison
of two or more feasible AI models. This is a more complex
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expression (equation 7):

CER =
recall − α ∗ FMCR ∗ (recall + FR)

1 − FMCR

where recall is the standard performance metric; α repre-
sents the proportion of maintenance cost when guided by an
explanation, relative to unguided maintenance; FR is the false
positive rate relative to the number of actual positives; and
FMCR is a context-specific variable representing the ratio of
expected maintenance cost (without explanation) to the cost
of failure or breakdown.

We found that an XAI model can only match the
cost-effectiveness of a better predictor if the FMCR value
lies within both a lower bound (so that explanations generate
significant value) and an upper bound (so that unnecessary
maintenance costs do not exceed the benefit of preventing
actual failures).

Time window analysis of regression models in the context
of PdM is considered reasonable and enables our criteria to
be applied to continuous predictions. However, a time win-
dow may not be appropriate for some domains or situations.
There is scope for further research to investigate alternative
cost-based evaluations of regression models.

XAI will not be suitable for all scenarios, and it is not
feasible to derive global values for the applicability of XAI.
The significance of explanations and operational costs are
specific to contexts. Further, significant investment decisions
will require consideration of costs throughout the lifecycle of
a predictive maintenance system.

However, we believe the cost-based criteria we have pro-
posed offer valuable insights and practical tools for evaluating
the utility of AI alternatives, benefiting both commercial
decision makers and researchers.

Organisations can apply these metrics during the planning
and feasibility phase of PdM initiatives, using internal cost
structures and operational parameters to assess whether the
adoption of an interpretable model is justified. Future work
could involve integrating these criteria into structured evalua-
tion processes or cost-benefit templates to support early-stage
investment decisions in AI-enabled maintenance systems.
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