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 A B S T R A C T

Optimization is critical for improving the operations of large-scale socio-technical infrastructures such as 
those found in energy, mobility, and information systems. In particular, understanding the performance of 
multi-agent discrete-choice combinatorial optimization under distributed adversarial attacks is a compelling 
and underexplored problem. Multi-agent systems involve a large number of remote control variables that 
can influence the cost-effectiveness of distributed optimization heuristics. This paper unravels, for the first 
time, the trajectories of distributed optimization from resilience to vulnerability, and finally to collapse under 
varying adversarial influence. Using real-world and synthetic data to generate over 112 million multi-agent 
optimization scenarios, we systematically assess how the number of agents with varying levels of adversarial 
severity and network positioning influences optimization performance, with particular attention to the impact 
on Pareto optimality. With this large-scale dataset, made openly available as a benchmark, we disentangle 
how optimization systems remain resilient to adversaries and which adversary conditions make optimization 
vulnerable or cause collapse. These findings can support the design of self-healing strategies for fault tolerance 
and fault correction, addressing a critical gap in adversarial distributed optimization.
1. Introduction

The rapid development of Internet of Things (IoT) applications 
has brought transformative changes in numerous domains, ranging 
from smart cities to industrial automation and healthcare [1]. These 
applications involve vast networks of interconnected devices that gen-
erate substantial amounts of data, and require efficient and distributed 
decision-making [2]. Distributed optimization is essential in such sce-
narios, as it enables multiple agents to collaborate effectively without 
centralized coordination. This approach ensures scalability, reliability, 
and robust performance across diverse applications, including energy 
management, autonomous systems, and federated learning [3–7].

While distributed optimization is essential for achieving system-
wide objectives, most algorithms rely on assumptions of rational, co-
operative, and non-adversarial agents contributing toward the global 
objective without prioritizing their individual goals over collective 
outcomes. However, real-world scenarios often deviate from these as-
sumptions; adversary agents can disrupt optimization by introduc-
ing inaccuracies, manipulating decisions, or compromising function-
ality [8–11]. For example, in smart grid systems where autonomous 
agents (e.g., households) collaborate to manage energy distribution 
and prevent power outages, certain households may act adversari-
ally by manipulating consumption data to prioritize their self-interest, 
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i.e., their thermal comfort. Such disruptions distort energy allocation, 
leading to inefficient resource use and blackouts [9,10,12–14].

Several studies have examined multi-agent optimization in
continuous-choice frameworks [8–11,13,15]. While stochastic opti-
mization techniques address noise, they lack mechanisms to counteract 
strategic manipulations by adversarial agents [16,17]. Such manipu-
lations amplify system vulnerability by prioritizing individual goals 
over collective objectives, which can lead to inefficiencies, instability, 
and eventual system collapse [18,19]. Despite these risks, adversarial 
disruptions in discrete-choice settings have received little attention.

This paper studies multi-agent systems in discrete-choice combi-
natorial optimization under adversarial conditions, with the aim to 
unravel the trajectories of resilience, vulnerability, and collapse, offer-
ing a novel framework to understand system optimization behavior. 
In this context, resilience refers to the system ability to maintain 
performance despite adversarial influence; vulnerability captures the 
emergence of inefficiencies due to intolerable adversarial behaviors; 
and collapse occurs when the system significantly under-performs as 
a result of failure to cope with adversarial behaviors. This study eval-
uates the impact of adversarial agents on optimization performance, 
analyzing critical parameters such as the number of adversarial agents, 
their behavioral severity, and their network positions. By systematically 
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examining these dynamics, the paper provides critical insights into the 
conditions under which systems transition from resilience to collapse, 
offering new insights for developing self-healing, fault-tolerant, and 
fault-correcting strategies in adversarial environments [20].

The main contributions of this paper are outlined as follows:

• An adversarial model for discrete-choice multi-objective opti-
mization problems.

• A novel evaluation framework for characterizing resilience, vul-
nerability, and collapse in distributed optimization systems under 
adversarial influence.

• A comprehensive evaluation of the adversarial impact on system 
efficiency and agent discomfort.

• The first open large-scale benchmark datasets for discrete-choice 
adversarial optimization, generated from over 112 million ex-
periments on real-world and synthetic inputs using the proposed 
adversarial model.

• New insights into how adversarial scale, severity, and struc-
tural positioning affect system optimality, including resilience 
and vulnerability thresholds, Pareto trade-offs, and structural vul-
nerabilities across diverse scenarios.

• An open-source software artifact implementing the proposed ad-
versarial model within the I-EPOS system,1 extending its function-
ality to support heterogeneous agent behaviors.

The rest of this paper is organized as follows: Section 2 reviews re-
lated work on adversarial distributed optimization. Section 3 introduces 
the proposed adversarial model and problem formulation, including 
the network model and optimization challenge. Section 4 outlines the 
experimental methodology and evaluation metrics. Section 5 presents 
the key findings, analyzing system behavior under varying adversar-
ial conditions. Finally,  Section 6 concludes the paper, discusses its 
limitations, and outlines directions for future research.

2. Related work

Resilience in distributed multi-objective optimization plays a criti-
cal role across domains such as smart grids, transportation, logistics, 
and communication networks, where robust and adaptive systems are 
crucial for ensuring operational efficiency [21,22]. Convex distributed 
optimization has received significant attention, with a focus on ad-
dressing challenges posed by adversary agents, network structures, 
and varied application domains [3,13,23]. Earlier work examined the 
robustness and vulnerability of consensus-based distributed optimiza-
tion, focusing on addressing limitations related to adversary behavior, 
network topology, objective functions, and application domains [13,
24,25]. The presence of adversary agents significantly impacts the 
performance of distributed optimization models. These agents disrupt 
optimization by slowing convergence, manipulating data, or withhold-
ing participation, resulting in suboptimal performance [8,15]. Table  1 
provides a comparative analysis of related work on distributed opti-
mization under adversarial conditions. It highlights key aspects such as 
the type of adversarial behavior2, attack targets, system knowledge3, 
network structures, and the impact on overall performance.

1 Available at https://github.com/epournaras/EPOS.
2 A malicious node sends the same value to all its neighbors at each 

time step, whereas a Byzantine node may send different values to different 
neighbors.

3 Knowledge levels: full—complete knowledge of the network and agent 
objectives; partial—access to limited neighbor information; local—only own 
state or data is known.
2 
2.1. Adversary agents in distributed optimization

Yang et al. [3] provide a comprehensive survey on distributed opti-
mization. Notable advancements include extensions of consensus-based 
protocols by Sundaram et al. [10] and Kuwaranancharoen et al. [26], 
which address adversarial threats in convex optimization. Su et al. [27] 
enhance these methods with decentralized architectures and explore 
adversarial influence on global objectives. However, these approaches 
assume adversary agents have full knowledge of the network topol-
ogy and the private functions of all agents. This coordination among 
adversaries compromises the privacy of the agents in the system.

2.2. Adversarial attacks in multi-agent systems

Adversarial attacks significantly impact reinforcement learning (RL) 
systems across applications such as robotics, video games, and smart 
grids, undermining system stability and performance [40,41]. Lin et al.
[28] demonstrate how adversarial perturbations affect cooperative 
multi-agent RL (c-MARL), showing its vulnerability compared to single-
agent RL. Figura et al. [29] highlight how a single adversary can 
influence consensus-based c-MARL systems, disrupting team objectives. 
Zheng et al. [30] introduce criticality-based perturbations in deep Q-
networks, demonstrating substantial performance degradation due to 
adversarial attacks. These studies show that an adversary can disrupt 
system operations and manipulate policies, influencing other agents to 
adopt behaviors aligned with its objectives.

2.3. Cyber-attacks and resilient control

Cyber-attacks, including data injection and denial-of-service (DoS) 
attacks, pose significant threats to distributed optimization by disrupt-
ing system operations and consensus mechanisms [31]. To address 
these challenges, Yemini et al. [32] introduce trust-based frameworks 
that mitigate malicious input, ensuring convergence to global optima. 
Similarly, Du et al. [33] and Zhao et al. [34] propose models relying 
on trusted agents to counteract adversarial influence. However, the 
effectiveness of these can be limited in scenarios with intermittent 
communication, such as ad hoc or robotic networks.

2.4. Resource allocation challenges under adversaries

In distributed resource allocation, adversarial disruptions are typi-
cally mitigated using robust optimization and detection mechanisms. 
Uribe et al. [35] and Turan et al. [36] propose primal–dual meth-
ods that tolerate Byzantine adversaries by identifying and eliminating 
malicious inputs, achieving resilience for up to 50% adversary den-
sity. Similarly, Ravi et al. [9] develop a detection method that uses 
agents’ data values to identify and isolate potential malicious behav-
ior, imposing an upper limit of 50% adversaries within the network 
topology. Gentz et al. [37] propose a detection method based on 
hypothesis-testing for insider attackers in randomized gossip-based 
sensor networks, leveraging statistical analysis of sensor states to iden-
tify malicious agents. While these methods enhance resilience against 
dispersed adversaries, they assume adversarial influence is evenly dis-
tributed and may not generalize to scenarios with concentrated or 
dynamic adversary placement.

2.5. Multi-objective distributed optimization

Recent studies have increasingly adopted Pareto-based multi-
objective optimization to evaluate system trade-offs in complex infras-
tructures. Fettah et al. [42] introduce a Pareto strategy for optimizing 
distributed generation in power networks. Zhang et al. [43] formulate 
a multi-objective operational framework that integrates Pareto analysis 
to enhance resilience thresholds in distribution networks. Similarly, 
Boindala and Ostfeld [44] propose an optimization approach to balance 
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Table 1
Comparison of literature on resilience in distributed optimization.
 [10] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35,36] [9] [37] [38,39] This 

work
 

 
Adversarial
behavior

Malicious ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 Byzantine ✓ ✓ ✓ ✓ ✓  
 Cyber-attacks ✓ ✓ ✓ ✓  
 Eavesdropping ✓  
 
Adversary
target

Consensus ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 Information 

Exchange
✓ ✓ ✓ ✓  

 System Objective ✓ ✓ ✓  
 Observation ✓  
 Knowledge
of the 
system

Full ✓ ✓ ✓ ✓ ✓ ✓  
 Partial ✓ ✓ ✓  
 Local ✓ ✓ ✓  
 Directed 
Network

✓ ✓ ✓ ✓ ✓ ✓ ✓  

 
Performance
measure

Convergence ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 Distance to 

Optimality
✓ ✓ ✓ ✓  

 Reward/Utility ✓ ✓ ✓ ✓  
 Efficiency ✓  
 Algorithms /
Techniques for
Optimization

Local 
filtering

Distance– 
based 
filtering

Local 
filtering

Gradient 
–based 
(Deep 
Q-learning)

Consensus-
based MARL None Mean 

subsequence 
reduced

Probabilistic 
trust– based 
& 
projection–
based

Markov 
switching 
topology & 
Push- 
DIGing

Resilience 
with trusted 
agents & 
dominating 
set

Primal– 
Dual

FROST Randomized 
gossip

Differentially 
private 
gradient 
tracking

I-EPOS  
reliability, cost, and failure risk using Pareto fronts. While these studies 
underscore the value of Pareto analysis for resilient optimization, they 
focus on centralized infrastructures and do not address adversarial in-
fluence or the complexities of distributed, multi-agent decision-making 
explored in this work.

2.6. Privacy-preserving distributed optimization

Privacy-preserving distributed optimization safeguards sensitive
agent information against eavesdropping adversaries using techniques 
such as differential privacy [38,39,45], homomorphic cryptography [46,
47], and gradient perturbation [48,49], to ensure secure information 
exchange. However, these studies focus on privacy protection rather 
than adversarial behavior in optimization contexts.

2.7. Combinatorial optimization algorithms

In distributed combinatorial optimization, Hinrichs et al. [50,51] 
propose COHDA, a combinatorial optimization heuristic designed for 
multi-agent systems. However, COHDA encounters scalability chal-
lenges due to increasing communication overhead as the number of 
agents grows. The collective learning approach of Pournaras et al. [52] 
address this with EPOS (Economic Planning and Optimized Selections), 
a distributed optimization method that enables agents to collabora-
tively optimize global resource allocation, particularly in participatory 
sharing economies. Although EPOS ensures privacy, autonomy, and 
scalability, it faces computational limitations when applied to wide tree 
structures with multiple child nodes [53]. I-EPOS is the iterative exten-
sion of EPOS; it incorporates decentralized iterative back-propagation 
and localized decision-making to enhance scalability and support plan 
coordination across deeper and broader network hierarchies [53,54].

While COHDA, EPOS, and I-EPOS represent foundational combi-
natorial optimization approaches, their system performance under ad-
versarial conditions has not been studied before, despite some limited 
work on measuring the impact of arbitrary structural faults, which 
does not focus on agents’ behavior [55]. In this work, we introduce 
a generic adversarial model applicable to such settings. The model 
enables a structured evaluation of resilience, vulnerability, and collapse 
dynamics, and, to the best of our knowledge, is the first to system-
atically explore adversarial behaviors in discrete-choice combinatorial 
optimization.
3 
A large body of research to date focuses on continuous distributed 
optimization, often assuming limited adversary presence or relying 
on complete graph topologies [8–10,13]. Such assumptions do not 
fully capture the complexity of real-world systems, where distributed 
structures, heterogeneous agent behaviors, and dynamic adversarial 
threats are prevalent [10,30]. Although existing solutions offer valuable 
mitigation strategies [33,35], the lack of comprehensive analyses on 
inherent system vulnerability, resilience thresholds, and pathways to 
optimization collapse remains a gap.

To fill this gap, we propose a generic adversarial model to systemati-
cally analyze how adversarial agents influence system performance and 
stability in distributed multi-objective optimization. Our objective is to 
evaluate how adversarial behavior influences resilience, vulnerability, 
and collapse, while informing the development of self-healing strategies 
for robust optimization. Moreover, his work releases the first large-
scale, open benchmark dataset designed for evaluating adversarial 
impacts under discrete-choice optimization settings. To clarify the nov-
elty of our contribution, Table  2 summarizes a comparative analysis 
with existing work, highlighting key aspects such as discrete decision-
making, multi-objective formulation, resilience thresholds, structural 
vulnerability, and Pareto-based evaluation.

3. Adversarial distributed optimization

3.1. Problem formulation

Resilience in distributed optimization is essential for maintaining 
system performance under adversarial conditions. Adversary agents 
disrupt operations, degrade efficiency, and increase vulnerability. This 
raises key questions: How do adversary agents influence the efficiency 
and stability of distributed optimization systems? What thresholds of 
adversarial behavior lead to transitions from resilience to vulnerability 
or collapse? How do parameters such as adversary density, adversarial 
severity, and network positioning influence these transitions?

To address these challenges, we propose a generic adversarial dis-
tributed optimization model tailored to discrete-choice scenarios. Our 
model investigates the trade-offs between system-wide and individual 
agent goals in adversarial settings. It incorporates key parameters, 
including the scale of adversaries, behavioral severity, and structural 
positioning, providing a robust framework to evaluate system vulnera-
bility and resilience. Through this study, we identify critical thresholds 
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Table 2
Comparison of the novelty aspects of this work with related distributed optimization approaches.
 Criteria This work [10] [26] [27] [28] [29] [30] [31] [32–34] [35,36] [9] [37] [38,39] [42–44] 
 Multi-objective 
optimization

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

 Discrete 
decision-making

✓ ✓ ✓ ✓  

 Resilience & 
vulnerability 
thresholds

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

 Structure analysis ✓ ✓ ✓ ✓ ✓  
 Pareto analysis ✓ ✓  
 

Table 3
Nomenclature utilized in this research.
 Notation Description  
 𝐴 set of agents in the network  
 𝗇= |𝐴| number of agents  
 𝐴𝖽 ⊆ 𝐴 set of adversary agents  
 𝐴𝗅 ⊆ 𝐴 set of legitimate agents  
 𝑃𝖺 set of possible plans of agent 𝑎 
 𝑝𝖺,𝗂∈ 𝑃𝖺 plan 𝑖 of agent 𝑎  
 𝑘 number of plans  
 𝑑 size of plan  
 𝑠𝖺 selected plan of agent 𝑎  
 𝑔 global response  
 𝐷 discomfort cost  
 𝑓𝐷 discomfort cost function  
 𝐼 inefficiency cost  
 𝑓𝐼 inefficiency cost function  

for transitions from resilience to collapse, providing an in-depth under-
standing of system behavior under adversarial influence. These findings 
inform the development of self-healing strategies that enhance fault-
tolerance and mitigate adversarial impacts across diverse distributed 
optimization applications.

3.2. Network model

Consider a network with 𝗇 agents, denoted by 𝐴, each identified by a 
unique ID in the set {1, 2, 3,… , 𝗇}. The network topology is represented 
as a connected graph 𝐺 = (𝐴,𝐸), where 𝐴 is the set of agents, and 𝐸
is the set of edges, with (𝑗, 𝑖) ∈ 𝐸 not necessarily implying (𝑖, 𝑗) ∈ 𝐸. 
Agents interact within a self-organized network through bidirectional 
communication to exchange information and update their states to 
align with system goals.

Table  3 summarizes the notations used throughout the paper to 
formalize the network model and optimization framework.

3.3. Optimization framework in discrete-choice scenarios

In distributed discrete-choice optimization, each agent 𝑎 ∈ 𝐴 selects 
one option from a finite set of 𝑘 alternatives referred to as possible plans
𝑃𝖺⊂ R𝑑 . Each plan 𝑝𝖺,𝗂∈ 𝑃𝖺 is a sequence of size 𝑑 that represents a 
decision configuration, such as resource allocation or scheduling. These 
plans reflect the agent’s potential future operations, from which the 
agent selects one, denoted as 𝑠𝖺. The collective outcome is captured by 
the global response 𝑔 =

∑

𝑎∈𝐴 𝑠𝖺, which aggregates all selected plans of 
all agents to evaluate system-level performance. For instance, in power 
grid systems, each household acts as an agent with multiple plans 
representing alternative appliance energy consumption levels [56]. 
Each household selects one plan, contributing to the total energy 
consumption, which represents the global response (𝑔) in power grid 
systems.

Agents aim to balance their individual preferences with system-wide 
goals, which often involve conflicting criteria. Each agent 𝑎 has an 
individual preference for its plans, quantified by the discomfort cost (𝐷), 
4 
such that 𝐷𝑎,𝑖 = 𝑓𝐷(𝑝𝖺,𝗂), where 𝑓𝐷 measures how undesirable plan 𝑖 is 
for agent 𝑎 based on the agent’s preferences; lower costs indicate more 
preferred plans. Each agent 𝑎 evaluates the costs 𝐷 for each possible 
plan 𝑝𝖺,𝗂∈ 𝑃𝖺 and the plan with the minimum cost is selected.

While agents aim to minimize their own discomfort, they may also 
consider system-wide metrics such as the inefficiency cost (𝐼). The 
inefficiency cost (𝐼) is the measure used to evaluate the collective 
system-wide performance based on the aggregated responses of all 
agents. It represents the system-wide performance inefficiency that 
agents aim to minimize through coordinated decision-making: 𝐼 =
𝑓𝐼

(
∑𝗇

𝑎=1(𝑠𝖺)
)

. Each agent selects a plan that minimizes a weighted 
combination of individual discomfort and system-wide inefficiency, as 
shown in Eq.  (1).

𝑠𝖺 = arg
𝑘

min
𝑖=1

(

𝛼𝑎 ⋅ 𝐼𝑎,𝑖 + 𝛽𝑎 ⋅𝐷𝑎,𝑖
)

= arg
𝑘

min
𝑖=1

[

𝛼𝑎 ⋅ 𝑓𝐼
(

𝑠1 + 𝑠2 +⋯ + 𝑠𝗇
)

+ 𝛽𝑎 ⋅ 𝑓𝐷
(

𝐷1,𝑠, 𝐷2,𝑠,… , 𝐷𝗇,𝑠
)]

, (1)

where 𝛼𝑎 + 𝛽𝑎 = 1 & 𝛼𝑎, 𝛽𝑎 ∈ [0, 1]

The behavior of agent 𝑎 is modeled by the corresponding weights 𝛼𝑎
and 𝛽𝑎, which represent agent’s priorities between minimizing system-
wide inefficiency and personal discomfort, respectively. A higher weight
indicates a higher preference for minimizing the corresponding objec-
tive. On the other hand, a weight of 0 means that the corresponding 
objective is not considered. For instance, an agent with 𝛼𝑎 = 1 and 
𝛽𝑎 = 0 behaves altruistically, prioritizing global goals. Conversely, 
𝛼𝑎 = 0 and 𝛽𝑎 = 1 define a selfish agent focusing solely on its individual 
preference.

3.4. Adversarial distributed optimization model

We propose an adversarial model applicable across a range of com-
binatorial optimization scenarios. In this model, the agent population 
𝐴 is partitioned into two disjoint subsets: legitimate agents 𝐴𝗅 and 
adversary agents 𝐴𝖽, such that 𝐴 = 𝐴𝗅∪𝐴𝖽. While legitimate agents, 𝐴𝗅 ⊆
𝐴, align their actions with system-wide objectives to optimize overall 
performance, adversary agents, 𝐴𝖽 ⊆ 𝐴, prioritize their individual 
interests over collective system goals by adapting their behavior to 
maximize personal benefits. For instance, in a bike-sharing system [53], 
optimization ensures a balanced distribution of bikes across stations to 
meet user demand. Legitimate users may select pick-up and drop-off 
stations while considering system-wide efficiency, maintaining network 
equilibrium. In contrast, adversary users prioritize their own conve-
nience, selecting stations solely based on personal preference, leading 
to imbalances such as empty or overloaded stations, and ultimately 
degrading overall efficiency and user satisfaction.

Adversarial behavior is modeled by adjusting the weight 𝛽𝑎 in the 
agent’s decision function (Eq.  (1)). Legitimate agents are assigned 𝛽𝑙 =
0, fully aligning with system goals, while adversary agents are assigned 
𝛽𝑑 > 0, increasing emphasis on personal discomfort minimization at 
the expense of system-wide efficiency. This parameterization allows 
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adversarial behavior to be modeled in a continuous space, from fully 
altruistic to fully selfish.

By varying the distribution and severity of adversarial weights 
across the agent population, our model enables systematic analysis of 
resilience, vulnerability, and collapse in distributed optimization. This 
includes assessing how the impact of adversarial behavior is linked to 
the network positioning of the adversary agents and legitimate agents. 
Adversarial behavior amplifies the inefficiency cost 𝐼 , reflecting the 
trade-off between minimizing individual discomfort (𝐷) and optimizing 
overall system efficiency (𝐼). While 𝐷 focuses on individual prefer-
ences, 𝐼 addresses the system-wide inefficiency caused by deviations 
from optimal resource allocation, underscoring the conflict between 
individual and collective optimization goals.

4. Experimental methodology

This section illustrates the distributed optimization method em-
ployed as a case study, the experimental setup, the application scenar-
ios, the measured variables and the evaluation metrics.

4.1. Distributed optimization method

The adversarial distributed optimization model is implemented 
within the Iterative Economic Planning and Optimized Selections (I-EPOS) 
framework. I-EPOS is a discrete-choice distributed combinatorial op-
timization algorithm for large-scale multi-agent networks [53,54]. It 
employs a self-organized, multi-level hierarchical structure to enable ef-
ficient communication, coordination, and scalability while minimizing 
communication overhead [57].

I-EPOS enables the agents to iteratively coordinate their choices 
in collective decision-making. Each iteration consists of two distinct 
phases: a bottom-up phase and a top-down phase. During the bottom-
up phase, agents select plans based on the aggregated choices of agents 
in the branch beneath, as well as the selections made by all agents 
in the previous iteration. Conversely, the top-down phase addresses 
incomplete knowledge from higher branches in the hierarchy, enabling 
agents to revert to previous selections if no cost reduction is achieved. 
This process continues until a predefined iteration limit is reached or no 
further improvement in the optimization objective occurs [53,54]. This 
iterative coordination mechanism addresses the inherent complexity of 
multi-agent optimization, particularly under non-linear cost functions 
and incomplete knowledge of other agents’ choices. These conditions 
make the optimization problem NP-hard [53], requiring distributed 
coordination methods that allow agents to refine their decisions based 
on both local preferences and system-wide impact.

The hierarchical network is structured as an acyclic graph, where 
each parent agent aggregates responses from its children by avoiding 
double counting. This design ensures efficient coordination when op-
timizing individual decisions and system-wide objectives [53,55,57]. 
I-EPOS is well-suited for adversarial scenarios in large-scale distributed 
systems due to its scalability, adaptability to diverse agent behaviors, 
and potential mitigate adversarial conditions [54,58].

To apply the proposed adversarial model, the I-EPOS framework 
was extended to support heterogeneous agent behaviors. The original 
implementation assumed uniform agent preferences across the pop-
ulation. We enhanced the framework to allow agents to configure 
individual decision-making weights. This enhancement enables mod-
eling adversarial agents with varying levels of behavioral severity and 
is made available as an open-source artifact to support reproducibility 
and future research4.

4 Available at https://github.com/epournaras/EPOS.
5 
4.2. Experimental setup

Experiments are conducted using multiple HPC servers with varying 
configurations that support large-scale experimentation and ensure 
computational efficiency. These include high-memory nodes (up to 
768 GB) and multi-core processors (up to 40 cores per node). In 
addition to these servers, the University of Leeds ARC4 system5 is 
utilized. The ARC4 system includes two nodes, each equipped with 40 
cores, 768 GB of memory, and 800 GB of storage, providing robust 
computational capacity for large-scale experiments.

4.3. Application scenarios

Adversarial distributed optimization is studied in three application 
scenarios based on real-world data and a synthetic dataset. Table  4 
provides an overview of the datasets used in this research, including 
the agent populations, the number and size of plans per agent, agent 
representation and the interpretation of discomfort and inefficiency 
costs within each application domain. These costs are defined explicitly 
through the optimization objectives and reflect domain-specific con-
straints. Further mathematical definitions of cost functions are provided 
in Appendix  A.

4.3.1. Energy-demand dataset
The energy application scenario uses a dataset derived from simu-

lated zonal power transmission in the Pacific Northwest.6 The dataset 
includes power consumption profiles for 1,000 users, with each user 
represented by an agent containing 10 possible plans. Each plan com-
prises a 144-length sequence representing electricity consumption at 
5 min intervals over a 12-hour period. These plans are generated 
using load-shifting strategies to balance grid load during peak and off-
peak hours, reducing strain on the energy system. Plans are ranked by 
preference scores ranging from 0 to 1, with higher scores reflecting 
greater alignment with the user’s original consumption patterns. The 
inefficiency cost is measured as the deviation in aggregated energy 
consumption from the desired load-balancing levels, capturing the sys-
tem ability to maintain stability and efficiency. Adversarial households 
disrupt the system by selecting plans that counteract load balancing, 
thereby increasing the risk of grid instability during peak periods.

4.3.2. Privacy dataset
The privacy dataset originates from a living-lab experiment at the 

Decision Science Laboratory7 of ETH Zurich, involving 72 participants 
evaluating 64 data-sharing scenarios that involve 4 sensor types, data 
collectors, and contexts [58]. The data-sharing choices of each par-
ticipant in the experiment determine three data-sharing plans, repre-
senting their intrinsic motivation to share and two rewarded scenarios. 
The plans are assessed using privacy valuation schemes assigning nor-
malized costs ranging from 0 to 1, where lower costs indicate less 
privacy compromise. The dataset facilitates testing under high and low 
privacy-preservation target signals. The inefficiency cost is calculated 
by the residual sum of squares between the shared and the desired 
data that measures their mismatch and is an indicator of quality of 
service supported by the collected data. Adversarial participants dis-
rupt coordination by focusing solely on minimizing their data sharing, 
under-mining the quality of service of data collectors.

5 ARC4 is an HPC cluster at Leeds providing a Linux-based HPC service 
based on CentOS 7. More information: https://arcdocs.leeds.ac.uk/systems/
arc4.html.

6 Available upon request at http://www.pnwsmartgrid.org/participants.asp.
7 https://www.descil.ethz.ch

https://github.com/epournaras/EPOS
https://arcdocs.leeds.ac.uk/systems/arc4.html
https://arcdocs.leeds.ac.uk/systems/arc4.html
http://www.pnwsmartgrid.org/participants.asp
https://www.descil.ethz.ch
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Table 4
Description of the datasets and experimental setup in this research.
 Dataset 
name

No. 
agents

No. 
plans

Plan 
size

Agents Discomfort cost Inefficiency cost Total experiments  

 Energy 1000 10 144 Households Time shift from 
intrinsic preference

Variance of energy 
demand

3,118,560  

 Privacy 72 3 64 Smart phone 
users

Privacy loss Mismatch between 
shared and desired 
data

498,780 (2 target 
signals)

 

 Voting 266 31 5 Voters Compromise distance 
from intrinsic voting 
preferences

Polarization 103,456,800 (120 
target signals)

 

 Gaussian 
(synthetic)

10–100 2–10 2 Simulated 
agents

Ranking distance Variance 4,125,000  
4.3.3. Voting dataset
This new dataset is derived from voting data in a regional election 

with five candidates and 266 voters8 [59]. Each voter has 31 alter-
native voting plans, representing ranked preferences among the five 
candidates. The optimization focuses on minimizing polarization in the 
voting outcomes, which refers to reaching the same voting outcome 
but with compromises that reduce polarization. Polarization here is the 
inefficiency cost and it refers to the mismatch from a liner ranking of 
the alternatives in the voting outcomes, although other polarization 
models could be studied as well [60]. The rationale of linearity is to 
deviate from concentrating the voters’ preferences to two opposing 
poles. To control for the same voting outcome, 120 target signals are 
generated from all combinations of values 0, 0.25, 0.5, 0.75, and 1, rep-
resenting the linear ranking of alternatives. Adversarial behavior occurs 
when voters prioritize their intrinsic preferences, i.e., no compromises 
to reduce polarization.

4.3.4. Synthetic Gaussian dataset
The synthetic dataset is constructed to evaluate system scalability 

under controlled, domain-agnostic conditions. It includes 100 agents 
with 10 generated plans, where each plan is a 100-dimensional vector 
sampled from a Gaussian distribution  (0, 1). Plans are sorted by their 
index, with lower indices arbitrary indicating higher agent preference. 
Discomfort cost is defined as the rank of the selected plan—i.e., a 
higher index reflects greater deviation from the most preferred op-
tion. Inefficiency cost is measured as the variance of the aggregated 
global response, capturing system-wide imbalance. This synthetic setup 
allows systematic analysis of adversarial effects across varying agent 
populations, number/size of plans, and attack configurations.

4.4. Varying dimensions and performed experiments

The following dimensions are studied in the performed experiments:

• Scale of adversaries (|𝐴𝖽|): Incrementally increase the number 
of adversary agents 𝐴𝖽 from 1 to 𝗇 across all datasets to analyze 
performance under varying adversary densities; i.e., 𝐴𝖽 = {𝑎 ∣ 𝑎 ∈
𝐴}.

• Adversarial severity (𝛽): The adversarial preference to minimize 
discomfort cost (𝛽) is varied across 30 levels, with 𝛽 incrementing 
from 0 to 1 such that 𝛽 = 𝑏

30  for 𝑏 = {1, 2, 3,… , 30}.
• Adversary position: The influence of adversary positions within 
the hierarchical network is analyzed using two approaches: layer-
wise and cumulative structural analysis. A binary tree structure is 
employed, with each hierarchical layer containing approximately 
log2 |𝐴| agents, where |𝐴| is the total number of agents. The struc-
tural analysis evaluates inefficiency costs under varying adversary 

8 The UK Labor Party Leadership Vote Available at https://preflib.simonrey.
fr/datasets.
6 
scales (25%, 50%, 75%, 100%) at each layer of the hierarchy. The 
cumulative analysis examines the aggregated impact of adversary 
agents positioned incrementally in top-down (root-to-leaf) and 
bottom-up (leaf-to-root) configurations.

For each dataset, experiments are conducted across 30 adversarial 
severity levels (𝛽) with 100 simulation runs per configuration.

Layer-wise structural analysis is performed at four adversarial pro-
portions 𝑝 ∈ {25%, 50%, 75%, 100%} within each layer of the hierarchical 
topology, where the number of layers is defined as ⌈log2 |𝐴|⌉. For 
each layer 𝐿, the number of adversarial agents is calculated as 𝑘𝑝 =
max

(

1,
⌈

𝑝
100 ⋅ |𝐴𝐿|

⌉)

, where |𝐴𝐿| denotes the number of agents in 
layer 𝐿. Adversarial configurations are sampled up to 100 combinations 
per setting to ensure computational feasibility.9 In addition, two cumu-
lative structural attack scenarios are simulated, top-down (root-to-leaf) 
and bottom-up (leaf-to-root), introducing 2 × |𝐴| further experiments 
per dataset. The total number of experiments per dataset is calculated 
as:

Total Experiments = (30 × number of signals) × [(100 × |𝐴|)

+
∑

𝐿
∑

𝑝 min
(

100,
(

|𝐴𝐿|
𝑘𝑝

)

)

+ (2 × |𝐴|)
]

For the synthetic Gaussian dataset, experiments vary both agent 
populations and the number of plans per agent (from 2 to 10). The total 
number of experiments is computed as: Total ExperimentsGaussian =
∑10

𝑖=1 (10𝑖 × 30 × 5 × 50), where 𝑖 is the number of agents, 30 is the 
number of severity levels, 5 is the number of plans, and 50 is the 
number of random structural permutations (i.e., reordering of agents 
in the tree). 

4.5. Evaluation metrics

Optimization objectives: System performance is assessed using 
three metrics: inefficiency cost 𝐼 , discomfort cost 𝐷, and the compro-
mise cost of legitimate agents. Inefficiency cost captures the deviation 
from optimal system performance. Discomfort cost reflects individ-
ual agents’ dissatisfaction, i.e. to what extent a plan is not the most 
preferred one. The compromise cost quantifies the increase in discom-
fort experienced by legitimate agents due to adversarial influence. It 
is calculated as the difference in discomfort between scenarios with 
and without adversaries, highlighting the collective burden legitimate 
agents bear to maintain system performance.

Pareto optimality: In multi-objective optimization, the Pareto front 
defines solutions where no objective can improve without compro-
mising another objective. The knee point on this front identifies the 
most balanced trade-off between competing objectives. This study uses 
the Minimum Manhattan Distance (MMD) method to locate the knee 
point, measuring the distance from each Pareto solution to an ideal 
reference point where both objectives are optimized. The solution with 

9 The equation assumes up to 100 combinations per layer-percentage, but 
the binary hierarchy often yields fewer due to limited agents per layer.

https://preflib.simonrey.fr/datasets
https://preflib.simonrey.fr/datasets
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Fig. 1. Inefficiency, discomfort, and compromised discomfort over adversary scales and severity in the energy, voting, and privacy datasets, including Pareto knee points and 
resilience (R), vulnerability (V), and collapse (C) thresholds.
the smallest distance is selected. This approach ensures a balanced 
trade-off between discomfort (𝐷) and inefficiency (𝐼) in line with 
established approaches [61,62].

Resilience, vulnerability, and collapse framework: To classify 
system states, the multi-Otsu thresholding method is applied to segment 
inefficiency and discomfort values into three distinct regions: resilience 
(low inefficiency), vulnerability (moderate inefficiency), and collapse 
(high inefficiency). This technique minimizes intra-class variance, of-
fering a robust framework to detect transitions in system performance 
under adversarial conditions [63,64].

5. Results analysis and discussion

This section presents the results of extensive experiments evalu-
ating the impact of adversarial agents on multi-objective distributed 
optimization across the real-world (energy, voting, and privacy) and 
synthetic datasets.

5.1. Resilience analysis

Fig.  1 presents inefficiency, discomfort, and compromised discom-
fort costs across varying adversary scales and severity levels (𝛽). These 
metrics capture degradation in system performance, agent satisfaction, 
and the impact on legitimate agents. The graphs include resilience, 
vulnerability, and collapse thresholds, with overlaid Pareto knee points. 
For the inefficiency and compromised-discomfort plots, knees mark the 
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best trade-off between those two metrics; on the discomfort heatmaps, 
the knee indicates the minimal total discomfort for a given inefficiency.

Inefficiency cost (Fig.  1(a)) remains low in the resilience zone, 
especially when adversary ratios are below 30%–50% and 𝛽 < 0.8. 
As adversary scale and severity increase, systems shift from Resilience 
to Vulnerability and Collapse, with thresholds varying across datasets. 
Energy and voting maintain  90% resilience and only 3%–5% collapse, 
while privacy configurations show earlier collapse near 20%. In energy, 
inefficiency peaks at 𝛽 = 1 near 4000 cost,10 when adversaries exceed 
85%. In the voting dataset, inefficiency increases by 111% in the 
vulnerable region, with collapse triggered beyond 70% adversaries at 
𝛽 ≥ 0.96. Privacy collapses earlier: 𝛽 ≥ 0.3 at 50% adversaries in the 
high privacy-preserving signal with 50% adversaries, and 𝛽 ≥ 0.5 in 
the low privacy-preserving signal.

Discomfort cost (Fig.  1(b)) shows a consistent decline as adversar-
ial intensity increases. In resilient regions, typically below 30%–50% 
adversary presence and 𝛽 < 0.7, discomfort initially remains high but 
declines gradually, then sharply in collapse regions, as adversary scale 
and severity increase. In the energy dataset, discomfort remains high 
only below 30% adversaries and drops by 8% before collapsing to 
near-zero. The voting dataset follows a similar pattern, with discomfort 
gradually decreasing and fully eliminated in collapse. The privacy 

10 Values for 𝛽 = 1 in the energy dataset are excluded from visualizations to 
avoid heatmap saturation due to extremely high inefficiency values.
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Fig. 2. The pareto optimality of the energy voting, and privacy datasets.
datasets exhibit earlier collapse (𝛽 > 0.3, >60% adversaries), resulting 
in faster discomfort decline.

Compromised discomfort cost (Fig.  1(c)) increases with adversarial 
presence. In the energy dataset, it remains low for 𝛽 < 0.8 even when 
all agents are adversarial, but rises sharply when the adversary scale 
exceeds 40% at 𝛽 > 0.9. In voting, the cost remain low under mild 
attacks (𝛽 < 0.2, adversary scales < 20%) and increase gradually beyond 
50% at 𝛽 > 0.7. Privacy datasets show a steeper rise, peaking at 9 (high 
privacy) and 10 (low privacy) when 90% of agents are adversarial. 
Resilience disappears at high adversary densities (> 80%), even under 
low severity, and collapse emerges at low 𝛽 when agent compromise is 
widespread. While energy and voting are more sensitive to 𝛽, privacy 
is primarily affected by adversary scale.

Interestingly, a noticeable resilience lag exists between the system-
level inefficiency and the agent-level discomfort and compromise costs. 
In all datasets, a substantial portion of configurations classified as ‘‘Vul-
nerable’’ or even ‘‘Collapsed’’ by inefficiency remain in the ‘‘Resilient’’ 
state when evaluated by discomfort metrics. For instance, in the energy 
dataset, while only 6% of configurations are in vulnerability based 
on inefficiency, 59% fall under vulnerability based on discomfort—
indicating that discomfort degrades far earlier. Similarly, in the voting 
dataset, 21% of configurations are classified as vulnerable by ineffi-
ciency, compared to 70% by discomfort. This pattern reveals a lag 
of up to 40%–60% in the transition from individual to system-level 
degradation, with discomfort and compromise metrics acting as early-
warning indicators long before global inefficiency surfaces. This insight 
underlines the importance of incorporating agent-centric metrics for 
proactive resilience monitoring.

5.2. Pareto optimality analysis

Pareto optimality analysis identifies fronts and knee points reflect-
ing optimal trade-offs under varying adversarial conditions. Fig.  2 
shows how system inefficiency relates to discomfort experienced by 
legitimate agents across different severity levels and adversary scales.

Fig.  2(a) focuses on the impact of adversarial severity (𝛽) on the 
tolerated scale of adversaries. The voting dataset maintains stable knee 
points across 50%–60% adversary ratios over a broad severity range 
(0.1 ≤ 𝛽 ≤ 0.7), with consistent fronts even at high 𝛽. The privacy 
dataset shows distinct patterns: the high privacy-preserving signal toler-
ates 70% adversaries at 𝛽 < 0.5, decreasing to 50% at higher severities; 
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the low privacy-preserving signal exhibits smoother transitions with 
average tolerance near 68%.

Fig.  2(b) evaluates the impact of adversarial scale on tolerated 
severity. For visual clarity, only 20 adversary scales are shown per 
dataset. In energy, knee points are stable at 0.03 < 𝛽 < 0.3 for up to 90% 
adversaries, increase to 𝛽 = 0.9 at lower scales (< 40%), and decline to 
𝛽 < 0.1 at full scale. Voting shows higher tolerance, with knee points 
extending 𝛽 = 0.8 even under full adversaries. Privacy dataset shows 
greater variability: the high privacy-preserving configuration reaches 
𝛽 = 0.2 for 50%–90% adversaries, while the low privacy-preserving 
case peaks at 𝛽 = 0.36 for 20% adversaries and declines to 𝛽 = 0.13 at 
full scale. Detailed Pareto plots are in Appendix  C.

5.3. Structure analysis

This section analyzes how hierarchical structures influence inef-
ficiency costs across datasets using two approaches: layer-wise and 
cumulative structural analysis.

5.3.1. Layer-wise structural analysis
Fig.  3 presents the inefficiency costs across hierarchical layers under 

adversary scales of 25%, 50%, 75%, and 100%. For layers with few 
agents, intermediate adversary ratios are approximated by averaging 
to the closest feasible configurations.

In the energy dataset (Fig.  3(a)), with 1,000 agents over 10 layers, 
inefficiency remains low (below 0.16) across moderate adversarial 
scales and gradually increases with severity (𝛽 < 1.0). The minimum 
inefficiency occurs at layer 2 under 100% adversaries and 𝛽 = 0.56, 
while inefficiency peaks at layer 8 under 𝛽 = 0.96, marking a 144% 
increase from the minimum. Profiles remain smooth under 25% and 
50% adversary scales but fluctuate more at 75% and 100%. Under 
extreme severity (𝛽 = 1), inefficiency surges sharply, reaching over 723 
at full adversarial saturation. With this severity, the root layer shows 
moderate inefficiency, exceeding layers 2–7 at 75% and matching lay-
ers 2 and 3 at 100%, followed by a steady increase down the hierarchy. 
Despite layer 10 hosting the largest agent population, its inefficiency 
values are slightly lower than those of layer 9.

In the voting dataset (Fig.  3(b)), with 266 agents over 9 layers, inef-
ficiency remains stable across all layers under low adversarial severity 
(𝛽 ≤ 0.3). As severity increases, costs escalate, particularly at the root 
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Fig. 3. Inefficiency costs across hierarchical structure layers under various adversarial configurations.
(Layer 1) and Layers 2 and 3, which consistently experience higher 
inefficiency than deeper layers. The maximum inefficiency is observed 
at layer 8 under 100% adversaries, where agent density is highest. 
Layer 9,despite its depth, shows lower inefficiency due to a smaller 
agent count. At 25% and 50% adversary scales, inefficiency profiles 
remain relatively smooth; however, at 75% and 100%, cost escalations 
become pronounced, particularly in upper and middle layers.

In the privacy dataset (Figs.  3(c) and 3(d)), with 72 agents across 
7 layers, inefficiency remains low and uniform under low severities. In 
the high privacy-preserving configuration, the root layer consistently 
incurs higher costs than subsequent layers across all adversary scales, 
with inefficiency peaking at layer 6 (the layer with the largest number 
of agents) under 𝛽 ≥ 0.7. Layer 7, although deeper, has lower costs due 
to fewer agents. In the low privacy-preserving configuration, similar 
trends are observed with occasional fluctuations between layers 5 
and 6 at higher adversary scales. Overall, inefficiency profiles remain 
structurally consistent between both privacy settings, though severity 
levels accelerate cost increases in the high-privacy case.
9 
5.3.2. Cumulative structural analysis
Cumulative analysis evaluates how adversarial influence propagates 

through hierarchical structures in two configurations: top-down (root-
to-leaf) and bottom-up (leaf-to-root). Fig.  4 shows inefficiency across 
layers under both directions.

In the top-down positioning, the energy dataset remains resilient up 
to layer 7 with 20% adversaries. Collapse occurs at layer 10 when the 
adversary ratio exceeds 50% and 𝛽 > 0.9. In voting, resilience holds 
through layer 4, with vulnerability at layer 5 and collapse at layers 
6–7 under high severity (𝛽 > 0.9). In the privacy datasets, both signals 
remain resilient in the top four layers, with vulnerability emerging at 
layer 4 for 𝛽 > 0.7. Collapse appears at layer 6 in the high privacy-
preserving signal with over 60% adversaries, and slightly earlier in the 
low privacy-preserving signal with 50% adversaries.

In the bottom-up direction, the energy dataset shows a narrower 
vulnerability and collapse region. Vulnerability begins at layer 9 with 
50% adversaries, and collapse follows at layer 10 under high severity 
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Fig. 4. Inefficiency cost across hierarchical structure layers under various adversarial configurations in energy, voting and privacy datasets.
Fig. 5. Normalized inefficiency and discomfort costs on synthetic Gaussian data across varying numbers of agents, plan options per agent, and adversary ratios.
(𝛽 > 0.9). Voting results are similar across both directions, with tran-
sitions driven more by adversary ratio than structural depth. Vulnera-
bility emerges at layer 6 with 20% adversaries, and collapse follows at 
layer 5 with 60%. In privacy, vulnerability appears at layer 6 in both 
signals; collapse occurs at layer 6 (high privacy-preserving) and layer 
5 (low privacy-preserving).

5.4. Scalability analysis with synthetic data

To benchmark scalability, we use a synthetic Gaussian dataset to 
systematically vary agent population (10–100) and plan count (2–10) 
under different adversarial ratios. This controlled setup reveals opti-
mization performance across configurations under adversarial pressure. 
Fig.  5(a) shows normalized inefficiency costs across agent counts, 
adversary ratios, and plan numbers. Inefficiency remains low in most 
configurations but begins to rise when adversarial presence exceeds 
70%. With fewer plans (2–4) and smaller agent populations, ineffi-
ciency increases gradually, whereas larger populations (60–100 agents) 
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and broader plan spaces exhibit sharper increases at 100% adver-
saries. Expanding the number of plans (6–10) significantly enhances 
resilience, maintaining low inefficiency even at moderate adversarial 
scales (10%–80%). Peak inefficiency occurs in systems with larger 
populations (70–100) at 100% adversaries, reflecting reduced tolerance 
to adversarial influence.

Fig.  5(b) presents normalized discomfort costs under the same con-
ditions. Discomfort increases with increasing number of plans. Systems 
with two plans show a gradual decline in discomfort as adversary ratios 
increase, while those with more plans experience sharper reductions. 
Discomfort variation expands with plan complexity, indicating greater 
sensitivity. The number of agents has minimal impact, though the 
10-agent setting occasionally shows marginally lower discomfort than 
larger systems.

5.5. Summary of findings and discussion

The key findings of this work can be summarized as follows: 
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1. The interplay of adversarial scale and severity determines the re-
silience, vulnerability and collapse of distributed multi-objective 
optimization, which is strongly influenced by the optimization 
scenario. 

2. Distributed multi-objective optimization can predominantly re-
main resilient, even for high adversarial scales or severity. 

3. Adversarial attacks trigger high comfort losses by legitimate 
agents as collective compromises that reduce the likelihood of 
collapse for higher vulnerability and resilience. 

4. Comfort compromises of legitimate agents for preserving system 
efficiency under adversarial attacks are predominantly required 
for high adversarial severity.

5. Pareto optimal points for adversarial severity levels and adver-
sarial scales are mainly in the resilience trajectory. However, 
Pareto optimal points for high adversarial scales can expand to 
vulnerability and collapse trajectories. 

6. High adversarial scales reduce the comfort compromises re-
quired by the legitimate agents in the Pareto optimal points for 
adversarial severity levels that can be tolerated. 

7. High adversarial severity levels reduce the system efficiency 
in the Pareto optimal points for adversarial scales that can be 
tolerated.

8. Lower hierarchical levels with higher scales of agents within hi-
erarchical structures of distributed multi-objective optimization 
are more vulnerable to adversarial attacks than top levels with 
lower scales of agents.

9. A top-down positioning of adversary agents within hierarchical 
structures of distributed multi-objective optimization is more im-
pactful on system performance: higher vulnerability, likelihood 
of collapse, and lower resilience.

10. Systems with a small number of agents and low plan diversity 
are more susceptible to inefficiency increases under adversarial 
pressure, even at moderate adversary ratios.

11. Broader plan spaces and larger agent populations enhance sys-
tem resilience in distributed multi-objective optimization, sig-
nificantly suppressing inefficiency across adversarial configura-
tions.

The findings of this paper can be used to develop and enhance cor-
rective self-healing strategies [65] that are cost-effective in practice. 
They can also be used to design incentive mechanisms [66] that 
ensure agents comply to certain standards of safety in critical infras-
tructures such as smart grids. For instance, one challenge of fault-
correction mechanism is the timely detection of adversary agents 
to mitigate their impact [65]. Apparently, redundancy mechanisms 
and rollback operations orchestrated by monitoring mechanisms are 
resource-intensive [65,67]. They require frequent checks that involve 
computations and exchange of messages and they usually rely on static 
thresholds or even manual operations [67]. This is where the insights 
of this work can find applicability: these mechanisms can adapt based 
on the status of the system, for instance, whether it is in the resilience, 
vulnerability and collapse state. Knowing apriori that an optimization 
process can tolerate certain adversarial scales and severity can simplify 
and reduce the costs of applying prevention and mitigation measures. 
It can also provide new insights for security policies, for instance, 
prioritizing the protection of agents at the top of the hierarchical 
optimization structure with stronger security safeguards and resources 
allocated for this purpose [68]. While creating these strategies does not 
fall into the scope of this paper, it is part of the future work to pursue.

6. Conclusion and future work

This study provides a comprehensive analysis of resilience, vulner-
ability, and collapse dynamics in multi-agent distributed optimization 
under adversarial conditions. By systematically examining adversary 
scale, severity, and network structure, we identify critical thresholds 
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where systems transition from stability to failure. These findings offer 
actionable guidance for designing and enhancing the performance of 
recovery and healing strategies.

A key contribution of this work is the release of a large-scale 
benchmark dataset, generated from over 112 million experiments us-
ing the proposed adversarial model. This dataset supports systematic 
evaluation of adversarial impacts and facilitates reproducible research 
across domains of distributed optimization.

Although the adversarial model is designed to be general-purpose, 
the evaluation can be extended to other algorithms in future work. 
Additionally, the current experiments model adversarial behavior with 
static severity levels, which may not fully capture dynamic or strategic 
adversary actions. Furthermore, resilience has been analyzed under 
hierarchical network structures, leaving the behavior under alternative 
topologies an open area for exploration.

Future work will focus on embedding adaptive monitoring and 
mitigation mechanisms into real-time distributed systems. Investigating 
more complex network structures, dynamic adversarial strategies, and 
diverse application domains will further advance the development 
of robust, fault-tolerant optimization systems capable of maintaining 
performance under adversarial conditions.
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Appendix A. Cost function definitions

This appendix presents the mathematical definitions of the cost 
functions used in the optimization experiments. The functions are 
inherited from the original I-EPOS framework [53] and are instantiated 
to reflect the characteristics of each application domain.

Variance

The variance cost measures the dispersion of the aggregated global 
response 𝑔 ∈ R𝑑 and is used in the energy and Synthetic Gaussian 
datasets. It is computed as:

𝑓var =
1
𝑑

𝑑
∑

𝑗=1

(

𝑔𝑗 − 𝑔̄
)2

where:

• 𝑔𝑗 is the aggregated global response at dimension 𝑗,
• 𝑔̄ is the mean of the global response across all dimensions,
• 𝑑 is the dimensionality of the response.
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Fig. B.6. The pareto optimality of the energy voting, and privacy datasets.
Fig. C.7. Pareto optimality analysis for the energy dataset.
Fig. C.8. Pareto optimality analysis for the high privacy-preserving signal in the privacy dataset.
Residual sum of squares (RSS)

The RSS cost quantifies the squared difference between the scaled 
global response 𝑔 ∈ R𝑑 and a predefined system-wide target signal 
𝑇 ∈ R𝑑 . It is used in the voting and privacy datasets and is defined 
as:

𝑓RSS = (𝑠(𝑔) − 𝑠(𝑇 ))𝑇 (𝑠(𝑔) − 𝑠(𝑇 ))

where 𝑠(⋅) denotes the scaling function applied to both vectors to 
improve shape alignment.
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Appendix B. Pareto optimality of total agents

Fig.  B.6 shows the trade-off between system inefficiency and total-
agent discomfort, with Pareto knee points identified for both varying 
severity (a) and adversary scale (b).

Appendix C. Pareto optimality visualizations

This appendix presents detailed visualizations of Pareto fronts for 
10 selected adversarial severity levels (𝛽) and 10 adversary population 
scales across the energy, voting, and privacy dataset as shown in 
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Fig. C.9. Pareto optimality analysis for the low privacy-preserving signal in the privacy dataset.
Fig. C.10. Pareto optimality analysis for the voting dataset.
Figs.  C.7–C.10. Each subfigure illustrates the trade-off between inef-
ficiency cost and the discomfort cost of legitimate agents. Red lines 
indicate the non-dominated Pareto fronts, while red boxes mark the 
knee points, identified using the Minimum Manhattan Distance (MMD) 
method. These visualizations complement the analysis in Section 5, 
offering deeper insights into system behavior under varying adversarial 
conditions..

Data availability

Data will be available due course.
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