
 

                         
Integrating 12 Spatial and Single Cell Technologies to Characterise 

Tumour Neighbourhoods and Cellular Interactions in three Skin Cancer 
Types 

 
P. Prakrithi1,2#, Laura F. Grice1,2,3#, Feng Zhang1,2#, Levi Hockey1,2, Samuel X. Tan4, Xiao Tan1,2, Zherui 
Xiong1,2, Onkar Mulay1,2, Andrew Causer1,2, Andrew Newman1,2, Duy Pham1, Guiyan Ni1, Kelvin 
Tuong5, Xinnan Jin1,2,  Eunju Kim3,4, Minh Tran1, Hani Vu1,2, Nicholas M. Muller4, Emily E. Killingbeck6, 
Mark T. Gregory6, Siok Min Teoh1,Tuan Vo1, Min Zhang7, Maria Teresa Landi8,  Kevin M. Brown8, Mark 
M. Iles9, Zachary Reitz6, Katharina Devitt10, Liuliu Pan6, Arutha Kulasinghe6, Yung-Ching Kao4, Michael 
Leon6, Sarah R. Murphy6, Hiromi Sato6, Jazmina Gonzalez Cruz10, Snehlata Kumari10, Hung N. Luu11, 
Sarah E. Warren6, Chris McMillan12, 13, Joakim Henricson14,15, Chris Anderson14,15, David Muller12,13, 
Arun Everest-Dass16, Blake O’Brien17, Mathias Seviiri16, Matthew H. Law18, 19, 20, H. Peter Soyer4, Ian 
Frazer10, Youngmi Kim6,21, Mitchell S. Stark4, Kiarash Khosrotehrani4, Quan Nguyen1,2 

 

1 QIMR Berghofer, Immunology and Infection program, Brisbane, QLD 4006, Australia 

2 Division of Genetics and Genomics, Institute for Molecular Bioscience, The University of Queensland, QLD 4072, Australia 

3 School of Biomedical Sciences, The University of Queensland, QLD 4072, Australia 
4 Frazer Institute, Dermatology Research Centre, Experimental Dermatology Group, The University of Queensland, Brisbane, 
Australia 
5 Ian Frazer Centre for Children’s Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The 
University of Queensland, Brisbane, Queensland, Australia 
 6 Bruker Spatial Biology, NanoString® Technologies, Seattle WA 98109, USA 
7 School of Agriculture and Food Sciences, The University of Queensland, QLD 4072, Australia 
8 Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA 
9 Leeds Institute for Data Analytics, University of Leeds, Leeds, UK 
10 Frazer Institute, The University of Queensland, Brisbane,QLD 4072, Australia 
11 UMPC Hillman Cancer Center & School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA 
12 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia 
13 Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of 
Queensland, Brisbane, QLD 4072, Australia 
14 Department of Emergency Medicine in Linköping, and Department of Biomedical and Clinical Sciences, Linköping 
University, Linköping, Sweden 
15 Department of Dermatology and venereology in Östergötland, and Department of Biomedical and Clinical Sciences, 
Linköping University, Linköping, Sweden 
16 Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD 4215 
17 Sullivan Nicolaides Pathology, Bowen Hills, Qld 4006, Australia 
18 QIMR Berghofer, Population Health program, Brisbane, QLD 4006, Australia 
19 School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4001, Australia 
20 School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, 4072, Australia 
21 Pfizer, 21621 30th Dr SE, Bothell, WA 98021 
 

 
 

#co-first authors  
Correspondence: quan.nguyen@qimrberghofer.edu.au  
 
 
 
 
 

 
1 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2025. ; https://doi.org/10.1101/2025.07.25.666708doi: bioRxiv preprint 

mailto:quan.nguyen@qimrberghofer.edu.au
https://doi.org/10.1101/2025.07.25.666708
http://creativecommons.org/licenses/by-nd/4.0/


 

Abstract 
Cutaneous squamous cell carcinoma (cSCC), basal cell carcinoma (BCC), and melanoma, the three 
major types of skin cancer, account for over 70% of all cancer cases. Despite their prevalence, the 
skin cancer microenvironment remains poorly characterized, both in the outer skin layer where the 
cancer originates and at the deeper junctional and dermal layers into which it progresses. To address 
this, we integrated 12 complementary spatial single-cell technologies to construct 
orthogonally-validated cell signatures, spatial maps, and interactomes for cSCC, BCC, and melanoma. 
We comprehensively compared and integrated these spatial methods and provided practical 
guidelines on experimental design. Integrating four spatial transcriptomics platforms, we found 
keratinocyte cancer signatures, including six consistently validated gene markers. Spatial integration 
of transcriptomics, proteomics, and glycomics uncovered cancer communities enriched in 
melanocyte–fibroblast–T-cell colocalization with altered tyrosine and pyrimidine metabolism. 
Ligand-receptor analysis across >700 cell-type combinations and >1.5 million interactions highlighted 
key roles for CD44, integrins, and collagens, with CD44-FGF2 emerging as a potential therapeutic 
target. We consistently found differential interactions of melanocytes with fibroblasts and T-cells. We 
validated these interactions using Opal Polaris, RNAScope, and Proximal Ligation Assay. To integrate 
population-scale data, genetic association mapping in >500,000 individuals suggested SNPs enriched 
for spatial domains containing melanocytes, dysplastic keratinocytes, and fibroblasts, shedding light 
on functional mechanisms linking genetic heritability to cells within cancer tissue. This publicly 
available multiomics resource offers insights into the initiation and progression of the most lethal skin 
cancer (melanoma) and the most common forms (cSCC and BCC) and can be explored interactively 
at https://skincanceratlas.com. 

Background  

Although skin cancer is the most common neoplasm, its major subtypes, basal cell carcinoma, 
squamous cell carcinoma, and melanoma, are rarely compared at the cellular and molecular level, 
limiting our understanding of their shared and distinct features. The keratinocyte cancers basal cell 
carcinoma (BCC; ~75-80%) and cutaneous squamous cell carcinoma (cSCC; ~20%), are the most 
prevalent malignancies. Though they have low mortality rates, their high incidence results in 
substantial public health burdens, with ~3.5 million cases treated annually in the U.S. at a cost of 
~$4.8 billion (Rogers et al., 2015; Guy et al., 2015). About a third of skin cancer-related deaths in 
Australia are due to keratinocyte cancer (Czarnecki, 2024). In contrast, melanomas account for less 
than 10% of diagnosed skin cancers but exhibit a markedly higher case fatality rate, constituting the 
majority of all skin cancer-related deaths (Siegel et al., 2022). 

All three major skin cancer types originate in the epidermis, with BCC and cSCC arising from 
keratinocytes (KCs) and melanoma from melanocytes (Fig 1a). Although foundational single-cell 
atlases have characterised the cellular composition of BCC (Guerrero-Juarez et al., 2022; Yerly et al., 
2022, Huang et al., 2023; Ganier et al. 2024), cSCC (Ji et al., 2020; Yan et al., 2021; Zou et al., 2023) 
and melanoma (Tirosh et al., 2016; Jerby-Arnon et al., 2018; Karras et al., 2022; Pozniak et al., 2024) 
individually, a comprehensive comparison of their single-cell architecture within the tumour 
microenvironment has yet to be undertaken. For instance, despite common environmental risk factors 
such as solar UV exposure, and the many overlapping genetic and anatomical attributes, outstanding 
questions remain about which factors determine the initiation and progression of skin cancer and why 
most cSCCs and BCCs are less invasive than melanoma (Wu et al., 2014; Landi et al., 2020; Seviiri et 
al., 2022). Available single-cell datasets for melanoma were produced by early iterations of single cell 
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sequencing technologies capturing fewer cells (Tirosh et al., 2016; Zhang et al., 2022). These studies 
mostly described acral melanoma, uveal melanoma, or in vitro melanoma cell lines (as reviewed by 
Lim and Rigos, 2024). There are no single cell RNA sequencing (scRNAseq) datasets available for 
melanoma that have representative cell types spanning from benign to melanocytic lesions and 
invasive melanoma. Although prior scRNASeq studies have included matched healthy and tumour 
skin (Ji et al., 2020; Yan et al., 2021; Zou et al., 2023; Huang et al. 2023), and compared BCC and 
SCC signatures (Yost et al. 2019), to our knowledge, no single cell sequencing data is available for 
matched healthy skin, cSCC, and BCC lesions from the same individuals, an approach that enables 
direct within-patient comparison across disease states. Spatial data for skin cancer at single cell 
resolution with whole transcriptome coverage, or with multimodal measurements of RNA, proteins and 
metabolites is not available. 

To understand differences in cancer initiation and progression between the three cancer types, 
comprehensive investigation of the skin tissue microenvironment, the cancer cells and their dynamic 
interactions with immune and stromal cells is needed. One common assumption posits that the 
differential initiation of one type of skin cancer over another is a stochastic process driven by the 
random acquisition of UV-induced mutations in susceptible genes in key cell types (Owens et al., 
2003; Ratushny et al., 2012). However, healthy skin also carries a high mutational burden, suggesting 
that DNA mutation alone does not explain the heterogeneity in the initiation of the three cancer types 
(Martincorena et al., 2015; Sini et al., 2018; Lichtenberger et al., 2021). A determining factor for cancer 
initiation and progression other than intrinsic DNA mutations is the tumour microenvironment. cSCC 
and BCC both derive from long-term epidermal residents, such as a subset of basal KCs at the 
epidermal-dermal junction (Owens et al., 2003; Ratushny et al., 2012; Lichtenberger et al., 2021). In 
melanoma, there are multiple paths through which melanocytes develop into melanoma cells (Shain 
and Bastian, 2016). The combination of genetic association studies with the investigation of tumour 
microenvironment could result in insights on cellular intrinsic and tissue environment drivers of skin 
cancer types.  
 
Skin cancers also differ significantly in metastatic potential. Studying cancer progression requires 
investigation at single cell and spatial context. For example, only about 1% of pre-cancerous actinic 
keratosis lesions progress to cutaneous cSCC, and the factors that differentiate progressor from 
non-progressor lesions remain unknown (Werner et al., 2013). Comparatively, benign naevi (i.e. 
moles) have a far lower melanoma transformation rate of ~1/200,000 (Tsao et al., 2003). Around 30% 
of melanomas are derived from benign naevi (Pampena et al., 2017) but the majority arise de novo 
from isolated melanocytes (Marks et al., 1990; Sagebiel et al., 1993; Bevona et al., 2003; 
Weatherhead et al., 2007). To date, it is not yet possible to reliably predict the transition from common 
or dysplastic nevi to melanomas, making regular surveillance the only effective tool for early detection 
(Goodson et al., 2009). BCCs often do not proliferate rapidly and rarely metastasise, while cSCCs are 
more proliferative and a subset of cSCC (~5%) are highly metastatic (Weinberg et al., 2007).  
 
To accelerate advances in treatment, beyond current excision as the standard of care option, drug 
therapies that can permanently cure these skin cancers are highly desirable but are lacking and so 
methods to find new targets are needed. For melanoma patients, a common treatment regimen 
includes targeted therapies (e.g. BRAF- and MEK-inhibitors) and immunotherapies (e.g. anti-CTLA-4 
and anti-PD-1). However, only 30-50% of advanced-stage melanoma patients respond to 
immunotherapies (Sharma et al., 2015; George et al., 2017; Herrscher et al., 2020), and these 
treatments can cause severe immune-related adverse events (Fink et al., 2021). Ideally, such 
treatments should only be offered to patients who are likely to respond, but it is not yet possible to 
confidently stratify patients. Similarly, only approximately 50% of advanced-stage cSCC patients 
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respond to immunotherapy treatment (García-Sancha et al., 2021). To better harness the potential of 
immunotherapies for melanomas and other skin cancers, it is necessary to identify new 
ligand-receptor (LR) targets as actionable (e.g. combinational therapies with PD-1/PD-L1). This, in 
turn, requires an understanding of cancer-immune cell interactions underlying the basis of 
carcinogenesis.  
 
Here, we applied the latest single-cell and spatial technologies to map skin cancer cells, cell-cell 
interactions, and microenvironments. Specifically, we aimed to address keratinocyte cancers (cSCC 
and BCC) tumour micro-environment that vastly differs from melanomas. We integrated 12 distinct yet 
complementary technologies to comprehensively identify spatial, single-cell signatures and compare 
spatial cell-cell interactions (CCIs) to find shared and unique interactions involved in initiation and 
progression in the three skin cancer types. By harnessing the power of spatial multiomics, this study 
has provided valuable data resources to understand gene signatures, cells, spatial communities, and 
cell-cell interactions for the most common cancers and generated new understanding of cell types and 
their activities that are distinct between the three skin cancer types. 

Results  

Ultraplex, multimodal, multiplatform, single cell and spatial omics data resource for skin 
cancer 
To understand the cellular microenvironment of the skin, we leveraged data from 12 molecular 
technologies to curate a spatial, single-cell atlas and interactome of healthy (non-sun-exposed)  and 
cancerous skin. Biopsies were collected from 24 skin donors, consisting of patients diagnosed with 
cSCC (n = 7), BCC (n = 4), and melanoma (n = 7, including n = 3 for snRNAseq) and from non-cancer 
donors (n = 3, Visium and Xenium) (Table S1). Additional healthy skin samples were collected from 
non-sun exposed skin of cSCC patients (n = 5) (Table S1). The diagnosis and biopsy details are 
described in the Methods section. Each biopsy was measured by up to 12 technologies: Chromium 
single-cell RNA sequencing (scRNASeq), FLEX single nuclei sequencing (snRNAseq), whole 
transcriptome Visium spatial transcriptomics, single-cell resolution Xenium spatial transcriptomics, 
NanoString CosMx Spatial Molecular Imaging (CosMx), NanoString GeoMx Digital Spatial Profiling for 
proteins (Immune-oncology panel, GeoMx), GeoMx cancer transcriptome atlas (GeoMX CTA), Opal 
Multiplex Polaris protein assay, RNAScope RNA in situ hybridisation, Proximal Ligation Assay (PLA), 
MALDI-TOF spatial glycomics, and CODEX spatial proteomics (Fig 1). In the following sections, we 
present the results in three themes, including a single cell and spatial atlas (Fig1 to Fig 4), interaction 
atlas (Fig 5 to Fig 7) and integration with population genetics data (Fig 8). 

A single-cell atlas of cSCC cancer representing matched healthy and cancer samples  
We first sought to generate a high-quality single-cell cSCC atlas and compared transcriptomic shifts 
between non-cancer and cancer skin and signatures of cancer cSCC cells. We performed scRNASeq 
on 11 paired samples from healthy (non sun exposed) and cancer biopsies collected from five cSCC 
patients. A total of 45,909 skin cells passed quality control. Initial clustering identified five major 
clusters (“Level 1” annotations) comprising endothelial cells, fibroblasts, melanocytes, keratinocytes, 
and immune cell types (Fig 2a-c, Fig S2). To capture the complexity of the immune microenvironment, 
a second round of clustering and annotation was performed to find eight major immune subsets 
(“Level 2” annotations; Fig 2b-c) and further identified 19 immune cell (sub)types (“Level 3” 
annotations; Fig 2b, Fig S2a,c), representing six T cell subsets, four macrophages, two NK, two 
Langerhans cells (LC), two DC, B cells, plasma cells and CD14+ monocytes. Next, we characterised 
KCs, the dominant cell type within our cSCC scRNAseq dataset (70.6% of cells). We assigned the 
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following labels based upon abundant gene expression: Basal KCs (KRT15+, KRT14+), Differentiating 
KCs (PKP1+, KRT10+), Dysplastic KCs (S100A8+, S100A9+), KC interferon (IFI27+), KC cornified 
(SBSN+, KRT2+, DSC1+) and KC hair (combination of KRT6B+, KRT17+, KRT16+, KRT5+), (Fig 2c, 
Fig 2Sb). Our annotation for scRNAseq is supported by mapping the cells to the skin tissues, where 
the cell labels are transferred from scRNAseq to CosMX data (Fig S2d). The integration and 
comparison between scRNAseq and CosMX data provided evidence for accurate cell type annotation 
based on expected distribution of cell types to skin layers.  
 
Integrating gene signatures and inferred copy number variation to identify cancer keratinocyte 
(KC) cells  
To date, little is known about transcriptional signatures of KC cancer cells at single cell resolution. We 
developed a stringent pipeline to map KC cancer cells (Fig 2d-g). A cell was considered a cancer KC 
cell if the cell had abnormal polyploidy based on CNV analysis (using consensus results from two 
separate CNV inference methods), and had high cancer module scores as calculated for genes that 
were upregulated in tumour compared to normal tissues (Fig 2d-g). This way, we identified a total of 
745 KC cancer cells. Although we did not a priori restrict KC cancer cells to belong to a specific KC 
subtype, the majority (82.6%) of these cells were classified among dysplastic KCs, further supporting 
that they are most probably cancer cells from the intersection of three lines of evidence. This 
stringently defined ‘cancer’ KC population enabled the analysis of their gene signatures as discussed 
later. 
 
Overall shifts in cellular composition between non-cancer and cancer skin samples revealed by 
scRNAseq data 
Our single-cell cSCC atlas incorporated matched healthy and cancer samples from 5 patients and 
comprised 20,827 (45%) cells from cancer biopsies and 25,082 cells (55%) from healthy samples (Fig 
S3a-b). scRNAseq-defined differentially expressed genes between KC cancer samples and matched 
healthy samples show expected gene markers such as S100A7 and KRT6B, (Fig S3c,d). We 
compared cell abundance for patient-matched cSCC and also for melanoma and found overall 
consistent changes in skin cancer compared to non-cancer, with increased abundance of immune 
cells, fibroblast and endothelial cells in cancer samples (Fig 4a). Fibroblast proportions were 
consistently higher in melanoma and cSCC-BCC than in non-cancer tissue, corroborating the role of 
fibroblasts in cSCC development (Schütz et al., 2023). The increased presence of both the lymphoid 
(i.e. T, B and NK cells) and myeloid (i.e. monocytes, macrophages and dendritic cells) in malignant 
skin matched the elevated expression of immune gene signature depicted by the core gene suite 
analysis (Fig S3d,f-g). T cells displayed the highest differences in abundance between cancer and 
non-cancer biopsies (Fig 4a, Fig S3e). For KC populations, the basal and differentiating KCs were 
more prominent in healthy skin, whereas dysplastic and IFN KCs were enriched in cSCC samples, and 
no significant difference in the proportion of KC hair and KC cornified across conditions. 
 
A single-cell reference resource for melanocytic lesions from benign to dysplastic naevus and 
invasive melanoma 
Limited single-cell datasets for cutaneous melanoma were available (Tirosh et al., 2016), a mixed acral 
and cutaneous melanoma study (Zhang et al., 2022), and uveal melanoma and in vitro melanoma cell 
lines (as reviewed by Lim and Rigos, 2024). We opted to produce the latest and more comprehensive 
reference of melanoma cell types using single-nuclei sequencing of formalin fixed tissues. Three 
patient samples were selected and scored by 23 pathologists, with one sample defined as definitely 
invasive melanoma (5591 cells), another as benign naevus (3250 cells) and one severely dysplastic 
naevus sample (1906 cells). From 10,747 single nuclei, we identified 11 immune cell types and five KC 
types, as well as endothelial, fibroblast, pericyte, Schwann cell, and sweat gland clusters (Fig 3a-c, 
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Fig S4). Importantly, we used multiple lines of evidence to distinguish melanoma cells from 
melanocytes (Fig 3d-g). Here, similar to the approach to define KC cancer cells in cSCC, we 
integrated CNV analysis, module scores, and spatial mapping of melanocytes to identify 118 
melanoma cells with high confidence (Fig 3d-g). These cells were used to find signatures of 
melanomas as described below.  
 
Changes in single cell transcriptional profiles between non-cancer and cancer specimens 
Overall, we found more transcriptomic variation between cancer cells from different lineages (3257 
genes higher in cSCC than in melanomas, and 2713 upregulated in melanocytic lesions than in cSCC) 
than within a lineage, (176 genes upregulated in cancer KCs vs healthy KCs and 68 upregulated 
genes in melanoma cells compared to melanocytes) (Fig 4b). The 3257 genes higher in cSCC 
compared to melanomas were enriched for Myc targets, E2F pathways, G2M pathways, mTOR 
signaling and DNA repair pathways, whereas the 2713 genes higher in melanocyte lesions were most 
enriched in KRAS pathway, EMT pathway, IL-2/STAT5 pathway, and UV responses (Fig S5). As 
expected, we found SOX10 higher in melanoma, whereas PTCH2 upregulated in KC cancer.   
 
To find conserved gene expression changes in cSCC, we defined core gene signatures, differentially 
expressed in all five cSCC patients, revealing 57 genes upregulated in cSCC and 98 genes higher in 
healthy skin (Fig S3f). The core cSCC genes were enriched for immunological process GO terms, 
such as T-cell mediated cytotoxicity and antigen processing (Fig S3g), while the healthy signature was 
enriched for homeostatic processes, including "establishment of skin barrier" (GO:0061436) with 
genes like CLDN1, IL18, KLF4, KRT1, NFKBIZ, and TP63, suggesting potential loss of normal balance 
between proliferation and differentiation and skin integrity in cSCC. 
 
Below, we focus on cancer vs. non-cancer KC and melanomas vs. melanocytes to identify 
transcriptome-wide signatures unique to well-defined cancer cells relative to their non-cancer 
counterparts, an important yet understudied topic. 
 
Distinct gene signatures differentiated cancer cSCC from normal KC at single cell resolution 
Using the scRNA-seq dataset, we identified 176 genes significantly upregulated in KC cancer cells  
compared to KC non-cancer cells, with 169 of these not elevated in melanomas. These genes 
highlighted activation of extracellular matrix remodeling pathways, balancing matrix degradation 
through MMP1, MMP3, MMP10, MMP12, MMP13, SERPINB3, SERPINB4, SERPINB13, and 
SERPINE2 (Fig 4c, Fig S5). Genes linked to differentiation, including SOX2, EOMES, DOK6, 
WNT5A.AS1, INHBA, S100A2, S100A7, S100A8, and S100A9, were also upregulated. Additionally, 
specific keratinocyte differentiation markers like CSPG4, SPRR2A, FABP5, and KRT24 also showed 
increased expression. Inflammation-related genes, such as NLRP7, TPSB2, and TPSAB1, were 
enriched, alongside IL-17 pathway components (MMP1, MMP3, MMP13, S100A7, S100A8, and 
S100A9), suggesting a strong inflammatory signature in cancer KC. 
 
Confirming the new gene signatures of cSCC cancer cells by spatial multiomics  
We harnessed data from multiple spatial platforms to identify highly consistent differentially expressed 
genes upregulated in KC cancer cells compared to non-cancer KC cells. To establish a stringent 
baseline, we included samples from healthy donors without skin cancer (Fig S6). Combining 
scRNAseq and three spatial transcriptomics platforms - Visium, CosMX, and Xenium - we identified six 
consistently upregulated genes in KC cancer cells: SOX2, LAMP3 (CD208), CXCL10, CXCL9, CCL5, 
and UBE2C (Fig 4d). Among these, CXCL10 and CXCL9 were the most significantly upregulated. The 
transcription factor SOX2, absent in normal epithelial cells, is essential for cancer-initiating cells in 
cSCC (Siegle et al., 2014). CXCL10, CXCL9, and CCL5 are elevated in cSCC compared to normal 
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skin, playing key roles in tumor progression and T cell infiltration, regulating immune balance in the 
tumor microenvironment (Tuong et al., 2019). LAMP3, a marker for mature dendritic cells, is elevated 
in cancer, facilitating antigen processing and T cell activation, while UBE2C is important for cell 
division. In addition, visual assessment of SOX2 expression in UMAP plots (Fig 2g vs. Fig 4e) and in 
spatial tissue plots (Fig 4f) highlights its specificity to KC cancer cells. 
 
Identified new gene signatures distinguishing melanomas from melanocytes 
The melanoma samples analysed here belong to the common BRAF V600E subtype,  which accounts 
for approximately 50% of all melanoma cases. By stringently defining melanoma cells as described 
above, we identified key marker genes (Fig 4b-c, Fig S4, Fig S5). Among 68 genes highly expressed 
in melanomas compared to melanocytes, we observed strong enrichment for signaling and cellular 
interactions. These included cytokine-cytokine interactions (CXCL2, CXCL9, CXCR3, IL3RA, IL18RAP, 
IL2RB) and immunoregulatory pathways (NCR1, SELL, KLRC1, SH2D1A, CD22, LILRA4, TREML2). 
Markers of differentiation were also upregulated, such as SOX10 (melanocyte development), FLT3 
and IRF8 (DC differentiation). Genes associated with immune evasion, including CTLA4, CD274 
(PD-L1), CXCL9, CXCR3, and ITGAD (CD11d), were also elevated. Additionally, genes linked to 
melanoma progression and invasion, such as UBD (FAT10), and STC2, were upregulated, as were 
genes associated with melanin synthesis such as TYR and DCT. In contrast, genes downregulated in 
melanoma but maintained in normal melanocytes included CST6 (Cystatin E/M), a known suppressor 
of melanoma proliferation and migration (Xu et al., 2021). 
 
Spatially map cells in stroma and cancer immune compartments in cSCC 
We next applied GeoMX Whole Transcriptome Atlas (WTA - 1820 oncogenes) and GeoMX 
immune-oncology protein panel (48 proteins) to identify cells in the Cancer (panCK+) and 
stromal-immune regions (CD45+), (Fig S7; Supplementary Note 1). To confirm the presence of 
immune cell types, we used samples from three cSCC patients for whom we also had parallel 
scRNASeq data (R01, P04 and B18; Fig S3). The 48-protein GeoMx panel captured cell surface 
markers of immune subtypes as identified in our Level 2 and some of the level 3 annotation of the 
scRNAseq cSCC atlas. This way, the multiomics approach provided independent lines of evidence for 
confirming the cell types within a sample. With GeoMx data we found M2 macrophages (CD163, 
CD68), B cells (CD20), CD8+ T cells (CD8), CD4+ T cells (CD4), DCs (CD11c), fibroblasts 
(FAP-alpha, Fibronectin), and Treg cells (FOXP3, CD25) were all captured in our samples (Fig S8, Fig 
S9), lending further supporting evidence to the existence of these cell types seen in our scRNASeq 
data. The cell type deconvolution result for GeoMX TCA data shows the heterogeneity between 
patients, while highlighting the high proportion of T cells across all immune regions adjacent to cancer, 
including CD4+ T cell, CD8+ T cells, and Treg  (Fig S8f). 
 
Detailed spatial map of 21 scRNAseq/snRNAseq defined cell types to transcriptome-wide 
Visium data, GeoMX WTA, and panel-based, single-cell resolution CosMX data  
First, using cell-type signatures for cSCC, BCC and melanoma from scRNAseq/snRNAseq data, we 
mapped these cell types to spatial Visium data, including 5x cSCC, 3x BCC and 4x melanoma 
samples across 9x patients (Fig S10a, Table S1). We spatially mapped all Level 2 cell types from 
scRNAseq data to our Visium data, which also matches the pathological/anatomical annotation (Fig 
S10a). The expression of marker genes in the Visium was consistent with histological annotation (Fig 
S10). For example, in melanoma Patient 48974, we observed dark-pigmented cells (i.e. 
melanophages) at the skin surface of the biopsy (Fig S10a, top right). The corresponding Visium spots 
in this region were predicted to contain a large proportion of melanocytes, based on our deconvolution 
results (Fig S10a, middle). These spots also expressed the highest amount of melanocyte marker 
MLANA (Fig S10a, bottom). This result demonstrates the concordance of multiple layers of 
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information (such as tissue morphology, expression of individual genes, and broader transcriptional 
signatures), establishing an accurate and comprehensive data resource for the later analysis of gene 
markers and all interactions.  
 
Beyond the resolution at the regions of interest (GeoMX WTA and GeoMX protein) or spot level 
(Visium), we next investigated cell types by CosMx data (He et al., 2022) that provides spatial 
information of 131,804 cells (34.4% cSCC, 34.3% BCC, 31.3% melanoma; Table S1). By 
computational annotation, these cells were assigned to 21 cell types that can all be mapped to the 
tissue, demonstrating that spatial cell labelling was highly consistent with pathological annotations, but 
much more detailed (Fig S10b). CosMX data mapped scRNAseq cell-type signatures (e.g., 
keratinocytes, melanocytes, fibroblast and immune cells) to distinct layers in the skin, corroborating 
the accuracy of our scRNAseq cell-type annotation (Fig S3, Fig S10b). The subcellular capture 
resolution of CosMx technology allowed the visual confirmation of cellular location of individual RNA 
molecules. For instance, in cSCC and BCC, we observed correspondence between the single-cell and 
single molecular localisation of RNA markers S100A8 and KRT17 within the KC cells (Fig S10). This 
accurate resource of CosMX data, with spatial single cell expression of nearly 500 ligand/receptor 
genes, is valuable for downstream interaction and community analyses as described later.  

Single-cell spatial heterogeneity analysis suggested a complex tumour community in 
melanomas 

The spatial mapping of CosMX single cell data enabled the characterization of cellular diversity of the 
cancer microenvironment across the three major skin cancer types. Rao’s quadratic entropy score was 
computed and visualised for each cell in a tissue heatmap (Fig S11). A high level of heterogeneity 
correlated with the mixed distribution of diverse immune cell types, for example an FOV with B cells, 
plasmacytoid dendritic cells (pDCs), myeloid and T cells (Fig S11a, b). Indeed, we observed the 
highest heterogeneity scores in immune-rich FOVs (Fig S11d). To compare cell type heterogeneity 
across the different skin cancer subtypes, we grouped scores across all FOVs by cancer type, 
including 30 FOVs from four melanoma patients, 24 FOVs from two BCC patients, and 27 FOVs from 
three cSCC patients (Fig S11c, d). We detected a significant increase in cell type heterogeneity score 
in the melanoma samples compared to in cSCC cancer (Fig S11c, d). This observation may be 
explained by the trend that melanomas do not adhere to each other as much as KC cancer cells, and 
so their neighbour cells can be more diverse. However, we noted that heterogeneity assessment 
would require bigger sample cohorts. 
 
Multimodal mapping of communities in melanoma samples with spatial RNA, protein and 
glycan omics  
Next, we compared the annotation for the same melanoma tissue block using three single cell 
resolution platforms representing three modalities, the Xenium (RNA), CODEX (protein) and mass 
cytometry imaging (MALDI MSI for spatial glycomics), (Fig S10, Fig S12). The expression of 
molecular markers is shown as dot plots in Fig S12 and the clustering analysis for each modality is 
shown in Fig S13-S15. 
For all three modalities, the melanoma/melanocytes could be distinctly identified, using label transfer 
and clustering analysis. We observed the localisation of melanoma markers to the melanocyte layer, 
for example S100B (CODEX protein), and S100B and MKI67 (CosMX), and TYR gene (Xenium), (Fig 
S10b-f). With 260 genes in the skin cancer panel, the single cell Xenium data could define 17 cell 
types where their locations matched the pathological annotation of the tumor and immune cells (Fig 
S10c). All key KC cell types were mapped with the Xenium data. In contrast, the CODEX data could 
not map KC cells, due to lack of protein markers for these cell types, but could clearly pinpoint 
additional immune cell types such as the M2 Macrophages and Neutrophils (Fig S10d). Although the 
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cell-type clustering using glycomics is less defined, it is clear that melanoma/melanocytes exhibited 
unique metabolomic signatures compared to other cell types in the remaining clusters (Fig S10f, Fig 
S12a).  
 
Multiplatform integrative analysis of spatial transcriptomics data identified robust tissue 
microenvironments across biological replicates 
Spatial data enables mapping the spatial organisation of neighbouring cells within skin tissue, 
facilitating the identification of functional tissue communities. A key challenge in spatial community 
analysis is defining shared communities that consistently appear across samples and hold functional 
or phenotypic relevance. To address this, we integrated three spatial transcriptomics datasets (Visium, 
CosMX, and Xenium), consolidating neighbourhood information for each cell/spot into a shared matrix 
to identify meta-communities, consisting of communities with similar cell type composition (Fig 5a, see 
Methods). In particular, we identified a meta-community comprising Visium_2, Xenium_2, Xenium_7, 
and CosMX_6, all enriched for melanocytes and including fibroblasts, basal KC, T cells, and DCs 
across all samples (Fig 5a).  This meta-community analysis enabled us to compare communities 
across platforms. Both Visium and CosMX member communities (CosMX_6 and Visium_2) were 
significantly more abundant in melanoma samples than in BCC and cSCC (Fig S16a, b). 
 
A defining feature of spatial communities is the interaction between their members, which can be 
characterized by ligand-receptor coexpression (Fig 5c, d) or cell-cell colocalization (Fig 5e).  In both 
KC cancers and melanoma, we found fibroblast interactions particularly dominant. Within the 
melanoma-associated CosMX_6 community, interactions were highly enriched for collagen signaling, 
especially between collagens and CD44 (including: COL6A1, COL6A2, COL4A1, and COL1A1) (Fig 
5d). The co-localization analysis in the melanoma communities in three Xenium samples shows that 
Treg and Fibroblasts have a high co-occurrence probability with melanocytes (Fig 5e). This 
cross-platform spatial transcriptomics analysis of the melanoma tumor microenvironment was followed 
by a multimodal characterization of its regulation at the RNA, protein, and metabolite levels, as 
described below. 
 
Cross-modality community analysis characterised molecular signatures in the melanoma 
microenvironment  
A benefit of applying different technologies to measure different classes of biomolecules is the ability 
to gain a holistic insight into cell and tissue-level functions that may not be fully captured with a single 
modality. We therefore next investigated the molecular signatures of the melanoma community across 
multiple analytes (i.e. RNA, protein and metabolites) in spatial context, (Fig 5f-h). First, we performed 
joint pathway analysis of genes/proteins with metabolites using MetaboAnalyst, providing three lines of 
evidence that Tyrosine metabolism was enriched (supported by 3 genes and 24 compounds in KEGG 
pathways), (Fig 5h). Tyrosine is a critical precursor for melanin production in melanocytes and 
dysregulation in this pathway can contribute to melanoma development or progression (Najem et al., 
2021). Interestingly, we found Pyrimidine metabolism upregulated in the melanoma community. This 
pathway is fundamental for DNA and RNA synthesis and is linked to sunlight-associated melanomas, 
melanoma progression and treatment resistance (Edwards et al., 2016; Santoriello et al., 2020). 
Metabolism of Glycine, Serine and Threonine was also enriched. Integrative analysis of the melanoma 
community for adjacent sections in Xenium and CODEX suggested that more complex composition of 
immune cells could be seen in the CODEX data, but a more detailed annotation for fibroblast and 
keratinocyte could be achieved using the Xenium data (Fig 5f-g). Our approach to annotating clusters 
in each modality before combining and comparing clusters provided flexibility in cross-modality 
analyses (Fig S12).   
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Single-cell predictions of CCI suggest differential interactions in healthy and cSCC cancer 
patients  
Next, we compared the spatial and single-cell interactome in cSCC with other skin cancers based on 
single-cell and spatial multi-omics to understand tumour progression and potential treatment targets in 
the tumour microenvironment. First, the scRNAseq cSCC dataset allowed us to predict CCI occurring 
between specific cell types, using CellChat. A total of 312 unique Ligand-Receptor (LR) pairs 
signalling were predicted and more interactions were found in cancer samples than the matched 
non-cancer samples from the same patients (Fig S17). While LR interactions varied between patients, 
core sets of LR pairs were shared across patients. The cancer-specific core LR pairs were enriched 
for immune-related functions including MHC class II complex assembly (Fig S17d), reflecting the more 
active immune processes occurring in the cancerous biopsies. KCs were the dominant ligand 
contributors in healthy samples (Fig S18). However, in cancer samples from the same patients, we 
observed an increase in the total number of predicted LR interactions and a shift in the signalling 
profile for four samples (P04, P30, R01 and B18), with increased signalling from endothelial, fibroblast 
and immune cells relative to KCs (Fig S18). 
 
Spatial transcriptomics enhances the accuracy and specificity of LR interaction predictions by 
incorporating spatial constraints 
Tissue dissociation during scRNASeq library preparation removes cellular spatial context, which can 
result in false positive detection of LR as two cell types predicted to interact in scRNASeq data may 
derive from distant tissue regions, unlikely to directly interact. We thus performed spatially-constrained 
two-level permutation (SCTP) in our stLearn software to predict spatially-informed LR interactions. We 
performed SCTP for CosMX data  (Supplementary Note 2), (Pham et al., 2023). This analysis 
revealed interactions that were predicted by scRNAseq but no colocalization was observed, 
suggesting possible false detection (e.g., XCL1-XCR1), and others that were missed from scRNAseq 
data analyses, but were detected by Visium (e.g. WNT5A-ROR1), (Fig S19a). Indeed, we found cases 
where the scRNAseq missed the interactions, while all three platforms, Visium, CosMX and Xenium, 
strongly supported the interactions both by statistical significance test and by visual co-expression of 
the LR pairs between neighbour pairs (e.g., CXCL12-CXCR4, CCL9-CCR7) (Fig S19b).  
 
Different ligand-receptor interactions specific for a cancer type show important roles of 
angiogenesis, integrins, and fibroblast growth factors 
To identify and compare highly confident interactions, we then applied our multi-platform, multi-sample 
cell cell interaction analysis (MMCCI) approach to integrate the data to find interactions consistent 
across biological replicates, followed by differential interaction analysis performed at cell-type network 
levels (comparing edges connecting two interacting cell types) or at L-R levels (comparing L-R 
interaction scores). We first performed statistical tests for differential LR scores derived from MMCCI 
integrated results. MMCCI calculated interaction strength for each LR pair and each cell-cell pair by 
combining stLearn SCTP scores/p-values across biological replicates. Between the integrated CosMX 
and Visium datasets, we consistently found 16 LR pairs highly expressed in BCC, 17 in cSCC, and 37 
in melanoma (Fig 6a).  
 
For BCC, among the LR pairs enriched, we found strong signals for stromal remodelling, especially 
angiogenesis. Interleukins (IL6-IL6R, IL6-IL6ST, IL1B-IL1RN-IL1R2), chemokines (CXCL2-CXCR1, 
CCL2-ACKR4) and fibronectins (FN1-ITGB8 and FN1-ITGB6) all have roles in angiogenesis and our 
data show that they were higher in BCC (Villani et a., 2021). Interactions in the canonical WNT 
signaling pathways (WNT5A-FZD7 and WNT5A-FZD8; also supported by EPCAM-EPCAM 
interactions) appeared to be more active in BCC. This signaling pathway, although less well known 
compared to the Hedgehog (HH) signalling in BCC, is crucial in coordinating with the HH pathway to 
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maintain the proliferative state of BCC cells and sustain cancer stem-like cells in BCC (Yang et al., 
2008). 
 
For cSCC, strong enrichment of Osteopontin (SPP1) was found with the pairs SPP1-ITGB1 and 
SPP1-ITGAV (uniquely expressed in cSCC), while SPP1-CD44 and SPP1-ITGB5 were upregulated 
compared to in BCC and Melanoma. Through interactions with integrins and CD44, SPP1 may 
activate intracellular signaling pathways like PI3K/Akt, MAPK/ERK, and FAK to promote cell survival, 
proliferation, and growth (Anborgh et al., 2010). The MAPK/ERK pathway and PI3K/Akt pathways can 
be activated by FLT1 and CSF3-CSF3R interactions. The interactions associated with angiogenesis 
like CD38-PECAM, VEGFB-FLT1 (VEGFR-1), and CXCL1-CXCR2 were also upregulated in cSCC, 
suggesting that angiogenesis is upregulated in both BCC and cSCC, but through different regulation 
pathways. Calprotectin (S100A8 and S100A9) interact with TLR4 on immune cells to promote 
inflammation in the tumour microenvironment.  
 
For melanoma, we found strong enrichment of collagen interactions (e.g., COL1A1, COL1A2, 
COL3A1; making 15 out of all the 37 LR pairs that were specific for melanoma compared to BCC and 
cSCC). We found type I collagen (COL1A, COL1B) and integrin receptor (ITGA, ITGB) families to 
actively interact in melanoma. These included COL1A1-ITGA2, COL1A1-ITGB1, COL1A1-ITGA5, 
COL1A2-ITGA2, and COL1A2-ITGB1 (Fig 6a). Changes in integrin activity have been implicated in 
differential metastatic and invasive risks in melanoma (Xu et al., 2017). The collagen-integrin 
interactions play key roles in microenvironment remodelling, creating pro-tumorigenic and 
immunosuppressive niches, promoting angiogenesis, and activating the MEK/ERK signalling pathways 
(Hayashido et al., 2014). Among those collagen interactions, four genes were involved in DNA 
damage responses (with DDR1 and DDR2). The second most common ligand-receptor pairs that were 
uniquely increased in melanoma involve Fibroblast Growth Factor, with six out of 37 interactions, 
including FGF1-CD44, FGF2-CD44, FGF2-FGFR1, FGF18-FGFR1, FGF1-FGFR1, FGF9-FGFR1. 
FGF signaling can enhance melanoma cell proliferation by activating downstream signaling pathways 
such as MAPK/ERK, PI3K/AKT, and JAK/STAT, which play key roles in cell cycle progression and 
survival and some are therapeutic targets for melanoma (e.g., FGF2/FGFR signalling).  
 
Different interactions between cell-cell pairs highlight the roles of fibroblast, T cells and 
melanocytes/keratinocytes   
Using interaction network graph analysis to combine multiple replicates, followed by statistical 
comparisons for interacting cell types. This test was performed using MMCCI (multiplatform, 
multimodal CCI), where the interaction strength was defined as the cumulative p-value from all 
p-values of the same interaction across all samples. 
 
At cell type level, we found that cSCC and BCC were more similar to each other than to melanoma 
(Fig S20a). The most common interactions across the three cancers involve fibroblasts with immune 
cells and KC cells (Fig S20a). We observed stronger fibroblast to T cells interaction in cSCC and BCC 
compared to in melanoma, whereas the fibroblast to melanocyte interaction was higher in melanoma 
(Fig 6b). cSCC and BCC also had more interactions between fibroblast and KC cells,  especially the 
interactions with differentiating  KC (Fig 6b).  
 
At L-R pair level, those LR pairs specific for cancer type were enriched for key cancer-related 
pathways such as EMT (Fig S20d). MIF-CD44 was among the top two LR pairs that changed the most 
between cancer types (Fig S20b). This pair displayed strong interactions between macrophages with 
KC cells, fibroblast and T cells (Fig S20c). Among the pairs that most differentially interacting, the 
canonical CD80-CTLA4 was at the top most active (Fig S20d). The most significantly interacting 
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cell-cell pairs for this pair in melanoma were fibroblast with melanocyte and fibroblast with T cell (Fig 
S20e) and the top LR pairs associated with T cell and melanocytes are shown in Fig S20f. Based on 
L-R pair interactions, the roles of CD44, extracellular matrix, and immune system in relation to drug 
targets for melanoma could be investigated at a systematic level (Fig 6d).  
 
Integrative confirmation of LR signalling at RNA level reveals enrichment of IL34-related 
antigen-presenting pathways in melanoma 
The global analysis of all possible interactions between >2000 known LR pairs as described in 
previous sessions suggested important LR pairs for validation experiments. An example of such an LR 
pair is IL34-CSF1R,which appeared in the top interacting pairs across spatial modalities and was 
higher in melanoma samples than in cSCC and BCC (Fig 6a). IL34 is a cytokine, predominantly 
produced by keratinocytes, whose receptor CSF1R activates immune cells, in particular macrophages 
and Langerhans cells (Wang et al., 2012; Stanley et al., 2014). High IL34 expression correlates with 
poor survival in lung cancer cell culture models and patients due to CSF1R-mediated activation of 
tumour-associated macrophages (Baghdadi et al., 2016 and 2018). High IL34-CSF1R interaction in 
melanoma was reported to be linked to drug resistance (Giricz et al., 2018).  
 
We found co-localisation of IL34 and CSF1R by RNAScope analysis (Fig S21). Although the 
interaction was strongest in melanoma, using our colocalization analysis pipeline, STRISH, we also 
observed IL34-CSF1R in BCC and cSCC patients, in the dermis at the immune-rich regions (Fig 7b), 
(refer to Supplementary Methods). This observation is consistent with spatial single-cell gene 
expression data (Fig 6c). Both IL34 and CSF1R expression were detected in our healthy and cSCC 
scRNASeq atlas. Low spatial resolution, transcriptome-wide Visium showed the colocalization of 
IL34-CSF1R in the dermis layer (Fig 7a) . Cells expressing the two genes are visualized on single-cell 
level resolution spatial data from STOmics and Curio-Seeker (Takara Bio, USA) melanoma samples 
and appear to be in spatial proximity (Fig 7b). Additionally, pathway comparisons for interacting Visium 
spots with those spots without interactions show enrichment of the antigen processing pathway and 
lipid metabolism (Fig 7c, d). We detected 531 genes upregulated in IL34-CSF1R positive spots in 
melanoma, and 758 genes for BCC. Only the melanoma gene list was found to show any enrichment 
for GO terms), including terms associated with immune- (Fig 7c) and lipid-related (Fig 7d) functions, 
suggesting the important roles of the upregulation of the IL34-CSF1R interactions in melanoma. 

Spatial multimodality validations of ligand-receptor interactions highlight the role of CD44  

Beyond RNA level, we also validated protein-protein interactions based on colocalization between 
neighbour cells (Fig S22). We implemented Opal tyramide signal amplification (TSA) protocol, where 
primary antibody, anti-IgG polymer HRP and covalent labelling with Opal TSA fluorophores were used 
and the whole slide multispectral scanning was performed by Vectra Polaris. With this method, we 
scanned through the whole tissue section and identified image tiles containing double-positive CD8+ 
PD-1+ immune cells and PanCK+ PD-L1+ cancer cells (Fig S22). 

The positive colocalization from Opal Polaris suggests evidence for interaction, but the distance can 
be relatively further away than direct interaction at one location. We next applied proximal ligation 
assay to detect two proteins within a 20 nm distance on melanoma samples (Fig 7e, Fig S23). We 
tested three pairs identified in our spatial omics data analysis, focusing on CD44, a dominant receptor 
found with distinctively more common interactions in melanoma compared to BCC and cSCC (Fig 7e). 
CD44 acts as an MMP9 docking receptor that localizes MMP9 to the cell surface, where it can 
degrade components of the ECM  such as collagen to enhance tumour invasion (Yu and Stamenkovic, 
1999). CD44 was reported to bind fibronectin (FN) to anchor cells to their surrounding ECM, potentially 
supporting invasion.  CD44 interacts with Fibroblast growth factor (FGF1 and FGF2) in melanoma, 
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possibly enhancing tumour initiation and migration. Here we validated CD44-MMP9, CD44-FN1, and 
CD44-FGF2 interactions. The PLA signal clearly suggests the interactions occur (Fig 7e). Future work 
will validate more pairs where antibodies are available. Moreover, we showed that these LR pairs had 
significant prognostic values when applying to the public TCGA data (Fig S24), further suggesting the 
roles of cell-cell interactions to cancer phenotypes.      

Integrating spatial analysis with genetic association with cancer traits from population scale 
data 
We next integrated spatial omics data with summary statistics from GWAS studies to genetically map 
skin cancer risk SNPs to spatial cell types and domains. We applied gsMAP to map genetic 
association signals (SNP effect sizes) for cSCC, BCC, cutaneous melanoma heritability to specific cell 
types or spatial domains. The mapping was based on 1) gene markers specifically and highly 
expressed in a cell type or a spatial domain as defined using the spatial transcriptomics data, 2) 
mapping SNP to these genes according to linkage disequilibrium distance, 3) testing for the 
significance of the cumulative effects of these SNPs (Cauchy P value) compared to SNPs not 
associated with these markers genes (Song et al., 2024). For cSCC and BCC genetics studies, we 
used summary statistics data from a total of 10,557 controls and 537,850 controls for SCC and  
36,479 cases and  540,185 controls for BCC (Seviiri et al., 2022). For melanoma we used results from 
the analysis of with 30,143 clinically-confirmed melanoma cases and 81,405 controls (Landi et al., 
2020). Based on spatial gene expression in a neighbourhood of a focal spot/cell, GSS (gene specificity 
scores) for those genes highly expressed in specific spatial location was calculated. SNPs were 
mapped to genes in these GSS based on distance  to transcription start sites. Considering each 
spot/cell tagged with a set of SNPs next to GSS genes, the proportion of trait heritability captured by 
these SNPs (and thus by spot/cell) relative to baseline SNPs was computed based on stratified 
linkage disequilibrium score regression. Significance of association for a spatial region or a cell type 
was computed by aggregating P values of spots/cells within that region.  
 
From Visium data, we found that spatial regions enriched with genetic association for BCC, cSCC and 
melanoma were localised to the epidermis. The association signal was, in some cases, specific to 
locations, rather than continuous or evenly distributed in the outer layer of the skin (Fig 8a). Cauchy 
aggregated significance for cell types show that top association for melanoma included melanocytes 
and KC differentiating. Fibroblast consistently displayed a strong association signal across melanoma 
and cSCC and BCC samples (Fig 8b). This was consistent with the spatial cell-cell interaction 
analysis, which suggested the important roles of fibroblast in interactions with melanocytes, 
keratinocytes and immune cells. Cell types most associated with cSCC and BCC cancer are KC 
dysplastic (more for cSCC), KC hair (more enriched for BCC), and KC cornified (similar level to BCC 
and cSCC, and much more than melanoma), (Fig 8b). Furthermore, we also mapped genetic 
association signals to single cell resolution CosMX data (Fig 8c). The spots/cells in the tumor regions 
(based on pathological annotation) exhibited the strongest spatial heritability explained by SNPs linked 
to GSS genes of the spot/cells in this tissue region, followed by those in the immune regions (Fig 8c). 
The tissue region with the lower spatial heritability is the stroma region.  
 
Next we identified ligand-receptor genes with significant correlation between spatial gene specificity 
scores and genetic association P value for the cell type. Such pairs suggest possible mechanisms on 
how the genetic association of signals in a spatial region or a cell type may be explained through 
dynamic interactions between cell type pairs within the spatial microenvironment. Again, we observed 
strong interactions between KC dysplastic in cSCC and KC-hair in BCC, and more immune interaction 
in melanoma, especially those involved in T cells compared to in BCC (Fig 8d). Visualisation of 
genetics association signals between T cells with Melanoma via IL34-CSF1R and LTB-LTBR suggests 
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tissue regions where the association with the melanoma were most strong (Fig 8e). These regions are 
at the junction of the epidermis and dermal regions for LTB and LTBR genes, and less specific for 
IL34-CSF1R. Across the whole genome, the top genetic association with spatial expression patterns is 
consistent with mapping key melanoma markers such as MITF, TYR, and MX2. The CSF1R, LTB and 
LTBR were in the top 50 genes with the highest correlation between spatial specificity for melanoma 
and spatial expression (Fig 8f). Genome-wide significant SNPs associated with genes having the 
highest spatial specificity for T cells or melanoma are mostly SNPs with the strongest significant 
values in the Manhattan plot. This suggests that the heritability of melanoma cancer risk may be 
exerted from effects on T cells and melanomas (Fig 8f). Overall, our integrative analyses with 
genome-wide association studies suggest consistent and generalizable patterns.   
 
The skincanceratlas database allows users to browse gene expression and LR data from three 
omics technologies 
We have created a comprehensive, interactive database called skInteractive that allows users to 
explore our high-throughput single-cell and spatial data atlas and interactome (Fig S1). The Atlas 
section of the database shows cell type clustering and annotation results from scRNASeq, Visium and 
CosMx data. The Gene Explorer section allows the user to browse genes and LR pairs at single-cell 
and/or spatial resolution in select samples from cSCC, BCC and melanoma patients. No coding or 
data downloads are required, making the skInteractive database an accessible and user-friendly way 
to browse this resource. The skInteractive database can be accessed at https://skincanceratlas.com. 
 

Discussion 
We present cell types, gene signatures, and differential interactome of the three major skin cancer 
types, which collectively comprise as high as 70% of all cancers as in European ancestry populations. 
Despite the dominant prevalence, little is known about cell type specific similarities and differences at 
single cell resolution and in a spatial context that underly patho-etiology of these cancer types. We 
provide the most comprehensive single cell datasets and the first spatial multiomics reference 
datasets of cSCC, BCC and melanomas, making this resource publicly available. Through multiomic 
integration pipeline, incorporating spatial distance and orthogonal multiplatform/multimodality 
validations, followed by various experimental validation approaches, we built high-confidence 
interaction networks,  underpinning differential initiation and progression of each skin cancer type, 
which is not well understood (Feller et al., 2016; Thieu et al., 2013; Kim et al., 2013; Wang et al., 
2016). Cross-validated results were drawn from comparing and integrating 12 orthogonal 
technologies, complementary in resolution, sensitivity, and throughput, adding spatial information and 
quantifying both RNA, protein and glycan modalities. 
 
 
Strong evidence was drawn from integrating 12 orthogonal technologies, complementary in resolution, 
sensitivity, and throughput, adding spatial information and quantifying both RNA, protein and glycan 
modalities. Our work here reports a comprehensive guideline for other spatial multiomics studies, 
beyond skin cancer,  to assess benefits and limitations for each tool and design a strategy to select 
suitable tools and combine analyses to cross-validate and gain more biological information than is 
attainable through any single technology. For example, the large number of genes per cell and the 
complete RNA extraction from the intact cells/nuclei in scRNA allows for fine-grained classification of 
cell types. However, the spatial neighbourhood information is lost in scRNAseq, leading to omission of 
the geographic cell communities within the tissue microenvironment. Further, the scRNAseq-based 
inference of cell-cell interaction is less accurate due to the lack of neighbourhood constraint (Pham et 
al., 2023). Although not at single-cell resolution, Visium data enable the inference of all ligand and 
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receptor genes taking into account spatial neighbourhood context. However, as single cell resolution 
information is not in Visium data, the inference of cell-type specific interactions is limited. This 
limitation may be partially addressed via cell-type deconvolution, or completely addressed by 
single-cell panel based platforms, which lack coverage. Regarding proteomics, either scRNAseq or 
spatial transcriptomics are limited in mapping traditional immune subtypes such as distinguishing CD8 
T cells and CD4 T cells, which can be measured by methods such as CODEX and Vectra Polaris. 
Both scRNAseq, spatial transcriptomics, and CODEX, on the other hand, do not measure metabolites, 
an important modality that needs methods such as spatial metabolomics to profile.  
 
Harnessing the complementary information discussed above, we devised spatial integrative analysis 
for 1) cell type annotation, 2) differential expression analysis, 3) ligand-receptor based interactions, 4) 
community/neighbourhood composition and interaction analysis, 5) multimodal validation of cell-cell 
interactions, and 6) mapping of genetic association signals to spatially defined regions. We discuss 
below how these analysis was implemented for the skin cancer context, with the intention that the 
approach can be related to other biological systems. 
 
For cell-cell interaction analysis, we integrated scRNAseq and Visium to map ligand-receptor based 
interactions at transcriptome-wide level. In this combination, the scRNAseq data also informed Visium 
data in cell type composition, allowing cell-type specific inference of LR interactions using Visium 
spot-based, deconvolution data to infer both autocrine and paracrine interaction (Pham et al., 2023). 
Single-cell resolution spatial transcriptomics data from Xenium and CosMX platforms was then used 
for validating the LR pairs present in the panel. The interaction results extended beyond LR pairs, 
providing information about cell type pairs that are interacting. In this way, we could compare pairs of 
cells that interacted stronger or weaker in each cancer type or in cancer compared to non-cancer 
samples. Our MMCCI method enables such statistical comparisons (Hockey et al., 2024).  
 
We found that EMT was the main pathway that was different between melanoma and cSCC-BCC, with 
the stronger interaction between fibroblasts and melanocytes in melanoma samples and more 
interaction of fibroblasts with T cells in BCC-cSCC samples. Further, the roles of activated 
cancer-associated fibroblasts (CAF) and fibroblasts that have undergone epithelial-mesenchymal 
transition in the cancer-stroma microenvironment are also crucial in BCC and cSCC progression 
(Sasaki et al., 2018). In addition, for colocalization-based interactions using CODEX and Xenium data, 
we found the complex composition of cancer cells with fibroblasts and T cells within the melanoma 
community. Interactions with fibroblasts have been reported as essential for melanoma progression. 
Given that fibroblasts are essential in skin cancer initiation and progression (Wang et al., 2012; Werner 
et al., 2007; Van Hove et al., 2022), the differences in fibroblast interactions between the three cancer 
types may help explain the differences in metastatic potential between skin cancers. Increasing 
evidence suggests that interactions between mutated melanocytes and fibroblasts lead to melanoma 
initiation and progression (Flach et al., 2011; Kim et al., 2013; Ayuso et al., 2021). Fibroblasts are most 
prominent in the dermis, and there is growing evidence that they, together with KCs, are key regulators 
of skin cancer initiation and progression (Flach et al., 2011; Kim et al., 2013; Ayuso et al., 2021). 
Indeed, in melanoma, it is clear that cellular interaction with the stroma is one of the key factors driving 
cancer initiation and progression (Kim et al., 2013; Wang et al., 2016). During embryonic development, 
melanocytes migrate from the neural crest to the basal layer of the epidermis (Rawles et al., 1974), 
where their morphology, growth and development are largely regulated by surrounding KCs (Hirobe et 
al., 2005). In fully developed skin under normal conditions, melanocyte-KC interactions persist, 
resulting in pigmentation that protects against UV radiation. However, under pathological conditions, 
dysplastic melanocytes shed interactions with regulatory KCs, resulting in uncontrolled proliferation 
and gain of stem cell self-renewal capacity (Haass et al., 2005). Therefore, a deeper understanding of 
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interactions between cell types in both melanoma and NMSC will be necessary to develop a more 
comprehensive paradigm of skin cancer treatment. 
 
For cell type annotation, our integrative analysis provided confidence for multi-level cell type 
classification. Through integrative multi-omics analysis, we hierarchically defined 11 major cell types 
and 30 fine-grained cell (sub-)types across the three studied skin cancers. These cell types were first 
identified using scRNASeq data. We extensively validated the classification of less-abundant cell types 
using spatial proteomics data from GeoMx and Polaris platforms. Moreover, annotation from 
scRNAseq data was cross-validated by mapping them to known anatomical organisation of the skin. 
The presence of rarer cell types at level 2 and level 3 annotation were validated with GeoMX protein 
data. Importantly, we also validated the cell types through independent spatial mapping with Visium 
and CosMx. While the separation of certain clusters (e.g. KC populations) from our scRNASeq atlas is 
not apparent in UMAP space, these cell types were clearly and distinctly resolved when mapped to 
their spatial location in skin from the same patients captured by both Visium and CosMx, for example 
the three layers of KC basal, KC differentiating and KC cornified. This strongly suggests that the 
annotation of these distinct KC subtypes was accurate, demonstrating the power of using 
complementary single-cell and spatial data to validate cell subtypes. This spatial mapping also defined 
visible micro-structures of the skin, like hair follicles and sebaceous glands, and more importantly 
mapped the single-cell resolution heterogeneity within each of these structures. With our CosMx 
single-cell mapping, we were also able to perform spatial community analysis, which revealed the 
increased cellular heterogeneity in melanoma compared to cSCC and BCC. To our knowledge, this 
quantitative difference has not been reported previously. We observed a higher proportion of 
Differentiating KCs in cSCC than in the two other cancer types across biological replicates (Fig 2b) 
(Gandarillas et al., 2014), consistent with the defining feature of KC hyperplasia in cSCC. Additionally, 
we found increased cornification in cSCC compared to healthy tissue, again corroborating the high cell 
turnover and hyperkeratosis observed in cSCC. Further validation is required to test these data-driven 
hypotheses. 
 
For DE analysis, our multiomics approach strengthens the most common type of analysis that could 
be integrated using most modalities/platforms. Here we combined cell-type specific DE analysis 
results from scRNAseq data with that of CosMX, Xenium and Visium data. Important markers for KC 
cancer and melanomas that were found consistently changed across platforms will be highly-confident 
candidates for further experimental perturbation studies. These include SOX2, LAMP3, CXCL10, 
CCL5, and UBE2C. Differences in LR interactions may also explain why one form of skin cancer may 
arise over another type. For example, PTCH1 (Patched1) is defective in 70-85% of BCC, but not in 
cSCC (Boukamp et al., 2005; Bonilla et al., 2016). The absence of ligands for the PTCH1 membrane 
receptor in BCC leads to tumour formation under the control of the transcriptional factor GLI1 
(Boukamp et al., 2005). Therefore, loss of PTCH1 signalling may predispose a cell towards initiating 
BCC over cSCC. Improved insights into the molecular crosstalk between cell types would help 
elucidate the molecular events underlying the initiation of one cancer type over another.  
 
Our atlas also enables comparison of inter- and intra-tumour heterogeneity across patients. In 
BCC-cSCC, comparing 11 healthy and cancer samples with scRNASeq, we found an enrichment of 
the immune response with CD4 and CD8 T cells, M1 and M2 macrophages, NK and classical cDC 
cells consistently higher in cancer samples across all five patients. At the gene level, we observed a 
global upregulation in cancer cells of genes related to progression and invasion like S100A7 and 
KRT6B (Chen et al., 2019; Chang et al., 2011) in our scRNASeq data. When accounting for 
interpatient heterogeneity, we found 39 genes that were upregulated across the entire cSCC dataset, 
including genes associated with immune processes such as antigen presentation, interferon-gamma 

 
16 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2025. ; https://doi.org/10.1101/2025.07.25.666708doi: bioRxiv preprint 

http://paperpile.com/b/OM8SUR/9ozPp
http://paperpile.com/b/OM8SUR/81jP8
http://paperpile.com/b/OM8SUR/tdI9C
http://paperpile.com/b/OM8SUR/81jP8
http://paperpile.com/b/OM8SUR/4qQSZ
http://paperpile.com/b/OM8SUR/JEZDq
https://doi.org/10.1101/2025.07.25.666708
http://creativecommons.org/licenses/by-nd/4.0/


 

response, viral response and cell killing. Comparisons between cancer and healthy regions of each 
sample identified a consistent shift towards fibroblast-based signalling in cancer. While the critical 
roles of fibroblasts in regulating skin cancer initiation and progression are well documented (Flach et 
al., 2011; Ayuso et al., 2021; Kim et al., 2013), a comprehensive map of fibroblast interactions specific 
to partner cell types and spatial locations, as shown in this study, is still lacking.  
 
Spatial cell community analyses provide new understanding of spatial patterns associated with cancer 
biology. Here we devised an approach to find a robust community by integrating three platforms, 
CosMX, Xenium and Visium. We were able to map  a melanoma community across CODEX, Xenium 
and Glycomics modalities and perform, for the first time, joint analysis of spatial omics data for this 
community, showing the multimodal evidence for the upregulation of tyrosine and pyrimidine 
metabolism pathways. The community-based colocalization analysis added more evidence for the 
interaction of melanoma/melanocytes with regulatory T cells and fibroblast.  The ligand-receptor based 
analysis of the melanocyte-enriched community suggested much more active interaction in melanoma 
samples compared to in BCC, specifically with strong interactions involving collagen with CD44 and 
Integrins. Inflammatory and Mesenchymal fibroblast cells and T cells create a protumorigenic 
microenvironment that may be associated with survival (Schütz et al., 2023; Zhang et al., 2022).  
 
Multimodal validation of ligand-receptor interactions provided strong evidence for the LR pairs and cell 
types involved in the interactions at RNA and protein level at local or nano-scale distance. Our first line 
of cross-validation for cellular interactions was via finding consistent interactions between platforms, 
where the broad discovery of interactions using scRNAseq and Visium can be visualised at a single 
cell resolution proving the colocalisation of ligand and receptor signals between two cells in the 
Xenium and CosMX. The validation at RNA level was then strengthened with targeted hybridization 
using RNAscope technology with signal amplification chemistry, allowing us to visualise at high 
sensitivity the co-expression of IL34-CSF1R. While transcriptomics data allows for screening many 
more ligand-receptor interactions than can be achieved through proteomics, the RNA-based 
approaches remain as an inference test, but not a direct proof of protein-protein interactions. Beyond 
the RNA modality, we extended the validation to protein level, with Opal TSA chemistry that allows for 
highly sensitive detection of protein expression. The Opal system enabled us to validate 
ligand-receptor with established antibodies such as PD1-PDL1. However, the colocalisation with the 
Opal Polaris approach lacks the resolution to find exact interactions. We, therefore, used PLA assay to 
detect interactions within 20 nm distance, specifically mapping the interactions to the cell membrane. 
 
Our final integration type in this work involved the mapping of genetics association signals to spatial 
cell types and tissue domains. This approach integrates population-scale information to relatively 
small, but deeply-profiled, functional datasets using spatial multiomics platforms. With this new 
approach, we successfully mapped significant SNPs to gene expression within tissues and computed 
cumulative association signals for a spot, a spatial domain or a cell type. We showed the genetic 
association of melanocytes for the melanoma trait and of KC dysplastic and KC cornified for cSCC and 
BCC. This analysis demonstrates that while each of the skin cancers arises from a specific type of cell, 
their shared and independent risk genes and SNPs act across a range of skin cells. The result 
suggests that one may need to consider that at least some risk loci may be mediated by cis-regulation 
in keratinocytes, which are involved in tightly controlling melanocyte proliferation and invasion. The 
analysis also provided statistical evidence on the roles of genetics association in ligand-receptor 
interaction, such as the IL34-CSF1R pair.     

Together, by using a spatial multi-omics approach with 12 independent technologies, our study 
represents the first comprehensive comparison of spatial cellular signatures across the three skin 
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major cancer types, BCC, cSCC and melanoma. Although the number of samples is small (total 24 
patients), the cross-validation by independent experimental platforms provides high-confidence results 
for the individual measured. Some of these results add consistent evidence to the existing literature, 
while new findings from the cohort studied here would require future validation to external cohorts. 
Nevertheless, our integrative analysis with population genetics studies of >300,000 individuals suggest 
consistent patterns and indicate highly generalizable results.   

We identified both shared and distinct cellular and gene signatures for each of the three skin cancer 
types, suggesting important cell-type specific pathways underlying differences in the initiation and 
progression of these cancer types. The interacting cell types and LR pairs identified here represent 
promising therapeutic targets for skin cancer treatment, including immunotherapies. The highly 
integrated spatial multi omics dataset is available through our skin cancer website 
(https://skincanceratlas.com/), which is accessible to the broader research community for visualisation 
and analysis without requiring coding. The data would be useful in multiple scenarios, for example, to  
provide new insights into the roles of pathways where DNA mutations have been reported, but little is 
known about how these mutations manifest at single cell and spatial levels, including canonical 
markers such as MAPK activation in Melanoma, Hedgehog signalling in BCC, and NOTCH/p53 
signalling in cSCC. 

Methods  
Patient material and ethics  
All samples (Table S1) were collected with informed patient consent and approved for research use 
under ethics approval numbers 2018000165 and 2017000318 by the University of Queensland’s 
Human Research Ethics Committees and 11QPAH477 by the Metro South Human Research Ethics 
Committee. All formalin-fixed, paraffin-embedded (FFPE) blocks were previously prepared following a 
standard fixation procedure in 10% formalin, processed in ethanol and xylene and embedded in 
paraffin wax. The four melanoma samples (patients 6747-085P, 21031-08TB, 48974-2B, 66487-1A) 
were collected during 2008-2018 and all blocks were stored at room temperature. Full patient IDs are 
abbreviated as 6747, 21031, 48974 and 66487 throughout this manuscript. 

For BCC and cSCC samples from eight patients (B18, E15, F21, P30, P13, P04, R01, D12), all 
fresh-shaved biopsies were obtained in accordance with the approved ethics protocol (11QPAH477). 
Patients presented at the Princess Alexandra Hospital Dermatology Department between October 
2018 and February 2020. Among these patients, three patients (B18, E15, F21) were diagnosed with 
both cSCC and BCC and biopsies of both cancer types were collected. Five patients (B18, P30, P13, 
P04, R01) kindly consented to participate in the collection of 4 mm punch biopsy samples of non-sun 
exposed non-cancer skin for paired scRNA sequencing experiments. Lesion identity was confirmed by 
pathological inspection. Portions of each sample from these patients were also preserved with 10% 
formalin as described for FFPE samples above. To process fresh samples for scRNA sequencing, 
briefly, fresh-shaved biopsies were collected in DMEM for immediate tissue dissociation. Tissue was 
incubated in 10 mg/mL Dispase II (cat. No. 04942078001, Roche, Darmstadt, Germany) for 45 min at 
37°C, snipped into small pieces with scissors, and incubated in 0.25% Trypsin for 2 min. The cells 
were disrupted gently with a pipette and filtered through 70 µm and 40 µm cell strainers, taken up in 
culture medium and spun down at 350 rcf. Resuspended cells were collected in PBS containing Foetal 
Calf Serum for single-cell sequencing.  

scRNASeq was performed on 14 samples representing both cancer and non-cancer cSCC and 
melanocyte lesions. Healthy and cSCC biopsies were paired, from patients B18, P30, P13, P04 and 
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R01 (Table S1). The cancer biopsy from patient P13 was identified as being intra-epidermal carcinoma 
(IEC), also known as Bowen’s disease, a more superficial subtype of cSCC which occurs in the upper 
epidermal layer. Patient B18 was diagnosed with both cSCC and BCC, and tissue from both cancer 
lesions was pooled prior to library preparation. Patients E15 and F21 were also diagnosed with both 
cSCC and BCC, but only cSCC tissue was used for scRNASeq. Two separate samples were collected 
for P30; data were pooled after sequencing. Melanoma used for CODEX, Xenium and spatial 
glycomics were archival samples from a retrospective patient group with thin melanomas (Stage I, 
Breslow depth <1mm). For snRNAseq, three archived melanoma samples representing three 
diagnosis types (by 23 pathologists), including malignant, intermediate (dysplastic) and benign 
melanocyte lesions (MPS13, MPS42, MPS43). Skin samples from healthy volunteer donors aged from 
25-45​ without skin cancer were collected from the forearm of the donors and were preserved in FFPE 
format. 

Data generation, pre-processing and cell type annotation methods are described in detail for all 
technologies in the Supplementary Methods. 

scRNASeq data analysis  
scRNASeq data was generated, processed, integrated and annotated as described in the 
Supplementary Methods. LR analysis for scRNASeq data was performed using CellChat (Jin et al., 
2021), using normalised gene expression for all patients and all genes as input. Analysis was 
performed as per the detailed CellChat vignette. Circos plots were generated using the R package 
circlize (Gu et al., 2014). Significant LR pairs present in ≥3 samples were visualised in a heatmap 
using ComplexHeatmap (Gu et al., 2016). GO analysis was performed as described above for the core 
gene suite analysis. LR pairs were split into their composite genes prior to analysis. 

Cancerous KC cells in cSCC samples were identified based on two intersecting criteria. Copy number 
variation analysis was performed using both InferCNV (Tickle et al., 2019) and CopyKat (Gao et al., 
2021) using default parameters. We make use of CopyKAT’s ability to predict ‘Aneuploid’ cells and 
InferCNV’s de-noising and QC filtering approach to retain only the cells that are likely to be 
‘Aneuploid’. Candidate KC cancer cells passed the first round of filtering if they were predicted to be 
aneuploid by both tools. Next, genes differentially expressed between KC cells from cancer and 
healthy biopsies were identified using either edgeR (Robinson et al., 2010) or Scanpy (Wolf et al., 
2018) and used to calculate an “cSCC score” using a custom python script equivalent to Seurat’s 
AddModuleScore function. Cells receiving a cSCC score in the ≥95th percentile of all scores for both 
methods passed the second round of filtering. Therefore, KC cancer cells were those found to be both 
abnormal in ploidy and enriched for genes associated with cancer biopsies. Melanoma cells were 
annotated in a similar way, with the module score calculated using DE genes between the malignant 
melanoma sample and the benign ones in the similar manner and with an ≥80th percentile threshold 
used for the second step of filtering based on the observed module score distribution and the number 
of cells. 

Visium data analysis 
Data generation, processing and integration, plus cell type deconvolution and CCI analysis were 
performed described in the Supplementary Methods. For the IL34-CSF1R analysis, raw LR scores 
from stLearn were used to classify spots as either IL34_CSF1R-positive (i.e. with a LR score > 0 for 
this pair) or -negative (i.e. with a LR score = 0). Integrated Visium Seurat objects for each cancer type 
in turn were used to perform differential gene expression analysis using Seurat’s FindMarkers function 
(Wilcoxon test with parameters min.pct = 0.25, logfc.threshold = 0.25, adjusted p-value threshold 
≤0.05) to compare gene expression between positive and negative spots. GO enrichment analysis 
was performed as described above. GO terms associated with upregulated genes in melanoma were 
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split into functionally-related groups (Fig 8f-g) by calculating pairwise semantic similarity values 
between GO terms using GOSemSim (Yu et al., 2010). K-means clustering (k = 3) was used to cluster 
the resulting semantic similarity values into three groups of related GO terms. Genes associated with 
each GO term in each group were plotted using Complex Heatmap (Gu et al., 2016). 

CosMx data analysis 
CosMx data was generated, processed, integrated and annotated as described in the Supplementary 
Methods. We first analysed CCI within individual FOVs. We used our SCTP method in stLearn (Pham 
et al., 2023) for CCI prediction, because this tool incorporates information about LR pairs, cell types, 
and physical distances, thus maximising data usage and providing spatially-meaningful (and therefore 
more biologically-meaningful) results. Briefly, for a given cell, SCTP defines a neighbourhood as the 
set of cells within a predefined spatial distance of that cell. For each LR pair and each cell in an FOV 
in turn, LRscores are calculated as the sum of the mean ligand expression and the mean receptor 
expression across a given cells’ neighbourhood. The LRscore is further corrected by neighbourhood 
cell type diversity, which is known to positively correlate with the likelihood of CCI (Rieckmann et al., 
2017; Hou et al., 2020). stLearn uses a permutation test to determine the null distribution of LR scores 
for hypothesis testing. It defines significant cells and LR pairs. We performed cell type-specific CCI 
analysis to examine significant LR interactions between pairs of cell types, using the outputs from the 
cell level analysis described above. Briefly, SCTP generates a CCILR matrix by counting the number of 
cells with significant LRscore signalling from one cell type to another for a given LR pair. Like the cell 
level analysis, SCTP uses a permutation analysis to test whether these counts are significantly 
different from random.  

 
To quantify the spatial heterogeneity of each FOV, we first constructed cell-cell neighbourhood 
networks by applying Delaunay triangulation to cell spatial coordinates, resulting in one network per 
FOV. Next, we applied Rao’s quadratic entropy to each cell in each network to measure the cell type 
heterogeneity. We elected to use Rao’s quadratic entropy scoring for this purpose because it can 
consider both the probability of two neighbouring cells (i.e. two cells sharing an edge) being different 
cell types, and the spatial distance between each member of the neighbouring pair. As the natural 
entropy score is often used as a measure for connected graphs, we fed the customised Delaunay cell 
neighbourhood network through the ATHENA local quadratic scores function (Martinelli et al., 2002). 
For cross-cancer type comparison, we aggregated the entropy scores of cells from the same FOVs 
and grouped the FOVs by cancer subtype. The entropy score was calculated as a product of the 
spatial distance of cells and the cell type probability; these remain as constant units across FOVs, so 
normalisation is not required. We performed pairwise comparison of the distribution of entropy scores 
from each cancer subtype using a Wilcoxon rank sum test. 
 
Xenium data analysis 
Formalin-fixed paraffin-embedded (FFPE) tissue blocks were sectioned at a thickness of 5 μm and 
mounted onto Xenium slides, in accordance with the FFPE Tissue Preparation Guide (10x Genomics, 
CG000578, Rev B). In situ hybridisation was carried out overnight using 260 probes from the 
pre-designed Xenium Human Skin Panel (10x Genomics). DAPI staining was used to label nuclei, 
which were used for the estimation of cell boundaries (10x Genomics, CG000582, Rev D). Following 
completion of the run, H&E staining was conducted on the same tissue region. Each Xenium sample 
was preprocessed individually using Seurat version 5.0. During the quality control (QC) step, cells with 
zero expression across all genes were filtered out. Normalisation was performed using the 
SCTransform function, followed by principal component analysis (PCA) using the top 30 principal 
components. To annotate cell types for the Xenium cells, Seurat’s label transfer workflow was 
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employed. The melanoma single-cell RNA-seq dataset processed in the previous section was used as 
the reference. Anchor points between the reference and Xenium datasets were identified using the 
FindTransferAnchors function. Cell type annotations were then transferred to the Xenium data using 
the TransferData function, applying the level 2 annotation labels from the reference dataset. 
 
 
CODEX data analysis  
Cell segmentation for CODEX QPTIFF data was done using Cellpose as an implementation function in 
the Sopa package. Signal intensity for each protein channel was then mapped to the Cellpose 
boundaries. Outlier cells with data lower than 0.05 quantile or higher than 0.95 quantile were removed 
from the raw protein expression intensity matrices. The data was transformed with arcsinh and scaled 
to mean 0 and standard deviation 1. The cell type identification was performed based on the protein 
markers included in the panel using z-scores. For spatial community analysis (niche detection), we 
used two methods, NeighbourhoodCoordination and MonkeyBread neighbourhood clustering. Both 
methods clustered cells based on the cell type proportion of a neighbourhood tissue area as squared 
tiles (windows) or a circle of a given radius. Colocalization between cells of two cell types was 
computed based on distance. A network connecting cell types and communities was drawn using the 
network approach in the Sopa package.  
 
Spatial Glycomics data analysis 
Following general pre-processing, data from three MALDI samples were individually analysed using 
the R-based package SpaMTP V1.0 (Causer et al., 2024). Mass peaks were initially binned at a 
resolution of 250 ppm, resulting in 5433 detectable m/z peaks. Samples were annotated against the 
Lipid Maps database implemented in SpaMTP, with the AnnotateSM function. Principal component 
analysis was run and dimensionality reduction was performed for each sample using the first 30 
principal components. Louvain clustering was implemented using a resolution of 0.3, resulting in 
samples containing between 9 and 13 clusters. Pseudo-bulking differential metabolite abundance 
analysis was performed per cluster using the SpaMTP FindAllDEMs function. The top 10 m/z values 
per cluster, per sample, were then combined and hierarchical clustering was implemented to group 
similar clusters together based on pseudo-bulked expression. Melanoma clusters were identified 
based on spatial location and confirmed by hierarchical grouping. Differential abundance analysis was 
again performed to identify all significantly abundant metabolites within the melanoma cluster 
compared to all other clusters of each sample. Common metabolites that were differentially abundant 
within the melanoma cluster, across all three samples, were then identified and spatially plotted across 
each tissue sample. 
 
Integrative Cell Neighbourhood/Community analysis 
For each data type, Visium, Xenium, and CosMX, we applied the NeighbourhoodCoordination method 
to map communities of nearby cells that had similar neighbourhoods as assessed based on cell type 
composition (Schürch et al., 2020). A neighbourhood matrix, where the proportion of cell types within 
a neighbourhood (window) were calculated for each cell in each Visium sample, or Xenium sample or 
CosMX FOV using the same setting. The windows for all samples and FOV within one technology 
(e.g., from all Visium samples) were merged into one matrix per technology. The windows were then 
clustered using K-mean clustering, with K=10 for all samples, for consistency.  
 
To find robust communities, we combined together 30 communities, representing Visium, Xenium, and 
CosMX. Each community was represented by the proportion of cell types within the community. The 
matrix of combined communities was used to group similar communities into functional categories 
(considered as meta communities) such as tumour, stromal, immune or KC. This way, communities 
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across cancer types and platforms can be compared. For example, we compared the cancer 
community (e.g., CosMX_6) in cell-cell interactions across BCC, cSCC and Melanoma samples. We 
also compared the cancer heterogeneity at community level (e.g., CosMX_6 and Visium_2 for the 
cancer sample), where each community may be more or less abundant in one cancer type compared 
to the other cancer types.  
 
Integrative Cell-Cell interaction analysis  
We implemented our MMCCI cell cell interaction analysis pipeline to integrate data from multiple 
samples and multiple platforms. MMCCI takes inputs as CCI results from individual samples 
calculated by spatially-aware interaction scores and P-values from stLearn. Prior to integration, the 
interaction scores were normalised to take into account differences in the number of cells/spots across 
samples. The integration process resulted in two main outputs, the strength of interactions between 
two cell types (total number of interacting cells) and the integrated P-value for the interaction (using 
Stouffer's method to calculate the inverse cumulative distribution of all P-values). 
 
Integrative DE and pathway analysis across four platforms scRNAseq, Visium, CosMX and 
Xenium  

Pseudobulking following EdgeR DE analysis pipeline with quasi likelihood ratio test were applied 
across platforms. Shared DE genes, consistently found in all orthogonal spatial technologies, were 
highly confident DE genes that can be considered as promising markers of a cancer type or a 
biological pathway differentially regulated among cancer types. For each modality, significant abundant 
analysis was performed between clusters/spatial communities. Using cell type annotation, a spatial 
community/neighbourhood commonly found across modalities can be jointly analysed.The differential 
markers (genes, proteins or metabolites) derived from comparing one community with the remaining 
other communities were input into MetaboAnalyst for joint pathway analysis.  

Spatial Datasets with single-cell resolution 

Some of the interacting LR pairs were visualized on high resolution spatial transcriptomics data. 
STOmics and Curio-Seeker (Now acquired by Takara Bio, USA) are both spatial technologies offering 
a single-cell resolution. Processed data for one melanoma sample from Curio was obtained from the 
company. The STOmics data was generated in-house, where one melanoma and two colorectal 
cancer samples (FFPE tissues) were profiled by Stereo-seq OMNI technology. The data was 
processed using the SAW pipeline and the counts data was used for visualizing cells expressing the 
LR genes.  

Spatial multiomic validation with Proximity Ligation Assay (PLA), Opal Polaris and RNA scope  

We assessed multiple approaches to validate ligand-receptor interactions, including RNAscope, Opal 
Polaris and Proximal Ligation Assay for validating cell-cell interactions. In the case of IL34-CSF1R, 
antibodies for IL34 were not readily optimised and so we applied RNAscope to examine the 
colocalization at single molecule and single cell resolution (Fig 7). Similar to Xenium or CosMX assay 
in resolution, the RNAscope produces an additional advantage with the Z-probe amplifier chemistry 
leading to a high detection sensitivity. Our data show consistent results between RNAscope and 
CosMX data that prove the colocalization within neighbouring cells of IL34 and CSF1R mRNA (Fig 
S21, S22). Using spatial transcriptomics data, we can also validate downstream pathways that change 
specifically associated with the LR pairs co-expressed in the spatial spots. For example, the functional 
downstream consequences of IL34_CSF1R signalling were identified based on genes that were 
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differentially expressed between IL34_CSF1R-positive (LR score >0) and -negative (LR score of 0) 
spots for each cancer type (Fig 7a,c-d). 

At the protein level, we detected colocalization of the protein pairs with Vectra Polaris and Proximal 
Ligation Assay. The PLA was performed to validate ligand-receptor interactions identified through 
spatial transcriptomics data. FFPE melanoma tissue sections were deparaffinized, rehydrated, and 
subjected to antigen retrieval. Primary antibodies specific to the ligand and receptor of interest were 
applied and incubated overnight at 4°C. Following the manufacturer’s instructions for the NaveniFlex 
Tissue MR Atto647N kit (Navinci). Fluorescent signals indicative of close-proximity interactions were 
generated through ligation and amplification steps. After PLA single is generated, the tissue sections 
were stained with anti-mouse/rabbit secondary antibodies conjugated to Alexa Fluorophore for 1 hour 
at room temperature for visualisation of target proteins. Subsequently, tissues were counterstained 
with DAPI, and imaged using the STELLARIS Confocal Microscope (Leica). Our PLA results clearly 
showed the specific signals on the cell membrane in the positive control (E-cadherin and b-Catenin) 
and no signal in the negative control (CD31-AQP1), (Fig S23). 

Integrating spatial transcriptomics with GWAS data 
We used the summary statistics from a cSCC GWAS study of 10557 controls and 537850 controls and 
for BCC GWAS with  36479 cases and  540185 controls (Seviiri et al., 2022) and Melanoma GWAS 
with 30,143 clinically-confirmed melanoma cases and 81,405 controls (Landi et al., 2020). We applied 
gsMAP method to map genetic signals to spatial gene expression in the three skin cancer datasets 
(Song et al., 2024). First, tissue domains were determined by finding similar spots/cells using a graph 
attention autoencoder network which generated latent representations, which in turn were used to find 
pairwise cosine similarity between spots/cells. Next, gene specificity scores (GSS) for each spot were 
computed by aggregating information between similar spots/cells (domain), and rank enrichment 
information for top abundant genes from its homogeneous spots. The expression specificity of a gene 
within a focal spot was assessed by calculating the geometric mean of its expression rank across the 
tissue region (microdomain identified by graph attention, or cell type) of the focal spot, divided by the 
geometric mean of its expression rank across all spots in the ST data. Genes with a ratio higher than 1 
and expressed in more spots/cells in the region/cell-type than in overall sample(s) were considered 
specific for the region or cell type. A high GSS score for a gene suggests that the gene was 
higher/enriched for the region/cell-type than most other genes in that region/cell-type.  

Based on proximity to the nearest transcription start sites, GWAS SNP are assigned to GSS genes for 
each focal spot/cell. Given the set of assigned SNPs to each spot/cell, the  SNP effects in the GWAS 
summary statistics for BCC, cSCC, and cutaneous melanoma and LD scores (from the 1000 
Genomes Project Phase 3) were used for LD score regression analysis. Given the total set of SNPs 
assigned to a spot/cell, the SNP-level trait heritability (Chi-square association with the skin cancer trait 
of a SNP from the summary statistics) is partitioned into the SNP effect of a focal spot or cell and the 
effect of the SNP given the baseline SNPs that are not assigned to GSS genes. The enrichment 
p-value is calculated based on the partitioned regression coefficient, using one-sided Z-test for bigger 
than 0. To compute p-value for the association of a spatial region or a cell type across the whole 
sample, we aggregated P values of individual spots/cells within the spatial regions (or cell types) using 
Cauchy combination.  

skInteractive database 
We built the skInteractive database in the form of a visualisation dashboard with a Shiny v1.7.2 
application (Sievert et al., 2020). The database has two main sections, the Atlas, which shows cell 
types and clustering results, and the Gene Explorer, which allows the user to browse gene expression 
and/or LR interaction scores for the different datasets and modalities. The Atlas dashboard was 
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constructed using Javascript (NuxtJS framework). We converted all plots to geo map components in 
Apache Echarts v5.3.1 (Li et al., 2018) that provided interactive features to work with the plots. For the 
Gene Explorer Shiny app, we implemented multiple tabs themes and used Seurat v4.1.1 (Hao et al., 
2021) to generate plots from the different data sets stored in SeuratObjects. The Shiny application 
included Visium (gene expression and LR scores), CosMx (gene expression) and scRNAseq data 
(gene expression). skInteractive Database will be ported to AWS cloud.  

Data availability 

All of the sequencing data and accompanying H&E images for spatial transcriptomics both raw and 
processed will be deposited to ArrayExpress repository (https://www.ebi.ac.uk/arrayexpress/) and 
made publicly available according to human ethics regulations. All other experimental data (e.g. 
imaging data using RNAscope or by Polaris immunofluorescence) will be made available upon 
request. GWAS data used in this analysis is available as detailed in the relevant publications (Landi et 
al., 2020; Seviiri et al., 2022) 

Code availability 

The code to reproduce analyses and figures presented in this paper is available at 
https://github.com/GenomicsMachineLearning/SkinCancerAtlas/tree/main  
 
The public Github repository of the skInteractive database can be accessed at 
https://github.com/BiomedicalMachineLearning/SkinCancerAtlas/tree/main/manuscript_code/skInteract
iveDatabase and users can explore the interactive functionalities without the need for customised 
coding at https://skincanceratlas.com/  
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Main Figures 
 

 

Figure 1. Integrating 12 single cell and spatial technologies to create cell type, community and 
cell-cell interaction reference atlases for skin cancer.  
(a) Simplified cross-section of the human epidermis, highlighting squamous cells, melanocytes and 
basal cells. Coloured regions represent cSCC (green), which originates from squamous cells, 
melanoma (orange), which originates from melanocytes, and BCC (blue), which originates from basal 
cells. Two orange melanocytes are shown in the dermal region as occurs in invasive melanoma; other 
cells in the lower dermis layer are not depicted. 
(b) Overview of sample design and technologies used to generate data for this project. ROI - region of 
interest; FOV - field of view; S - cSCC; B - BCC; M - melanoma; HC - healthy (cancer patient); HNC - 
healthy (non-cancer patient donor). Technologies included are single cell RNA sequencing for fresh 
samples, single nuclei sequencing for formalin-fixed samples, Visium, Xenium, CosMX, GeoMX DSP 
for whole transcriptome, GeoMX DSP for proteins, Polaris, RNAscope, the proximal ligation assay, , 
spatial glycomics and CODEX.  
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Figure 2. A single-cell atlas of cSCC, BCC and healthy skin cell types 
(a) UMAP plot showing the integration of 45,909 healthy and cSCC cells from 11 samples of five 
patients, indicating results of Level 2 cell type annotation. Seventeen cell types were identified - eight 
immune cell clusters, six KC clusters, endothelial cells, fibroblasts, and melanocytes - plus an 
additional cluster of ambiguous cells.  
(b) Dendrogram showing the cell classification hierarchy, including Level 3 annotation of immune cells.  
(c) Distinguishing markers of 17 Level 2 cell types. Markers are a combination of predicted markers for 
each cluster, plus known canonical markers for each cell type.  
(d) Subclustering of keratinocytes showing the six Level 2 subtypes.  
(e-g) Classification of cancerous KC cells. Candidate cells were first classified as being aneuploid 
(red) if both InferCNV and CopyKat predicted them to be as such (e). Cells were then assigned an 
“cSCC score” (Module score calculated based on the cumulative expression of genes differentially 
expressed in KCs in the cancer samples as compared to those from the normal samples) using 
differentially expressed genes identified using two different methods, edgeR and scanpy (f). Finally, 
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cells were classified as KC Cancer (g) if they were classified as aneuploid (e) and also received an 
cSCC score above the 95th percentile of all cell scores (f). The venn diagram indicates the number of 
cells passing the module score threshold by edgeR and scanpy. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
34 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2025. ; https://doi.org/10.1101/2025.07.25.666708doi: bioRxiv preprint 

https://doi.org/10.1101/2025.07.25.666708
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Figure 3. A single-cell atlas of melanoma cell types 
(a) UMAP plot showing the integration of 10,747 melanoma cells from three patient samples, 
indicating results of Level 2 cell type annotation. Eighteen cell types were identified - melanocytes, 
seven immune cell clusters, five KC clusters, and five other cell types.  
(b) Dendrogram showing the Level 2 cell classification hierarchy.  
(c) Distinguishing markers of 18 Level 2 cell types. Markers are a combination of predicted markers for 
each cluster, plus known canonical markers for each cell type.  
(d) Result of Level 2 reclustering and cell type annotation for melanocytes.  
(e-g) Results for classification of cancerous melanoma cells. Melanocytes from the patient with the 
malignant tumor were classified as likely melanomas if they were both predicted to have aneuploid 
genomes (red) by both InferCNV and CopyKat (e). Cells were then assigned a “melanoma score” (f). 
Specifically, a module score was computed using genes upregulated in the melanoma sample 
compared to the benign sample using both edgeR pseudobulking and scanpy non-parametric test. For 
the sample from melanoma patient, a majority of the cells with a score >80th percentile cut-off were 
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from the Melanoma sample cluster (Clusters 9 and 10), (g) and finally the cells inferred ‘Aneuploid’ by 
the CNV analysis and with a high module score by both the aforementioned methods are labelled as 
malignant melanocytes (red) as shown in the UMAP. The venn diagram indicates the number of cells 
passing the module score threshold by edgeR and scanpy. 
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Figure 4. Biological distinctions between cSCC, BCC and melanoma in the single-cell RNASeq 
atlas 
(a) Dot plot showing the percentage of each Level 2 cell type within patient samples. Dots are 
coloured by cell type category and dot size indicates their percentage within each sample; all columns 
sum to 100. Results of differential abundance statistical tests are shown to the right, comparing 
abundance in cSCC vs melanoma, cSCC vs healthy skin, and melanoma vs healthy skin. Asterisks 
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indicate the sample in which the cell type was found to be more abundant, either healthy skin (pink), 
cSCC-BCC (blue) or melanoma (yellow).  
(b) A venn diagram of the top significant upregulated genes across cancerous and non-cancerous KCs 
and melanocytes. (red) Upregulated in cSCC/BCC KC Cancer cells compared to Malignant 
Melanocytes from melanoma samples, (green) Upregulated in Malignant Melanocytes from melanoma 
samples compared to cSCC/BCC KC Cancer cells, (yellow) Upregulated in Malignant melanocytes 
compared to other melanocytes in melanoma samples, (blue) Upregulated in cancer KCs compared to 
other KCs in cSCC/BCC sample.  
(c) Heatmaps showing top 50 differentially expressed genes across Cancer vs Normal KCs (top left), 
Melanocytes vs Melanoma (bottom). Each column of the heatmap indicates a pseudo-bulked pool.  
(d) Integrative, multiple platform analysis of differentially expressed genes. From left to right, the Venn 
diagram shows the overlap between DE genes between cSCC cancer KCs vs normal KCs across 
scRNAseq and for KCs in cancerous tissues compared to those from the normal tissues from 
non-cancer donors with spatial datasets of Visium, Xenium and CosMX.  
e) UMAP plot for scRNAseq data showing the expression of SOX2 in cancer vs non-cancer samples, 
which matches the location of  KC cancer cells in UMAP shown in Fig 2.  
f) Tissue gene expression plot of CosMX data showing two of the five shared markers SOX2 and 
LAMP3. Pathological annotation of the region is shown on the left. 
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Figure 5. Integrative analysis across different individuals and technologies to build a robust 
spatial community atlas.  
(a) Cross-modality comparison of the ten communities identified for each of Visium, CosMx and 
Xenium. The 4 colored bars represent super-communities (or meta-communities), which group the 10 
finer communities based on their dominant cell type composition. Each row shows a community 
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identified from one of the three spatial platforms. The left heatmap shows similarity across 
communities within and between technologies, measured by pairwise Pearson correlation values 
between communities based on their cell type composition. This allows similar communities across 
technology platforms and samples to be grouped to form meta-communities. The right heatmap shows 
the cellular makeup of each community (i.e. proportion of each cell type per community), providing 
information to label the groups of communities. The central annotation shows the broad classification 
of communities into immune, KC, stromal or tumour-related communities, based on the cellular 
makeup of each. 
(b) Spatial localisation of cells belonging to communities CosMx_6 (left) and Xenium_2 and Xenium_7 
(right). Together with Visium_2, these communities form a meta-community that is enriched for 
melanocytes. 
(c) Inter-community communication within melanoma CosMx_6. The chord plot visualises cell-cell 
communication mediated by Collagen signaling pathways, using the CellChat pathway database. 
Lines connect communicating cell types; line thickness represents greater communication between 
cell pairs. 
(d) Ligand-receptor interactions between pairs of cell types within the melanoma community CosMx_6. 
Top significant L-R pairs and corresponding cell type pairs are shown.  
(e) Cell type co-occurrence in CosMx samples between melanocytes and either other melanocytes 
(brown), Treg cells (blue), fibroblasts (green) or other cells (black). Each line plots the co-occurrence 
score (y-axis) between melanocytes and the test cell type calculated over increasing spatial distances 
(x-axis). The samples from left to right are melanoma 23346-105P, 30037-07BR and 6475-07FC. 
(f-g) Cell type proportions of communities identified in Xenium (f) and CODEX (g) for adjacent sections 
from the same sample (48974-2B). The melanoma community in both datasets is enriched with 
melanocytes.  
(h) Joint pathway analysis using upregulated genes or proteins of the melanocyte communities in 
Xenium and CODEX data (shown in f and g), and highly expressed glycans of the melanocyte 
community in MALDI data (shown in Fig S12a). The proteins, genes, metabolites are mapped to 
KEGG metabolic pathways. The X-axis shows the number of genes/proteins from Xenium and 
CODEX data found in the pathway, while the Y-axis shows glycans in the same pathway.  
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Figure 6. Differential multimodal cell-cell interaction across three cancer types using 
integrative analysis of Visium, CosMx, Xenium data.  
(a) Heatmap of LR scores for LR pairs enriched per cancer type, with a consistent trend across 
samples and the two Visium and CosMx platforms. Differentially expressed LR pairs were calculated 
comparing each cancer type vs the others using a pseudobulked LR scores with 3 pools per sample. 
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Each heatmap row is a distinct CosMx or Visium sample. The two L-R pairs specific for melanoma 
IL34-CSF1R and FGF2-CD44 were used for experimental validations.  
(b) Differential interaction analysis based on LR pairs and cell type pairs. The Venn diagram compares 
differential LR pair results between Melanoma and the combined BCC + cSCC datasets, calculated 
using edgeR with pseudobulked LR scores. The diagram highlights consistent and unique results 
between CosMX and Visium, where Up indicates a higher LR score in Melanoma and Down indicates 
a lower score in BCC + cSCC. Cell-to-cell communication between the LR pairs that are up- and 
downregulated in melanoma in both CosMx and Visium is shown in the two Network plots flanking the 
Venn diagram. In both Network plots, the purple arrows show pairs of cell types that have interactions 
higher in Melanoma and green arrows show interactions between cell type pairs more in the BCC + 
cSCC than in Melanoma. The number displayed for each arrow shows the integrated p-value across 
all biological replicates (the thicker arrows indicate more interactions). Interactions between the two 
cell types can still be significantly upregulated in melanoma even if the set of LR pairs were 
downregulated.     
(c) Spatial mapping of cancer type-enriched LR pairs in CosMx data. One of the LR pairs that was 
significantly different between cancer types across technologies in Panel a, namely IL34-CSF1R 
(higher in melanoma) is shown. It is visualised in FOVs from melanoma sample (top) and BCC sample 
(bottom). For each cancer type, the cell type annotation of the FOV is shown (top left) with orange and 
black boxes indicating the highlighted regions (top right). Magnified boxes (top right) show the 
presence of the ligand (pink) and receptor (red), with white arrows showing the connections between 
ligands and receptors of nearby cells. An overview of interactions at tissue level is shown by large 
coloured arrows, representing cumulative interactions between two cell types in the tissue, with the 
location of the arrow root as the centroid coordinate of all cells in one cell type (bottom left). 
(d) Melanoma drug target graph integrating multiple biological and pharmacological knowledge types. 
Nodes represent genes, drugs, and biological functions. Level 1 connections show 
melanoma-associated genes and drugs targeting melanoma. Level 2 links display drugs targeting the 
melanoma-associated genes from Level 1 and a broader gene set targeted by drugs in the network. 
All genes in the graph are either upregulated or have high ligand-receptor scores. Clusters 1, 2, and 3 
are pathways enriched with genes shown in the graph.  
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Figure 7. Multi-omics analysis of LR interaction between IL34 and CSF1R 
(a) Exemplar spatial plots showing the LR score for IL34_CSF1R from patient 48974. The black box 
indicates a region highlighted below the main image. Here, zoomed-in boxes show the IL34_CSF1R 
LR score (left) and IL34 (middle) and CSF1R (right) gene expression for the same tissue region. 
(b) Melanoma high resolution spatial transcriptomics samples from STOmics and Curio-Seeker shows 
cells expressing IL34 and CSF1R. 
(c-d) Heatmaps indicating grouped GO terms and associated genes that are enriched in 
IL34_CSF1R-positive spots in melanoma samples compared to IL34_CSF1R-negative spots. GO term 
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groups were calculated by k-means clustering (k = 3) of GO semantic similarity scores; two such 
groups are shown here. The full heatmap is shown in Fig S9b. 
(e) Proximal ligation assay (PLA) for validating CD44 interactions in melanoma (top).  A merged image 
of signal for the ligand and the receptor and a zoom-in window highlighting the interaction on the cell 
membrane. A positive PLA signal is visible if two interacting proteins are in a proximity less than 20 
nm. The bottom panels show signals for positive (E-Cadherin-b-Catenin) and negative (CD31-AQP1) 
controls. 
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Figure 8. Mapping genetics effects from genome-wide association studies for cutaneous 
melanoma, cSCC, and BCC to spatial domains and cell types.  
(a) Gene specificity score (GSS) and association of spatial spots with skin cancer heritability. GSS 
score for each gene in a spot/cell represents the enrichment of the gene as a top rank most abundant 
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gene in the spot/cell and its neighbour spots/cells in an anatomical region, a spatial domain, or a cell 
type. The p-value shows the spatial heritability enrichment significance of a spot with a trait based on 
SNPs mapped to the genes with high GSS scores (one-sided Z-test for stratified coefficient different to 
0). The p-value is more significant if the SNPs that are mapped to the high GSS genes explain a 
higher proportion of heritability for the trait.  
(b) Cell types with the highest enrichment of heritability explained by SNPs tagged to GSS genes of 
cells in a cell type. The white asterisks indicate the most enriched cell-type for heritability of cutaneous 
melanoma, cSCC and BCC traits.   
(c) gsMAP significance spatial heritability enrichment is shown at  single-cell resolution across the 
tissue (upper tissue plots) or per annotated skin regions (lower violin plots) from the cosMx data of the 
sample mel48974.  
(d) LR pairs with significant association with SNP heritability explained by the corresponding cell types. 
The rectangles show cases where both L and R genes had PCC >0.3 between GSS of the gene and 
the gsMAP P-values (the significance level for the LD stratified coefficients for the spot bigger than 0). 
The results suggest which LR pairs are related with the heritability of a cell type pairs.  
(e) GSS of two LR pairs showing specificity of the L and R genes to tissue regions at the immune-rich 
dermal layers and the epidermis of the skin. 
(f) Manhattan plot showing top significant GWAS SNPs co-localizing with genes in melanocytes (red) 
and T cells (blue) that had the highest Pearson correlation between GSS and the gsMAP trait 
association P-value or associated with SNPs with genome-wide significance. The Y-axis shows the 
-log(P-value) from GWAS analysis. 
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