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Abstract—Precoding for multiple-input multiple-output ortho-
gonal frequency division multiplexing systems is often based
on a per-subcarrier singular value decomposition, where phase
smoothing is applied to the singular vectors that form the
transmit beamformers. We show that such a smooth solution can
ideally be based on an analytic singular value decomposition, but
for estimated channel matrices is beset by challenges that deny
a smooth or even continuous evolution of singular vectors with
frequency. We show how such problems can be bypassed by
admitting complex-valued singular values or fractional delays,
and by exploiting a method analogous to the analytic eigenvalue
decomposition to approximate ground truth analytic singular
vectors from estimated channel matrices. We present examples
and demonstrate some of the capabilities of a proposed algorithm
through simulations.

I. INTRODUCTION

For the transmission over a multiple-input multiple-output

(MIMO) channel, in the narrowband case a singular value

decomposition (SVD, [1], [2]) of the channel matrix can

provide precoding and equalisation — also referred to more

generally as transmit- and receive-beamforming — via its

left- and right-singular vectors; such an arrangement satisfies

optimality in various senses [3], [4]. For broadband systems,

every pair of transmit and receive antennas is described by an

impulse response; thus the channel matrix C[n] now depends

on the discrete time index n ∈ Z. In the z-domain, C(z) =
∑

n C[n]z−n is a matrix of channel transfer functions, which

instead of the narrowband case of a standard matrix with

complex valued elements now contains functions in z ∈ C.

Applying the SVD to C[n] or C(z) is generally only capable

of decoupling such a system for a particular value of n or

z [5].

To extend this utility of the SVD to broadband systems,

an SVD can be applied in every subcarrier of an orthog-

onal frequency division multiplexing (OFDM) system, see

e.g. [6]. A non-uniqueness for the phase of the left- and

right-singular vectors in the per-subcarrier SVD can lead to

leakage effects [7], and poses challenges for some additional

processing tasks such as channel estimation [8]–[10]. In order

to achieve some form of smoothness across subcarriers, sug-

gested solutions include methods such as clustering [11], [12],
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spherical interpolation [11], or geodesical interpolation [13].

In clustering [11] a number of adjacent subcarriers are grouped

together and receive a common transmit beamformer, which

can be optimised based on maximising the minimum channel

gain under a spherical constraint to maintain the unit norm

of a singular vector [11]. Alternative, the optimisation can

include a smoothness term applied to the channel frequency

response, which due to the time-bandwidth product of the

Fourier transform and the channel assumed to being shorter

than the cyclic prefix on the presumed support of the channel

being shorter than the cyclic prefix cannot vary wildly [12],

[14]. The latter has also been applied without clustering [7],

[15]. The geodesic interpolation in [13] finds the shortest

connection between singular vectors in adjacent bins that

satisfy mutual orthogonality.

In this paper, we want to explore such OFDM-MIMO tech-

niques against the background of findings from polynomial

matrix algebra [5], [16], [17], and explore some of the resulting

challenges that appear to not have been addressed in e.g. [7],

[9]–[15]. For a channel matrix C(z) that is analytic in z,

except for contrived cases there exists an analytic singular

value decomposition for C(z) [18]–[20],

C(zκ) = U(z)Σ(z)V P(z) , (1)

with analytic paraunitary factors U(z) and V (z), and an

analytic diagonal matrix Σ(z). Generally we have κ = 1
but in some cases require κ = 2 to admit analytic factors

such that Σ(z) is a parahermitian matrix, i.e. Σ
P(z) :=

{Σ(1/z∗)}H = Σ(z) and thus is real-valued on the unit

circle. The parahermitian operator {·}P implies time reversal

and Hermitian transposition, while paraunitarity means that

U(z)UP(z) = I [21]. Interestingly, and akin to the case of

continuous-time analytic SVD [22], [23], the singular values

may have to be permitted to change sign in order to admit the

factors in (1) to be analytic.

In principle, analyticity of the SVD factors in (1) implies

infinite differentiability of the left- and right-singular vectors,

and therefore provides (i) the theoretical foundation for the

phase smoothness considerations in [7], [11]–[15], [24], [25],

and (ii) implies a potentially stronger smoothness criterion,

such that analyticity can be directly exploited to drive al-

gorithms for extracting both analytic eigenvectors [26], [27]



and analytic singular vectors [28]–[31], and therefore any

precoding matrices. However, two facts in this context impact

on the application of MIMO precoding:

(F1) in the case κ = 2, singular values are only 4π periodic,

and no analytic solution exists unless either (i) the

channel matrix is oversampled [18], [19] or (ii) singular

values are permitted to be complex valued [20] on the

unit circle;

(F2) if estimated from data, the channel matrix C(z) is

randomly perturbed and the singular values and singular

vectors of this estimated matrix are only piece-wise

analytic [29].

Thus, in such cases no smooth decomposition exists for an

estimated channel matrix, contradicting the assumptions made

in [7], [11]–[15], [24], [32]. This similarly affects wideband

precoding and equalisation as e.g. attempted in [33]–[36],

which is based on a polynomial SVD from [16] and may only

represent a piecewise analytic approximation of an analytic

SVD [19].

In the following, we outline the above facts (F1) and (F2),

and demonstrate how an analytic solution can be found using

fractional delays [37] and an approximation of the analytic

ground truth [38] underlying the estimated channel matrix.

The Matlab implementations to generate all figures presented

in this paper can be found online1.

II. MIMO CHANNEL MODEL

A. MIMO System Transfer Function

For a MIMO broadband system with M transmitters and

L receivers, an impulse response cℓ,m[n] can be measured

between the mth transmitter and the ℓth receiver. If cℓ,m[n] is

causal and stable, the z-transform Cℓ,m(z) =
∑

n cℓ,m[n]z−n,

or for short Cℓ,m(z) •—◦ cℓ,m[n], will be analytic in z ∈ C.

With C[n] an L × M matrix of impulse responses with

cℓ,m[n] forming its entry in the ℓth row and mth column,

C(z) •—◦ C[n] is a matrix of analytic functions.

For simplicity, but without loss of generality, in the remain-

der of the paper we assume M = L. We also assume that

C(z) has full spatial rank, i.e. that when evaluated on the unit

circle, z = ejΩ, the determinant det{C(ejΩ)} only possesses

isolated zero-crossings at most [31], and that we can find at

least one Ω0, where C(ejΩ0) possesses M distinct singular

values.

B. Per-Subcarrier Singular Value Decomposition

In an OFDM transmission with K subcarriers, SVD-based

decoupling of the channel matrix can yield precoders and

equalisers that are optimal in various senses [4]. For this, an

SVD is applied to each of the K frequency bins C(ejΩk),
Ωk = 2πk/K, k = 0, . . . , (K − 1),

C(ejΩk) = UkΣkV
H
k =

∑

m

σk,muk,mv
H
k,m , (2)

1https://github.com/StephanWeiss5/WSA25-precoding

where the diagonal matrix Σk holds the singular values σk,m,

and the corresponding left- and right-singular vectors uk,m

and vk,m form the columns of the unitary matrices Uk and

Vk.

For the sake of uniqueness, the singular values are pos-

itive real and ordered such that σk,m ≥ σk,m+1 ≥ 0 for

m = 1, . . . , (M − 1). However, even with distinct singular

values, their corresponding singular vectors possess a phase

ambiguity, such that with an arbitrary phase ϕk, uke
jϕk

and vke
jϕk are also valid left- and right-singular vectors of

C(ejΩk). It is this ambiguity that the MIMO-OFDM schemes

in e.g. [7], [11]–[15], [24], [25], [32] aim to resolve, in order

to obtain a smooth variation of the singular vectors across

frequency bins.

C. OFDM Interpolated Precoding and Equalisation

In MIMO-OFDM systems, the MIMO channel is typically

identified in a limited number K0 ≪ K of so-called pilot

subcarriers, and the channel gains in the remaining subcarriers

are determined by interpolation. If the indices of the pilot

subcarriers belong to a set S0 with cardinality |S0| = K0, then

the problem is to determine the remaining K −K0 precoders

and equalisers via (2). This assumes that the factors in (2)

permit an interpolation, i.e. that the r.h.s. of (2) is sampled

from sufficiently smooth functions. We show below that this

assumption cannot necessarily be made, and that issues arise

for the precoding approaches in [7], [11]–[15], [24], [25], [32]

when singular values are

(i) constrained to be strictly non-negative,

(ii) constrained to be real-valued, and

(iii) obtained from an estimated channel matrix that is subject

to random estimation errors.

In order to demonstrate this, we first explore the theoretical

foundations of a frequency-dependent analytic SVD in Sec. III,

and some fundamental and profound effects of its perturbation

in Sec. IV. A potential solution is highlighted in Sec.V.

III. ANALYTIC SINGULAR VALUE DECOMPOSITION

A. Existence of an Analytic SVD

For the analytic MIMO transfer function matrix C(z),
except for contrived cases, an analytic singular value decom-

position exists, such that [18], [19]

C(zκ) = U(z)Σ(z)V P(z) . (3)

In (3), U(z) and V (z) are paraunitary matrices, such that

e.g. {U(z)}−1 = U
P(z). The diagonal matrix Σ(z) contains

the singular values. These can be selected to be real-valued

on the unit circle, but must be permitted to change sign akin

to the case of the analytic SVD on a real interval [22], [23].

Since analytic singular values may intersect, the majori-

sation of singular values in the standard SVD [2] does no

longer have the same meaning, and their ordering can be

arbitrary; they a sign ambiguity [37]. For distinct singular

values in Σ(z), each corresponding pair of left- and right-

singular vectors is non-unique w.r.t. an arbitrarily selected



Fig. 1. Elements Cℓ,m[n] of matrix C[n] of Example 1, showing real (◦)
and imaginary parts (∗).

allpass filter [19]. Generally in (3), we have κ = 1, but if the

singular values are constrained to be real on the unit circle

and posses an odd number of zero crossings on a 2π interval,

κ = 2 is required in order for (3) to admit r.h.s. factors that are

analytic in z ∈ C, i.e. an analytic SVD with Σ(ejΩ) ∈ R
M×M

only exists for a twice oversampled channel matrix C(z2).

Example 1: Consider the 2 × 2 matrix C(z) •—◦ C[n] of

analytic functions characterised in Fig. 1. A factorisation can

yield

U(z) =
z−1

√
2

[

1 1
z−1 −z−1

]

, V (z) =
1√
2

[

1 z
1
2

1 −z
1
2

]

and

Σ(z) =

[

j
2
z + 1− j

2
z−1 0

0 z
1
2 + z−

1
2

]

. (4)

With Σ(z) = diag{σ1(z), σ2(z)} = Σ
P(z) satisfying paraher-

mitian symmetry, its singular values are real-valued on the unit

circle. While σ1(z) and its corresponding singular vectors are

analytic, and σ1(e
jΩ) ≥ 0, the second singular value exhibits

two oddities:

1) σ′

2(Ω) = σ2(z)|z=ejΩ must be permitted to change sign,

as otherwise it becomes non-differentiable at Ω = (2k +
1)π, k ∈ Z, as evident from Fig 2;

2) σ2(z) contains fractional powers of z and is therefore not

analytic; equivalently, its evaluation on the unit circle,

σ′

2(Ω) is only 4π-periodic as shown in Fig. 2.

Note that the singular value σ′

2(Ω) only has an odd number of

zero crossings over a 2π interval, thus requiring oversampling

by κ = 2. △
Thus, Example 1 demonstrates a case where no analytic

SVD with real singular values exists unless the channel is

oversampled by a factor of two. Even if oversampled, singular

values have to be permitted to change sign in order to admit

analytic and hence smooth singular vectors. Therefore, in this

case the efforts in [7], [11]–[15], [24], [32] will fail to find a

smooth solution.

Fig. 2. Singular values of C(z) of Example 1 evaluated on the unit circle.

B. Admitting Complex-Valued Singular Values

As an alternative to (3), admitting complex-valued singular

values on the unit circle removes the need for oversam-

pling [20], [37],

C(z) = U(z)S(z)V P(z) , (5)

whereby S(ejΩ) is diagonal but no longer constrained to be

real-valued. This introduces additional ambiguities, and it is

now possible to shift allpass factors between singular values

and singular vectors.

Example 2: For the matrix C(z) of Example 1 it is possible

to find a complex-valued analytic SVD with

U(z) =
z−1

√
2

[

1 1
z−1 −z−1

]

, V (z) =
1√
2

[

1 1
1 −1

]

and

S(z) =

[

j
2
z + 1− j

2
z−1 0

0 1 + z−1

]

. (6)

In contrast to the analytic SVD with real-valued singular

values in Example 1, all factors are now analytic, as the

fractional delay z−
1
2 — an ideal allpass — has been shifted

between the second singular value and its corresponding right-

singular vector. △

IV. ANALYTIC SVD UNDER RANDOM PERTURBATION

A. Channel Matrix Estimation

If a MIMO channel C(z) is estimated, then the estimate

Ĉ(z),

Ĉ(z) = C(z) +E(z) , (7)

is subject to a random perturbation term E(z). This may

occur e.g. when a channel is identified by an adaptive system

identification setup [39], [40], or if a channel is sounded using

finite data — say N samples — or under the influence of

channel noise. Typically the size of this perturbation term will

depend on the sample size N on which the estimate is based,

as well as the exact channel and the signal statistics [41], [42].

The larger the sample size N is, the smaller the perturbation

term becomes.

We know that for an analytic perturbation of C(z), the

perturbation of the analytic SVD factors will also be ana-

lytic [18], [19]. Thus, a small change in C(z) will only result

in a small variation in its analytic SVD factors [43]. For a



Fig. 3. Histograms of bin-wise singular values ςm, m = 1, 2, at Ω = π; the
fitted curves are Rician distributions.

random perturbation this is not guaranteed to be true, and a

small random perturbation of C(z) could potentially result in

a significant perturbation of its analytic SVD factors. We will

explore this below.

B. Perturbation of Singular Values

On a bin-wise perspective, the random perturbation by

E(ejΩ) causes the singular values to become random variables

with a distribution. Two fundamental effects occur. Firstly,

if A(ejΩ0) for some frequency Ω0 possesses two identical

eigenvalues, then by sampling from a distribution, almost

surely the singular values of Â(ejΩ0) will be distinct [44].

Secondly, if a singular value of A(ejΩ0) was zero, then the

singular value of Â(ejΩ0) will have a positive offset term [43].

Example 3: We perturb the earlier system C(z) of Exam-

ple 1 by 104 uncorrelated complex Gaussian instances E(z) of

the same support as C(z) at a signal-to-noise ratio (SNR) of

40 dB. At a normalised angular frequency Ω = π, we compute

the SVDs of Ĉ(ejπ) yielding singular values ςm, m = 1, 2;

their histograms are shown in Figs. 3(a) and (b). According

to Fig. 2, we expect singular values of 0 and 1 for A(ejπ),
but ς1 and ς2 differ, and in particular the histogram for ς1 in

Fig. 3(a) does not include zero. △
The distribution for singular values (and likewise eigenval-

ues) are typically challenging to represent, but can be stated

for specific cases, see e.g. [45]–[47]. For a complex Gaussian

perturbation, a Rician fit for the histograms of Example 3 in

Fig. 3 appears to be a close fit.

Since at a single frequency the probability of a zero singular

value or of identical singular values is almost surely zero,

this is also the case at any frequency. As a result, across the

spectrum, the singular values of Ĉ(ejΩ) almost surely will not

intersect or possess zero crossings.

Example 4: For one instance of a randomly perturbed Ĉ(z)
from Example 3, evaluating bin-wise SVDs with a sufficiently

high spectral resolution of 212 bins provides the evolution of

singular values with frequency depicted in Fig. 4. The zoomed

inserts of Fig. 4 demonstrate how singular values on the unit

circle no longer intersect and also no longer possess zero

crossings. △
Note that due to the loss of zero-crossings and intersections,

the singular values of Ĉ(z) are now 2π-periodic on the unit

circle, and oversampling is no longer required. As the pertur-

bation E(z) decreases, the analytic singular values of Ĉ(z)

Fig. 4. Analytic singular values of Ĉ(z) on the unit circle, with the moduli
of the analytic singular values of C(z) underlaid in grey. The vertical line at
Ω = π indicates where the histograms of Fig. 3 are evaluated.

converge towards functions that are piece-wise analytic seg-

ments of the analytic singular values of C(z), approximating

non-differentiable functions at frequencies where previously

intersections and zero-crossings occurred [44].

C. Perturbation of Singular Vectors

Sec. IV-B has outlined how perturbed singular values con-

verge towards the piece-wise analytic SVD of C(z) as the

perturbation decreases. The segments are switched where the

analytic singular values of C(z) intersect. This also switches

the corresponding analytic singular vectors; since singular

vectors should be mutually orthogonal, for decreasing pertur-

bations, the analytic singular vectors of Ĉ(z) converge towards

discontinuities at the switching frequencies. We demonstrate

this by the following example.

Example 5: For the perturbed matrix of Example 4, we

assess the subspace evolution of the left-singular vectors

ûm(z) with frequency. In order to ignore phase ambiguities

across bins, we measure the Hermitian angle αm(Ω),

cosαm(Ω) = |rHum(ejΩ)| , (8)

against the reference vector r = u1(e
j0). The resulting angles

αm(Ω) are depicted in Fig. 5. Underlaid in grey are the angles

for the unperturbed matrix C(z), while the subspace angles

for Ĉ(z) approximate discontinuities at the frequencies where

the corresponding singular values in Fig. 4 are switched. △

D. Consequences for Precoding and Equalisation

Based on the findings above, a random perturbation ensures

that an analytic SVD exists without the need for oversampling

by κ = 2 in (1). As the perturbation term decreases, e.g. by

performing system identification based on a large data set,

the accuracy increases and Ĉ(z) tends towards C(z), but the

same cannot be said for the SVD factors. These tend towards

piece-wise analytic functions, and the transition to (1) only

occurs if the perturbation term is zero. In the transition, we

find that the smaller the perturbation, the more difficult the ap-

proximation of a non-differentiability in terms of the singular

values, and of a discontinuity in case of the singular vectors,

becomes. Hence paradoxically, the more accurate Ĉ(z) is, the



Fig. 5. Hermitian angles αm(Ω) according to (8) for the left-singular vectors

of the perturbed matrix Ĉ(z), with those for the unperturbed matrix C(z)
underlaid in grey.

higher the approximation order grows that is required for an

accurate representation of the singular vectors, and thus for the

SVD-based precoding and equalisation operators in a MIMO

communications system.

V. RECOVERING GROUND TRUTH SINGULAR VALUES

In order to estimate the ground truth analytic singular

values of C(z) from a perturbed measurement Ĉ(z), below

we investigate an extension of a similar algorithm for the

extraction of perturbed singular values in [38]. The algorithm

is modified to address (i) singular values that can become

negative, and (ii) singular values that may require a fractional

delay in order to avoid oversampling by κ = 2 for an analytic

solution [20], which is not required for the analytic eigenvalue

decomposition [18], [19].

The approach is based on the fundamental property of

analytic functions to match their Taylor series everywhere; as

a result, the entire analytic function can be reconstructed from

any small segment. Thus, we first identify segments of bin-

wise singular values in Sec. V-A that can be clearly associated

where a sufficient separation between singular values and zero-

crossings exist. In order to align these segments, Sec. V-B

compares their partial time-domain reconstructions, permitting

the extraction of the ground truth singular values in Sec. V-C.

A. Segmentation

By operating in the discrete Fourier transform (DFT) do-

main, we perform a bin-wise SVD in each frequency bin of

Ĉ(ejΩk), Ωk = 2πk/K, k = 0, . . . , (K − 1), where K is the

DFT length, such that

Ĉ(ejΩk) = UkΣkV
H
k , (9)

where Σk = diag{σk,1, . . . , σk,M} with σk,1 ≥ . . . ≥ σk,M ≥
0. In order to identify viable segments where singular values

are sufficiently separated from each other and from any zero-

crossings, we define a minimum distance as

dmin(Ωk) = min
m,µ=1,...,M

m 6=µ

{(σk,m − σk,µ), 2σk,m} . (10)

The second argument in (10) measures the distance from a

zero-crossing.

Fig. 6. Minimum distance of bin-wise singular values of Ĉ(ejΩk ) of
Example 6 compared to the threshold T .

Fig. 7. Extracted Q = 4 segments for Example 6 based on the minimum
distance and threshold in Fig. 6.

Segments can be defined where a sufficient number of

subsequent frequency bins have a minimum distance above a

preset threshold T . For reasons of robustness, such segments

must also satisfy a minimum length — i.e. a minimum number

of consecutive frequency bins — in order to calculate a reliable

reconstruction later [38].

Example 6: We now assume that C(z) is perturbed by a

term E(z) at 60 dB SNR. The minimum distance dmin(Ωk)
of bin-wise singular values in K = 210 DFT bins as defined

in (10) is shown in Fig. 6. Valid segments are extracted where

more than 16 successive bins satisfy a minimum distance

dmin(Ωk) > T := 1
5
maxΩk

{dmin(Ωk)}. The resulting Q = 4
segments are shown in Fig. 7; note that the last segment wraps

around at Ω = 2π. △

B. Aligning Partial Reconstructions

Each segment can be converted back into the time domain

using a partial inverse DFT [38]. We here apply a small

modification, since segments potentially have to be fractionally

delayed in case they belong to ground truth singular values

with an odd number of zero crossings. Thus, we check if

a phase shift equivalent to a half sample delay provides a

symmetric response in the time domain. If this is the case, then

for this particular singular value segment a fractional delay is

incorporated.

Example 7: For the segments in Example 6, Fig. 8 shows the

time domain reconstructions. Note that for each segment, one

of the singular values has been corrected by a fractional delay

of a half sample, resulting in functions that are symmetric

w.r.t. τ = 1
2

. Note that two of these fractionally delayed

segments (q = 3, 4) exhibit a sign change. △
The alignment of the reconstructed segments uses the

Hungarian algorithm [48], [49] based on the norm difference

between different segments, taking into account that a smaller

norm may be possible if a segment is negated. In Fig. 8, the



Fig. 8. Partial IDFT reconstructions of the segments in Fig. 7 with a potential
half sample delay compensation in case the delayed version retains symmetry;
real parts of sq,m[τ ] are shown as blue (◦), imaginary parts as red (∗) stems;
frame colours of the subplots indicate their association.

Fig. 9. Extracted singular values on the unit circle; to avoid oversampling,
the real-valued constraint has been dropped [20].

result of this alignment is indicated by the frame colours of

the subplots.

C. Extraction of Analytic Singular Values

The extraction of singular values follows the procedure

in [38], whereby a weighted average over the differently

aligned and sign-corrected segments is performed. The weight-

ing is provided by the length of the segments, whereby longer

segments are deemed to be more reliable than shorter ones.

Example 8: For the segments in Example 7, Fig. 9 shows

the segment-weighted and sign-corrected averages for the two

singular vectors. In order to avoid oversampling by κ = 2,

the half-sampled delay has now created a singular value s2(z)
that is no longer constrained to be real-valued on the unit

circle. Fig. 9 therefore contains the real- and imaginary parts

of s2(e
jΩ), which now are 2π-periodic and therefore admit

analyticity of s2(z). The support of the extracted singular

values of 7 samples is close to the ground truth with a support

of 3 coefficients.

For comparison, if instead of seeking the ground truth

solution, we reconstruct the bin-wise SVDs of Ĉ(z) as shown

in Fig. 4, instead of a support of 7 as highlighted in Fig. 10(a),

we end up with a support that is several orders of magnitude

larger: Fig. 10(b) shows an IDFT with 215 bins, where the

decay of the coefficients is very slow. This represents the

type of time-domain support that may be necessary, unaffected

by any phase smoothing, if a bin-wise or per-subcarrier

SVD is interpolated without addressing the challenges of the

underlying analytic SVD.

Fig. 10. Moduli of the time-domain singular values sw(a) obtained using (a)
the proposed method and (b) an IDFT reconstruction based on the perturbed
system in Fig. 4.

VI. CONCLUSIONS

Motivated by the efforts in phase smoothing for precoding

matrices in multicarrier MIMO communication systems, we

have explored the analytic singular value decomposition as

the theoretical foundation for the spectral coherence behind

a per-subcarrier SVD. This reveals some of the challenges in

trying to find a smooth interpolation from a limited number

of subcarriers. Firstly, in order to admit the infinite differen-

tiability and hence smoothness afforded by analytic functions,

we have demonstrated the need for admitting complex valued

singular values. Secondly, fundamental challenges arise from

random perturbations introduced in the estimation process of

the channel matrix. Paradoxically, the better the estimate, the

higher may be the required approximation order of the singular

values and their associated left- and right-singular vectors. Pro-

foundly, this can lead to precoding and equalisation matrices

being difficult to interpolate.

While we have not yet addressed the recovery of analytic

singular vectors, we have as a first step demonstrated how

to extract analytic singular values by adapting an existing

approach for analytic eigenvalues from [38]. Despite the above

problems, this can recover smooth solutions with compact

support, that hence are easier to interpolate. For the some-

what analogous case of an analytic eigenvalue decomposition,

once analytic eigenvalues have been extracted [50]–[52], their

corresponding eigenvectors can be tackled [53], [54].

REFERENCES

[1] G. W. Stewart, “On the early history of the singular value decomposi-
tion,” SIAM Review, vol. 35, no. 4, pp. 551–566, 1993.

[2] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed.
Baltimore, Maryland: John Hopkins University Press, 1996.

[3] D. Palomar, J. Cioffi, and M. Lagunas, “Joint Tx-Rx beamforming
design for multicarrier MIMO channels: a unified framework for convex
optimization,” IEEE Trans. Signal Process., vol. 51, no. 9, pp. 2381–
2401, 2003.

[4] M. Vu and A. Paulraj, “MIMO Wireless Linear Precoding,” IEEE Signal
Process. Mag., vol. 24, no. 5, pp. 86–105, Sep. 2007.

[5] V. Neo, S. Redif, J. McWhirter, J. Pestana, I. Proudler, S. Weiss,
and P. Naylor, “Polynomial eigenvalue decomposition for multichannel
broadband signal processing,” IEEE Signal Process. Mag., vol. 40, no. 7,
pp. 18–37, Nov. 2023.

[6] L. Hanzo, Y. Akhtman, L. Wang, and M. Jiang, MIMO-OFDM for LTE,
Wi-Fi and WiMAX. John Wiley & Sons, 2010.

[7] R. Marsalek, J. Blumenstein, J. Vychodil, T. Mikulasek, P. Jung,
and A. Pfadler, “Real-world OTFS channel estimation performance
evaluation on mmwave vehicular channels,” in 27th Workshop on Smart
Antennas, Dresden, Germany, 2024, pp. 1–7.



[8] P. Hoeher, S. Kaiser, and P. Robertson, “Two-dimensional pilot-symbol-
aided channel estimation by Wiener filtering,” in IEEE Int. Conf. Acous-
tics, Speech, and Signal Process., vol. 3, Munich, Germany, Apr. 1997,
pp. 1845–1848 vol.3.

[9] Y. Li, “Simplified channel estimation for OFDM systems with multiple
transmit antennas,” IEEE Trans. Wireless Comm., vol. 1, no. 1, pp. 67–
75, 2002.

[10] C. Shen and M. P. Fitz, “MIMO-OFDM beamforming for improved
channel estimation,” IEEE J. Sel. Areas Comm., vol. 26, no. 6, pp. 948–
959, 2008.

[11] J. Choi and R. Heath, “Interpolation based transmit beamforming for
MIMO-OFDM with limited feedback,” IEEE Trans. Signal Process.,
vol. 53, no. 11, pp. 4125–4135, 2005.

[12] W. Hu, F. Li, and Y. Jiang, “Phase rotations of SVD-based precoders
in MIMO-OFDM for improved channel estimation,” IEEE Wireless
Comm. Lett., vol. 10, no. 8, pp. 1805–1809, 2021.

[13] K. Schober, R. Wichman, and M. Enescu, “Geodesical refinement of
MIMO limited feedback,” IEEE Trans. Comm., vol. 64, no. 3, pp. 1031–
1041, 2016.

[14] J. Liu, W. Zhang, and Y. Jiang, “Channel estimation considerate precoder
design for multi-user massive MIMO-OFDM systems: The concept and
fast algorithms,” IEEE Trans. Comm., vol. 73, no. 6, pp. 3820 - 3832,
Jun. 2025.

[15] A. Pfadler, T. Szollmann, P. Jung, and S. Stańczak, “Estimation of
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