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ABSTRACT

Understanding the dynamics of open quantum systems in strong coupling and non-Markovian regimes remains a formidable theoretical
challenge. One popular and well-established method of approximation in these circumstances is provided by the polaron master equation
(PME). In this work, we re-evaluate and extend the validity of the PME to capture the impact of non-Markovian polaron dressing, induced by
non-equilibrium open system dynamics. By comparing with numerically exact techniques, we confirm that while the standard PME success-
fully predicts the dynamics of system observables that commute with the polaron transformation (e.g., populations in the Pauli z-basis), it can
struggle to fully capture those that do not (e.g., coherences). This limitation stems from the mixing of system and environment degrees of free-
dom inherent to the polaron transformation, which affects the accuracy of calculated expectation values within the polaron frame. Employing
the Nakajima-Zwanzig projection operator formalism, we introduce correction terms that provide an accurate description of observables that
do not commute with the transformation. We demonstrate the significance of the correction terms in two cases, the canonical spin-boson
model and a dissipative time-dependent Landau-Zener protocol, where they are shown to impact the system dynamics on both short and

long timescales.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0228779

I. INTRODUCTION

The interaction between quantum systems and their surround-
ing environments is a fundamental aspect of quantum mechanics,
leading to the dissipative and decoherent dynamics that are char-
acteristic of most real physical situations. The complexity of these
interactions, especially outside the perturbative regime of weak
system-environment interactions, presents a significant theoretical
challenge. In recent years, there has been substantial progress
in overcoming these challenges through the development of
efficient numerical algorithms, such as the hierarchical equations of
motion,"” the time evolved matrix product operator (TEMPO),‘H
its generalizations,” and the time evolving density operator using
orthogonal polynomials algorithm (TEDOPA).”” While these
methods have proven invaluable for studying open quantum
systems in previously inaccessible regimes, they are not completely
without limitation. For example, they are typically numerical black
boxes, providing limited analytic insight into the evolution of
the system and the environment. Furthermore, even with highly
efficient tensor network representations, such techniques can still be

computationally demanding, making accurate long time dynamics a
challenge to obtain (as we shall see for a particular example in the
following).

In contrast, the quantum master equation (QME) formalism
offers an efficient and straightforward approach to simulating open
quantum systems, with the potential to draw analytic insight from
the resulting equations of motion. While the Nakajima-Zwanzig
projection operator procedure'”'" leads to a QME that is formally
exact, for most models of interest, it is necessary to make approxima-
tions to obtain a tractable theory. The standard procedure is to treat
the system-environment interaction as a weak perturbation, leading
to the well-known Redfield master equation.'”"’ However, there is
now a significant body of work that extends QMEs beyond the weak
coupling regime. Examples include the pseudo-mode'* '® and reac-
tion coordinate'”'® techniques, in which key environmental degrees
of freedom are incorporated into the system of interest, which is then
considered to be weakly coupled to the residual environment.

In this work, we focus on another such QME treatment,
known as the polaron master equation (PME),"” in which a unitary
transformation is used to dress the system with displacements of
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the environmental (vibrational) modes. This allows one to derive
a Born-Markov master equation that is non-perturbative in the
system-environment interaction strength and thus valid over a
larger regime of parameters than the usual Redfield master equation.
The resulting theory and its variational extensions”””' have been
used extensively to study the behavior of dissipative quantum
systems, including semiconductor quantum dots,'”***’ excitonic
energy transfer in molecular complexes,”* *” and quantum thermo-
dynamics applications.”* '

Here, we show that although the PME can very accurately
describe the evolution of system observables that commute with the
polaron transformation (e.g., in our case, populations in the Pauli
z-basis), it fails to describe non-commuting observables, such as the
coherence of the reduced state, to the same level of accuracy. This is
a consequence of the polaron transformation mixing the system and
environment degrees of freedom, which must be accounted for when
calculating expectation values in the lab frame, i.e., the frame of
reference in which our Hamiltonian is originally specified and thus
assumed to be physically accessible. Using the Nakajima-Zwanzwig
projection operator formalism, we derive correction terms to non-
commuting observables, which faithfully describe their behavior
when benchmarked against the numerically exact TEMPO method.
Furthermore, the computational simplicity of the polaron approach
allows the calculation of the long-time and steady-state behavior
of the system, which is extremely challenging with TEMPO due
to the accumulation of numerical errors. We demonstrate the
significance of the correction terms in two cases, the canonical
spin-boson model and a dissipative time-dependent Landau-Zener
(LZ) protocol.

The paper is organized as follows: in Sec. II, we give an outline
of the Nakajima-Zwanzig projection operator technique'”'' and
how it may be used to obtain the time-convolutionless (TCL) master
equation. In Sec. I1I, we introduce the polaron transformation and
derive a TCL master equation in the polaron frame. In Sec. IV,
we derive correction terms for calculating lab-frame expectation
values with the polaron frame master equation. Section V presents
an outline of the TEMPO method, and in Secs. VI and VII, we
benchmark the corrected PME expectation values against TEMPO
for the spin-boson model and an LZ protocol, respectively. Finally,
we briefly summarize our findings in Sec. VIIL

1. PROJECTION OPERATORS AND THE
TIME-CONVOLUTIONLESS MASTER EQUATION

We begin with an overview of the Nakajima-Zwanzwig projec-
tion operator formalism'”'" and the TCL master equation,"* which
will be useful for the discussions and derivations that follow in the
subsequent sections.

We consider a system, S, interacting with an environment, &.
The Hamiltonian is given by H(t) = Hs(t) + Hg + Hi, where Hs(t)
describes the system, which can, in general, be time-dependent;
Hp governs the free evolution of the environment; and Hi
describes the interaction between the two. We define an interaction
picture with respect to Ho(#) = Hs(¢) + Hp. The evolution of the
joint system-environment state y(¢) in this interaction picture is
governed by the Liouville-von Neumman equation,

Ox () = =i[Hi(), x(£)] = « L()x(8)- ey
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The Liouvillian, £(t), is a superoperator that acts in the full
Hilbert space of the system and environment and thus leads to a
computationally intractable problem in most practical circum-
stances (notice that we have introduced a parameterization of the
Liouvillian with «, a dimensionless coupling parameter, which will
be useful in the perturbative analysis later in this section). Instead,
we wish to derive an equation of motion for the reduced state of
the system ps(t) = trg(x(#)). To do this, we define a projection
operator P,'"'" whose action is Py(t) = ps(t) ® 15 where 13 is
the reference state of the bath, typically taken as the Gibbs
state 7p = exp (—fHp)/trg(exp (-fHp)) at inverse temperature
B = 1/kgT. The projector is idempotent, P> = P, and we will refer
to Px(t) as the relevant part of the density operator. In addition, we
also have an irrelevant part of the density operator Qy(t), where we
have introduced the orthogonal projector Q =1 - P.

With these projectors, we can define an equation of motion for
both the relevant and irrelevant parts of the evolution,

O Py(t) = aPL(t) Qx(t), (2)

0, Qx(t) =aQL(t)Px(t) + a QL(t) Ox (1), (3)

where we have assumed that by construction PL(t)P=0." By
integrating Eq. (3), we can find a formal solution for the irrelevant

3

contribution of the form™*"’

Qx(1) = [1-2()]Z() Py(t) + [1 - 2(1)] 7 G(t.10) Qx(to)@)

where we have introduced the time-ordered Green’s function for the
irrelevant projection,

G(t,t0) = T exp (oc [ t Qc(s)ds). 5)

Here, 7 is the forward time-ordering operator, which orders
operators with early times to the right. We have also defined the
superoperator,

t
2(t) = oc/ dsG(t,s) QL(s) PG(1s), ©6)
to
which contains the reverse time-ordered Green’s function,
t
G(t,s) = T exp [—ocf ds'E(s')], (7)

where the reverse time-ordering operator 7 _, orders operators with
early times on the left.

We can now expand Eq. (4) in terms of the dimensionless
coupling parameter «, which we truncate at first order, to give™

Qx(1) = Qx(t) +a [ "dsi QL(s1) Q(to)
+oc[t dsL(s) Py(t) + O(a). (8)

It should be noted that while it is possible to expand to higher
orders in «, the resulting terms become increasingly complex
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and contribute at least O(a’) corrections to the TCL master
equation. Substituting Eq. (8) into Eq. (2) and retaining only terms
up to second order in a, we obtain the following second-order TCL
master equation,

B Py(t) = a PL(t) Qy(to) +a2[ dsPL(1) £(s) Qy(to)
+a2[rds73£(t)£(s)77x(t) L o). ©)

Notice that there is a contribution associated to the Q projection
of the initial state, Qx(#y). This is commonly referred to as the
inhomogeneous contribution and emerges when the reference state
of the environment differs from its initial condition. For all the
scenarios considered in this manuscript, we chose Qy(fy) = 0; how-
ever, it is expected that an alternative choice would induce further
non-Markovian behavior in both the system dynamics”’' and
correction terms derived in Sec. I'V.

Finally, to get an equation of motion for the reduced system
state, we take a partial trace over the environmental degrees of
freedom to obtain the second-order TCL master equation, written
in the interaction picture as

Oips(t) = K[ps(t)]. (10)

Here, we have introduced the dissipation superoperator,

Klps(t)] = —ftot dstrg[Hi(t), [Hi(s), ps(t)®78]],  (11)

and we have chosen the bath initial state to match the reference state,
such that Qx(ty) = 0.

Ill. THE SPIN-BOSON MODEL AND POLARON THEORY

Having derived a general second-order TCL master equation,
let us now consider a concrete physical model. We focus on
the spin-boson Hamiltonian'’ describing a two-level system (TLS)
interacting with a bosonic environment, given by (7= 1)

H(t) = S(Z—t)az + %ax +6: @bl + b)) + > wblb,  (12)
k k

where we have defined a static tunneling parameter A and allowed
the bias ¢(t) to be potentially time-dependent. Here, {5} j=x,.. are
the usual Pauli matrices. The operator by (bi) is the annihilation
(creation) operator for the kth mode of the environment, with v
being the corresponding frequency and g, its coupling strength to
the system. The overall coupling of the system to the environment
is specified by the spectral density J(v) = ¥ |g,[*0(v — k), which
gives the interaction strength weighted by the environmental density
of states. We shall refer to H(t) as defining the Hamiltonian in the
lab frame.

A. Polaron transformation

To account for strong system-environment coupling, we apply
the (active) polaron transformation to the lab-frame Hamiltonian
H(t) to give Hp(t) = ¢H(t)e™>, where S = 5.3, (gk/vk)(b,t - by).

ARTICLE pubs.aip.org/aipl/jcp

This dresses the system states with vibrational modes of the
environment, resulting in the polaron-frame Hamiltonian,

e(t), Ar, A, o . 4
Hp(t) = T)GZ + 7R0‘x + E(axBx +6,B)) + > wblb,  (13)
k

where we have introduced the environment operators B,
= (By +B--2B)/2 and By =i(B;—B_)/2, and defined the
bath displacement operators,

B. = exp (izk: %’;(b; - bk)). (14)

We have also defined the thermal expectation value of these
operators, given by

B= trB(Bi‘f’B),
2
= exp (—22 @coth (p’vk/z)), (15)
ko Vk

where 73 is the Gibbs state of the environment in the polaron frame,
where a tilde has been used to distinguish it from the Gibbs state in
the lab frame, 73.

There are several interesting features to the polaron trans-
formed Hamiltonian. For example, the system-environment
interaction term now induces transitions between the 6, eigenstates
of the TLS, with corresponding displacements of the phonon envi-
ronment, in contrast to the linear coupling form of the original
lab-frame Hamiltonian H(t). In addition, the tunneling is renormal-
ized, Ar = BA, where B < 1 by definition. This is a consequence of
bath interactions suppressing the tunneling of the system due to the
energetic costs of displacing the phonon environment as the system
state varies.

B. Polaron-frame master equation

We can now derive a TCL master equation in the polaron
frame using Eq. (11) with the interaction Hamiltonian Hi(t)
= %(ffx(t)éx(t) +6&,(t)B,(t)), written in the interaction picture
with respect to the non-interacting terms in Hp(t). It should be
noted that as we have performed the polaron transformation, the
projection operator Py(t) = ps(t) ® T8 now assumes 7 to be the
Gibbs state in the polaron frame. This will be important when
considering observable expectation values in the following. We
assume that the phonon environment is initialized in the polaron
frame Gibbs state 7g such that Qy(f) = 0 and thus there are no
inhomogeneous terms in the master equation.

We find the polaron-frame dissipation superoperator to take
the compact form

Klps(0] = -5 S [5(0. (Dps()] +hes (1)
J=%y

where h.c. is the Hermitian conjugate. Dissipation due to the
phonon environment is induced through the non-Hermitian and
non-Markovian rate operators,

&;(t) = fm’ dsA; (¢ - $)5(s). (17)
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Here, we have introduced the polaron-frame environment two-time
correlation functions, defined as

2
An(r) = (Ba(r)By) = %(é“” s 2), )
s gy B0 _ e
() = (By(1)By) = (87 - ), (19)

written in terms of the phonon propagator,

(1) = fooo 4](2v)(coth (%) cos (vr) —i sin (VT)) dv.  (20)

14

In the following analysis, we shall assume the spectral density to take
the form

J(v) = (ch_zvse_v/wf, (21)

where « is a dimensionless coupling constant and w, is the cutoff
frequency, which sets the response time of the phonon environment.
A super-Ohmic spectral density typically describes bulk acoustic
phonons in 3D, for example, in molecular emitters’’ and
semiconductor quantum dots."”

Equation (16) provides a dynamical description of the reduced
state of the system in the polaron frame, which treats the
system-environment interaction non-perturbatively. Instead, the
polaron-frame master equation can be thought of as perturbative in
the ratio A/w.. For more detailed discussion of the validity of the
polaron approach, we refer the reader to Refs. 23 and 38.

IV. EXTRACTING LAB-FRAME OBSERVABLES
USING POLARON THEORY

The master equation derived above gives the dynamics of the
reduced system in the polaron frame. However, we are typically
interested in system observables as defined in the physically acces-
sible lab frame. By construction, the polaron transformation is a
unitary mapping that mixes system and environment degrees of
freedom, meaning that observables, as represented in the polaron
frame, do not directly correspond to those in the lab frame, unless
the observable commutes with the polaron transformation (for the
spin-boson model, this is the case for example for ;). Here, we
show that failing to account for the dressing induced by the polaron
transformation when calculating lab-frame observables leads to
deviations in the expected values of the system. We correct for these
deviations by utilizing the projection operator formalism introduced
in Sec. II.

We start by considering the relation between the lab and
polaron frame density operators in the Schrodinger picture,

x(t) = eSXL(t)efs, (22)

where y, (t) is the lab-frame density operator of the combined
system and environment. Inverting this expression, and considering
the expectation value of a system observable Ay in the lab frame, we
have

ARTICLE pubs.aip.org/aipl/jcp

(AL> = trs+B(ALXL(t)) = trs+B(ALe_s)((t)es). (23)

Using the cyclic invariance of the trace, we obtain (Ar)
= trs4p(Apx(t)), where Ap = ¢’Ae”S is the polaron-frame operator,
which can differ from Ay and potentially act on both the system and
environment Hilbert space.

We only have access to the system Hilbert space through the
TCL master equation. Nevertheless, to calculate lab-frame expecta-
tion values, we can make use of the projection operator by inserting
the identity 1 = P+ Q. This yields®’

<AL(t)) = <AP(t)>rel + (AP(t)>irrel> (24)

where (Ap () )rel = trs+s(Ap Px(t)) and (Ap (1) irrel
= trs+8(Ap Qx(t)). If Ap acts purely on the system Hilbert
space, then by construction, (Ap(t))ire =0. However, as we
have stressed, system operators that do not commute with the
polaron transformation are dressed by environmental displacement
operators in the polaron frame. In general, we can decompose such
operators as

Ap = Z 31' ® Bj (25)
j

in terms of system operators $; and bath operators B;. The relevant
contribution to (Ar(t)) is then

(Ap(0)ra = 3 (B))((1))- (26)

J

This is the form of expectation value defined in previous studies of
the PME.""*

For the irrelevant contribution to (AL (#)), we can make use of
the expansion of the irrelevant part of the density operator given in
Eq. (8) to find

(Ap (1) Yirral » a/tuf dstrs.g (Ap(£) £(s) Px(1))
= *"ftt dstrsie(Ap(t)[Hi(s),ps(t) ® 78]),  (27)

where we have kept only the first-order correction. While this term
originates from what is often referred to as the irrelevant contribu-
tion in the projection operator formalism, we shall see that it can
have a significant impact on system expectation values.

The resulting correction terms are identically zero in the case
that the system observables commute with the polaron transfor-
mation. Therefore, the population difference, (6;), is the same in
both the lab and polaron frames. In contrast, operators involving the
coherences are not. For example, &p = 6 ® B, when &1, = 6 = |e){g].
In this case, we have (6p(t))r = B(6(¢))p, where (-)p denotes an
expectation value taken in the polaron frame, and the correction
term is given by

<6P(t)>irre1 = tl‘S[ﬁ(t) (\i’(t)PS(t) - Ps(t)d)(t))} (28)

where we have introduced the operators W(t) = —iA(O.(t)
-i0,(t))/2 and d(t) = —iA(OL(¢) - i®] (1)) /2.
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V. TIME-EVOLVED MATRIX PRODUCT OPERATOR
BENCHMARKS

We shall benchmark the corrections derived above against
TEMPO,’ which is naturally formulated within the lab frame.

A. The TEMPO formalism

TEMPO is a reformulation of the discrete-time path integral
approach originally developed by Makri and Makarov'”"’ [known
as the quasi-adiabatic path integral (QuAPI) technique] as a tensor
network. To derive the TEMPO method, our starting point is the
reduced density matrix of the system after N time steps t = NG,
where § is the step-size. We use Liouville-space notation, defining
a compound index s = (s;,s,), which labels the left and right eigen-
states of the system—-environment coupling operator, which for the
spin-boson model in Eq. (12) is &;. In this notation, the components
of the reduced density operator can be written as p’ = (s/|p|s,). For
a Gaussian environment, the dynamics of the reduced state can be
expressed in terms of the discrete-time path integral,””**’

PsN(Na) _ Z ]_-Slu-sN,l(H MS1,51_1)PSO(O)’ (29)

spesy 1=1
where M, = (e“%)s., describes the free evolution of the
system under the Liouvillian £, [p] = —i[Hs(%),p]-

The tensor F*'"*' is the discrete-time Feynman-Vernon
influence functional,”’ a rank-N tensor that captures exactly the
environmental influence in the limit that § — 0. For the spin-boson
model in which the environment is initialized in a thermal state, the
influence functional can be decomposed as®

FNs 2 H H [bi_j]s”sj, (30)

i=1 j=1

where we have introduced the tensors [b;_;]%*/, which may be
written in terms of the bath correlation functions as

4 (A=A, iid =1 Ay
[bi_j]s,s —e (51 5 ) (i 5 M- j s,). (31)

Here, A; are the eigenvalues of the system-environment coupling
operator, and the memory kernel is defined as

£ ti
f at' [ af'c(t' -¢"), i=j,
tiy ticy
iz = A 1o
f dtf ar’c(r -t7), i+j,
iy tiz1

where C(t) = [, dw](w)(coth (Bw/2) cos (wt) —i sin (wt)) is the
bath correlation function.

Due to its high-rank form, it is not feasible to calculate the
influence functional directly, limiting to studies with few time steps
or to environments with short memories. However, Strathearn
et al’ noticed that Eq. (30) could be recast as a tensor network
and propagated using matrix product operator methods. Notably,
this allows one to use standard tensor compression methods based
on singular value decomposition, which reduces the rank of the

(32)

ARTICLE pubs.aip.org/aipl/jcp

influence functional. Since this initial proposal, there have been a
series of contraction and compression schemes"”"” that improve
upon the original formulation. The benchmarks in this work utilize
the scheme developed by Link et al.,> which make use of techniques
from infinite uniform matrix product states*’ to efficiently compress
and contract the tensor network. For details of the scheme, we refer
the reader to Ref. 5.

B. Simulation details and sources of error

The above-mentioned formulation of TEMPO takes the envi-
ronment to be initialized in thermal equilibrium in the lab frame.**
However, this differs from the initial state of the PME, which
assumes a Gibbs state in the polaron frame. We can ensure the initial
bath state to be the same in both theories in two ways. The first
would be to assume that the initial state in the PME is a Gibbs state
in the lab frame; this would introduce inhomogeneous terms to the
master equation, since then Qy(y) # 0. Alternatively, we can allow
TEMPO to thermalize to a Gibbs state in the polaron frame by ini-
tializing the system in an eigenstate of ¢, with no tunneling (A = 0)
for a time window ty, which exceeds the correlation time of the
environment. Since inhomogeneous terms may mask the effect of
the correction contributions to the dynamics of system observables,
we opt for the latter, where we set the thermalization time in TEMPO
to be ty, = 4A71 (using the non-zero value of A taken for the sub-
sequent dynamics). This is also the more physically relevant initial
condition if we assume that the system—-environment interaction is
not controllable, i.e., it cannot be switched on or off.

When benchmarking the polaron method, it is crucial to
consider potential sources of error in the TEMPO simulations. The
two main contributions are the Trotter error and the threshold for
discarding singular values during tensor network compression. The
Trotter error emerges due to the discretization of the time axis using
a second-order Trotter splitting, leading to an error of O(&”). Con-
sequently, § must be chosen to be small relative to the system’s
energy scales, although Trotter error can accumulate over time even
then (see in the following). The threshold ¢ at which singular val-
ues are discarded is tuned to ensure the resulting system dynamics
are numerically converged, typically set at ¢ = 10~° for the models
considered in this work.

VI. STATIC SPIN-BOSON MODEL

We begin our analysis of the system dynamics by con-
sidering a spin-boson model with constant system parameters
(set after ty, in TEMPO), where €(t) =€ >0 and A > 0. In this
case, the polaron-frame system Hamiltonian has eigenstates |y..)

= ((e+1)|g) + Ale))/\/2(y £ €), where #* = €* + A}, which satisfy
Hsly,) = =(n/2)ly. ).

We are interested in the impact that the correction (irrelevant)
terms have on the expectation values of system observables over
time. Since the polaron transformation commutes with the system
z-basis populations, the population difference is invariant between
frames, that is, (o.1(t)) = (0p(¢)). Figure 1 shows an example of
the population difference as a function time predicted by the PME
(solid curve) and TEMPO (points). Here, we see excellent agreement
between the two methods, demonstrating that the PME accurately
captures the system population dynamics in this regime.
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FIG. 1. Dynamics of the population difference in the spin-boson model calculated
with the PME (solid curve) and TEMPO (points). Parameters used in this plot are
€=0,pA=1a=02A, and w; = 10A.

If we consider the coherence, however, as discussed earlier, the
lab-frame operator oy, = 0 = |g){e| maps to the polaron-frame oper-
ator op = 0 ® By. The presence of the bath operator B necessitates
the inclusion of a correction term, such that

(ou(8)) = B{a (1)) + {0p () )irrel (33)

We can use the expression given in Eq. (28) to write the correction
term as

{op(1))irra = (0(D¥ (1)) ~ (D(1)o(1)). (34)

The Pauli operators can then be constructed from (oy)
- 2Re[(01(1))] and () = ~2 Im[(o1.(1)) .

The comparison of TEMPO and PME-predicted coherence
dynamics with and without correction terms is shown in Fig. 2.
Focusing on (ox), we see that TEMPO predicts a notable initial
change in coherence (also observable in (o,)). Without correction
terms, the PME misses this short-time generation of coherence
entirely, resulting in significant discrepancies with TEMPO and
the corrected PME predictions for both the short- and long-time

) -
—0.05
=010

£
—0.15

TEMPO
—0.201 -=--- PME N\ e
—— Corrected PME
—0.25
107! 10! 10°
Time (A1)
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behavior. Importantly, with correction terms, the PME closely
reproduces the TEMPO dynamics. Notably, TEMPO simulations in
this strong-coupling regime are computationally demanding, which
here limits the propagation time after which the accumulation of
Trotter errors makes the TEMPO results untrustworthy. Conversely,
the PME is a computationally efficient method, facilitating the sim-
ulation of both short- and long-time dynamics, even with multiple
timescales present.

We attribute the initial generation of coherence in TEMPO and
the corrected PME predictions to the dynamic dressing of the TLS
states by phonon mode displacements. The relevant contribution
to the system expectation values captures the static dressing of the
TLS, where it describes the stationary polarons associated with the
ground and excited state configurations of the TLS. The irrelevant
(correction) contribution captures the effect of transitions between
these polaron states due to tunneling, where the dressing of the
system states changes dynamically with the state of the system itself.
This provides an additional contribution to the coherence, which
accumulates on the timescale of polaron formation.

Similar phenomena occur in the context of the optical
properties of solid-state quantum emitters. Here, one observes
rapid relaxation of the two-time optical coherence on picosecond
timescales””*" as the optical fields induce transitions between the
electronic configurations of the emitter, and thus the corresponding
polaron states. The resulting dynamics leads to the emergence of
phonon sidebands in the emission spectrum.”’*® While these are
different dynamical quantities, the underlying physical processes
are the same. More recently, Wiercinski et al.”” highlighted a dis-
crepancy between coherence dynamics of super-radiant emitters
calculated through a polaron master equation and TEMPO, where
TEMPO predicted a change in the emitter coherence on a picosec-
ond timescale. Wiercinski et al. accounted for this coherence slip
by inverting the polaron transformation, which was possible for
the considered system as there was no coherent driving present. In
our case, the projection operator approach that we have employed
provides a systematic method to capture dynamic correction
terms independent of the system or driving protocol considered,
including the study of time-dependent drivings, as will be outlined
in Sec. VIL

107! 10! 10%
Time (A1)

FIG. 2. Comparison of the coherence dynamics calculated using the PME with (solid curves) and without (dashed curves) the expectation value correction terms of Eq. (34).
The dynamics have been benchmarked against TEMPO (points), where we have presented TEMPO simulations only up to t = 100, after which the accumulation of Trotter
errors makes convergence challenging. The inset in panel (b) shows a magnification at short times. The parameters used in these plots are € = 0, fA = 1, « = 0.2A, and

we = 10A.
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FIG. 3. Steady-state coherence of the spin-boson model calculated using the PME with (solid curves) and without (dashed curves) correction terms for (a) increasing coupling
strength and (b) varying temperature. The system parameters match those used in Fig. 2, while we have used BA = 1 for (a) and « = 0.2A for (b).

We can also consider the impact that the correction terms have
on steady-state expectation values. Figure 3 shows the steady-state
coherence calculated from the PME with and without correction
terms for different system-environment coupling strengths and
temperatures. Here, we see that the PME without correction terms
underestimates the magnitude of the steady-state coherence at
all non-zero values of the system-environment coupling strength.
These differences become significant at intermediate and strong
coupling, across a range of temperatures.

VII. LANDAU-ZENER TRANSITION

As a further application, we now consider the effect of
the polaron correction terms for the paradigmatic dissipative LZ
protocol.”””" In this setting, the TLS has a fixed tunneling A, but
a bias that changes linearly with time according to e(t) = vt, where
v gives the rate at which the bias is varied and ¢ € [#;,¢ f]. Here, we
have introduced the initial and final protocol times ¢; and ¢ 1> Tespec-
tively, set such that ¢(¢) dominates over A at the beginning and
end of the protocol. At time t = 0, there is no bias and the system
eigenstates are governed by the tunneling A, which yields an avoided
crossing.

As is typical in an LZ protocol, we take the sweep rate v to be
slow compared to the tunneling rate A. In the absence of coupling
to a dissipative environment, this condition allows the population
to be (almost) adiabatically transferred between the ground state at
ti (large negative bias, implying (o;) ~ 1) and the ground state at ¢¢
(large positive bias, implying (o.) ~ —1). However, in the presence of
a dissipative environment, phonon-induced transitions can drive the
system population between the ground and excited states even in the
strictly adiabatic limit. This leads to imperfect population transfer at
the end of the protocol.”"”’

The assumption of an adiabatic LZ protocol also allows us to
simplify the form of the PME by making an additional Markov
approximation. This is done by taking the initial time tp - —co in
the integrals of Eq. (16). This simplifies the interaction picture rate
operators in Eq. (17) to

&;(t) ~ fowdr A(D)6i(t - 1), (35)

where we have used the substitution s = t — 7. It should be noted
that a Markov approximation within the polaron frame still natu-
rally accounts for some non-Markovian features observed within the
lab frame”*’ and thus is not as restrictive as the lab-frame Markov
approximation made in a weak-coupling Redfield theory.'?

Figure 4 demonstrates this, showing excellent agreement over
the full protocol for the population dynamics calculated through
both the PME and TEMPO in the strong system-environment
coupling regime. The two-level system is initially prepared in the
positive eigenstate of the &, operator, which is very close to the
system ground state at large negative bias. The bias is then linearly
swept and, as expected, the presence of the strongly coupled environ-
ment leads to imperfect population transfer as the system traverses
the avoided crossing, with the final system population difference
(6z) # -1.

The system coherence is shown in Fig. 5. As in the spin-boson
model, there is a notable difference in the expectation value (o)
between the PME without corrections and TEMPO, which persists
throughout the protocol. This again arises from the short-time
dynamical dressing of the TLS states due to the presence of the tun-
neling parameter A, which is fully accounted for by the dynamical
correction terms, leading to excellent agreement with TEMPO.

1.07
— PME
05 + TEMPO
1,

(02)

~100 —50 0 50 100
Time (A’l)

FIG. 4. Population dynamics during an LZ protocol, calculated from the PME (solid
curves) and TEMPO (points). There is a sign change in the bias as the system
crosses the t = 0 point, where an avoided crossing occurs in the system energy
levels. The inset shows a magnification around the avoided crossing point. The
parameters used here are v = 0.1A, BA = 1, & = 0.4, and w; = 10A.
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FIG. 5. LZ coherence dynamics focused around the avoided crossing at t = 0, calculated using TEMPO and the PME with (solid curves) and without (dashed curves)
expectation value correction terms. Notably, there exists a consistent offset in (ox) in the uncorrected PME, which is effectively addressed by including the appropriate

corrections. The parameters used here are the same as shown in Fig. 4.

Notably, at the beginning of the protocol, the system’s behavior is
dominated by the bias, as |e(#)| > A. However, even in this case,
dynamical dressing introduces observable differences in coherence
throughout the protocol, demonstrating the robustness of the effect
across varying parameter regimes.

Vill. CONCLUSION

In conclusion, our study revisits the PME and extends its appli-
cation to modeling the non-Markovian dynamics of open quantum
systems strongly coupled to their environments. Although the
PME effectively predicts population dynamics, its inability to fully
capture coherences limits its overall accuracy. This issue arises
because of the mixing of system and environment degrees of
freedom introduced by the transformation to the polaron frame,
which we have shown impacts the precision of the calculated
expectation values. By employing the Nakajima-Zwanzig projection
operator formalism, we introduced correction terms that signif-
icantly enhance the description of system coherences (or more
generally, system observables that do not commute with the polaron
transformation).

We demonstrated the importance and effectiveness of these
correction terms through two specific examples, the canonical
spin-boson model and a dissipative time-dependent Landau-Zener
protocol. In both cases, the corrected PME showed an improved
(almost perfect) agreement with numerically exact methods,
validating our approach. Our findings highlight the need for
incorporating such corrections in PME applications to achieve
more accurate and reliable descriptions of open quantum system
dynamics. For instance, in recent work on permanent optical dipoles
in molecular systems,”” excellent agreement has been demonstrated
between numerically exact benchmarks and a polaron master
equation for expectation values of operators that commute with
the polaron transformation. However, similar to the findings in the
current study, discrepancies arise in the coherence dynamics, i.e., for
quantities that do not commute with the polaron transformation.

Future work could extend the correction terms to investigate
the impact of dynamical phonon dressing on multi-time correlation
functions, which are crucial for determining the spectral and coher-
ence properties of solid-state quantum emitters. It is possible that
such corrections may account for discrepancies between emission

spectra calculated from numerically exact methods and with polaron
theory.*®

In this manuscript, we have focused on scenarios where the
environment is initially in thermal equilibrium in the polaron frame.
However, by incorporating inhomogeneous terms, where Qy/(to)
# 0, the analysis can be extended to accommodate more general
initial conditions. This extension is expected to result in increased
non-Markovian behavior,”" as well as additional correction terms
in the lab-frame expectation values when calculated using polaron
theory.
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APPENDIX: POLARON CORRECTION TERMS
FOR THE SPIN-BOSON MODEL

In this appendix, we will detail the derivation of Eq. (28),
the correction term for the expectation value of the polaron frame
operator 6p = 6 ® B4. Our starting point is Eq. (27). Substituting in
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the expression for the polaron frame operator and the interaction
Hamiltonian Hi(t) = 5 (6x(t)Bx(t) + &,(t)B,(t)), we have

(60 ()i = =i [ dstrses (3B (D[Hi():ps(0) @ 72])
:—%[otdstr5+E(&(t)B+(t)[&x(s)é’i(s)

+6y(5)By(s), ps(t) ® 78]). (A1)

By expanding the commutator and evaluating the partial trace
over the environmental degrees of freedom, we obtain

(a'P(t))irrel = —%[tdstrs(é(t)
x (0x(s)ps () Ax(t = s) = i6y (£)ps(t) Ay (t = 5)
= ps(£)8x(s)Ax(s = 1) +ips (1) 5y (1) Ay (s = 1)),

where the bath correlation functions A;(t) = (B;(t)B;) are as
defined in the manuscript, and we have used the identities

(B+(1)Bx(s)) = Ax(t =), (B (5)By(s)) = ~ity (£ = ), (Be(s)B+ (1))
= Ax(s—1t),and (B,(s)B+ (1)) = —iAy(s - 1).

We can write this expression in terms of the polaron frame rate
operators given in Eq. (17), such that the correction terms become

(Br(1))irt = = 5 15[ ((Ox(1) = 16,(6) s (1)
~ps(0)(€1() - 10)(1))]

Finally, by defining the operators,

(1) = - (6u(1) - 16,(1)), (A2)
b(1) = - (61 - 8}(1)), (A3)

we obtain the correction terms in compact form,
<6P(t)>irrel = trs[a(t) (@(t)ps(t) - ps(t)d)(t))]’ (A4)

as given in Sec. I'V.
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