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Abstract 

Background: Lateralization is the asymmetry in function and cognition between the brain hemispheres, with notable sex differences. 
Conventional neuroscience studies on lateralization use univariate statistical comparisons between male and female groups, with 

limited and ineffective validation for group specificity. This article proposes to model sex differences in brain functional network lat- 
eralization as a dual-classification problem: first-order classification of left versus right hemispheres and second-order classification 

of male versus female models. To capture sex-specific patterns, we developed an interpretable group-specific discriminant analysis 
(GSDA) for first-order classification, followed by logistic regression for second-order classification. 

Findings: Evaluations on 2 large-scale neuroimaging datasets show GSDA’s effectiveness in learning sex-specific patterns, significantly 
improving model group specificity over baseline methods. Major sex differences were identified in the strength of lateralization and 
interaction patterns within and between lobes. 

Conclusions: The GSDA-based analysis challenges the conventional approach to investigating group-specific lateralization and in- 
dicates that previous findings on sex-specific lateralization will need revisits and revalidation. This method is generic and can be 
adapted for other group-specific analyses, such as treatment-specific or disease-specific studies. 

Keywords: group-specific analysis, sex-specific lateralization, brain functional network, dual-classification, group-specific discrimi- 
nant analysis 

Key Points: 

� Conventional multivariate and univariate methods 

identified common but not specific lateralization pat- 

terns through within-group analysis. 
� Our group-specific discriminant analysis (GSDA)–based 

method identified sex-specific lateralization patterns, 

validated through cross-validation and shown to be dis- 

tinct from those identified by conventional methods. 
� Nearly half of the specifically lateralized functional con- 

nections are shared by both males and females, with sex 

differences observed in the strength of lateralization. 
� Stronger positive interlobe interactions are more left- 

lateralized in male brain networks, whereas stronger 

positive intralobe interactions are more right-lateralized 

in female brain networks. 

Background 

Human brains are functionally asymmetric [ 1 , 2 ]. These differ- 

ences between left and right brain hemispheres are believed to 

reflect a complex interplay of evolutionary, hereditary, develop- 

mental, experiential, and pathological influences [ 3–6 ]. One im- 

portant understanding is that multiple factors influence human 

brain lateralization [ 7 ], with sex being one of the most repre- 

sentative [ 8–11 ]. A popular hypothesis is that males typically 

have a more asymmetric brain organization, with the left hemi- 

sphere specialized for verbal processing and the right for spatial 

processing. In contrast, females tend to have a more “bilateral”

brain organization, where both hemispheres are involved in ver- 

bal processing. The origin of such sex differences in functional 

lateralization has been attributed to neurobiological mechanisms 

involving genetic and hormonal factors [ 7 , 12 ]. Genetically, X- 

inactivation in females leads to cortical mosaicism and functional 

flexibility [ 13 ], and Y-linked genes in males promote asymmetric 
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development [ 14 ]. Hormonally, testosterone is associated with 

promoting right hemisphere dominance through delayed matu- 

ration of the left hemisphere [ 15 ], while estrogen enhances in- 

terhemispheric connectivity [ 16–20 ]. Moreover, recent brain mag- 

netic resonance imaging (MRI) studies [ 21–23 ] have shown that 

males tend to have smaller corpus callosums and larger amyg- 

dalae, which may limit interhemispheric communication. In con- 

trast, females typically have larger corpus callosums that en- 

hance integration between hemispheres. These findings poten- 

tially explain the more lateralized brain organization in males and 

the more bilateral organization in females. 

Neurobiological sex differences and brain lateralization have 

also been observed in several psychiatric disorders, as reported in 

multiple brain MRI studies [ 24–27 ]. For example, depression, anxi- 

ety, schizophrenia, and autism spectrum disorder exhibit notable 

sex differences in incidence rates and clinical manifestations [ 24 , 

25 ]. Additionally, several studies on brain MRIs have demonstrated 

that brain lateralization abnormalities are linked with conditions 

such as major depressive disorder (MDD) [ 26 ] and schizophrenia 

[ 27 ]. Understanding these sex-specific and lateralized brain alter- 

ations may contribute to personalized diagnosis, prognosis, treat- 

ment, and further uncovering the pathogenesis of these diseases. 

Measuring brain functional lateralization is valuable but chal- 

lenging [ 28 ]. Direct approaches such as selectively modulating 

or suppressing cortical activities and circuits in a single hemi- 

sphere [ 29 ] often pose a risk of inflicting harm on the human 

brains [ 30 ]. Over the past 2 decades, functional neuroimaging 

techniques have been widely used in neuroscience, offering a 

powerful and noninvasive approach for investigating brain later- 

alization [ 31 , 32 ]. One popular technique is analyzing functional 

connectivity (FC), also known as brain networks or connectomes 

[ 33 ]. This is usually derived from resting-state functional MRI (rs- 

fMRI) time series and considered an intrinsic “fingerprint” of each 

individual’s brain [ 34–36 ]. A previous study [ 10 ] reported sex dif- 

ferences in the lateralization of resting-state networks, with more 

right-lateralized visual and default-mode network components 

for males and females, respectively. Additionally, males and fe- 

males have also demonstrated significant differences in homo- 

topic functional connectivity of various regions [ 37 ]. 

Studies on brain lateralization have largely focused on mod- 

eling asymmetry effects region by region via univariate analysis 

[ 7 ]. These lateralized brain regions are usually measured using 

the laterality index (LI) [ 4 , 6 , 38 , 39 ] or identified through statis- 

tical tests comparing homologous regions [ 40 ]. Previous analyses 

identifying sex-specific brain lateralization have typically adopted 

within-group univariate methods [ 22 , 41–43 ]. For example, to un- 

derstand male-specific lateralization, analyses are performed sep- 

arately on male and female data, labeling features that signif- 

icantly differ from female data as “male-specific.” There are 2 

main limitations to this approach. First, univariate approaches 

generally lack robust, data-driven validation, meaning models de- 

rived from these analyses cannot be tested on unseen data sam- 

ples. Specifically, for identifying sex-specific lateralization pat- 

terns, univariate frameworks cannot provide effective mecha- 

nism for validating the generalizability and specificity of mod- 

els obtained separately from male and female samples, raising 

questions about the reliability of such results and findings. Sec- 

ond, univariate analyses may not be able to capture complex 

interactions among multiple neuroimaging features, potentially 

overlooking critical multivariate patterns underlying sex differ- 

ences in lateralization. Additionally, the substantial anatomical 

and functional similarities between male and female brains, com- 

bined with typically small statistical effect sizes, further compli- 

cate the reliable detection of genuine sex differences in lateraliza- 

tion [ 44 ]. Consequently, subtle sex-specific lateralization patterns 

may be overshadowed by broad similarities. 

Here, we address the challenges of detecting and validating 

sex differences in brain lateralization by framing the problem 

as a machine learning classification task, making the follow- 

ing key methodological contributions: First, we propose a dual- 

classification workflow to identify, validate, and interpret multi- 

variate patterns of sex-specific lateralization. This consists of a 

first-order classification of left versus right brain hemispheres and 

a second-order classification of male- versus female-specific mod- 

els. The resulting model weights represent lateralization strength 

and sex difference significance, respectively. Figure 1 A presents 

the whole workflow. Second, we propose a novel group-specific 

discriminant analysis (GSDA) algorithm (Fig. 1 B) to learn group 

(sex)–specific models in the first-order classification. Third, we 

leverage cross-validation to statistically evaluate the learned lat- 

eralization patterns by assessing model accuracy on male and 

female test samples. Furthermore, we propose a group speci- 

ficity index (GSI) to measure the group specificity of the learned 

models. 

Our final contribution provides interpretation for the experi- 

mental results using the intrahemispheric connections extracted 

from rs-fMRI data of 2 large-scale public neuroimaging reposito- 

ries, the Human Connectome Project (HCP) [ 45 ] and the Brain Ge- 

nomics Superstruct Project (GSP) [ 46 ]. A significant GSI improve- 

ment over the baselines demonstrates the effectiveness of GSDA 

in learning group-specific models. Further interpretation of the 

dual-classification model weights reveals consistent sex differ- 

ences in lateralization across datasets: (i) about half of the sex- 

specific lateralized connections are shared between male and fe- 

male brain functional network, with differences in the strength of 

lateralization, and (ii) stronger positive interlobe interactions are 

more left-lateralized in the male brain networks, while stronger 

positive intralobe interactions are more right-lateralized in the fe- 

male brain networks. 

Results 

Diverged test accuracy on male and female sets 
Figure 2 depicts the performance of GSDA in classifying left ver- 

sus right brain hemispheres on the HCP data [ 45 ], across a var- 

ied range of values for hyperparameter λ. A larger λ indicates a 

higher grouping factor (sex) dependence. When the target group 

is male (the left of Fig. 2 A), the labels for the left and right hemi- 

spheres of the female training data were masked. Therefore, the 

training female samples were only involved in the grouping fac- 

tor dependence regularization. In this scenario, the average accu- 

racy obtained on the male test samples (the blue solid line) stays 

higher than that on the female test samples (the orange dashed 

line). The increase of λ leads to an increased gap between the test 

accuracy on target and nontarget test sets. In particular, this dis- 

crepancy widens significantly within the range 0 < λ ≤ 5 and sta- 

bilizes to a 20% gap for λ > 5 (Fig. 2 A). These observations remain 

consistent in results with 2 different cross-validation strategies 

for the HCP data ( Supplementary Fig. S1 A, C) and the GSP data 

( Supplementary Fig. S2 A, C). A theoretical interpretation is pro- 

vided in the Methods section to validate this divergence. 

The group specificity of models obtained by GSDA increases 

with a larger λ, as reflected by our proposed metric, the GSI, which 

is presented as a boxplot in Fig. 2 B. When 0 < λ ≤ 5 , the GSI for 

both male- and female-specific GSDA models increases with the 
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A

B

Figure 1: The proposed workflow for detecting sex-specific brain lateralization via GSDA. (A) Overview of the proposed classification workflow. 1 ©– 3 ©: 
Hemispheric features are extracted from the intrahemispheric brain functional network, constructed from resting-state functional MRI time series. 
4 © 5 ©: First-order classification learns the differences between the 2 hemispheres, where we propose a GSDA classifier to classify left versus right 
hemispheres for a target group. 6 ©: Second-order classification trains a standard logistic regression for classifying the male- versus female-specific 
models obtained from the first-order classification, to identify the weights that significantly contribute to the sex-specific predictions. 7 ©: Prediction 
results evaluation and model weight interpretation. (B) GSDA with the logistic loss (GSDA-Logit) for the first-order classification. This model jointly 
maximizes the likelihood of labels for the target group (with nontarget group labels masked out) and the grouping factor dependence for both the 
target and nontarget groups, where ⊤ denotes the transpose of vectors, x denotes the input training samples, xt denotes target group training samples, 
x\ t denotes nontarget group samples, and a hyperparameter λ ≥ 0 controls the grouping factor dependence. A larger λ corresponds to a higher 
dependence. When λ = 0 , GSDA-Logit degenerates to a standard logistic regression for the target group data. 

A B

Figure 2: Diverged test accuracy and improved GSI of left versus right brain classification on male and female sets from the HCP [ 45 ] using the 
proposed GSDA with the logistic loss (GSDA-Logit) with respect to the hyperparameter λ, which controls the grouping factor (sex) dependence. There 
were 1,000 random training–testing partitions for the experiment, where each subject randomly contributed 1 hemisphere for training and the other 
for testing, resulting in 50% brain hemispheres being selected as training samples. (A) The test accuracy on male and female sets increasingly diverges 
with the increase of dependence on sex ( λ). The average test accuracy is represented by solid or dashed lines, with standard deviations shown as error 
bands, computed across 1,000 random training–testing partitions. (B) The GSI calculated from the results in Fig. 2 A increases with λ. The horizontal 
lines in each box represent the 25th percentile, median, and 75th percentile of the GSI over the 1,000 test sets, respectively, from bottom to top, and the 
green triangles represent the mean. The average GSI approaches 0 when λ = 0 , indicating that models learned without group dependence 
regularization captured common instead of specific patterns, despite being trained on only male (or female) data. 
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Table 1: First-order classification (left versus right brain hemispheres) accuracy on male and female test sets from the HCP [ 45 ] and 
Brain Genomics Superstruct Project (GSP) [ 46 ]. Group-specific models (GSDA with λ = 5 ) are compared with 3 multivariate baselines: (i) 
standard logistic regression trained on a mixture of male and female training data, (ii) GSDA with λ = 0 (equivalent to standard logistic 
regression) trained on male data only, and (iii) GSDA with λ = 0 trained on female data only. λ = 5 is an optimal value for GSDA on the 
data, as determined by the accuracy and GSI in Fig. 2 . The baselines achieved similar accuracy on male and female test sets, indicating 
a lack of group specificity. Conversely, the group-specific models maintained accuracy on the target test set but showed a significant gap 
with the lower accuracy on the nontarget test set. 

Average test accuracy (%) and gap ( |accuracy difference | ) 

Classification method (target group) HCP male HCP female HCP gap GSP male GSP female GSP gap 

Logistic regression (male + female) 99.99 ± 0.04 99.96 ± 0.10 0.03 99.93 ± 0.13 99.96 ± 0.10 0.05 

GSDA ( λ = 0 , male) 99.87 ± 0.16 99.85 ± 0.17 0.02 99.93 ± 0.08 99.99 ± 0.01 0.06 

GSDA ( λ = 0 , female) 99.93 ± 0.12 99.99 ± 0.04 0.06 99.97 ± 0.05 99.95 ± 0.07 0.02 

GSDA ( λ = 5 , male) 92.75 ± 1.83 68.52 ± 2.88 24.23 91.85 ± 1.77 71.28 ± 2.13 20.57 

GSDA ( λ = 5 , female) 70.76 ± 2.56 93.16 ± 1.89 22.40 74.70 ± 2.22 92.81 ± 1.35 18.11 

increase of λ. When λ ≥ 5 , the GSI maintains at around 0.4. Based 

on both accuracy and GSI results, λ = 5 is an “elbow” point in the 

experiment across different datasets and cross-validation strate- 

gies, which can be considered an optimal value for the trade-off 

between classification accuracy, group specificity, and model com- 

plexity (the hyperparameter for the ℓ2 regularization in GSDA was 

fixed to 0.1, so the larger the λ, the lower the relative importance 

of the ℓ2 regularization). Hence, in the rest of this article, we will 

use λ = 5 for GSDA as the main sex-specific model to present the 

results and findings. 

In contrast, the GSI steadily approaches zero without the 

grouping factor dependence regularization. At λ = 0 , where GSDA 

degenerates to a standard logistic regression trained only on the 

target group hemispheres, the accuracy is nearly 100% for both 

male and female test samples (Fig. 2 A, Table 1 , Supplementary 

Figs. S1 A, C and S2 A, C). This performance is similar to the mul- 

tivariate control baseline, which uses standard logistic regression 

trained on mixed male and female hemispheres. From Table 1 , 

the control models achieved an accuracy of 99.99% ± 0.04% for 

male and 99.92% ± 0.13% for female HCP test samples, as well as 

99.94% ± 0.07% for male and 99.99% ± 0.01% for female GSP test 

samples. Additionally, because of the same property and similar 

performance compared to the standard logistic regression (mul- 

tivariate control baselines), we will view GSDA with λ = 0 as an 

additional multivariate baseline. 

GSDA-based models learned distinct weights 
Beyond classification performance similarity, the weights of mul- 

tivariate baselines (control and GSDA with λ = 0 ) are also highly 

correlated. As shown in Fig. 3 A, the average Pearson correlation 

coefficients between multivariate baselines are 0.99 for analyses 

conducted within either HCP or GSP data. Similarly, in univari- 

ate analyses based on the t-test of paired left and right connec- 

tions, the t-values of within-group analysis showed a 0.99 cor- 

relation with the t-values derived from mixed male and female 

samples (univariate control). Among these multivariate and uni- 

variate baselines, the correlation for any arbitrary pair exceeds 

0.91 for within-dataset results and 0.7 for cross-dataset results. 

These correlations represent large ( ≥ 0 . 8 ) and medium ( 0 . 5 − 0 . 8 ) 

effects, respectively, according to the thresholds for interpreting 

the effect size of Pearson’s correlation [ 47 , 48 ]. This high correla- 

tion suggests that the lateralization modeled by multivariate or 

univariate baselines is common to both males and females, re- 

gardless of whether the analysis is conducted with exclusively 

male or female data, or with mixed data. This corresponds to the 

top red triangular cluster in Fig. 3 A. 

In contrast, our sex-specific models (with a higher GSI) show 

lower correlations with the univariate and multivariate baseline 

models. This corresponds to the blue rectangular cluster at the 

bottom of Fig. 3 A, where a majority of coefficients fall within 

the range of 0.35 to 0.5 (below the thresholds of medium effects 

[ 47 , 48 ]). Increasing the value of λ leads to a decreasing correla- 

tion between the control and GSDA models ( λ > 0 ), for both re- 

sults from HCP (Fig. 3 B and first columns of Fig. 3 C, D) and GSP 

( Supplementary Fig. S3 A, B and first columns of Supplementary 

Fig. S3 C, D). Moreover, the weights of sex-specific models are sta- 

ble. As shown in Fig. 3 C, D, the average correlation of any pair for 

GSDA with λ ≥ 2 is 0.99 or above. 

Frontal lobe shows most sex-specific lateralized 

connections 
To identify sex-specific lateralized connections among the 7,503 

intrahemispheric connections, we performed a second-order clas- 

sification. This involved training standard logistic regression mod- 

els to distinguish between male- and female-specific models 

learned from the first-order classification, using 80% of the first- 

order models for training and 20% for testing. The test accuracy 

for second-order classification consistently achieved nearly 100% 

over 1,000 random splits. This indicates that the sex differences 

in the first-order GSDA model weights are generalizable from the 

training set to the test set. 

Based on the weights from these second-order classification 

models, we derived a mask that characterizes sex differences in 

the lateralized connections. We first averaged the weights across 

1,000 second-order models from different random splits for the 

HCP and GSP datasets, respectively. Then, we identified the over- 

lap between the top 5% of the largest average weights (by mag- 

nitude) from HCP and those from GSP. The resulting map is rep- 

resented by the chords in Fig. 4 A. The threshold of 5% was cho- 

sen because the second-order logistic regression classifiers were 

trained with ℓ2 regularization, which can be interpreted as a Gaus- 

sian prior (normal distribution) on model weights, with 5% being 

a commonly used statistical significance level for a Gaussian dis- 

tribution. By calculating the average degree [ 49 ] (Fig. 4 B) of con- 

nections for each lobe within this mask, we can learn that sex 

differences in first-order weights are associated with the frontal, 

parietal, and occipital lobes, where the average degrees exceed 1. 

The frontal lobe shows the largest average degree, indicating sig- 

nificant sex differences. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ig

a
s
c
ie

n
c
e
/a

rtic
le

/d
o
i/1

0
.1

0
9
3
/g

ig
a
s
c
ie

n
c
e
/g

ia
f0

8
2
/8

2
4
4
7
0
7
 b

y
 g

u
e
s
t o

n
 0

3
 S

e
p
te

m
b
e
r 2

0
2
5

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf082#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf082#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf082#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf082#supplementary-data


Group-specific discriminant analysis enhances detection of sex differences in brain functional network lateralization | 5

A

C D

B

Male Female

Correlation between GSDA models 

and multvariate baseline

Pairwise Pearson correlation

Figure 3: Pearson correlation between model weights. (A) Pairwise correlation between weights of 16 models, including multivariate models from 

Table 1 and univariate models, labeled along the x - and y -axis. Two clusters can be observed here: multivariate and univariate baselines versus GSDA 
with λ = 5 . (B) Correlation between GSDA and multivariate control models (trained on mixed male and female data) on the HCP data. As λ increases, 
the GSDA models become less correlated with the control models. (C, D) Average pairwise correlation for (C) male-specific and (D) female-specific 
GSDA models trained on HCP data, with respect to λ. The weights of sex-specific models remain stable (correlation ≥ 0 . 99 ) for λ ≥ 2 . 

We then applied this mask to the top 5% weights of 4 first-order 

classification models: HCP male-specific, HCP female-specific, GSP 

male-specific, and GSP female-specific. The obtained lateralized 

connections with sex differences are shown in Fig. 5 , Fig. 6 A–H, 

and Supplementary Fig. S4 A–D. The weights of these 4 models 

were obtained by taking the average of the corresponding 1,000 

models learned from first-order classification with different ran- 

dom splits. In total, 47 lateralized connections with repetition 

were identified, of which 30 connections are unique. Among these 

47 connections, the middle frontal gyrus (MFG) was the most fre- 

quently involved region, suggesting it may serve as a hub. Specif- 

ically, 17 out of the 47 connections were associated with the MFG 

in both male and female samples across both datasets. 

Sex-specific lateralization: shared and 

“exclusive” connections 
For each of the 4 sex-specific models, half of the identified lat- 

eralized connections are shared between male and female brain 

networks (Fig. 5 ) on average: for HCP, 6 of 12 for the male-specific 

model and 6 of 13 for the female-specific model; for GSP, 6 of 10 

for the male-specific model and 6 of 12 for the female-specific 

model. Among the 30 unique sex-specific lateralized connections 
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Figure 4: Sex-specific lateralized functional connection mask derived from GSDA-based dual classification. (A) A chord-based mask for identifying 
sex-specific lateralized connections was derived in 2 steps: (i) averaging weights across 1,000 second-order models from different random splits for 
HCP and GSP data, respectively, and (ii) identifying overlaps between the top 5% largest average weights from HCP and those from GSP. The circle 
represents a brain hemisphere, and each cell on the rim represents a region of interest (ROI) within the half brain. The 7 colors indicate 7 functional 
parcellations defined in the Brainnetome Atlas (BNA) [ 50 ]. The numbers on the rim are the start and end ROI IDs of the lobe in the BNA, where the 123 
ROIs are labeled from 0 to 122. (B) The average lateralization degree [ 49 ] for each of the 7 BNA lobes. It is calculated as the average number of chords 
per ROI, based on the chords and ROIs in Fig. 4 A. The frontal lobe shows the largest degree of lateralization. 
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SFG: superior frontal gyrus; MFG: middle frontal gyrus; IFG: inferior frontal gyrus; OrG: orbital gyrus; 

PrG: precentral gyrus; PCL: paracentral lobule; STG: superior temporal gyrus; MTG: middle temporal gyrus;

ITG: inferior temporal gyrus; IPL: inferior parietal lobe; Pcun: precuneus; PoG: postcentral gyrus; 

INS: insular gyrus; CG: cingulate gyrus; MVOcC: medioVentral occipital cortex; LOcC: lateral occipital cortex

Male-specific models

Female-specific models

HCP

GSP

Figure 5: Thirty unique sex-specific lateralized connections learned from HCP and GSP. Each connection is represented as “ROI-ROI,” and each ROI is 
represented as “Lobe_Gyrus_ROI ID,” where the lobe and gyrus are defined in BNA. Twenty-two of the 30 connections are associated with the frontal 
lobe. Nine connections are shared between males and females (middle column), with the differences between male and female models being in the 
strength of lateralization (Fig. 6 A–D). Twenty-one connections are “exclusive” to 1 group (left and right columns), with the differences between male 
and female models being in the patterns of inter-/intralobe interactions (Fig. 6 E–F, Fig. 7 ). 

identified across datasets, 9 (nearly one-third) are shared between 

males and females. To illustrate these findings, we have separated 

the shared connections (Fig. 6 A–D) and “exclusive” connections 

(Fig. 6 E to H). 

For the shared lateralized connections (Fig. 6 A, B for HCP and 

Fig. 6 C, D for GSP), we observed sex differences in the magnitude 

of first-order weights (i.e., the strength of lateralization). Specifi- 

cally, for the female-specific models, the magnitudes of the first- 

order weights corresponding to the connections associated with 

the frontal lobe are generally larger compared to those for male- 

specific models, particularly those of the positive weights. In the 

male-specific models, the magnitudes of the first-order weights 

for connections related to other lobes are larger than those in the 

female-specific models. 

For the “exclusive” connections (Fig. 6 E–H), the male-specific 

models contain more interlobe lateralized connections (Fig. 7 A), 

with over 70% of corresponding weights being negative, shown by 

the blue chords in Fig. 6 E, G. Female-specific models, on the other 

hand, contain more intralobe lateralized connections (Fig. 7 B), 

with over 90% of weights being positive, indicated by the red 

chords in Fig. 6 F, H. Notably, these patterns of inter- and intralobe 

lateralization for males and females are consistent across joint or 

separate analyses of both HCP and GSP data ( Supplementary Fig. 

S5 ), demonstrating the stability and reliability of these findings. 
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Figure 6: Sex-specific lateralized connections with first-order GSDA model ( λ = 5 ) weights. The connections were identified by applying the mask in 
Fig. 4 A to the top 5% weights (by magnitude) from 4 models specific to males of HCP (A, E), females of HCP (B, F), males of GSP (C, G), and females of 
GSP (D, H). Each of the 4 models was obtained by averaging the corresponding 1,000 first-order models. The sex-specific lateralized connections consist 
of shared connections between male and female models (A–D) and the group (sex) “exclusive” connections (E–H). The weights of these shared 
connections show consistent sex differences. In female-specific models, the weights for connections involving the frontal lobe tend to be larger than 
those in male-specific models, especially for positive weights. Conversely, in male-specific models, the weights for connections to other lobes are 
generally larger than those in female-specific models. The “exclusive” connections in male-specific models are mostly interlobe and negative, whereas 
in female-specific models, they are mostly intralobe and positive. Statistics about these connections can be found in Fig. 7 . 

Discussion 

Cross-validation–based learning challenges 
conventional statistical approach for 
investigating specific lateralization 

Traditional neuroscience studies commonly assume that results 

from within-group analyses are specific to the group being stud- 

ied [ 41–43 ]. While using only male or female data to explore sex- 

specific characteristics may seem intuitive, our cross-validation 

results challenge this assumption. For example, as shown in 

Fig. 2 A, standard logistic regression models trained exclusively on 

data from a single target group (male or female) achieved nearly 

identical performance on test sets from both the target and non- 

target groups. Thus, these baseline models’ performance appears 

insensitive to sex-based sampling. According to statistical learn- 

ing theory [ 51 ], the similarity in generalization errors indicates 

that these models capture general patterns applicable to both 

males and females, rather than being sex-specific. This finding 

implies that statistical modeling can learn common patterns even 

using data from a specific group, contradicting the conventional 

assumption in group-specific analysis. This conclusion holds at 

least in our study on left versus right brain classification using 

the HCP and GSP datasets. 

In contrast, the performance of our sex-specific models (GSDA 

with λ > 0 ) is sensitive to sex-based sampling. The classification 

results (Fig. 2 A, Supplementary Figs. S1 A, C and S2 A, C) reveal that 

the generalization error for the target group test sets is signifi- 

cantly lower than that for the nontarget group test sets. This in- 

dicates a stronger specificity to sex compared to the multivariate 

baseline models, as reflected by our GSI results. The differences 

observed in test performance highlight the importance of cross- 

validation in validating the group specificity of statistical analysis 

results. 

While univariate analysis results are not directly applicable to 

unseen samples for testing, the strong correlation between uni- 

variate and multivariate baselines offers valuable insights. For ex- 

ample, the correlation of the within-group univariate t-test results 

with univariate control models (mixed) and multivariate base- 

lines exceeds 0.99 and 0.91, respectively. This suggests that the lat- 

eralization patterns from the t-values of our within-group univari- 

ate analyses are likely common to both males and females. Con- 

sequently, previous conclusions from such within-group analyses 

should be revisited and revalidated. Moreover, although multivari- 

ate methods are theoretically better at capturing interactions be- 

tween features than univariate methods, the observed similarity 

in results suggests that multivariate approaches may not always 

reveal patterns beyond those identified by univariate analyses. 

Sex-specific lateralized regions and connections 
across datasets 
The mask resulting from the second-order classification revealed 

sex differences in connections across lobes, including the frontal, 

temporal, parietal, insular, limbic, and occipital lobes, where the 

functional differences between males and females were observed 

in previous studies [ 10 , 11 , 52–54 ]. Among the sex-specific lateral- 

ized connections, MTG-IPL, MFG–inferior frontal gyrus (IFG), and 

MFG-INS are shared in both male- and female-specific models 

across the 2 datasets. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ig

a
s
c
ie

n
c
e
/a

rtic
le

/d
o
i/1

0
.1

0
9
3
/g

ig
a
s
c
ie

n
c
e
/g

ia
f0

8
2
/8

2
4
4
7
0
7
 b

y
 g

u
e
s
t o

n
 0

3
 S

e
p
te

m
b
e
r 2

0
2
5

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf082#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf082#supplementary-data


8 | GigaScience, 2025, Vol. 14

A B

C D

Female

Female

Male

Male

Intra lobe

Inter lobe

Positive

Weights

Negative

Weights

Figure 7: Count of the group “exclusive” lateralized connections for HCP and GSP (Fig. 6 E–H), categorized by associated lobes, inter- or intralobe, and 
signs of the first-order weights. The connections were identified by (A) the male-specific models with positive first-order weights, (B) the 
female-specific models with positive first-order weights, (C) the male-specific models with negative first-order weights, and (D) the female-specific 
models with negative first-order weights. In male brain networks, 7 of 10 “exclusive” connection counts are interlobe, with 71.4% of the interlobe 
connections having negative first-order weights. In female brain networks, 11 of 13 “exclusive” connection counts are intralobe, with 91.7% of the 
intralobe connections having positive first-order weights. 

From the perspective of the gyrus , which engages in various cogni- 

tive functions, the lateralized regions include the MTG [ 55 ] (sound 

recognition and language processing), MFG [ 56 ] (literacy and nu- 

meracy), IPL [ 57 , 58 ] (spatial attention, multimodal sensory inte- 

gration, and oculomotor control), IFG [ 59 ] (speech and language 

processing), and INS [ 60 ] (various sensorimotor processing and 

risk–reward behavior). These regions show lateralization and sex 

differences in certain functions, including speech processing, lan- 

guage, and spatial attention [ 10 , 12 , 52 ]. The MFG, a hub region 

in this study, is a core component of the multiple demand sys- 

tem [ 61 ] and presents hemispheric specialization, with the left 

MFG primarily supporting literacy development, while the right 

MFG is vital for numeracy [ 56 ]. The MTG showed lateralization in 

activated volumes for both males and females during language 

tasks, while the lateralization of IFG was only observed in males 

[ 62 ]. Our study reports different weights of connections related to 

these 2 regions. This suggests that the lateralization of a region’s 

external connections can reflect the lateralization of its functional 

activation. The “activity flow” theory in neuroscience has linked 

the connections and functional activation [ 63 ], proposing that the 

seed-based connection-weighted sums of the activation of other 

regions can predict functional activation of the seed region. Our 

results suggest a correlation between the lateralization of functional 

connectivity and activation , although further quantitative analysis 

is required to investigate the specifics of this relationship. 

From the perspective of connections , our experimental results iden- 

tified 3 sex-specific lateralized connections shared by males and 

females across datasets: MTG-IPL, MFG-IFG, and MFG-INS, align- 

ing with established functional and structural mechanisms un- 

derlying sex differences in cognitive processing. The MTG-IPL con- 

nection is associated with language and picture-naming tasks, 

highlighting its role in integrating sensory and semantic infor- 

mation [ 64 ]. Studies have demonstrated notable plasticity in this 

connection, alongside sex differences in picture naming speed 

[ 65 ] and reliably left-lateralized evoked activations during picture- 

naming tasks [ 66 ]. Our GSDA framework captured these sex and 

hemispheric differences, suggesting that lateralization in picture 

naming might be driven by related connectivity, such as MTG- 

IPL. Variations in lateralization may be attributed to differences 

in the adaptive neurobiological functions of regions such as the 

orbitofrontal cortex (OFC), known to modulate language process- 

ing and potentially influence connectivity patterns [ 67 ]. 

Regarding the MFG-IFG connection, proficiency in process- 

ing artificial grammar rules has been positively associated with 
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functional connectivity between the left IFG and left MFG, high- 

lighting sex-related variations in these cognitive functions [ 62 , 68 , 

69 ]. Consistent with these findings, our framework identified MFG- 

IFG as a sex-specific lateralized connection. Moreover, this con- 

nection is linked with processing concessive and causal relation- 

ships, with differential effective connectivity patterns potentially 

modulated by sex-specific functional gradients within the infe- 

rior frontal gyrus (IFG) [ 70 , 71 ]. Structural and functional varia- 

tions within the dorsal attention network (DAN), particularly in- 

volving MTG, IPL, and the superior parietal lobule (SPL), further 

illustrate how these neural connections may adapt differently be- 

tween males and females [ 72 ]. Additionally, meta-analytic evi- 

dence indicates lateralization differences within IFG subdivisions, 

with the left IFG supporting classical language networks and the 

right IFG engaged in broader cognitive control [ 73 ]. 

The MFG-INS connection is associated with mild traumatic 

brain injury (mTBI) [ 74 ]. Our experimental findings underscore the 

need for personalized diagnostic and intervention strategies that 

consider both hemispheric and sex differences to enhance the ef- 

fectiveness of mTBI treatment. 

Collectively, these results suggest that sex-specific lateraliza- 

tion emerges from intricate interactions among structural con- 

nectivity gradients, functional network dynamics, and adaptive 

neurobiological mechanisms. 

Sex differences: lateralization strength and 

lobe-level interactions 
Sex differences in the strengths of shared lateralized connections : As re- 

ported in the Results section, the first-order weights correspond- 

ing to these shared connections show consistent sex differences 

(Fig. 6 A–D). In our labeling strategy, “left” was labeled as 0 and 

“right” as 1. Therefore, a positive first-order weight indicates that 

stronger positive interactions (FC value approaching 1) between 

2 regions of interest (ROIs) suggest a higher probability of right 

lateralization. Conversely, a more negative interaction (FC value 

approaching −1) indicates that stronger negative interactions be- 

tween 2 ROIs suggest a higher probability of left lateralization. The 

opposite interpretation applies to the negative first-order weights. 

Therefore, we can interpret the sex differences in the first-order 

weights for the shared connections as follows: positive interactions 

involving the frontal lobes are more right-lateralized in females than 

in males, whereas positive interactions involving the temporal, parietal, 

insular, and limbic lobes are more left-lateralized in males than in fe- 

males . This observation of difference in strength of lateralization 

aligns with the findings on the lateralization patterns of right- and 

left-handed individuals [ 75 ] and supports neuroscience discover- 

ies of shared functional network mechanisms across males and 

females [ 43 , 76 ]. 

Sex differences in inter-/intralobe interaction patterns are identified by 

the “exclusive” lateralized connections , particularly within the frontal 

lobe (Fig. 6 E–H), a key region for language processing [ 77 ]. Using 

the same approach as above for interpreting first-order weights, 

we can summarize that males have a stronger left lateralization in 

positive interlobe interactions, while females have a stronger right lat- 

eralization in positive intraobe interactions . This divergence may re- 

sult from the evolutionary pressure for lateralization, which op- 

timizes functional organization and reduces redundancy among 

brain regions [ 78 ]. Interlobe connections, characterized by long- 

range wiring, are metabolically costly [ 6 , 79–81 ], while the shorter- 

range intralobe connections are more energy-efficient. These in- 

trafrontal connections may enhance language abilities in females. 

Conversely, male interlobe connections may be driven by the need 

to engage more extensive functional areas for complex visuospa- 

tial tasks. This divergence may contribute to sex differences in 

cognitive abilities, with males typically excelling in rightward vi- 

suospatial tasks and females in leftward verbal tasks [ 3 , 82 ]. 

The observed sex differences in intra- and interlobe lateralized 

connectivity may be attributed to a combination of genetic, hor- 

monal, and structural factors [ 7 , 12 , 53 , 83 , 84 ], which were dis- 

cussed in the Background section. Estrogen in females enhances 

local synaptic plasticity and dendritic arborization, particularly 

in frontal regions, favoring specialized intralobe networks, while 

testosterone in males promotes long-range axonal growth and 

interlobe integration [ 13 , 53 , 83 , 84 ]. Genetic factors, such as X- 

chromosome-linked genes, may further refine female-pattern in- 

tralobe connectivity through synapse regulation, whereas sex- 

specific epigenetic and neurodevelopmental pathways could pri- 

oritize cross-regional wiring in males [ 84 , 85 ]. Developmental 

synaptic pruning also differs: females retain more intralobe con- 

nections due to slower or later pruning, preserving modular pro- 

cessing, while males undergo earlier pruning to streamline in- 

terlobe efficiency. Structurally, higher gray matter density in fe- 

male frontal lobes supports localized processing, whereas males 

exhibit greater long-range white matter tracts (e.g., superior lon- 

gitudinal fasciculus) for interlobe communication [ 53 , 79 , 80 , 83 , 

84 ]. Evolutionary pressures may have reinforced these patterns, 

with intralobe specialization in females aligning with social and 

detail-oriented tasks, and interlobe integration in males support- 

ing spatial-motor coordination. These mechanisms, while proba- 

bilistic, interact with environmental and experiential factors, con- 

tributing to sex-specific cognitive strengths and vulnerabilities 

[ 86 , 87 ]. 

Limitations 
Our classification models were trained and tested within each 

dataset. To preserve meaningful features and explore whether 

consistent patterns could be identified across datasets, we did 

not apply harmonization. While our approach maintained the in- 

tegrity of the original features, future research incorporating har- 

monized data and cross-dataset generalization could provide ad- 

ditional validation to further enhance the robustness and reliabil- 

ity of our findings. 

Potential implications 

Our study focused on sex as a grouping factor and utilized brain 

hemisphere labels to identify sex-specific lateralized patterns 

within human brain functional networks. The results demon- 

strate efficacy and stability in identifying and validating sex dif- 

ferences in lateralization. Importantly, the scope of this general 

predictive framework extends beyond its current application. One 

future direction for our proposed dual-classification workflow 

involves predicting group-specific prognosis and treatment out- 

comes (e.g., changes in clinical, cognitive, or behavioral ratings) 

in psychiatric disorders, considering essential covariates such as 

age and sex [ 88 , 89 ]. Previous studies, such as Chopra et al. [ 88 ], 

have aimed to minimize the impact of these covariates to en- 

hance generalizability in predictive modeling. In contrast, our 

dual-classification approach provides a complementary method 

for identifying biomarkers or predicting treatment responses spe- 

cific to particular covariates, thus supporting precision medicine 

initiatives. Furthermore, our dual-classification framework ex- 

tends beyond sex-specific analyses and holds potential for 

uncovering subtype-specific neuroimaging biomarkers, offering 
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valuable insights into personalized prognosis and treatment 

strategies across various psychiatric disorders [ 90 ]. Moreover, the 

GSDA algorithm can be adapted to combinations of grouping 

factors, such as sex and age groups. While this work primar- 

ily focused on classification, our method is adaptable to regres- 

sion tasks, such as predicting behavioral cognitive scores or drug 

dosages. 

Methods 

Dual-classification with GSDA 

We propose a dual-classification framework with 2 primary ob- 

jectives: learning group-specific models and identifying group- 

specific discriminant weights. For the first objective, specifically 

the classification of left versus right brain hemispheres, we train 

a linear classifier on the training data and then validate its perfor- 

mance on the test data. We refer to this process as the first-order 

classification . The weights derived from the model are called the 

first-order weights . Then we perform a second round of classi- 

fication to identify the weights that show significant differences 

between group-specific models. Here, we train a linear classifier 

to differentiate between male- and female-specific models. This 

stage is called the second-order classification , and the associated 

weights are referred to as the second-order weights . This process 

is illustrated in stages 5 © and 6 © of Fig. 1 A. 

The first-order classification builds a (group-specific) prediction 

function. This function predicts whether an unseen brain hemi- 

sphere is left or right, based on a feature vector. These vectors 

represent the left or right human brain hemispheres and are ex- 

tracted from the training neuroimaging data. The resulting pre- 

diction accuracy serves as a quantitative measure of the extent to 

which the learned lateralization patterns are generalized among 

the brain networks within the test set. The learned model weights 

can be interpreted as indicators of the significance or extent of dif- 

ferences between the corresponding connections of the left and 

right brain hemispheres. 

The second-order classification is designed to identify weights 

that show significant differences between the male- and female- 

specific first-order models. In this stage, a linear classification 

model is trained on the first-order model weights to predict 

whether an unseen model is male- or female-specific. The fea- 

tures with larger weights in the second-order classification are 

considered to represent the stronger sex differences. 

To learn group-specific models for the first-order classification, 

we propose a GSDA algorithm. 

Problem formulation of GSDA 

Let (xi , yi , gi ) represent the i th sample, where xi ∈ X ⊆ R p denotes 

an input data vector, yi ∈ Y denotes an output variable (label), and 

gi ∈ G ⊆ R q represents a covariate vector for the grouping factor(s). 

Here, i ∈ [1 , m ] , with m being the total number of samples. X , Y, 

and G are the feature spaces of the input data, output label, and 

grouping factor, respectively, with p and q as the corresponding 

feature dimensions for the input data xi and grouping factor gi . In 

the context of this article, xi is a feature vector that represents 

a brain hemisphere, yi indicates whether xi is the left or right 

hemisphere, and gi is a binary (0 and 1) indicator representing 

whether xi is from a male or female subject (e.g., gi = 0 for male 

and gi = 1 for female). Assuming x0 = 1 , considering w0 as the bias 

term, and denoting w ∈ R p+1 as the vector of weights (coefficients) 

to be learned, with the target group represented as subscript t , 

we formulate the objective of learning group-specific models as 

follows: 

argmax 
w 

1 

mt 

mt ∑ 

i =1 

P (yi | xi , w ) +
λ

m 

m 
∑ 

j=1 

∣
∣P (g j , w

⊤ x j ) − P (g j )P (w⊤ x j )
∣
∣, 

(1) 

where mt denotes the number of training samples from the target 

group, and λ ≥ 0 is the hyperparameter that quantifies the impor- 

tance of grouping factor(s) dependence. Based on Equation ( 1 ), we 

formulate a general GSDA framework as 

argmin 
w 

L (X⊤ 
t w , yt ) + α‖ w ‖2 K − λ ρ(X⊤ w , G ) 

︸ ︷︷ ︸ 

Group dependence 

, (2) 

where L (·, ·) denotes a classification or regression loss function, 
such as least square, logistic, or hinge; α ≥ 0 is the hyperparam- 

eter used for weight regularization; ‖ · ‖2 K denotes either an ℓ1 or 
ℓ2 regularization, with K = 1 or 2, respectively; Xt denotes the tar- 

get group’s training samples; X denotes all training samples that 

consist of both target and nontarget group samples; and ρ(·, ·) is 
a statistical dependence measure. In this work, we employed the 

Hilbert–Schmidt independence criterion (HSIC) [ 91 ], a convex and 

smooth dependence measure. Given 2 sets X = { x1 , x2 , . . . , xm } 
and Y = { y1 , y2 , . . . , ym } , both with size m , HSIC computes the sta- 

tistical dependence between tests, whether X and Y , via 

ρh (X , Y ) =
1 

(m − 1)2 
tr (KHLH ) , (3) 

where K , H , L ∈ R m ×m , Ki, j := kx (xi , x j ) , Li, j := ky (yi , y j ) , kx (·, ·) , and 
ky (·, ·) are 2 kernel functions, such as linear, polynomial, or radial 

basis function (RBF); H = I − 1 
m 11

⊤ is the centering matrix; I is an 

identity matrix; and tr ( ·) is the trace function. HSIC ρ(X , Y ) ≥ 0 , 

and it is zero if and only if the 2 sets of variables X and Y are inde- 

pendent, that is, P (x , y ) = P (x )P (y ) . A higher HSIC value suggests 

stronger statistical dependence. 

GSDA with logistic loss and maximum likelihood estimation 

To maximize the likelihood of the target group labels and the 

grouping factor(s) dependence as specified in Eq. ( 1 ), we adopt 

maximum likelihood estimation for optimizing the model weights 

w . Here, we develop a novel algorithm, GSDA with logistic 

loss (GSDA-Logit), as a variant of logistic regression for group- 

dependent learning. Let P (yt | Xt , w ) denote the likelihood of tar- 

get labels yt given the model and target group data Xt ; P (w ) be 

the prior probability of weights, assumed to follow a normal dis- 

tribution N (0 , σ 2 ) ; and P (ρ(X⊤ w , G )) be the likelihood of grouping 

factor dependence. The overall likelihood L (w ) to be maximized 

is as follows: 

L (w ) = P (yt | Xt , w )P (w )P (ρ(X⊤ w , G )) 

=

( 
mt ∏ 

i =1 

S (w⊤ xi )
yi 

(

1 − S (w⊤ xi )
)(1 −yi ) 

) 

×
1 

√ 
2 πσ

exp 

(

−
w⊤ w 

2 σ 2 

)

S
(

ρh (w
⊤ X , G )

)

, 

(4) 

where S (·) denotes the logistic (or sigmoid) function, and P (w ) can 

be interpreted as the ℓ2 regularization for w . Given that w⊤ X pro- 

duces a row vector, Equation ( 3 ) can be reformulated as simplified 

HSIC [ 92 ]: 

ρsh (w
⊤ X , G ) = tr ((w⊤ X )⊤ (w⊤ X )HL H ) 

= w⊤ XHLHX 
⊤ w , 

(5) 
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where L = G⊤ G . By replacing ρh (w
⊤ X , G ) with the simplified HSIC 

ρsh (w
⊤ X , G ) , the likelihood can be rewritten as 

L (w ) =

( 
mt ∏ 

i =1 

S (w⊤ xi )
yi 

(

1 − S (w⊤ xi )
)(1 −yi ) 

) 

×
1 

√ 
2 πσ

exp 

(

−
w⊤ w 

2 σ 2 

)

S
(

ρsh (w
⊤ X , G )

)

. 

(6) 

The likelihood in Equation ( 6 ) can be maximized using the same 

optimization steps for a standard logistic regression (i.e., comput- 

ing the gradient of the negative log-likelihood). Let α = 1 
σ 2 and λ

denote the 2 hyperparameters that control the importance of the 

ℓ2 regularization and grouping factor dependence regularization, 

respectively. Let J (w ) denote the negative logarithm of the likeli- 

hood. Taking the gradient of J (w ) with respect to w , we obtain 

∇J (w ) = Xt (S (X
⊤ 
t w ) − yt ) + αw 

+ λ(S (ρsh (w
⊤ X , G )) − 1)XHLHX⊤ w . 

(7) 

Finally, w can be optimized iteratively via 

wk +1 = wk − η∇J (wk ) , (8) 

where k denotes the k th iteration, and η is the learning rate (step 

size). Algorithm 1 is the pseudocode for GSDA-Logit. In addition 

to standard gradient descent optimization, we have implemented 

the LBFGS algorithm [ 93 ] for faster optimization. 

Algorithm 1 Group-Specific Discriminant Analysis with logistic 

loss (GSDA-Logit) 

Input: Input data matrix X ∈ R p×m , target-group label vector yt ∈ 

R mt , grouping factor(s), and indices of samples from the target 

group (optional, if not given, first mt < m samples are assumed 

to be the labeled target samples). 

hyperparameters : α for ℓ2 regularization, λ for group dependence 

(HSIC) regularization, and η for learning rate. 

Output: Coefficient vector w ∈ R p+1 . 

1: Encode the grouping factor(s) into a matrix G ∈ R q ×m ( q = 1 for 

a binary grouping factor) using one-hot encoding. Then con- 

struct the kernel matrix L ∈ R m ×m = G⊤ G and the centering 

matrix H ∈ R m ×m ; 

2: Add a row of 1 s to X ; 

3: Randomly initialize wk ( k = 0 ); 

4: while Not converge do 

5: Compute gradient ∇J (w ) by Eq. (7); 

6: Update wk +1 = wk − η∇J (wk ) ; 

7: end while 

8: return GSDA-Logit coefficient vector w . 

Theoretical interpretation for diverged test accuracy between 
groups 

Here, we provide a theoretical analysis to interpret the accuracy 

divergence in Fig. 2 A of a GSDA model on target group and non- 

target group data. Let h ∈ H be a hypothesis for predicting label y , 

where H is the hypothesis space. In the context of linear models 

with logistic loss in this article, a hypothesis h (x ) is defined as 

h (x ) =

{ 

1, if S (w⊤ x ) ≥ 0 . 5 , 

0, otherwise. 
(9) 

Let the target group data be drawn from the distribution Dt ; then, 

by a standard application of Vapnik–Chervonenkis (VC) theory 

[ 51 ], the bound on the generalization error for target group data 

is 

ǫt (h ) ≤ ˆ ǫt (h ) + O

(√ 
d 

m 
ln 

m 

d 

)

, (10) 

where ǫt (h ) denotes the generalization error for h on the target 

group data, ˆ ǫt (h ) is the empirical generalization error for h on the 

target group training examples, d represents the VC dimension 

[ 51 ] of the hypothesis space H, and O(·) denotes computational 

complexity. According to the domain adaptation theory [ 94 ], the 

upper bound on the generalization error for samples from the 

nontarget group(s) is 

ǫ\ t (h ) ≤ ˆ ǫt (h ) + O

(√ 
d 

m 
ln 

m 

d 

)

+ dH (Dt , D\ t ) + 
, (11) 

where D\ t represents the distribution for nontarget group data, 

and 
 = ǫt (h∗ ) + ǫ\ t (h∗ ) , with h∗ = argmin h ∈H ǫt (h ) + ǫ\ t (h ) being the 

ideal joint hypothesis for target group and nontarget group data. 


is a constant for fixed data and can be zero if h∗ can accurately 

predict any sample from both Dt and D\ t . dH (Dt , D\ t ) is the H- 

divergence, which measures the divergence between the target 

and nontarget data distributions by 

dH (Dt , D\ t ) = 2 sup 
h ∈H 

∣
∣P Dt [ I(h )] − P D\ t [ I(h )]

∣
∣, (12) 

where I(h ) is an indicator function that x ∈ I(h ) ⇔ h (x ) = 1 . As- 

sume gi = 1 if xi ∈ Dt , and gi = 0 if xi ∈ D\ t , the right-hand side of 

Equation ( 12 ) can be rewritten as 

∣
∣P Dt [ I(h )] −P D\ t [ I(h )]

∣
∣=

∣
∣P (h (x ) = 1 | g= 1) −P (h (x ) = 1 | g= 0)

∣
∣

=
∣
∣P (S (X⊤ 

t w ) ≥0 . 5) −P (S (X⊤ 
\ t w ) ≥0 . 5)

∣
∣, 

(13) 

which can be viewed as the separability of transformed data X⊤ 
t w 

and X⊤ 
\ t w in the linear model context. 

If we view the objective of maximizing dependence between g 

and X⊤ w in Equation ( 1 ) as maximizing the corresponding mutual 

information, GSDA minimizes the uncertainty about the group la- 

bels g given the transformed data X⊤ w . This enhances the sepa- 

rability of transformed data X⊤ 
t w and X⊤ 

\ t w . From this perspec- 

tive, we interpret group dependence as a form of regularization 

on the hypothesis space H, ensuring that for any h ∈ H, the trans- 

formed target group and nontarget group data are separable. This 

results in a maximized H-divergence in the generalization error 

bound for nontarget group data in Equation ( 11 ). We can see that 

the difference between the generalization error bounds for target 

group (Equation ( 10 )) and nontarget group data (Equation ( 11 )) is 

the H-divergence term plus a constant. This directly translates 

to a lower generalization error bound or higher accuracy for tar- 

get group data over nontarget group data in the GSDA framework. 

Consequently, a theoretical gap exists between the expected ac- 

curacy achieved by a GSDA model on target group and nontarget 

group data, with the expected accuracy for target group data be- 

ing higher (i.e., GSDA models are more target-specific). 

GSI for evaluating model group specificity 

To measure the group specificity of discriminative models, we set 

the following criteria for a metric: 

� Its value lies within [0 , 1] . 
� Its value equals 0 if the test accuracy for the target and non- 

target groups is identical. 
� When the test accuracy of the target and nontarget groups 

differs, the value of this metric should be proportional to 
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(i) the absolute accuracy for the target group and (ii) the 

closeness of accuracy for the nontarget group to the random 

chance. 
� Greater relative accuracy divergence between target and non- 

target groups will result in a higher value of this metric. 

To satisfy the above conditions, we propose a GSI for binary 

classification problems as follows: 

GSI = 2BAT (BAT − 0 . 5 − |BANT − 0 . 5 | ) , (14) 

where BAT ∈ [0 . 5 , 1] and BANT ∈ [0 , 1] represent the bal- 

anced accuracy of the target group and nontarget group 

data, respectively. Balanced accuracy is chosen to mit- 

igate the impact of imbalanced samples. It is defined 

as BA = (TPR + TNR ) / 2 , where the true-positive rate 

TPR = {number of true positives } / {number of total positives } 
and the true-negative rate TNR = {number of true negatives } / 
{number of total negatives } . In the left versus right brain hemi- 

sphere classification problem, the numbers of left and right 

training examples are equal, making balanced accuracy equiva- 

lent to accuracy. The expression |BANT − 0 . 5 | measures how close 

the accuracy of the nontarget group is to random chance (0.5), 

and BAT − 0 . 5 − |BANT − 0 . 5 | quantifies the relative accuracy 
divergence between the target and nontarget groups. Since we 

are interested in generalized lateralization patterns for the target 

group, models that perform worse than random chance on target 

test sets are not considered. 

Resting-state fMRI data and processing 

We use resting-state fMRI data from the HCP [ 45 ] and the GSP 

[ 46 ] for brain hemisphere classification to study lateralization. Ta- 

ble 2 summarizes the demographic information of the subjects 

involved in our experiments across both datasets. 

HCP 

Acquisition 

All MRI data were collected using the same 3T Siemens Skyra 

magnetic resonance machines at Washington University in St. 

Louis with a 32-channel head coil [ 95 ]. Specifically, rs-fMRI was 

acquired using a gradient-echo echo-planar imaging (GE-EPI) se- 

quence with the following parameters: repetition time (TR) = 

720 ms, echo time (TE) = 33.1 ms, flip angle (FA) = 52 ◦, band- 

width = 2,290 Hz/pixel, field of view (FOV) = 208 × 180 mm 2 , ma- 

trix = 104 × 90 , voxel size = 2 × 2 × 2 mm 3 , multiband accelera- 

tion factor = 8 , slices = 72, and total scan time of 1,200 frames = 

14 minutes and 24 seconds [ 45 ]. During the scan, participants were 

asked to open their eyes and stare at a white cross on a screen 

with a black background. There were 2 rs-fMRI sessions (REST1 

and REST2) acquired on 2 consecutive days, each including 2 runs 

with a left-to-right (LR) and a right-to-left (RL) phase encoding di- 

rection. The T1-weighted images were acquired by using a mag- 

netized rapid gradient-echo imaging (MPRAGE) sequence with the 

following parameters: TR = 2,400 ms, TE = 2.14 ms, reversal time 

(TI) = 1,000 ms, FA = 8 ◦, FOV = 224 × 224 mm 2 , voxel size 0.7 mm 

isotropic, and total scan time = 7 minutes and 40 seconds. 

Preprocessing 

We follow the same steps in [ 96 ] for HCP data preprocessing. The 

HCP minimal preprocessing pipeline (version 2.0) was utilized, in- 

cluding magnetic gradient distortion correction, EPI distortion cor- 

rection, non–brain tissue removal, Montreal Neurological Insti- 

tute (MNI) standard space registration, and intensity normaliza- 

tion. The resultant data were denoised using independent com- 

ponent analysis (ICA) with the FIX tool [ 97 ], which identifies and 

eliminates spatiotemporal signal components from nonneuronal 

or structural noise, with an emphasis on head movement. Sub- 

sequently, 5 postprocessing steps were applied to the minimally 

preprocessed data: (i) spatial smoothing with a 4-mm full width 

at half maximum (FWHM) kernel, twice the voxel resolution of 

HCP fMRI data; (ii) linear detrending to minimize the effects of 

low-frequency drift; (iii) regression of a suite of nuisance variables 

unrelated to neural signals, such as average signals from white 

matter (WM) and cerebrospinal fluid (CSF), as well as the whole 

brain (global signal, GS); (iv) bandpass filtering (0.01–0.1 Hz); and 

(v) scrubbing to control effects of transient movement across the 

time-series frames. 

GSP 

Acquisition 

All imaging data were collected on matched 3T Tim Trio scan- 

ners (Siemens Healthcare) at Harvard University and Mas- 

sachusetts General Hospital using the vendor-supplied 12- 

channel phased-array head coil [ 46 ]. Structural data included 

a high-resolution (1.2-mm isotropic) multiecho T1-weighted 

magnetization-prepared gradient-echo image. Functional imag- 

ing data were acquired using a GE-EPI sequence sensitive to blood 

oxygenation level-dependent (BOLD) contrast with the following 

parameters: TR = 3,000 ms, TE = 30 ms, FA = 85 ◦, voxel size 

= 3 × 3 × 3 mm 3 , slices = 47, and total scan time of 124 frames 

= 6 minutes and 12 seconds. 

Preprocessing 

Same as for HCP data preprocessing, we follow [ 96 ] to preprocess 

GSP data. SPM preprocessed all fMRI data [ 98 ] and GRETNA [ 99 ] 

toolkit, including the following steps: (i) removing the first 4 vol- 

umes to ensure that the magnetization is at steady state; (ii) slice- 

timing correction; (iii) realignment of all volumes to the first vol- 

ume to reduce the effects of head motion; (iv) co-registration of 

GE-EPI data to the native, cropped, high-resolution structural im- 

age and then normalizing them to the MNI space through the Dif- 

feomorphic Anatomical Registration Through Exponentiated Lie 

Algebra (DARTEL) algorithm; (v) spatial smoothing with a 6- mm 

FWHM kernel, twice the voxel resolution of GSP fMRI data; (vi) 

linear detrending to minimize the effects of low-frequency drift; 

(vii) 6 head motion parameter regression, as well as the WM, CSF, 

and GS; and (viii) low-pass filtering ( < 0.08 Hz) [ 100 ]. 

Extracting intrahemispheric brain network 

We use intrahemispheric brain network connectivity as features 

to represent brain hemispheres. Fig. 1 A 1 ©– 3 © illustrates the data- 

processing workflow for obtaining intrahemispheric connections 

from resting-state time series. Time sequences were extracted us- 

ing the BNA [ 50 ], which divides the human brain into 246 regions 

(123 per hemisphere). Pearson correlation was computed to repre- 

sent the connectivity between brain regions. Following Liang et al. 

[ 101 ], the correlation coefficients were transformed into z -scores 

using Fisher’s z transform. For HCP data, we averaged z -scores 

across the RL and LR runs for each session. To extract half-brain 

features, we reordered the columns and rows of the connectiv- 

ity matrix to produce two 123 × 123 matrices, representing the 

intrahemispheric networks for the 2 brain hemispheres of each 

subject. We then extracted the upper triangle of these matrices 

(illustrated as the red and blue areas in 3 © of Fig. 1 ) to form two 
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Table 2: Information of HCP and GSP datasets used for the experiments, where “M” denotes male and “F” denotes female for sex, “L”
denotes left-handedness, “R” denotes right-handedness, “A” denotes ambidexterity for handedness, and “SD” denotes standard deviation. 

No. of Handedness Average age (SD) No. of 

Dataset subjects Sex (M/F) (L/R/A) Total Male Female sessions 

HCP [ 45 ] 960 445/515 85/875/0 28.7 (3.71) 27.9 (3.69) 29.4 (3.59) 2 

GSP [ 46 ] 1,570 665/905 110/1,449/11 21.5 (2.89) 21.6 (3.04) 21.5 (2.78) 1 

7,503-dimensional feature vectors by BNA for the 2 hemispheres 

for experiments. 

Experimental setting 

Multivariate classification algorithm setup 

For all multivariate methods, the classification problem is bi- 

nary: left brain hemispheres are labeled as 0, and right brain 

hemispheres are labeled as 1. For GSDA-Logit, sex is utilized 

as the grouping factor in the experiments, encoding males as 

0 and females as 1. Given the binary nature of the group- 

ing factor, the matrix G simplifies to a vector g in this exper- 

iment. For first-order classification with group-specific model 

training, we set the regularization parameter α = 0 . 1 and varied 

λ ∈ [0 , 1 . 0 , 2 . 0 , 5 . 0 , 8 . 0 , 10 . 0] for GSDA-Logit, where α controls ℓ2 
regularization, and λ regulates statistical dependence on grouping 

factors. When λ = 0 , GSDA-Logit degenerates to standard logistic 

regression, as it does not incorporate grouping factor dependence 

in optimizing model weights. To learn first-order multivariate con- 

trol models and conduct second-order classification, we employed 

a logistic regression classifier implemented in scikit-learn [ 102 ] 

with default hyperparameters. 

Cross-validation strategy 

First-order classification setting 

We implemented 2 cross-validation strategies for left versus right 

brain hemisphere classification: 

(1) Within each dataset, subjects were randomly divided into 2 

equal groups (50% each). The training set consisted of left 

hemispheres from the first group and right hemispheres 

from the second group, while the remaining hemispheres 

(right hemispheres of the first group and left hemispheres 

of the second group) were used for testing. This setup en- 

sured that no subject contributed both hemispheres to the 

training set, minimizing potential biases from intrasubject 

correlations, as illustrated in 4 © of Fig. 1 A. The correspond- 

ing results are reported in Fig. 2 and Supplementary Fig. 

S2 A, B. 

(2) To further validate our findings, we employed an alterna- 

tive strategy in which 20% of subjects were held out en- 

tirely as an additional unseen test set. The training exam- 

ples were obtained by applying the same strategy above to 

the remaining 80% of subjects. 

Each cross-validation strategy was repeated 1,000 times, gener- 

ating 1,000 models per learning task. For the HCP dataset, which 

includes 2 scanning sessions per subject on different days, the ses- 

sion not used for training served as an additional test set. 

Second-order classification setting 

Using the first-order models learned for each task, we perform 

second-order classification through the following steps: 

(1) Define a classification problem of interest, for example, 

male-specific GSDA models trained on the HCP with α = 0 . 1 , 

λ = 5 versus female-specific GSDA models trained on the 

HCP with α = 0 . 1 , λ = 5 , with 1,000 models for each group. 

(2) Split the 2,000 models into 80% training and 20% test sets 

by stratified random sampling. 

(3) Train a standard logistic regression classifier using the 

scikit-learn [ 102 ] implementation with the default setting 

on the training set and then evaluate the performance on 

the test set. 

(4) Repeat steps 2 and 3 with different random seeds for 1,000 

splits of training and test sets. 

Generalist Repository 

There are additional data files hosted in Zenodo archives: 

https://doi.org/10.5281/zenodo.10050233 [ 103 ] 

https://doi.org/10.5281/zenodo.10050234 [ 104 ] 

GitHub Repository 

The software code is available from GitHub repository: https:// 

github.com/shuo-zhou/GSDA-Lateralization [ 105 ]. 

A version of record snapshot of the GitHub repository has 

been archived in the Software Heritage Library [ 106 ] with the PID 

swh:1:snp:495f818df0e3c6d9ac1898b1cc14ec0ea396d98a. 

Additional Files 

Supplementary Fig. S1. Left versus right brain classification re- 

sults using GSDA-Logit on HCP data [ 45 ], employing 2 cross- 

validation strategies different from the one in Fig. 2 . (A) Aver- 

age test accuracy on the held-out session; for example, train- 

ing was conducted on the 50% hemispheres, same as in Fig. 2 A, 

from the REST1 session, and the test was performed on the data 

from the REST2 session. (B) GSI calculated from the test results 

shown in Supplementary Fig. S1 A. (C) Average test accuracy on 

the held-out subjects’ data; for example, training was conducted 

on the 80% subjects’ data sampled from the REST1 session, and 

test was performed on the remaining 20% subjects’ data from 

REST1 and REST2. (D) GSI calculated from the test results shown 

in Supplementary Fig. S1 C. The remaining detailed descriptions 

of the figures, along with the main observations, are the same as 

those in the caption of Fig. 2 . 

Supplementary Fig. S2. Experimental results of left versus right 

brain classification on male and female sets from the Brain Ge- 

nomics Superstruct Project (GSP) [ 46 ] using GSDA-Logit with re- 

spect to the hyperparameter λ. (A) Average test accuracy on the 

held-out hemispheres, with a cross-validation strategy consistent 

with the one in Fig. 2 A. (B) GSI calculated from the test results 

shown in Supplementary Fig. S2 A. (C) Average test accuracy on 

the held-out subjects’ data, with a cross-validation strategy con- 

sistent with the one in Supplementary Fig. S1 C. (D) GSI calcu- 

lated from the test results shown in Supplementary Fig. S2 C. The 
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remaining detailed descriptions of the figures, along with the 

main observations, are the same as those in the caption of Fig. 2 . 

Supplementary Fig. S3. Pearson correlation coefficients between 

model weights learned from GSP data [ 46 ]. (A) Correlation be- 

tween male-specific and multivariate control models. (B) Corre- 

lation between female-specific and multivariate control models. 

(C, D) Average pairwise correlation for (C) male-specific and (D) 

female-specific GSDA models. The main observations are consis- 

tent with those in Fig. 3 . 

Supplementary Fig. S4. Sex-specific lateralized connections iden- 

tified by (A) male-specific models for HCP (Fig. 6 A + Fig. 6 E), (B) 

female-specific models for HCP (Fig. 6 B + Fig. 6 F), (C) male-specific 

models for GSP (Fig. 6 C + Fig. 6 G), and (D) female-specific models 

for GSP (Fig. 6 D + Fig. 6 G). 

Supplementary Fig. S5. Count of the group “exclusive” lateralized 

connections for HCP and GSP (Fig. 6 E–H) categorized by associ- 

ated lobes, and inter- or intralobe. The connections are identified 

by (A) male-specific models for HCP, (B) female-specific models 

for HCP, (C) male-specific models for GSP, and (D) female-specific 

models for GSP. (E) Sum of Supplementary Fig. S4 A, C. (F) Sum of 

Supplementary Fig. S4 B, D. 
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