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Abstract

Motivated by the Lawrence—Krammer—Bigelow representations of the classical
braid groups, we study the homology of unordered configurations in an orientable
genus-g surface with one boundary component, over non-commutative local sys-
tems defined from representations of the discrete Heisenberg group. Mapping class-
es act on the local systems and for a general representation of the Heisenberg group
we obtain a representation of the mapping class group that is twisted by this action.
For the linearisation of the affine translation action of the Heisenberg group we ob-
tain a genuine, untwisted representation of the mapping class group. In the case of
the generic Schrodinger representation, by composing with a Stone-von Neumann
isomorphism we obtain a projective representation by bounded operators on a Hil-
bert space, which lifts to a representation of the stably universal central extension
of the mapping class group. We also discuss the finite dimensional Schrédinger
representations, especially in the even case. Based on a natural intersection pairing,
we show that our representations preserve a sesquilinear form.
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1 Introduction

The braid group B,, was defined by Artin in terms of geometric braids in R?; equiva-
lently, it is the fundamental group of the configuration space C,,,(R?) of m unordered
points in the plane. Another equivalent description is as the mapping class group
M(D,,) = Diff(D,,, S*)/Diffy(Dyn, S*) of the closed 2-disc with m interior points
removed. (The mapping class group of a surface is the group of isotopy classes of
self-diffeomorphisms fixing the boundary pointwise.)

There is also a natural action of Diff(ID,,, S*) on configuration spaces C,,(ID,,,);
considering the induced action on the homology of these configuration spaces, Law-
rence [1] defined a representation of B,, for each n > 1. The n = 2 version is known
as the Lawrence-Krammer-Bigelow representation, and a celebrated result of Bigelow
[2] and Krammer [3] states that this representation of B,, is faithful, i.e. injective.

On the other hand, for almost all other surfaces X, the question of whether the
mapping class group 9t(X) admits a faithful, finite-dimensional representation over
a field (whether it is /inear) is open. The mapping class group of the torus is SLo(Z),
which is evidently linear, and the mapping class group of the closed orientable sur-
face of genus 2 was shown to be linear by Bigelow and Budney [4], as a corollary of
the linearity of Bs. However, nothing is known in genus g > 3.

Our programme is to study the action of the positive-genus and connected-bound-
ary mapping class groups (3, 1) on the homology of the configuration spaces
Cn(24.1), equipped with local systems that are similar to the Lawrence-Krammer-
Bigelow construction. We first argue that abelian local systems would not retain
enough information, in the sense that they cannot faithfully encode the “writhe” of
loops of configurations. In general, for any surface 3 and n > 2, the abelianisation
of m1(C,, (X)) is canonically isomorphic to Hy(2) x C, where C is a cyclic group of
order oo if ¥ is planar (embeds into R?), of order 2n — 2 if ¥ = S? and of order 2 in
all other cases (see for example [5, Proposition 6.32]). In the case > = D,,, the abe-
lianisation is Z™ x Z, and the Lawrence representations are defined using the local
system given by the quotient 71 (C,, (D)) — Z™ X Z — Z X Z, where the second
map is addition of the first m factors. However, in the non-planar case (in particular
if ¥ =X, 1), we lose information by passing to the abelianisation, since the cyclic
factor C— which counts the self-winding or “writhe” of a loop of configurations— has
order 2 rather than order co.

To obtain a better analogue of the Lawrence representations in the set-
ting ¥ = 3,1 for g >0, we consider instead a larger, non-abelian quotient of
7m1(Cn (X)), which is isomorphic to the discrete Heisenberg group H = H (),
defined as the central extension of the first homology H = H;(X,Z) associated to
the intersection 2-cocycle, which concretely means H = Z x H as a set, with group
law (k,x)(l,y) = (k+ 1+ x.y,z + y). This is a 2-nilpotent group that arises very
naturally as a quotient of the surface braid group 71 (C,, (X)) by forcing a single ele-
ment to be central. It may also be realised concretely as a group of (g + 2) x (g + 2)
matrices, as explained in Remark 6 below. In the case n > 3 it is known by [6] to be
the 2-nilpotentisation of the surface braid group (in fact it is the maximal nilpotent
quotient of the surface braid group), but for n = 2 it differs from the 2-nilpotentisa-
tion. A key property of this Heisenberg quotient is that it still detects the self-winding
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Heisenberg homology on surface configurations 1991

(or “writhe”) of a loop of configurations without reducing modulo two. Any repre-
sentation ¥ of the discrete Heisenberg group H(X) defines a local system on the
configuration space C,, (2).

An and Ko studied in [7] extensions of the Lawrence—Krammer—Bigelow repre-
sentations to homological representations of surface braid groups; see also [8]. Their
purpose was to extend the homological representation of the classical braid group to
some homology of configurations in an n-punctured surface and produce representa-
tions of the surface braid groups. In our case the surface has no punctures, and the
goal is to represent the full mapping class group. Our constructions based on the
Heisenberg quotient of the surface braid group have a similar flavour but are signifi-
cantly simpler; moreover we obtain strong improvements by specialising to explicit
representations.

We speculate about faithfulness results for our representations and linearity results
for the mapping class group. This would involve two steps.

1. Prove that the action on the homology of the Heisenberg covering space of C,, (32)
is faithful. Following Bigelow’s strategy, this would follow from a key lemma
showing that an algebraic intersection form on homology detects the geometric
intersection of curves on the surface.

2. Find a good finite-dimensional representation of the Heisenberg group that
retains faithfulness.

It was shown in [9, 10] that the adjoint representation of quantum s/(2) at roots of 1
has a topological realisation as homology of configurations with local coefficients in
the once-punctured torus. Following this programme, De Renzi and Martel [11] have
recently produced a homological model for non-semisimple TQFT representations
derived from quantum s/(2). They use the local system on surface configurations
given by the Schrodinger representation at an odd root of 1, which is a special case in
our construction. We believe that our work contributes to a promising programme for
topological interpretations of quantum constructions and possible classical construc-
tions of quantum invariants and TQFTs.

Notation 1 Henceforth we will use the abbreviation ¥ = X ; for an integer g > 1.

General representations. Our first main result is a calculation of a Borel-Moore
relative homology group with coefficients twisted by any representation of the
Heisenberg group, together with a twisted action of the mapping class group. In the
following, HZM denotes Borel-Moore homology and C,, (%, 9~ (X)) is the properly
embedded subspace of C,,(X) consisting of all configurations intersecting a given
closed arc 0% C 0%. The twisted action is formulated as a representation of an
action groupoid. The key point is that the mapping class group acts on the Heisenberg
group, which induces an action on our local systems. We denote by f7; € Aut(H) the
automorphism induced by f € (). For a left representation p : H — GL(V') and
7 € Aut(H), the T-twisted representation p o 7 is denoted by V.
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1992 C. Blanchet et al.

Theorem A (Theorems 11 and 23) Let n > 2, g > 1 and let V be a left representation
of the discrete Heisenberg group H = H(X) in (R, S)-bimodules, for unital rings R
and S.

(a) The Borel-Moore homology HPM (C,,(X),Cn(X,07(X)); V) is isomorphic,
as an (R, S)-bimodule, to the direct sum of ( 294n=1 ) copies of V. Furthermore, it is the
only non-zero bimodule in the graded bimodule HP™ (C,,(X),C (5,07 (X)); V). The
corresponding statements are also true if Borel-Moore homology HPM is replaced
with compactly-supported cohomology H .

(b) There is a natural twisted representation of the mapping class group (X)) on
the collection of (R, S)-bimodules

HEM(C,(2),Co(2,07(2)); V) 7€ Aut(H)
where the action of f € MM(X) is

Co(f)s t HPM(Co(2),Cn(2,07(2)); rosV) — HFM(Co(),Cn(2,07(2)); V). (1)

Remark 2 The case of a trivial representation of . is already something interesting;
indeed, connecting with Moriyama’s work [12], we show that the Johnson filtration
is recovered; see Sect. 6.

Remark 3 The Heisenberg group H(X) can be realised as a group of (g + 2) X (g + 2)
matrices (see Remark 6); this gives a (g + 2)-dimensional representation, which
we refer to as its tautological representation. We then obtain, for each n > 2, a
family of twisted representations with polynomially growing dimension equal to

(g+2) (1),

The linearised translation action.

The discrete Heisenberg group H has a natural affine structure over Z for which
the left translation action H ~ H is by affine automorphisms. The linearisation func-
tor, from the category of affine spaces over Z to the category of Z-modules, applied
to this affine action, gives a representation L = H @ Z = 72912 of H over Z. A key
feature of this representation is that, for an automorphism 7 of #, the twisted repre-
sentation L is canonically isomorphic to L. We deduce a genuine (i.e. untwisted)
representation of the mapping class group.

Theorem B (Theorem 26) For each n > 2 and g > 1 there is a representation of the
mapping class group M(X) on the free Z-module of rank (2g + 2)(2947=1),

HM(Cu(2),Ca(2,07(9)); L). )
The Schrodinger representation.

The centre of the real Heisenberg group Hg(X) is one-dimensional, and acts by
scalars on the Hilbert space W = L?(RY) by t — e*"/2 where £ is a fixed non-
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Heisenberg homology on surface configurations 1993

zero real number (the Planck constant, for physicists). The famous Stone-von Neu-
mann Theorem (see for example [13, page 19], recalled as Theorem 27 below)
states that there is, up to isomorphism, a unique irreducible unitary representation
of Hr(X) on W extending this action of its centre; this is the Schrodinger represen-
tation. We also denote by W this representation restricted to the discrete subgroup
H =H(X) C Hr(X). It depends on the parameter £, so that we have a continuous
family of Schrodinger representations W = W (h). For 7 € Aut(H) the twisted rep-
resentation W is isomorphic to ¥ as a unitary representation and this isomorphism
is unique up to a unit complex number. Using such isomorphisms we may identify the
twisted local system with the original one and obtain an untwisted representation of
the mapping class group to the projective group of bounded operators on the homol-
ogy with local coefficients . Here, the Hilbert structure on homology is specified by
a choice of CW-complex structure. We build a linear lift of this projective action to

the stably universal central extension ﬁ(E)

Theorem C (Theorem 38) For each n > 2 and g > 1 there is a representation of
(L) on the complex Hilbert space

Vn = HEM(CH(Z>7CH(278_(Z))§W) (3)

by bounded operators, which lifts the natural projective action of M(.Y).

The group 53?(2) on which we construct our linear representation is a central
extension of the mapping class group 99t(X) of the form:

07— M) — M) > 1, 4)

and is the stably universal central extension of 9t(X), which we explain next.

The stably universal central extension.

A group G has a universal central extension (an initial object in the category
of central extensions of G) if and only if H;(G;Z) =0, and it is of the form

0 — Hy(G;Z) — G — G — 1 when it exists (see [14, Theorem 6.9.5]). For genus

g =4, we have H1(M(X,,1);Z) = 0 and Ho(M(X,,1); Z) = Z (see [15, Theorems
5.1 and 6.1]). Moreover, there are natural inclusion maps

93?(21,1) — 9)?(22’1) —_— s —> 93?(2971) — m(zg+1_’1) —_— e, (5)

which induce isomorphisms on Hq(—;Z) and Ho(—;Z) for g > 4 (by homologi-
cal stability for mapping class groups of surfaces, due originally to Harer [16]; see
[17, Theorem 1.1] for the optimal stability range). This implies that, for g > 4, the
pullback along (5) of the universal central extension of MM(X,11,1) to M(L, 1) is
the universal central extension of (X, ;). Hence we may define, for all g > 1, the
stably universal central extension of (X, 1) to be the pullback along (5) of the
universal central extension of M (X, 1) for any h > max(g, 4).
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1994 C. Blanchet et al.

A finite-dimensional Schrodinger representation. When the parameter /& control-
ling the action of the centre is 27 times a rational number, the discrete Heisenberg
group has finite-dimensional Schrédinger representations, which may be realised
either by theta functions, by induction or by an abelian TQFT. For a positive even
integer N, we will follow [18-20], which connect nicely the different approaches
when i = 27. We denote by Wy = L?((Z/N)9) the N9-dimensional representation
that is the unique unitary irreducible representation of the finite quotient Hy = H/In
of H by the normal subgroup Iy = {(2Nk,Nz) |k € Z,c €c H} CH=7Zx H,
where each central element (%, 0) acts by e’V . The analogue of the Stone-von Neu-
mann Theorem in this context [19, Theorem 2.4] allows us to construct an untwisted
representation of a finite-index subgroup of the mapping class group to a projective
linear group. We identify this subgroup as the stabiliser subgroup M(%, qo) for the
spin structure represented by the quadratic form g : H1(X;7Z/2) — Z/2 that is zero
on the preferred basis.

Theorem D (Theorem 39) For each g > 1, n > 2 and N = 2 with N even, there is
a complex projective representation of M(X, qo) on the (29‘*‘,{”_1 )N 9-dimensional
complex Hilbert space

Vo =HM(Co(2),Cn (2,07 (X)); Wy) (6)

Remark 4 A similar construction for odd N is used in [11]. In this case
the Stone-von Neumann Theorem applies to the quotient Hy = H /Iy,
Iy ={(Nk,Nz) |k € Z,x € H} C H =7 x H, and produces a projective action
of the full mapping class group on the homology spaces Vi .

For any complex vector space V, the adjoint action of GL(¥) on End¢ (V) induces
a canonical embedding PGL(V) < GL(Endc(V)). Applying this to the natural
projective action M(X) — PGL(Vw ) for odd N, we obtain an untwisted complex
representation

M(X) — GL(Endc(Vyn)) (7)

of dimension (29471 )2N29. Because PGL(Vy ) < GL(Endc(Vn,y,)) is injec-
tive, we see that:

Observation 5 Injectivity of the representation (7) is equivalent to injectivity of
the projective representation (LX) — PGL(Vy ). Thus a proof of injectivity of
M(X) — PGL(VN ) for any (N, n) with N,n > 2 and N odd would imply that the
mapping class group (X)) is linear. The same observation holds for N even, with
M (X)) replaced by its finite-index subgroup M(X, qp).

Unitarity.

When using a Hilbert space as local coefficients, although a CW-complex struc-
ture can be used to specify a Hilbert structure on (cellular) homology, it is not true
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that mapping classes will act as unitary operators on cellular chains. This is due to the
fact that the cellular approximation theorem produces a homotopic map that may fail
to be a homeomorphism. It is nevertheless possible to find a kind of unitarity property
similar to the one stated for the Burau and Gassner representations in [21, 22]. We
will state this as the property that a certain perfect sesquilinear form on homology is
preserved; see Sect. 5.5, in particular Proposition 40.

Kernels.

To describe an upper bound on the kernels of our representations, we first recall
the Johnson filtration of the mapping class group.

The mapping class group (X)) acts naturally on the fundamental group
7m1(X) =: I of the surface. Denote by I';, i > 2, the subgroups of the lower central
series defined recursively by I'; := [['y, T';_1]. Each term of the lower central series
of a group is fully invariant, so there is a well-defined induced action of 01(X) on the
quotient 71 (X)/T;+1, which is the largest (i + 1)-step nilpotent quotient of 71 ().
The Johnson filtration J(*) is then defined by setting J(¢) to be the kernel of this
induced action. Thus J(0) is the whole mapping class group and J(1) is the Torelli
group. The intersection of all terms in the filtration is trivial, i.e., it is an exhaustive
filtration of the mapping class group [23].

One may also consider the induced action of the mapping class group 9t(3) on
the universal metabelian quotient 71 (X) /71 (3)® of the fundamental group of the
surface (the quotient by its second derived subgroup); its kernel is the Magnus kernel
of M(X), which we denote by Mag(3) C 9(X). In Sect. 6 (Proposition 44) we
prove:

Proposition E (Proposition 44) For each n > 2, g > 1, considering the regular rep-
resentation V = Z[H] of the discrete Heisenberg group H = H (X)), the kernel of the
representation constructed in Theorem A is contained in J(n) N Mag(X).

Computability.

We emphasise that our representations are explicit and computable. First, the
underlying (R, S)-bimodule in Theorem A is a direct sum of finitely many copies of
the (R, S)-bimodule V that underlies the chosen representation of the discrete Heisen-
berg group H(X). This is Theorem A(a); an explicit basis is described in Theorem 11.

Moreover, the actions of elements of the mapping class group on the canonical
basis provided by Theorem 11 may be explicitly computed. To demonstrate this,
we calculate in Sect. 7 explicit matrices for our representations in the case when
n = 2 and V = Z[H] is the regular representation of H = H(X). For example, when
g = 1, the Dehn twist around the boundary of »; ; acts by the 3 x 3 matrix over
Z[H] = ZuT){a*!, b)Y /(ab = u®ba) depicted in Fig. 7.

Outline.

In Sect. 1 we define and study the quotient A of the surface braid group. In Sect. 2
we study the Borel-Moore homology with local coefficients of configuration spaces
on X, proving Theorem A(a) and showing in particular that, with coefficients in
V = Z[H], it is a free module with an explicit free generating set. Next, in Sect. 3, we
show that the action of the mapping class group on the surface braid group descends
to the Heisenberg quotient H.
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1996 C. Blanchet et al.

In Sect. 4 we construct twisted representations (Theorem A(b)) of the full mapping
class group, as well as the untwisted representations associated to the linearised trans-
lation action L = H @ Z (Theorem B). In Sect. 5 we prove Theorems C and D for
the Schrodinger representation of H and its finite-dimensional analogues. In Sect. 6
we discuss connections with the Moriyama and Magnus representations of mapping
class groups and deduce that the kernels of our twisted representations of 0t(3) from
Theorem A, with coefficients in V' = Z[H], are contained in the intersection of the
Johnson filtration with the Magnus kernel.

In Sect. 7 we explain how to compute explicit matrices for our representations
with respect to the free basis coming from Sect. 2. We carry out this computation
in the case of configurations of n = 2 points and where V' = Z[H] is the regular
representation of H; this special case of our construction is a direct analogue of the
Lawrence—Krammer—Bigelow representations of the braid groups.

The first version of this paper also contained further results about untwisted rep-
resentations of subgroups of the mapping class group on Heisenberg homology. In
order to improve readability, we have moved this part to a separate article [24].

2 A non-commutative local system on configuration spaces of
surfaces

Let ¥ = ¥,,; be a compact, connected, orientable surface of genus g > 1 with one
boundary component. For n > 2, the n-point unordered configuration space of X is

C.(E2) ={{c1,¢2,...,cn} C X | ¢; #cj fori # j},

topologised as a quotient of a subspace of ™. The surface braid group B,,(2) is then
defined as B,,(X) = m1(C,(X)). We will use the presentation of this group given by
Bellingeri and Godelle [25], which in turn follows from Bellingeri’s presentation
[26]. We fix based loops, aq,...,aq,B1,...,B4 on X, as depicted in Fig. 1. The
basepoint x; on X belongs to the base configuration * in C,,(X). We use the same

..
kpko Ky

Fig. 1 Model surface; inner circles are identified in pairs according to the dotted arcs
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Heisenberg homology on surface configurations 1997

notation ., 3, for the 71 -type generators of B,, (%), which are loops in C,, () where
only the first point moves.

The braid group B,,(X) has generators a1, ..., aq, 1, ..., By, together with the
classical braid generators o1, ..., 0,_1 obtained from embedding a disc around the
base configuration, and relations:

(BR1) [04,05] =1 for i — j| > 2,
(BR2) 000 = 0500 for ‘Z—]‘ :1,
(CR1) [, 04] = [Bry0i] =1 for ¢ > 1 and all r,
(CR2) [, 010r01) = [Br,y018r01] = 1 for all r,
(CR3) [av, J1_10‘3571] = [a, 01_15501} =

= [BT,Uflasaﬂ = [5r,0f1ﬂ501] =1 forallr<s,
(SCR) 018r0100001 = 01 By for all 7.

We note that composition of loops is written from right to left. Our relation (CR3)
is a slight modification of the relation (CR3) of [25], but it is equivalent to it via the
relation (CR2).

The first homology group H;(X) = H1(3;Z) is equipped with a symplectic
intersection form H;(X) x Hy(X) — Z, denoted by x.y, and the Heisenberg group
H = H(X) is defined to be the central extension of H;(X) determined by this inter-
section 2-cocycle. Concretely, it is the set-theoretic product Z x H;(X) with the
operation

(k,2)(,y) = (k+1+zy,x+y). ®)

Denote by ¢ : H — H;(X) the projection onto the second factor and by i : Z — H
the inclusion of the first factor; the central extension may then be written as:

0 — 7 —typy Y

Hy(Z) —— 0

Remark 6 The Heisenberg group H may be realised as a group of matrices, which
gives a faithful finite-dimensional representation, defined as follows:

g 1 k’-‘rQP'CI
(ki,ﬂ?:ZpiaH‘Qibi) — ( 0 )

i=1 0
where p = (p;) is a row vector and ¢ = (g¢;) is a column vector. This matrix form is
often given as the definition of the Heisenberg group; we therefore refer to this rep-
resentation of H as its tautological representation.

There is a general recipe for computing a presentation of an extension of two groups,
given presentations of these two groups and some information about the structure of
the extension (we will use the formulation of [5, Appendix B]; an alternative reference
is [27, Sect. 2.4.3]). In particular, for a central extension 1 - H - G - K — 1

ol s
—Q
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1998 C. Blanchet et al.

with H = (X|R) and K = (Y|S), we have G = (X UY|RU S UT), where S is
any collection of relations that are true in G and that project to the relations S in K
and where 7 is a collection of relations saying that the generators X are central in G.

Applying this to our setting, we obtain the following presentation of H, where we
write u = (1, 0) and where a1, ..., a4, b1, ..., by is a symplectic basis of Hy (X).

Proposition 7 The Heisenberg group H = H(X) admits a presentation with genera-
torsu, a; = (0, a;), b; = (0, b;) for 1 < i < g and relations:

all | pairs of generators commute, except:

{ alb = u2b;i i Qi for each . ©)
Proof We apply the above procedure to the presentations Z = (X|R) and
Hy (%) = (Y|S) where X = {u},Y = {ai,...,d,,b1,...,b,}, the relations R are
empty and the relations S say that all pairs of elements of ¥ commute. The relations
T say that u commutes with each of {a1, ..., a,, bi,..., I;g}, so to show that (9) is a
correct presentation of # it will suffice to show that the relations @; b; = u?b;a; and
dii)j = l;jdi for i # j are true in H, because we may then take S to be this collection
of relations, since it projects to S. To verify these, we compute that

(Nlii)j = (O,G,i + b]) = (O,bj + (li) = bidj
since a;.b; = 0 when ¢ # j, and
CNLJ)L = (1,&1‘ + bz) = (1, b; + Cli) = (2,0)(—1, b; + ai) = u21~)i&i,

since a;.b; = 1 and b;.a; = —1. O
It follows immediately from this presentation that:

Corollary 8 Foreach g > 1 and n > 2, there is a surjective homomorphism
¢: B, (X)) — H(D)
sending each o, to u and sending «; — a;, 5; — bi.

In the case n > 3, this quotient of the surface braid group has previously been
considered in [6, 8, 28], which also consider the more general setting where 3 is
closed or has several boundary components. The alternative approach in these arti-
cles allows one to identify the kernel of ¢ as a characteristic subgroup. We include

below a description of the kernel valid for all n > 2.

Proposition9 (a) For n > 2, the kernel of ¢ is the normal subgroup generated by the
commutators [0,z for v € B, (X).

(b) For n > 3, the kernel of ¢ is the subgroup of 3-commutators I's (B, (X)).
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For a proof of statement (b), we refer to [6, Theorem 2]. More precisely, statement
(10) on page 1416 of [6] is the analogous fact for the closed surface ¥: that there
is a surjective homomorphism B,,(2,) — H,/(u*"+971)) whose kernel is exactly

I'3(B,,(X,)). The proof given there works also in our case where the surface has one
boundary component and we do not quotient by <uQ("+g ~1). In this paper we will
use statement (a) and focus on the case n = 2 in our explicit computations.

Proof Let K,, C B,,(X) be the normal subgroup generated by the commutators [0y, ]
for z € B,,(X). The image ¢(o1) being central, we have K,, C ker(¢), hence we see
that ¢ may be factored through a surjective homomorphism ¢ : B, (X)/K, — H.If
we add centrality of oy to the defining relations for B,,(3), we may:

Replace (BR2) by ¢; = o for all i,

Remove (BR1), (CR1) and (CR2),

Replace (CR3) by commutators of all pairs of generators except for (., 5,),
Replace (SCR) with o3, = 02f,av,..

Finally the presentations of B,,(3)/K,, and H coincide and ¢ is an isomorphism,
which proves (a). O

In contrast to the case of n > 3, the kernel ker(¢) when n = 2 lies strictly between
the terms I'y and I's of the lower central series of By ().

Proposition 10 There are proper inclusions

I3(B2(X)) < ker(¢) — I'2(B2(X)).

Proof By the above proposition, ker(¢) is normally generated by commutators, so
it must lie inside I'z(B2(3)). On the other hand, the Heisenberg group H = H, is a
central extension of an abelian group, hence 2-nilpotent. The kernel of any homomor-
phism G — H with target a 2-nilpotent group contains I's(G), so ker(¢) contains
I's(B2(X)). To see that ker(¢) is not equal to I'y, it suffices to note that the Heisen-
berg group is not abelian. To see that ker(¢) is not equal to I's, we will construct a
quotient

Y :Ba(X) — Q

where Q is 2-nilpotent and [0, 1] & ker(4)). Given this for the moment, suppose for
a contradiction that ker(¢) = I's. Then we have [0, a1] € ker(¢) = I's C ker(v)),
due to the fact that Q is 2-nilpotent, which is a contradiction.

It therefore remains to show that there exists a quotient Q with the claimed proper-
ties. We will take Q = Dy = (r,7' | 72 = (7/)% = (77/)* = 1), the dihedral group
with 8 elements. Let us set ¥(c;) = ¥(5;) = 7/ and ¥(o1) = 7. It is easy to verify
from the presentations that this is a well-defined surjective homomorphism. The
dihedral group D, is 2-nilpotent (its centre is generated by (77')? and the quotient

@ Springer



2000 C. Blanchet et al.

by this element is isomorphic to the abelian group (Z/2)?), and we compute that
Y([o1,a1]) = (77)? # 1, which completes the proof. O

3 Heisenberg homology

Using the homomorphism ¢, any left representation ¥ of the Heisenberg group H
over a ring R becomes a left module over R[B,,(2)]. If V also has a right module
structure over another ring S, i.e. if it is a left representation of H in (R, S)-bimodules,
then it becomes an (R[B,,(2)], .S)-bimodule. Following for example [29, Ch. 3.H]
or [30, Ch. 5] we then have homology groups with local coefficients H.(C,,(X); V),

which are again (R, S)-bimodules. Let C,,(X) be the regular covering of C,, () asso-
ciated with the kernel of ¢. When V is the regular representation R[?#], the homol-

ogy H.(C,(X); R[H]) is the homology of the singular chain complex S.(C, (X))
considered as a right R[#]-module by deck transformations. In general, given any V
as above, the (R, S)-bimodule H,(C,(X); V) is the homology of the chain complex

S.(Cn(%)) @rpyy V-

Relative homology with local coefficients is defined in the usual way. We also use
Borel-Moore homology, defined by

HIM (Cu(®)5V) = lim Ho(Cu(B),Ca(H)\ T3 V), (10)

where the inverse limit is taken over all compact subsets
T C C,(X). In general, writing K(X) for the poset of compact subsets of a space
X, the Borel-Moore homology module HZM (X, A; V) is the limit of the functor
H,(X,AU(X\ -);V): K(X)°? —r Modg for any local system ¥ on X and any
properly embedded subspace A C X.

All of the properties concerning Borel-Moore homology that will be used here
may be checked by elementary arguments. The interested reader will also find a gen-
eral exposition based on cosheaves in [31, Chapter 5], which includes the case of
local coefficients. One could also work with locally finite singular homology. From
[32, Theorem 7.3] this gives homology groups isomorphic to the inverse limit (10)
provided that there exists an exhausting sequence of compact subsets 7" for which
the lim! contribution vanishes. This is satisfied in our case. Indeed, the configuration
space C,, (X) is the complement of the big diagonal in the symmetric power Sym” (3).
By removing an open tubular neighbourhood of the big diagonal in Sym™ (%) we
obtain a manifold with boundary that is a compactification of C,, (X). This shows that
the limit process is stationary with limit the homology of the compactification rela-
tive to its boundary.

Borel-Moore homology is functorial with respect to proper maps: If f : ¥ — X
is a proper map taking B CY into A C X, then there is an induced func-
tor f~1:K(X)— K(Y) by taking pre-images, and a natural transformation
Ho(Y,BU(Y \ =) f*(V) o £} = Ho(X, AU(X\ —);V) (where f*(V)
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denotes the pullback of the local system ¥ on X to Y) arising from the naturality of
singular homology. Taking limits, these induce maps

HPM(Y,B; f*(V)) = im H,(Y,BU (Y \ —); f*(V))
— lim (H, (Y, BU (Y \ =); f*(V)) o f71)
— lim H, (X, AU (X \ —); V) = HEM(X, A, V).

In particular, homeomorphisms are proper maps, so self-homeomorphisms of a space
act on its Borel-Moore homology.

We will adapt a method used by Bigelow in the genus-zero case [33] (see also [7,
34, 35]) for computing the relative Borel-Moore homology

H*BM(Cn(E)vcn(Ev 07 (8));V) = @(Cn(z)a Crn(2,07 (X)) U(Ch(B)\T); V),
T

where C,, (2,07 (X)) is the closed (thus properly embedded) subspace of configura-
tions containing at least one point in a fixed closed interval 9~ (X) C 9%. In general
for a pair (X, Y) the notation C,,(X,Y") will be used for configurations of n points in
X containing at least one point in Y.

The surface X can be represented as a thickened interval [0, 1] x I with 2g handles,
whose cores are attached along {1} x {w1, w2, wi, wy, ..., way—1,Wag, Wy, 1, Ws,}
as depicted in Fig. 2. We view X as a relative cobordism from 0~ (X) = {0} x I (in
blue below) to 7 (%) (in green below), where 7 () is the closure of the comple-
ment of 0~ (X)) in 9(X). For 1 < i < 2g, we denote by ; the union of the core of the
ith handle with [0, 1] x {w;,w}}, oriented from w; to w}, and we set I = IT;~y; (in
red in Fig. 2).

Let KC be the set of sequences k = (k1, ko, . .., kog) such that k; is a non-negative
integer and ), k; = n. We will associate to each k& € K an element of the relative
Borel-Moore homology HBM (C,,(%),C, (3,07 (X)); V), as follows.

For k € K we consider the submanifold Ej C C, (%) consisting of all configu-
rations having k; points on ~y;. This manifold inherits an orientation from the ori-
entations of the arcs ~y; together with the ordering of the points on I' defined by
declaring that x < y for © € 7;, y € ~y; if either ¢ < j or ¢ = j and x comes before
y according to the orientation of ~;. Moreover, it is a properly embedded Euclid-
ean half-space R’ in C,(X) with boundary in C, (3,07 (X)). After choosing a

o+ (%)

71 72
wq wa wj wh (%)

Fig.2 The surface X together with the decomposition of its boundary into 91 () and 0~ (%)
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path connecting it to the basepoint in C, (%), Ej represents a homology class in
HBEM(C,(%),C. (2,07 (X)); V), which we also denote by E.

Theorem 11 (Theorem A(a)) Let V be any left representation of the discrete Heisen-
berg group H in (R, S)-bimodules, for two rings R, S. Then, for n > 2, there is an
isomorphism of (R, S)-bimodules

HEM (Co(2),Ca(2.07(£)): V) = @V (11)

ke

Furthermore, this is the only non-zero bimodule in the graded bimodule
HEM(C,(5),Cn(X,07(X)); V). In particular, in the case when (R, S) = (Z, Z[H])
and V = Z[H], the graded right Z[H]-module HZM (C,,(X),Cn(X,07(X)); Z[H])
is concentrated in degree n and free of dimension ( 294n=1 ) with basis { B } kexc. The
corresponding statements are also true if Borel-Moore homology H is replaced
by compactly-supported cohomology H} and V is a right representation of # in
(R, S)-bimodules.

Remark 12 Theorem 11 is true (with the same proof) more generally for Borel-Moore
homology (or compactly-supported cohomology) with coefficients in any represen-
tation ¥ of the surface braid group B, (X) = m1(C, (X)), not necessarily factoring
through the quotient B,,(3) — H. However, we will only need Theorem 11 for rep-
resentations of the Heisenberg group.

The isomorphism (11) of Theorem 11 is natural in ¥ in the following sense.

Proposition 13 The decomposition (11) is natural in the following sense: for any
morphism & : V. — V' of left representations of H over a pair of rings (R, S), the
induced map on homology

HM(Cu(2),Ca(2,07(2)); V) — HZM(Cu(2),Ca( 2,07 (2)); V'),
under the identifications (11), is equal to @, £. Thus we have an isomorphism
HM(Co(2),Ca(2,07(2));—) = (—)%F

of functors z(Mods —r Modg for any pair of rings (R, ).

In order to prove Theorem 11 (and Proposition 13), we need a preliminary lemma.
To state it, we recall that a deformationretraction i : [0,1] x ¥ — ZfromXtoY C ¥
is a continuous map (¢,x) — h(t,z) = hy(z) such that hg = Ids, h1(2) =Y and
(h¢)|, = Idy forall 0 <t < 1.

Lemma 14 There exists a metric d on X, inducing the standard topology, and a

deformation retraction h from X to I' U 0~ (X)), such that for all 0 < t < 1, the map
hy : X — X is a I-Lipschitz embedding.
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Proof We have a model for (X,T") by gluing 2g bands b; = [—1,1] x [, 1],
1< j <2gand4g + 1squaresc, = [0,1] x [0,1],0 < j < 4gaccording to the iden-
tifications depicted in Fig. 3. We obtain a deformation retraction 4 which is defined
on each band by the formula h(u,v) = ((1 —t)u,v) and on each square by
hi(u,v) = (u, (1 — t)v). It remains to show that for an appropriate metric d the map
h:, 0 <t < 1,isa I-Lipschitz embedding. On each band and square we use the stan-
dard Euclidean metric. Then for points z, y € ¥, the distance d(x, y) is defined as the
shortest length of a path from x to y. It is convenient to assume that / is big enough so
that no shortest path can go across a handle. Then d is a metric which is flat outside 4g
boundary points where the curvature is concentrated. We have that h;, for0 <t < 1,
is a 1-Lipshitz embedding in each band or square, from which we deduce that h;, for
0 <t < 1,is globally a 1-Lipschitz embedding. O

Proof of Theorem 11 We use a metric d and a deformation retraction % from
Lemma 14. Fore > 0and Y C 3 we denote by Cf, (V") the subspace of configurations
x ={z1,22,...,2,} CY such that d(x;,z;) < e for some i # j. For 0 <¢ < 1,
let us write ; = h¢(X). Also, in order to shorten the notation in this proof, we will
abbreviate C5~ (Z¢) := Cr (24,0~ (X)) U CE(2:) (in particular when ¢ = 0, in which
case X; = ).

For 0 < ¢t < 1 we have an inclusion

(Ca(Z0),C7(2¢) C (Ca(Z),C7 (D)), (12)

which is a homotopy equivalence with homotopy inverse C,, (h:), which is a map of
pairs because h; is 1-Lipschitz. This implies that we also have a homotopy equiva-

lence of pairs of covering spaces, as follows. Let us write 7 : 5n(2) — Cp (%) for

the universal covering of C,,(X) and denote by X =71 (X)) the corresponding lift
of each subspace X C C,(X).! By taking (homotopy) pullbacks along the covering
maps, the homotopy equivalence (12) induces a homotopy equivalence

(Ca(®0.Cm (=) € (Cul®).Cm (), (13)

NN NN

4I:IF B i I 'II:II' 0 *II:II*

(&1 C2 C3 Cq Cs Cg C7

Fig.3 A model for &

!'Note that this is not necessarily the universal covering of X.
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and therefore a chain homotopy equivalence of the corresponding relative chain
complexes

S. (cﬁl(zt),cg (zt)) ~ S, (@(2),5;’*(2)). (14)

The compactness of X ensures that hy is the uniform limit of h; as ¢ — 1, which
implies that for each € > 0 we may choose ¢ = ¢, < 1 such that for all p € X we have
d(hi(p), h1(p)) < 5. For such ¢, let A; C C,,(¥;) be the subset of configurations
x={x1,...,2,} C X4 such that (hy o h; *)(2;) = (hy o hy ) (x;) for some i # j.
We have that A, is closed and (by our definition of ¢ = ¢.) contained in the open sub-
set CE(X;) C C,,(X;) and hence in the interior of the subset C5~ (X;) C C,,(XZ¢). The
excision theorem therefore implies that the inclusion of pairs

(Ca(Z0) \ A, C5(E0) \ Ar) C (Ca(S0),C5 (Z)) (15)

induces isomorphisms on homology with any twisted coefficients pulled back from
Cn(24). (We recall from [30, Theorem 5.13] that the excision theorem for homology
with twisted coefficients may be formulated in exactly the same way as for untwisted
coefficients.) In fact, the proof of the excision theorem shows that this isomorphism
is a consequence of a stronger property: the inclusion of pairs (15) induces a chain
homotopy equivalence of relative chain complexes of pairs of covering spaces pulled
back from any covering space of C,, (X¢). (Cf. [29, Proposition 2.21]; see also [36] for
a slightly different formulation of the excision theorem in terms of homotopy equiva-
lences of chain complexes.) In particular, taking this covering space to be 5n(2t), we
have a chain homotopy equivalence:

8. ((Ca(B)\ A)™, (€~ () \ A)Y) = 8. (Cu(®0.Cm(20) . (16)

where we have written (—)~ = (—) on the left-hand side for typographical reasons.
The map C,,(h1) o C,(h; ') gives a well-defined map of pairs

(Ca(Z)\ A, Crm (B0) \ Ar) — (Ca(Z1),C7 (21))
which is a homotopy inverse to the inclusion. Taking (homotopy) pullbacks along

covering maps and passing to relative chain complexes, it follows that the inclusion
induces a chain homotopy equivalence:

8. (Cal(21).C77(21) = 8. ((Ca(S)\ 4™ (€27 (E)\ 4)7) . (17)

Combining the chain homotopy equivalences (14), (16) and (17), we deduce that the
inclusion of pairs (C,(21),C5(21)) C (Cr(2),C5~ (X)) induces a chain homo-
topy equivalence
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S. (cn(zl),ég—@l)) ~ 8. (cn(z),cg—@)) . (18)

At the level of relative chain complexes, we have therefore “compressed” configura-
tions on the surface ¥ to configurations on the subspace 1 = hy(X); recall that this
is equal to ' U 9~ (X). The next step is to compress further to configurations on T". In
the following, we will use the abbreviation C&~ (T") := C,(I', W~) UCE(T"), where
W~ is defined by

W~ = {0} x {wy, wa, w},ws, ... ’ng—17w2g7w/2g—17w/2g} co (%)

in other words it is the finite set consisting of the 4g endpoints of the arcs 71, . .. , Y24
in Fig. 2 (recall that I is the disjoint union of these arcs).

Let U. C 07 (X) be the open subset given by - € U < d(z, W ™) < § and define
B, C C,(21) to be the subspace of configurations x = {z1,...,z,} C X; such that
eitherz; € 0 (X) \ U forsomeiorthereareindices ¢ # j suchthatz; and z; lieinthe
same component of U.. It is straightforward to see that B, is closed in C,, (2 ). More-
over, B is also contained in the interior of C& ™ (X1) = C, (21,07 (X)) UCL(X4)
because, for any configuration x = {z1,...,2,} € B, and any other configuration
y={y1,...,yn} in a sufficiently small neighbourhood of x in C,,(¥1):

o If ;€0 (X)\U. for some i, then y; €9~ (X) and so we have
Yy €Cn(E1,07(2));

e Ifz; and x; lie in the same component of U, for some i # 7, then d(y;,y;) < €
and so we have y € C5(%1).

Hence we may apply excision (in its formulation with relative chain complexes of
pairs of covering spaces) to deduce that the inclusion induces a chain homotopy
equivalence:

8. ((Ca(20) \ B, (€ (B \ B)™) = 8. (CulE0).Com(20) . (19)

Next, since configurations in C,,(21) \ B. are contained in I' U U, and no compo-
nent of U, contains more than one configuration point, we may deformation retract
Cn(21) \ Be onto C,, (T") by contracting each (interval) component of U to its mid-
point. The deformation retraction I' U U, ~ I is through 1-Lipschitz maps and sends
U. into itself, so the induced deformation retraction C,,(X1) \ Be =~ C,,(T") preserves
the subspace C~ (X1). Thus it provides a homotopy inverse for the inclusion of pairs

(Ca(D), €™ (D)) € (Ca(S1)\ Be,C™ (21) \ Be) (20)
where we note that C5— (') = C,,(I') N C5~ (X£1). Taking (homotopy) pullbacks

along covering maps and passing to relative chain complexes, (20) therefore induces
a chain homotopy equivalence:
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8 (Cu(D), €5 (1) = 8. ((€a(P)\ BY™, (€5 (B)\ B)™). @)

Combining the chain homotopy equivalences (18), (19) and (21), we have shown that
the inclusion of pairs (C,,(T"),CS(T")) C (Cn(X),C5™ (X)) induces a chain homo-
topy equivalence

S. (@(r),égf(r)) ~ S, (@(z),ég*(z)) , 22)

in other words we have (at the level of relative chain complexes) “compressed” con-
figurations on the surface X to configurations on the disjoint union of arcs I'.

The fundamental chain homotopy equivalence (22) immediately implies isomor-
phisms both for twisted relative Borel-Moore homology and for twisted relative
compactly-supported cohomology. First, we may tensor (22) over R[m(C,(X))]
with 7 and take homology to obtain an isomorphism of twisted relative homology
groups for each € > 0; then taking the inverse limit as 0 < ¢, we obtain an isomor-
phism of twisted relative Borel-Moore homology:

HPM(C,(I),Co(T, W) V) = HPM(C,(2),Cn(5,07(2); V). (23)

Here we are using the fact that, if Y C X is closed, then Cf,(Y') is a cofinal family of
co-compact subsets of C,,(Y"), which implies that for a pair (¥, Z) of closed subspaces
of X, we have

HZM(Co(Y),CalY, 2):V) = lim H(Co(Y),Ca(Y. Z)UCL(Y): V). (24)

(As a notational point, we note that we simply write V for the restriction to subspaces
of C,,(2) of the local system ¥, which is defined a priori on C,(%).)

Alternatively, if V'is a right (rather than left) representation of  in (R, S)-bimod-
ules, we may apply the operation Homgr, ¢, ())1(—, V') to (22) and take homology
to obtain an isomorphism of twisted relative cohomology groups for each ¢ > 0;
then taking the direct limit as ¢ — 0, we obtain an isomorphism of twisted relative
compactly-supported cohomology:

H(Co(D),Cu (D, W) V) = HE(Co(%),Cn(3,07(X)); V). (25)

In each case, to justify taking the limit, we need to know that (22) is is a chain
homotopy equivalence of inverse systems as € >0 varies. However, this is
clear since it is induced by the inclusion of (pairs of) configuration spaces
(Cal), €5 (1)) € (Ca(E), C5 ().

Finally, to complete the proof of the theorem, we need to calculate the left-hand
sides of (23) and (25). We will do this in the first case (for Borel-Moore homology);
the calculation in the second case (for compactly-supported cohomology) is exactly
dual.
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We first observe that C,,(T') is a disjoint union indexed by K, where each con-
nected component Ey, (k € K) is a product of configuration spaces on the intervals
7;. Configurations of at least two points in an interval form a simplex where the diag-
onal part of the boundary has been removed and the remaining boundary is the union
of two faces. Hence, for each k& € IC, the product E}, is a topological ball where part
of the boundary has been removed. The disjoint union of the topological boundaries
OFy, is precisely the subspace C,,(I', W) C C,(T).

For € >0, let us consider the subspace Cf (') = e Ef of configurations
where two points are e-close. For sufficiently small e > 0, the pair (Ey, Ef U 0E})
is homotopy equivalent to the pair (D™, dD™). Using that the complements
Cn(T') \ C5(T") form a family of compact subspaces cofinal to all compact subspaces
in C,,(T'), we deduce the computation of Borel-Moore homology: For each k we
have HPM(Ey,,0E; V) = HBM(Ey,0Ey; V) = V. Here we use the restriction
of the local system V' to Ej, which is constant (i.e. trivialisable). We obtain that
the Borel-Moore homology (23) is trivial when * # n and that each Borel-Moore
homology class Ej generates a direct summand isomorphic to the coefficients ¥ in
degree x = n. In particular, when V is the regular representation Z[#], these classes
form a basis over Z[H] for the degree-n Borel-Moore homology. O

Remark 15 If one is just interested in the version of Theorem 11 for Borel-Moore
homology (and not compactly-supported cohomology), then one could work directly
with isomorphisms of twisted relative homology groups at each stage, rather than
chain homotopy equivalences of relative chain complexes of pairs of covering
spaces. The unified proof that we give above has the advantage that it simultaneously
provides explicit bases both for twisted relative Borel-Moore homology and twisted
relative compactly-supported cohomology, from which one may easily deduce a per-
fect pairing between the two; this is discussed further in Sect. 5.5.

We note that one could also deduce both results (for Borel-Moore homology and
for compactly-supported cohomology) from the result for Borel-Moore homology
in a specific case (i.e. with a specific choice of V); this is explained in Appendix B.

Proof of Proposition 13 The statement of Theorem 11 in the case S =V = R[H]
implies that H2M (C,,(2),C,. (2,07 (X)); R[H]) is free in each degree as a right R[H]
-module. The universal coefficient theorem? provides (R, S)-module isomorphisms

HPM(Co(8),Ca(8,07(2));V) 2 HyM(Ca(E), Ca(E,07(X)); RIH]) @rpg V(26)

for any (R[H], S)-bimodule V. Moreover, both sides are functorial in ¥ and (26) is
a natural isomorphism between these functors, i.e. the map on homology induced
by £ : V — V', under the identification (26), is of the form Id ® £. The left-hand
identity component of Id ® £ decomposes into a direct sum over k € K of copies of
Id gz under the decomposition (11) of Theorem 11 in the case S = V' = R[H]. (We
note that this is not circular, because here we are only using the tautological fact that

2 Compare the proof of Lemma 53 in Appendix B.
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the identity decomposes as a direct sum of identities.) Since ® distributes (naturally)
over &, we deduce that the map on homology induced by £ : V' — V’, under the
decomposition (11) of Theorem 11, is the direct sum over k € K of copies of . [

4 Action of mapping classes

The mapping class group of ¥, denoted by 9i(X), is the group of orientation-
preserving diffeomorphisms of ¥ fixing the boundary pointwise, modulo iso-
topies relative to the boundary. The isotopy class of a diffeomorphism f is
denoted by [f]. An oriented self-diffeomorphism fixing the boundary pointwise
f:X— X gives us a homeomorphism C,(f):Cpn(X) — C(X), defined by
{z1,29,...; 2} = {f(x1), f(x2),..., f(z,)}. If we ensure that the basepoint
configuration of C,,(X) is contained in 9%, then it is fixed by C,,(f) and this in turn
induces a homomorphism fg,(5y = 71(Cr(f)) : B, (X) — B, (¥), which depends
only on the isotopy class [f] of f.

4.1 Action on the Heisenberg group
We first study the induced action on the Heisenberg group quotient.

Proposition 16 There exists a unique homomorphism fy, : H — H such that the fol-
lowing square commutes:

B, () —2 B, (%)
% ld, 27)
fr

H———— H
Thus, there is an action of 9(X") on the Heisenberg group H given by

U: fe fr M) — Aut(H). (28)

Proof Since ¢ is surjective, the homomorphism fz will be uniquely determined by
the formula f3(4(7)) = o(fs, (x) (7)) if it exists. To show that it exists, we need to
show that the composition ¢ o fg (s factors through ¢, which is equivalent to say-
ing that f (s sends ker(¢) into itself.

Recall that the classical generator o is represented by a loop of configurations on
a disc D C X containing the base configuration. Let 7' C ¥ be a tubular neighbour-
hood of 9% containing D. Since ffixes 03 pointwise, we may isotope f'so that it is the
identity on 7, in particular on D, which implies that f (s fixes 1. We then deduce
from part (a) of Proposition 9 that fg (s sends ker(¢) to itself, which completes the
proof. O
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4.2 Structure of automorphisms of the Heisenberg group

Recall that the centre of the Heisenberg group 7 is infinite cyclic, generated by the
element u. Any automorphism of H must therefore send u to u*!.

Definition 17 We denote the index-2 subgroup of those automorphisms of H that fix
u by Aut™ (#), and call these orientation-preserving.

From the proof of Proposition 16, we observe that, for any f € 9(X), the automor-
phism f3 is orientation-preserving in the sense of Definition 17. We may therefore
refine the action ¥ as follows:

U fis f: MB) — Autt (H). (29)

The quotient of H by its centre may be canonically identified with H = H; (%), so
every automorphism of 4 induces an automorphism of H. Moreover, if it is orientation-
preserving, then the induced automorphism of H preserves the symplectic form. on H:
to see this, apply the automorphism to the equation (0,x)(0,4)(0, —x) = (2z.y,y)
in H. Thus we have a homomorphism £ : Aut*(H) — Sp(H) denoted by ¢ — .

Lemma 18 There exists a split short exact sequence

1 —— HY(S7Z) —2 AwtT(H) —£ Sp(H) —— 1

where j(¢) = [(k, z) — (k + c(z), z)].

Proof We observe that for an automorphism ¢ € Aut™(#) we have
p(k,z) = (k+ c(z),p(x)).Byapplyingpto (k, z)(l,y) = (k + 1+ z.y,z + y)),we
deduce that ¢ is a homomorphism. We thus have ¢ € Hom(H, (3;Z),Z) = HY(Z; Z).
We see that j : H'(3;Z) — Aut™ (#) is a group homomorphism whose image is
in ker(£). We next identify the kernel of £: an automorphism ¢ € ker(L) takes
the form ¢(k,z) = (k + c¢(x),x) where ¢ € H'(X;Z) and ¢ = j(c). This proves
exactness in the middle of the sequence above. Injectivity of j and surjectivity of
L may also be checked easily. Finally, a splitting of £ is given by the assignment

g = g = [(k,2) = (K, g(2))]. O

As corollary, we obtain that Aut™ (%) is the affine symplectic group. The split-
ting gives a decomposition as Sp(H) x H!(3;Z), where the semi-direct product
structure on the right-hand side is induced by the natural action of Sp(H). Corre-
sponding to the splitting given in the proof, there is a function (which is not a group
homomorphism) Autt(H) — H(X;Z) = Hom(H,Z) defined by ¢  ¢°, where
©(0,2) = (p°(z), L(x)). We formulate the result below.
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Corollary 19 The homomorphism L : Autt(H) — Sp(H) and  function
(=) : Aut™ (H) — H* induce an isomorphism

Aut®™(H) = Sp(H) x HY(S;Z), ¢ (,¢°), (30)

where the semi-direct product structure on the right-hand side is induced by the natu-
ral action of Sp(H) on H (X; 7).

Remark 20 Fixing a symplectic basis of H, the right-hand side of (30) is a subgroup
of GLa,(Z) x Z?9, which may be embedded into GLag1(Z). In this way, any ori-
entation-preserving action of a group G on H may be viewed as a linear representa-
tion of G over Z of rank 2¢g + 1.

The general form of an oriented automorphism ¢ is therefore
ok, x) = (k+ ¢°(), (x))

where ©® € H* and p € Sp(H) is the induced symplectic automorphism. From the
proof of Proposition 16 we observe that, for any f € 9t(X), the automorphism fz
is orientation-preserving in the sense of Definition 17. Hence for a mapping class
f € M(X), the map fy is represented as follows:

Jr: (k) = (k465 (2), fu()), €Y

where 6y = (f»)° € H'(Z;Z).
4.3 Recovering Morita’s crossed homomorphism
In [37], Morita introduced a crossed homomorphism d : M(X) — HY(X), f — 05
representing a generator for H!(9M(X); H' (X)) = Z. We will recover this crossed
homomorphism from the action f +— f3 on the Heisenberg group.

Recall that, for a given action of a group G on an abelian group K, a crossed homo-
morphism 0 : G — K is a function with the property that 6(gog1) = 0(g1) + 916(g2)
forall g1,92 € G.

Remark 21 Crossed homomorphisms G — K are in one-to-one correspondence with
lifts

where the diagonal arrow is the given action of Gon K.
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Proposition 22 The map 6 : M(X) — H'(X), f + &, is a crossed homomorphism
equal to Morita'’s crossed homomorphism 0.

Proof We first show that ¢ is a crossed homomorphism. Let f, g be mapping classes;
then we have, for (k,z) € H,

(g0 flu(k,x) = gu(k + 67 (2), f+(2)) = (k+ 07 (x) 4 b4 (f(2)), (g © )«(2))

and so we obtain dgo f(z) = 07 () + f*(d4)(x), as required.

Recall that we use the same notation for the (free) generators «;, 5;, 1 < ¢ < g, for
71(X) and the corresponding 71 generators of the braid group B,, (). Fory € 1 (%),
let us denote by -; the element in the free group generated by «;, 5; that is the image
of ~ under the homomorphism that maps the other generators to 1. Then we have a
decomposition

. V1M1 Vm QHm
vi =t it el

where v and 1; are 0, —1 or 1. The integer d;(7) is then defined’® by

LOEDITDNTED D INT
J;l mk:j J=1  k=j+1 (32)
=D D v
j=1 k=1

where ¢, = +1when j < kand ¢;; = —1 when j > k. The definition for the Morita
crossed homomorphism is as follows:

Of(v) = Z di(m1(£)(7)) = ds(v) (33)

For v € m1(X), consider the pure braid obtained by adding n — 1 trivial strands to ,
which we also denote by . The above decomposition of - used for the definition of
d; is also a decomposition in the generators of the braid group, and from the defini-
tion of the product in H we have that

$(7) = (Z di('V)J'Y]) e A
=1

3There is a small misprint in [37].
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This formula may be checked by recursion on the length of v as a word in the free
generators of 71(X). It can also be deduced from [37, Lemma 6.1]. The equality
0y = d; follows. O

5 Constructing the representations

In this section we construct (Sect. 4.1) the twisted representation of Theorem A, as
well as (Sect. 4.2) the untwisted representation of Theorem B associated to the lin-
earised translation action of #.

5.1 Atwisted representation of the mapping class group

The quotient homomorphism ¢ : B,,(3) — H (Corollary 8) corresponds to a regular

covering C,, () — Cn (). Let f € 9M(X) and write f3 for its action on the Heisen-
berg group H and C,,(f) for its action on the configuration space C,,(X). From Propo-
sition 16 we know that 1 (C,(f)) = fg,(n) preserves ker(¢), which implies that
there exists a unique lift of C,,(f) fixing the basepoint:

Co(f) : Cn() = C(2) (34)

Following a classical construction in covering spaces [29], a model for 571(2) is
given by equivalence classes [0] of paths ¢ starting at the base configuration in C,,(X),
with [y] = [0] if and only if ¢(70) = (0,0), where 7 denotes the inverse path. In
this model we have C,,(f)([6]) = [C(f) o 6] and the deck action of h = ¢([1]) is
[0] - h = [§~]. Then we get

We have therefore proven the formula

ColF) (@ ) = Calf)(@) - fru(h) (35)

forany x € Cn (X) and h € H. It follows that the induced action on the singular chain

complex S,(C, (X)) is twisted R[#]-linear, which may be formulated as an R[H]

-linear isomorphism

S, (é}( f)) .S, (c}(z))ml S, (5,42))
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Here the subscript on the domain means that the right action of H is twisted by fﬁl.
The result for R[#{]-local homology is an R[#{]-linear isomorphism

Cr(f)s s HM (Cu(2),Ca(3,07(8)); RIH]) ;1 = HIM (Ca(), Ca(%,07%)); R[H]) (36)

More generally, if V' is a left representation of the Heisenberg group in (R, S)-bimod-
ules, then we obtain an (R, S)-linear isomorphism

Ca(f)s s HPM (Co(),Ca(%,07%)); V) — HIZY (Ca(2), Ca(%,07(2)); V) (37)

where the left-hand homology group is obtained from the chain complex

(8* @),

H

) @rp V = S« (5”(2)) @rm (1 V) (38)

Here, “obtained from” means that we consider the quotients of this chain complex

given by the relative singular complexes for all subspaces of C~n(2) of the form
7 HCn (2,07 (X)) U (Cu(B) \T)) for compact subsets T C C,(X), where 7

denotes the covering map C,(X) — C,(X); we then take the homology of each of
these quotients and take the inverse limit of this diagram.

Another way of describing this construction, and of keeping track of the twisting
on each side, is to write the lifted action (34) of fas an H-equivariant map

Cn(D)H°? — C (D)2, (39)

where the superscript indicates the quotient 71 (C, (X)) = B,,(X) — H determin-
ing the covering space as a space equipped with a right H-action. Applying relative
twisted Borel-Moore homology to (39), considered as a map of regular covering
spaces, we obtain (36) with R[H]-local coefficients and (37) with V-local coefficients.

We may easily generalise this discussion by twisting both sides by an element
7 € Aut(H). The action C,,(f) : Cn(X) — C,(X) lifts to a map of regular covering
spaces

Cn(z)mfﬂw — 5n(2)70¢ (40)

and, applying relative twisted Borel-Moore homology, we obtain an R[H]-linear
isomorphism

HEM(Cn(Z)»Cn(Evai(E))? R[/H])fglor—l — HEM(Cn(E)vcn(Z767(E))§R[H})r*1(41)

with R[H]-local coefficients and an (R, S)-linear isomorphism
HPM(Co(2),Ca(2,07(2)); roplV) — HPM (Ca(E),Ca(E,07 (X)) V) (42)

with V-local coefficients.
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These isomorphisms together form a twisted representation of the mapping
class group (). To formulate precisely the meaning of this statement, we con-
sider mapping classes as morphisms in a groupoid whose objects are elements of
Aut™(H). In standard terminology, this is called the action groupoid for the left
action M(X) — Aut™(H), which we denote by M(X)\Aut'(H). Morphisms
o — 7 are the mapping classes f such that 7o f = 0.* The above discussion
proves the following, which is a functorial formulation of the twisted representation
announced in Theorem A.

Theorem 23 (Theorem A(b)) Associated to any left representation V of H in (R, S)-
bimodules, there is a functor

M(Z)\Aut (H) — r Mods 43)
where each object 7 : H — H is sent to the (R, S)-bimodule

and the morphism f : 7 o fp; — 7 is sent to the (R, S)-linear isomorphism (42).

As a corollary of this theorem, with " equal to the tautological representation (see
Remark 6), we obtain a twisted finite-dimensional representation of the mapping
class group.

5.2 The linearised translation action

The underlying set of the Heisenberg group H is Z x Hy(X;7Z) = Z2971, which we
may endow with its usual affine structure (a simply transitive action of the abelian group
729%1) Thefirstkey observationisthatleftmultiplicationin 7 preservesthisaffinestruc-
ture, in other words, forany hg = (ko, zg) € H,thelefttranslationactionly, : H — H
is an affine automorphism. Indeed I(x, o,)(k,7) = (ko + &k + x0.7, 20 + 7). Left
multiplication therefore gives us an affine action

H — AfF(Z29T). (44)

Recall that an affine space over a ring R consists of an R-module M and a set 4 equipped
with a simply transitive action of (M, +), the underlying additive group of M. By a
usual abuse of notation in affine geometry, we denote this (simply transitive) action
of (M, +) on 4 also by ‘+’. An affine automorphism of A is a bijection f : A — A
such that f(a +m) = f(a) + @(m) for all a € A and m € M and some (neces-
sarily unique) R-linear automorphism ¢ € Autr(M). After choosing an element

*In general, for a group homomorphism 6 : G — H, the groupoid G\ H has object set H and the mor-
phisms h — h/ are elements g € G such that h’6(g) = h, with composition given by the group opera-
tion of G. The notation comes from the fact that the connected components 7o(G\ H) are given by
the left cosets (G) \ H. The terminology action groupoid comes from the special case of a left action
0 : G — Aut(X) on an object X. There is also a dual notion of a (right) action groupoid H /G associ-
ated to an anti-homomorphism 6 : G -+ H, for example a right action 6 : G - Aut(X) on an object X.
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ag € A the affine space 4 embeds as M x {1} C M & Rviaag + m — (m, 1), and
any affine automorphism extends uniquely to an R-linear automorphism of M & R,

which is given by
¥ Yo
(%)

where vg € Hompg (R, M) = M is the unique element such that f(ag) = ag + vo.
This gives an injective group homomorphism, depending on ag € A:

AfF(A) — Autp(M & R),

where Aff(A) denotes the group of affine automorphisms of 4. Applying this
to the affine space A = Z291! over Z with ag = 0, we obtain an injective group
homomorphism

AfF(Z297Y) — GLay+2(Z) (45)

given by the above formula with vy = f(0). The Z-linear automorphism ¢ underly-
ing the affine automorphism f = l(3, .,), given by the left translation action on #,
is p(k,z) = (k + 0.z, 7). We also have vg = f(0) = l(1,24)(0) = (Ko, z0) in this
case. The linearised action

pr = (45) 0 (44) : H — GLog42(Z) (46)

on L = H @® Z = 729+2 is therefore given by the formula

1 To.— k‘o
(ko,z0) — [ O I x|, (47)
0 o0 1

in other words py, (ko, o) acts by (k,x,t) — (k',a’,t’), where

¥ =x+txg

K=k+tky+zo.x
t' =t

The nice feature of this representation is that the twisted representation L is canoni-
cally isomorphic to L, for any 7 € Aut™ (#).

Lemma 24 For any T € Aut™ (H), the linear map 7 ©1dz : L — L gives an iso-
morphism of Z|H]-modules.

Proof We first observe that any orientation-preserving automorphism of H preserves

the structure of H = Z29%! as a free Z-module (see Corollary 19 and Remark 20).
We therefore have a tautological homomorphism
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Aut+(’H) — GL2g+1(Z)

given by sending 7 to 7 via the identification of the underlying set of H with Z29+1,
Composing this with the inclusion GLag+1(Z) C GLog12(Z) given by — & Idz, we
obtain a Z-linear automorphism 7 & Idyz : L — L. Notice that this inclusion is the
linearisation homomorphism (45) restricted to GLog11(Z) C Aff(Z?9T1).

We next check that 7 intertwines the affine action /5, and the twisted affine action
l+(hg), for any ho € H. For any other h € H, we have

Lr(ho)(h) = 7(ho)h
7(hot =" (h)) = 7 (Ino (771 (h))) ,

so we have the identity

lr(ho) =To0lp, 0 1

in Aff(Z29+1). After linearisation, we obtain the formula
pr(7(ho)) = (r @ 1dz) o pr(ho) o (T & 1dz), (48)

which is precisely the statement that 7 & Idy intertwines the linear action pr, (ho) and
its twist pr, (7(ho)) by 7. O

Remark 25 Alternatively, we may check formula (48) in coordinates. By Corollary 19
and Remark 20 we may identify Aut™ (#) with the subgroup

1 HY

Sp(H) x HY = (0 Sp(H)

) CGL(Z® H),

where HY denotes Hom(H,Z). Each element 7 of Aut™(#) is then of
the form (é UM) for M € Sp(H) and v € H. Each hg = (ko,xz0) € H

acts on L=H®Z=(Z®H)®Z by the block matrix (47). We have
7(ko, xo) = (ko + v.xo, Mxg), which acts by the block matrix

1 Majo.— k0+v.l‘o
0 1 Mz .
0 0 1

The intertwining formula (48) then corresponds to the calculation:
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1 Mxy.— k+v.xg 1 v.— 0
pr(t(ho))o (r®Idz) = |0 I Mg 0 M 0
0

0 1 0 0 1
1 (v4z0).— ko+vao
=10 M MCL‘O
0 0 1
1

v.— 0 1 To.— k‘o
=0 M O 0 I To
0 0 1 0 0 1
= (1 @1dz) o pr(ho),

where for the second equality we use the fact that (Mzg.—) o M = 29.— : H - Z
since M € Sp(H) preserves the symplectic form —.—.
The following theorem is then immediate from Lemma 24.

Theorem 26 (Theorem B) There is a representation
M(E) — Autz (HPM(Co(2),Co( 2,07 (2)); L))
associating to f € 9t(X) the composition of the isomorphism
HPM(Co(X),Cn(2,07(2)); L) — HIM(Co(X),Cn(2,07(X)); f,L)

induced by the coefficient isomorphism f; ¢ Idz with the functorial homology
isomorphism

Co(f)s + HPM (Co(2),Cn(2,072)); 4, L) — HPM (Co(2),Cn(2,07(2)); L)

6 The Schrodinger local system

A well-known representation of the Heisenberg group, which is infinite-dimensional
and unitary, is the Schrédinger representation, which is parametrised by a non-zero
real number K. The left action on the Hilbert space L2(IRY) is given by the following
formula:

g
I, (k:c = pai+ qibz) w] () = M F e oy(s q). (49)

i=1

The Schrédinger representation occupies a special place in the representation theory
of the Heisenberg group, and in this section we explain how to leverage its properties
to construct an untwisted representation of the full mapping class group 99t(X%), after
passing to a central extension.

In Sect. 5.1 we first discuss the Schrodinger representation in more detail, as well
as the Stone—von Neumann theorem and its consequences. In Sect. 5.2 we discuss the
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universal central extension of the mapping class group. We then prove Theorem C in
Sect. 5.3, constructing untwisted representations of the universal central extension of
the mapping class group. In Sect. 5.4 we explain how to adapt our construction to the
finite-dimensional analogues of the Schrodinger representation to prove Theorem D.
Finally, in Sect. 5.5 we show that, although these representations are not unitary in
an obvious way, they do preserve a certain perfect sesquilinear pairing between two
different homology groups (Proposition 40).

6.1 The Schrodinger representation and the Stone-von Neumann theorem

The continuous Heisenberg group is defined similarly to the discrete Heisen-
berg group. As a set it is R x H;(X;R), with multiplication given by
(s,z)(t,y) = (s +t+ z.y,x + y),where.istheintersectionformon H; (3; R) = Hg.
We denote it by Hr and note that the discrete Heisenberg group H is naturally a sub-
group of Hg. The proofs of Lemma 18 and Corollary 19 work similarly for Hg, and
the group Aut™ (Hg) of automorphisms of Hp acting trivially on the centre decom-
poses as a semi-direct product Aut™ (Hg) = Sp(H;(3Z;R)) x H'(3Z;R). There is a
natural inclusion

Autt(H) — Autt (Hg),

denoted by ¢ — g, such that ¢g is an extension of (. This inclusion is compatible
with the decompositions into semi-direct products.

As an alternative to the explicit formula (49), the Schrodinger representation may
also be defined more abstractly as follows. First note that Hr may be written as a
semi-direct product

Hr = R{(0,b1),...,(0,by)} x R{(1,0),(0,a1),-..,(0,a4)},

where a1, ..., ag4,b1, ..., by form a symplectic basis for H; (X; R). Fix a real number
h > 0. There is a one-dimensional complex unitary representation

R{(1,0),(0,a1),...,(0,a,)} — S' =U(1)

defined by (t,z)~ e™/2 This may then be induced to a complex uni-
tary representation of the whole group Hgr on the complex Hilbert space
L2(R{(0,b1),...,(0,by)}) = L*(RY). This is the Schrodinger representation of
‘Hg. From now on, let us denote this representation by

W =L*RY and  pw:Hg — UW). (50)
We will usually not make the dependence on % explicit in the notation; in particular
we write py instead of pw 5. The key properties of py that we shall need are the

following.

Theorem 27 (The Stone—von Neumann theorem; [13, page 19])
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(a) The representation (50) is irreducible.
(b) If V'is a complex Hilbert space and

p:Hr — UV)

is an irreducible unitary representation such that p(t,0) = e™*/?1dy, for all
t € R, then there is an isomorphism « : V' — W such that, for any (¢, z) € Hg,
the following diagram commutes:

V——— W

p(t,ac)l lpw@,z)

K

Vv—mm W.

Corollary 28 If p: Hr — U(W) is an irreducible unitary representation such that
p(t,0) = "/ 21dyy, for all t € R, then there is a commutative diagram

Hp — 2 UW)

\ [

uw)

for some element u € U( W), which is unique up to rescaling by an element of S*. Here, ad,,

denotes the adjoint action of u given by ad.,,(v) = uvu~1.

Proof Applying Theorem 27 to the case V' = W, the unitary isomorphism & provides
an element u as claimed. To see uniqueness up to a scalar in S', note that any two
such elements u differ by an automorphism of the irreducible representation pyy,
which must therefore be a scalar (in C*) multiple of the identity, by Schur’s lemma.
Moreover, since pyy is unitary, this scalar must lie in S! C C*. O

Definition 29 Denote by PU(W) = U(W)/S! the projective unitary group of the
Hilbert space W. Since scalar multiples of the identity are central, this fits into a
central extension

1—— St —— UW) — PUW) — 1. (51)

We denote by wpy : PU(W) x PU(W) — S a choice of 2-cocycle corresponding
to this central extension; in other words we write U (W) = St x PU(W) with mul-
tiplication given by (s, g) (¢, h) = (stwpy (g, h), gh).
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Definition 30 For an automorphism ¢ € Aut(Hg), Corollary 28 applied to the rep-
resentation p = py o  tells us that there is a unique element u = T'(¢) € PU(W)
such that py o o = T(¢)pwT(¢) L. The assignment ¢ +— T() defines a group
homomorphism

T : Aut(Hg) — PU(W). (52)

Restricting the homomorphism (52) to the subgroup
Spog(R) = Sp(Hg) C Aut™(Hg) C Aut(Hr), we obtain a  projective
representation

R =T|sp,,®) : Sp2g(R) — PU(W). (53)

This is the Shale—Weil projective representation of the symplectic group. (It is some-
times also called the Segal-Shale—Weil projective representation, see for example
[13, page 53].) Pulling back the central extension (51) along the homomorphism (53),
we then obtain a central extension

1 —— S —— Spy,(R) —— Spag(R) —— 1 (54)

and a lifted representation
R: ?ng(R) — U(W). (55)

The group Sp,,(R) is sometimes known as the Mackey obstruction group of
the projective representation (53). Since (54) is pulled back from (51) along
R, we may write Sp,,(R) = S' x Spyy(R) with multiplication given by

(s,9)(t,h) = (s.t.wsy(g, h), gh), where

wsp = wpy o (R x R) : Spay(R) x Spay(R) — PU(W) x PUW) — S

6.2 Universal central extensions

We recall the definition of the universal central extension of a group G (see for exam-
ple [14, Sect. 6.9] for more details).

Definition 31 If G is a perfect group, i.e. if we have H;(G;Z) = 0, then there is
an isomorphism H?(G; H2(G;Z)) = Hom(H»(G;Z), H2(G;Z)) by the univer-
sal coefficient theorem, and the Hs(G; Z)-central extension of G corresponding to
the identity map is the universal central extension of G. For G = 9(X) (recall that
Y =X, 1), we have that G is perfect when g > 3 and we have H(G;Z) = Z when
g = 4 (see [15, Theorems 5.1 and 6.1]). In particular, for g > 4, let us denote by

1—Z— M) S MmE) — 1
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the universal central extension of M(X).
Consider the inclusion of surfaces ¥,; < X1 given by boundary connected sum
with 3,4 1. This induces an inclusion of mapping class groups

931(2971) — E)JT(E;LJ) (56)

by extending diffeomorphisms by the identity on Xj_, ;. Recall from the intro-
duction that the inclusion map (56) induces isomorphisms on first and second (co)

homology for all h > g > 4 (see [16] or [17]), so the pullback Ofﬁ(Z}hl) along this

inclusion is ﬁ(zg,l). The following definition is therefore consistent for any g > 1.

Definition 32 We define the stably universal central extension ﬁ(Egyl) of M(X4.1)
to be the pullback of ﬁ(Eh,l) for any h > max(g,4).

The following lemma explains how Morita’s crossed homomorphism 9 behaves with
respect to increasing the genus via this inclusion. We first remark that the boundary
connected sum decomposition ¥, 1 = X, 14X, ¢ 1, which induces the inclusion (56)
above, also induces a free product decomposition 71 (X,1) = m1(Xg1) * 11 (Ep—g,1)
of fundamental groups. This, in turn, induces a direct sum decomposition
HY(Zh1) 2 HY(X,1) ® H'(Xh—4,1) on first cohomology, using the identification
H'(-) 2 Hom(m(—),Z).

Lemma 33 The diagram

56
M(y1) — s M(Sy)

y b &

HY(Sg1) —— H'(3n1)

commutes, where the bottom horizontal arrow is the inclusion of the left-hand sum-
mand of the decomposition H' (X, ;) = H! (X, 1) ® H (Zh—g.1)-

Proof As in the definition of the Morita crossed homomorphism (see Egs. (33) in
Sect. 3.3), we use the the identification H!(—) = Hom(m;(—),Z). Under this iden-
tification, the bottom horizontal arrow in (57) is given by pre-composition with the
projection pry : w1 (Zp,1) = m(Lg1) * 1 (Xh—g1) — m1(X4,1) onto the first factor
of the free product.

Let feM(E, ) and write f e M(Ty,) for its image under (56). Let
v € m1(Xp,1) and write y1 = pri(y) € m1(3g,1) and y2 = pry(y) € T (Xh—g,1) for
its images under the projections onto the two free factors. Recall that the definition of
d;(y) (see Eq. (32)) depends only on the decomposition of  into the standard gen-
erators «;, 3; of w1 (X,,1) after forgetting those with j > 4. This implies in particular
that we have
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di(y) =di(v1)  and  di(m(f)(7)) = di(m1(f)(n))

for 1 < ¢ < g. Moreover, since f acts by the identity on ¥5_4 1, we also have

A

di(m1(f)(7)) = di(7)
for g + 1 < ¢ < h. From the defining formula (33) we deduce that

9

h
o) = Zdi(m(f)h)) —di(y) = Y di(mi(f)(n) = di(m) = 0([n]) = @5 o pry)([),

i=1

and so (57) commutes. (I
6.3 Constructing the representations

We now prove Theorem C.
From the previous two subsections, we have the following diagram:

m(x) 220 Autt(H) —— Autt(Hg) — L PU(W)

-] ] (58)

Sp(H) x H —— Sp(Hg) X Hg

where unmarked arrows denote inclusions. For g > 4, by the universality of {DVT(Z),
there is a morphism of central extensions

M) —— U(W)

Pl l (59)

ML) —— PU(W)

where the bottom horizontal arrow is the composition along the top of (58). More-
over, this extends to all g > 1 as follows. Consider the commutative diagram5

M(Sy1) — s Spoy(R) x R — T PU(LX(RY)) «—— U(L(RY))

! | | | @

M(Sh1) —2 s Spo(R) x R — L5 PU(L2(RM)) «—— U(L2(RM)
The right-hand side of this diagram arises as follows. We consider L?(IRY)
as the (closed) subspace of L?(R") of those L2-functions that factor through
R" = RY9 x R"~9 — RY. Any closed subspace of a Hilbert space has an orthogo-
nal complement, so we may extend unitary automorphisms by the identity on this
complement to obtain a homomorphism U (L?(R9)) — U(L?(R")), which descends

SWe freely pass between the different notations Spa4(R) = Sp(Hg) and R?9 = Hp, and similarly for
the integral versions, depending on whether or not we wish to emphasise the genus g.
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to the projective unitary groups. The right-hand square of (60) is a pullback square
(this is true for any closed subspace of a Hilbert space). Commutativity of the left-
hand square follows from Lemma 33 and commutativity of the middle square fol-

lows from the defining property of 7 (Definition 30). Let us write 90T(3, 1) for the
pullback of U(W) — PU(W) along T o (s,0), and similarly for 9%(3, 1). Then
M(X,.1) is the pullback of 9 (X, 1) along the inclusion of mapping class groups.

From Definitions 31 and 32, we also have that /972(29’1) is the pullback of i)Aﬁ(Zhyl)
along the inclusion.

If we now take h > 4, then ﬁ(E h,1) is by definition the universal central exten-

sion, so there is a unique morphism of central extensions SvaT(Eh,l) = M(Zh1).
Pulling back along the inclusion, we obtain a canonical morphism of central exten-

sions ﬁ(Eg,l) — M (X,.1), even though ﬁ(Zg,l) is not universal for g < 3. This
gives us the desired morphism of central extensions (59).

Notation 34 We denote by
S M(E) — U(W)
the top horizontal map of (59).

Notation 35 By abuse of notation, we write

pw : H — UW)

for the restriction of the Schrodinger representation (50) to the subgroup H C Hg.
A consequence of Definition 30 is the following.

Lemma36 For g € ﬁ(ﬂ) and h € H, we have the following equation in U(W):

S(g9)-pw (h).S(9)~" = pw ((p(9))(h)). (61)

We now use this to construct untwisted representations of the universal central
extension ﬁ(Z) of MM (X) on the homology of configuration spaces with coefficients
in the Schrodinger representation.

Let C,(3) — C, (%) denote the connected covering of C,,(X) corresponding to

the kernel of the surjective homomorphism 71 (C,, (X)) — H. This is a principal H
-bundle. Taking free abelian groups fibrewise, we obtain

Z[Cn(2)] — Cn (%), (62)

which is a bundle of right Z[#]-modules. Via the Schrodinger representation pyy, the
Hilbert space W becomes a left Z[H]-module, and we may take a fibrewise tensor
product to obtain
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ZICo(2)] @z W — Co(2), (63)

which is a bundle of Hilbert spaces. There is a natural action of the mapping class
group (X)) (up to homotopy) on the base space C,,(2), and the induced action on
7m1(Cr (X)) preserves the kernel of the surjection 71 (C,, (X)) —» H (Proposition 16),
so that there is a well-defined twisted action of 21(X) on the bundle (62), in the fol-
lowing sense. There are homomorphisms

a:M(T) — Autz (Z[C,(2)] — Cu(D))
D :M(T) — Aut(H)

such that, for any g € M(X), h € H and m € Z|C,,(2)], we have

a(g)(m.h) = a(g)(m).®(g)(h). (64)

In other words, ® measures the failure of « to be an action by fibrewise Z[#]-module
automorphisms. In the above, the target of « is the group of Z-module automor-
phisms of the bundle (62), in other words the group of self-homeomorphisms of the

total space Z|[C, (X)] that preserve the fibres of the projection and that are Z-linear
(but not necessarily Z[#]-linear) on each fibre.

Theorem 37 The stably universal central extension ﬁ(ﬂ) of M(X) acts on (63) by
Hilbert space bundle automorphisms

v M(T) — U(Z[én(Z)] Rapyg W — Cn(2)>

via the formula

Y(9)(m @ v) = a(p(g))(m) @ S(g)(v) (65)

forall g € M(X), m € Z[Cn(X)] and v € W.

Proof We must verify that the formula (65) is additive in m, unitary in v and that it
is Z[H]-balanced. The first two properties are evident by the definitions of « and S
respectively. The key property to be verified is therefore the third one, which in more
detail says the following. Since we are taking the (fibrewise) tensor product over

Z[H], we have that m.h ® v = m ® pw (h)(v) for any h € H, m € Z[C,(X)] and
v € W. (Note here that we denote the right #{-action on the fibres of Z[C,, (£)] simply
by juxtaposition, whereas the left H-action on W is the Schrodinger representation,
denoted by pyy.) We therefore have to verify that, for each fixed g € /EDV?(E), the for-
mula (65) gives the same answer when applied to m.h @ v or to m ® pw (h)(v). To
see this, we calculate:
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Y(g)(m.h ®@v) = a(p(g))(m.h) @ S(g)(v) by definition
= a(p(g))(m).2(p(g))(h) ® S(g)(v) by eq. (64)
= a(p(g))(m) ® pw (2(p(9))(h))(S(g)(v)) since ® is over Z[H]
= a(p(g))(m) @ S(g) o pw(h) 0 S(9)"*(S(9)(v)) by eq. (61)[Lemma 36]
= a(p(g))(m) ® S(g)(pw (h)(v)) simplifying
=7(g)(m ® pw (h)(v)). by definition

This tells us that the formula (65) gives a well-defined fibrewise unitary bundle auto-
morphism (i.e. an automorphism of Hilbert space bundles) of (63) for each fixed

g € ﬁ(E) It is then clear from the formula (65) that ~ is a group homomorphism.
O

Theorem 38 (Theorem C) The action of the mapping class group on the Borel-Moore
homology of the configuration space C,,(X) with coefficients in the Schrodinger rep-
resentation induces a well-defined complex representation of the stably universal

central extension ﬁ(ﬂ ) of the mapping class group M(X):

M(X) — GLP (HPM (C(2),Ca(B,07 (%)) W) (66)

lifting a natural projective representation of (X)) on the same space. Here, GLP4

denotes the group of bounded linear operators with respect to a certain Hilbert
structure.

Proof By Theorem 37, we have a well-defined functor from the group (%) to the
category of spaces equipped with bundles of Hilbert spaces. Moreover, elements of
the mapping class group fix the boundary of ¥ pointwise, so the action of the map-
ping class group on C,(X) preserves the subspace C,, (%, 9~ (2)). Thus we have a

functor from the group M(X) to the category of pairs of spaces equipped with bun-
dles of Hilbert spaces.

On the other hand, relative twisted Borel-Moore homology HZ (—) is a functor
from the category of pairs of spaces equipped with bundles of Hilbert spaces (and
bundle maps whose underlying map of spaces is proper) to the category of complex
vector spaces (cf. [31, Sects. V.4 and V.5]). Moreover, on the full subcategory of
pairs of spaces admitting a finite relative Borel-Moore CW-complex structure, it may
be augmented to take values in the category of Hilbert spaces and bounded opera-
tors. For objects, the Hilbert structure on Borel-Moore homology is induced by the
Hilbert structure on Borel-Moore cellular chain complexes given by an orthogonal
direct sum, over all cells, of copies of the Hilbert space coefficients. For morphisms,
we may assume by cellular approximation that the underlying map is cellular, so
it induces a bounded operator of Borel-Moore cellular chain complexes and hence
a bounded operator on Borel-Moore homology. (We note that for boundedness it
is essential that the relative Borel-Moore CW-complex structure has finitely many
cells.)
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The pair (Cp,(X),Cpn(X,07(X))) admits a finite relative Borel-Moore CW-com-
plex structure, so we may compose these two functors to obtain the representation
(66) of ﬁ(Z) by bounded linear operators on a Hilbert space, as desired.

This automatically descends to a projective representation of 9t(X) since it sends
the kernel of the central extension ﬁ(E) — 9M(X) into the centre of the bounded
linear automorphism group, which is contained in the kernel of the projection onto
the projective bounded linear automorphism group. (]

6.4 Finite-dimensional Schrodinger representations

For an integer N > 2, the finite-dimensional Schrodinger representation is a left
action of the discrete Heisenberg group H on the Hilbert space W = L2((Z/N)9),
which may be defined as follows:

g
[wN (kx = piai+ qibi> w] (s) = ™R EF P Y(s +q). (67)

i=1

Note that this matches the generic formula with i = %’T It may also be constructed
by composing the natural finite quotient

H =179 x 297" — Wy = (Z/N)? x (Z/2N x (Z/N)9)

with the representation of 7 obtained by induction from the one-dimensional
representation  Z/2N x (Z/N)? — Z/2N < St = U(C), where the sec-
ond map is t — exp (%£). Note that the kernel of the quotient map H — Hy

may be written, in the original definition ‘H = Z x H, as the normal subgroup
Iy ={(2Nk,Nz) | k€ Z, x € H}.

We may adapt the above construction using Wy in place of W and using the ana-
logue of the Stone—von Neumann theorem for Wy, proven for NV even in [19, Theo-
rem 2.4] (see also [20, Theorem 3.2] and [18, Theorem 2.6]). The proof for odd N
works similarly. The theorem states that Wy is, up to projectively unique unitary
isomorphism, the unique unitary representation of the finite group Hy where the
action of u = (1,0) is multiplication by e ¥ . The odd case is studied in [11] with
explicit formulas for the untwisting process. We quote from [11] that for odd N the
mapping class group action on H. fixes the kernel Iy so that the Stone-von Neumann
theorem constructs a projective representation of the mapping class group on the
Borel-Moore homology of the configuration space C,,(X) with coefficients in Wy .

If N is even, then the action fz of a mapping class f on the Heisenberg group H
may fail to preserve the normal subgroup Iy. From the formula (31) we see that
fu(In) = Iy if and only if 6 ¢(z) is even for every x, equivalently f'is in the kernel
of the reduced-modulo-2 crossed homomorphism & : () — H'(¥;Z/2). From
Eq. (33) (and Proposition 22), we see that d;(z) € Z/2 depends only on the mod-
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ulo-2 symplectic action f, on Hq(X;Z/2). Denoting by Ay = (c; ;) the matrix of

this action in the symplectic basis (a1, ..., aq,b1,...,b,y), we have
_ g 29 g
Oy | Do s+ sigbi | = D03 aijarisy s (68)
i=1 j=11i=1

This crossed homomorphism has a spin structure interpretation; indeed a spin
structure can be defined as a quadratic form ¢ : Hq(X;Z/2) — Z/2, q¢(0) = 0 and
q(z +y) = q(z) + q(y) + 2.y. It defines a modulo-2 crossed homomorphism d, via
the formula d,(z) = q(f«(z)) — q(z). One can check that 6 = d,,, where qq is the
quadratic form that vanishes on the canonical basis. It follows that the kernel of § is
the spin mapping class group (X, o). The Arf invariant of g is 0, meaning that the
index of this subgroup is 297%(29 + 1). From the Stone-von Neumann theorem we
obtain with the previous untwisting method:

Theorem 39 (Theorem D) For N even, there exists a projective action of the spin
mapping class group M(X, qo) on the Borel-Moore homology of the configuration
space C,,(X) with coefficients in W obtained by composing a coefficient isomor-
phism with the homological action. This gives a projective representation of the of the
spin mapping class group on the ( 294n—1 )N 9-dimensional complex Hilbert space

VN = HEPM(Co(8),Cn(S,07(2)); Wa). (69)

6.5 Preservation of a sesquilinear form

As explained in the proof of Theorem 38, when using a Hilbert space as local coef-
ficients, after choosing a CW-complex structure, which gives a Hilbert structure on
the cellular chain groups as an orthogonal sum indexed by the cells, we get a Hilbert
structure on homology.® However, it is not true that mapping classes will act as uni-
tary operators on chains (or on homology). This is because, although we may use
the cellular approximation theorem to represent the action of any mapping class by a
cellular self-map of the configuration space, this self-map will in general fail to be an
automorphism of the CW-complex structure, in particular it will fail to be a homeo-
morphism. Nevertheless, we will exhibit, in this section, a perfect sesquilinear form
on homologies that is preserved by the action of mapping classes.

Suppose that V'is a representation of the discrete Heisenberg group H defined over
a commutative ring with involution R, equipped with a perfect’ Hermitian pairing
V ® V — R. By Poincaré duality, and the fact that C,,(2) is a connected, oriented
2n-manifold with boundary C,,(X,0%) = {c € C,(X) | ¢N 0X # &}, we obtain a
sesquilinear pairing

%1n general we would have to quotient the closed subspace of cycles by the closure of the boundary sub-
space, but here we can use a finite cell structure.

"Recall that a perfect pairing A ® B — R isan R-linear map such that both dual maps A — Homg (B, R)
and B — Hompg (A, R) are isomorphisms.
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(=, =) HBM(C,(%),07;V)® H,(Ch(X),0"; V) — R, (70)

where OF is an abbreviation of C,(X,0%(X)), and we note that the boundary
9C, (X)) = Cpp (2, 0%) decomposes as 9T U~ with 90T = 00~ =0T NI~ (ie.
formingamanifoldtriad), correspondingtothe decompositionoftheboundary ofthesur-
face Y = 07 (X) U 0~ (2). Inmore detail, the pairing (70) is constructed by pre-com-
posingtheevaluationmapH ® Hompg(H, R) — R,whereH = HZM(C,(2),07;V),
with Id ® i, where 7 is Poincaré duality composed with the canonical morphism
from compactly-supported cohomology to the dual of Borel-Moore homology:

n=¢c0PD: H,(Co(),0":V) =5 H'(Cn(X),0 ; V) — Homp(H, R).(71)

By naturality of the homomorphism e and of Poincaré duality, the pairing (70) is
preserved by the actions of homeomorphisms of C,, (X) (that fix its boundary) and of
coefficient isomorphisms. Since the mapping class group acts via homeomorphisms
of the configuration space and coefficient isomorphisms, this means that (70) is pre-
served by the mapping class group action.

Let us from now on assume that / is a fiee R-module and choose a basis (v;) e
for V. Since the Hermitian pairing on V is perfect, we may also choose another basis
(v})jes for V that is dual to (vj);es with respect to this pairing. It follows from
Theorem 11 that the R-module H — HBM(C,(X),07;V) has a basis of the form

Ep® v;, indexed by k € K and j € J, where Ek is a lift to the Heisenberg cover
Cn (%) of the product of simplices Ci, () for 1 <i<2gand ky + -+ + kog = 1.

Moreover, in Theorem 11, we also computed the compactly supported cohomology
H!C,(X),07;V), whlch is Poincaré dual to H,,(C,,(X),0"; V). As an R-module,

it has a basis of the form E’ ® v ,indexed by k € K and j € J, where E’ is a lift to
the Heisenberg cover Cn( ) of the n-cube Ej, given by the product of n pairwise dis-

joint arcs in ¥ with boundary on 7 (X) where exactly k; of them intersect y; trans-
versely for each 1 < ¢ < 2¢. (This dual basis is described in more detail in Sect. 7.)

With respect to the pairing (70), we have that (E), ® vj, E/’« ® v’,) evaluates to the
Kronecker 5Ek ]) ) up to a sign. This proves that the pairing (70) is perfect:

Proposition40 Let R be a commutative ring with involution and V be a free R-module
equipped with a perfect Hermitian pairing V @ V — R. Suppose that we have a
representation of the discrete Heisenberg group H on V respecting this pairing. Then
the sesquilinear pairing (70) is perfect.

Remark 41 This applies in particular if V' is a complex Hilbert space with a unitary

representation of H, so it applies to the (projective) representations of 9t(X) and of
M(X, go) constructed in Theorems 38 and 39 (Theorems C and D).
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7 Relation to the Moriyama and Magnus representations

In this section we study the kernels of the twisted representations that we have con-
structed in Theorem A in the case when the coefficients are V' = Z[H], and prove
Proposition E. The proof will use:

e A theorem of Moriyama [12], which identifies each J(i) with the kernel of a cer-
tain homological representation of M(X);

e A theorem of Suzuki [38], which identifies the Magnus kernel with the kernel
of a certain twisted homological representation of 9t(3) (a homological inter-
pretation of the Magnus representation, which was originally defined via Fox
calculus);

together with a study of the connections between our representations and those of
Moriyama and Suzuki.

7.1 The Moriyama representation

Moriyama [12] studied the action of the mapping class group 9t(X) on the homol-
ogy group HBM (F, (¥'); Z) with trivial coefficients, where ¥’ denotes ¥ minus a
point on its boundary and F,,(—) denotes the ordered configuration space, where
elements are ordered n-tuples of distinct points. On the other hand, our construction
(43) (Theorem 23) may be re-interpreted as a twisted representation

M) — Autyy (HZM(Ca( 1 ZIH])). (72)

We pause to explain this re-interpretation. We must first of all explain the twisted auto-
morphism group on the right-hand side of (72). Let us write Mod, for the category
whose objects are pairs (R, M) consisting of aring R and a right R-module M, and whose
morphisms are pairs (§ : R — R', ¢ : M — M’) such that o(mr) = ¢(m)0(r). The
automorphism group of (R, M) in Mod, is written Aut'y (M ); note that this is gener-
ally larger than the automorphism group Autz (M) of M in Modg.

If we set R =V = Z[H] in Theorem 23, then the functor (43) that it supplies
is of the form M(X)\Aut™ (H) — Modzz;. In general, for any left group action

0 : G — Aut(K), each functor F': G\Im(#) — Modzx] corresponds to a group
homomorphism G — AuttZ"[VK] (F(Idg)).2 Thus (43) corresponds to a homomorphism

M(E) — Aty (HBM (Ca(%),Cn(%,07 (%)); Z[H])).

n

Finally, removing a point (equivalently, removing the closed interval 9~ (X)) from
the boundary of ¥ corresponds, on Borel-Moore homology of configuration spaces
C,(2), to taking homology relative to the subspace C,, (X, 9~ (X)) of configurations

8See footnote 4 on page 21 for an explanation of the groupoid G\ H in general.
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having at least one point in the interval. Thus H2M(C,(%),C, (3,07 (X)); Z[H])
and HPM(C,,(2'); Z[H]) are isomorphic as Z[H]-modules, and we obtain (72).

Remark42 Forgetting the Z[H]-module structure gives an embedding of the right-hand
side of (72) into the (untwisted) automorphism group Autz(HZM (C,(X'); Z[H]))
over Z.

When n = 2, Moriyama’s representation is a quotient of ours. To see this, we con-
sider the quotient of groups H — Z/2 = &, given by sending o — o and a;, b; — 1,
which induces a map of twisted 9t(X)-representations

Hy M (Co(S); ZIH]) — Hy M (Co(2'): Z[Gs]) = HYy M (Fa(E):Z). (73)

The map (73) is surjective by Proposition 13, which tells us that it is isomorphic to
a direct sum of copies of the surjective ring homomorphism Z[#H]| — Z[S2] induced
by the quotient of groups H — Ss. The isomorphism on the right-hand side of (73)
follows from Shapiro’s lemma. (Shapiro’s lemma holds for arbitrary coverings with
ordinary homology, and for finite-sheeted coverings with Borel-Moore homology.
The proof for Borel-Moore homology, interpreted as the homology of the complex
of locally-finite chains, is exactly the same as for ordinary homology, using the
assumption that the covering is finite-sheeted to preserve the locally-finite property
when projecting down the covering.) It therefore follows that the kernel of our rep-
resentation is a subgroup of the kernel of HZM (F,(X'); Z), which was proven by
Moriyama to be the Johnson kernel J(2). In Sect. 7 we will compute the action of a
genus-1 separating twist 7., € J(2) on HZM (Co(¥'); Z[H]), and in particular show
that it is (very) non-trivial; see Theorem 52. Thus the kernel of HEM (Cy(X'); Z[H])
is strictly smaller than J(2).
For any n > 2, we have a map of twisted 91(3)-representations

HPM(Cr(2); Z[H]) — HPM(Ch(X); 2),

which is surjective by Proposition 13 and the fact that the augmentation map
Z[H] — 7Z is surjective. By Shapiro’s lemma and the calculations in Sect. 2 of
HBM(C, (X); V) for any local system ¥ on C, (%), there are isomorphisms of abe-
lian groups:

HM (Fu(3):2) = Hy M (Co(X); 2[6]) = H7M (Ca(2'):2) @ Z[S,). (74)

Moreover, these are in fact both isomorphisms of 91(X)-representations over
Z: for the left-hand side this is due to the naturality of Shapiro’s lemma; for the
right-hand side, it is because this isomorphism is induced by the natural map
HBM(C,(¥);Z2) ® 2[&,] — HEM(C,(X'); Z|S,]) (one of the maps involved in
the universal coefficient theorem) and the 9%(X)-action is induced from an action (up
to homotopy) at the level of spaces. Since DU(X) acts trivially on &,,, the right-hand
side of (74) is a direct sum of n! copies of HEM (C,,(X'); Z). We therefore deduce that
the kernel of the 9t(X)-representation H2M (C,,(3'); Z) is the same as the kernel of
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the 901(X)-representation HZM (F,,(%); Z). (This is also shown in [39].) The latter
kernel was proven by Moriyama to be the nth term J(n) of the Johnson filtration.
Summarising this discussion, we have:

Proposition 43 The kernel of the twisted IN(X)-representation (72) is contained in
the nth term J(n) of the Johnson filtration. When n = 2 it is moreover a proper sub-
group of the Johnson kernel J(2).

7.2 The Magnus representation

The kernel of our representation (72) is also contained in the kernel of the Mag-
nus representation. This may be seen as follows. The 9t(X)-equivariant surjection
‘H — H induces a map of twisted 91(3)-representations

HPM(Co(S); ZIH]) —» HZM (Co(S): Z[H)), (75)

which is surjective by Proposition 13. By a similar argument as in Sect. 6.1 above,
the kernel of the twisted 90(X)-representation HZY (C,,(X'); Z[H]) is the same as
the kernel of the twisted 90t(X)-representation HZM (F,,(3'); Z[H]). Moreover, it is
shown in [39] that there is an inclusion of twisted 91(X)-representations

[HPM(F(2'); Z[H)]®" s HEM (F(2'); Z[H). (76)

By a result of Suzuki [38], HEM (F,(X'); Z|H]) is the Magnus representation of
M (X) (this is a homological interpretation of the Magnus representation, which was
originally defined via Fox calculus). The maps of representations (75) and (76) imply
that

ker [HPM(C,(S); Z[H))] C ker[HPM(C,(S'); Z[H])]

= ker[HPM(F.(¥'); Z[H])] C ker(Magnus®").

In general, if V is a representation of a group G over an integral domain R, the ker-
nel of the tensor power V®" consists of those g € G that act on V' by an element of
{A € R| A" = 1}. For the Magnus representation, the ground ring is Z[H], whose
only roots of 1 are {1} when n is odd and {+1} when # is even. Thus when # is odd
we have ker(Magnus®") = ker(Magnus) and when 7 is even we either have the
same equality or ker(Magnus®") contains ker(Magnus) as an index-2 subgroup.

Combining this discussion with the statement of Proposition 43 and writing
Mag(X2) for the kernel of the Magnus representation, we may complete the proof of
Proposition E.

Proposition 44 (Proposition E) The kernel of (72) is contained in J(n) N Mag(X).

Proof Let f be an element of the kernel of (72). By Proposition 43, we know that
f € 3(n). By the discussion above, we know that the action of / under the Magnus
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representation is either Id or —Id. It remains to rule out the possibility that it is
—Id, so let us suppose this and derive a contradiction. Consider the morphism of
representations

HPM(F(X); Z[H]) — HPY(F1(E): 2)

induced by the augmentation map Z[H] — Z of the coefficients. Assuming that f
acts by —Id under the Magnus representation (the left-hand side), it follows that
it also acts by —Id on the representation on the right-hand side. But the right-hand
side may be identified with the symplectic action of the mapping class group on
H = Hy(X;7Z), so in particular it follows that /" does not lie in the Torelli group,
i.e. f ¢ J(1). But we know from above that f € J(n) C J(1), a contradiction.  [J

Remark 45 1t is known [40, Sect. 6] that the kernel of the Magnus representation does
not contain J(n) for any n > 1, so Proposition 44 implies that the kernel of (72) is
strictly contained in J(n).

7.3 Other related representations

Recently, the representations of (X)) on the ordinary (rather than Borel-Moore)
homology of the configuration space F,, (X) has been studied’ by Bianchi, Miller and
Wilson [41]: they prove that, for each n and i, the kernel of the 91(X)-representation
H;(F,.(X);Z) contains J(4), and is in general strictly larger than J(7). They conjec-
ture that the kernel of the 01(X)-representation on the total homology H..(F,,(X); Z)
is equal to the subgroup generated by J(n) and the Dehn twist around the boundary.
Even more recently, Bianchi and Stavrou [42] have shown that, for g > 2, the kernel
of the 9 (X)-representation H,, (F,,(X); Z) does not contain J(n — 1).

The 9 (X)-representation H;(C,,(X); F), for certain field coefficients IF, has been
completely computed. For F = 5 it has been computed in [43, Theorem 3.2] and is
symplectic, i.e. it restricts to the trivial action on the Torelli group T(X) = J(1). For
F = Q it has been computed in [44, Theorem 1.4] and is not symplectic, i.e. its kernel
does not contain J(1), but it restricts to the trivial action on the Johnson kernel J(2).

8 Computations for n = 2

In this section we will do some computations in the case n = 2, when V is the regu-
lar representation Z[#] of the Heisenberg group H. The main goal is to obtain in
this case an explicit formula for the action of a Dehn twist along a genus-1 separat-
ing curve on the generic Heisenberg homology HPM (Co(X),C2(X, 07 (X)); Z[H)]).
When the surface has genus 1 this is displayed in Fig. 7; in general, the formula is
given by Theorem 52. One may compare these calculations to the calculations of An

°This is equivalent to studying the homology of Fy, (X’) since the inclusion Fp, (') — Fn (%) is a
homotopy equivalence. On the other hand, for Bore/-Moore homology, this would not be equivalent,
since the inclusion is not a proper homotopy equivalence.
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and Ko [7, page 274], although they consider representations of surface braid groups
whereas we consider representations of mapping class groups.

We will start with the case where the surface itself has genus 1, where we first
compute the action of the Dehn twists T, T3, along the standard essential curves
a, b. Since T,, and T}, act non-trivially on the local system Z[#], they do not act by
automorphisms, but give isomorphisms in the category of spaces with local systems,
which, after taking homology with local coefficients, give isomorphisms in the cat-
egory of Z[H]-modules. We refer to [30, Chapter 5] for functoriality results concern-
ing homology with local coefficients. The upshot is a twisted representation of the
full mapping class group 2%(X). Recall that in Theorem 23 we obtained a groupoid
formulation of the twisted mapping class group representation as a functor on the
action groupoid M(X)\ Aut™t (H), which gives here a functor

M()\Aut™ (H) — Modz. (77)

We briefly recall from Sect. 4 some of the relevant details of the construction of this
twisted representation. Let f € 9(X) and let fy be its action on the Heisenberg
group. Then the Heisenberg homology HZM (C,,(%), C, (2,07 (X)); Z[H]) is defined
from the regular covering space C,, (3) associated with the quotient ¢ : B, () — .
As explained in Sect. 4, at the level of homology there is a twisted functoriality and,
in particular, associated with f, we get a right Z[#]-linear isomorphism

Calf)s s HZM (Cn (%), Cn (3,07 (2)); ZH]) ;1 — HZM (Ca(2),Ca(3,07)); Z[H))

Our choice for twisting on the source with fq__[1 rather than on the target with f5; will
slightly simplify the writing of the matrix. Note also that when working with coeffi-
cients in a left Z[?#]-representation ¥ the twisting on the right by ffgl will correspond
to twisting the action on V'by f4 (see (38)). More generally, for any 7 € Aut(H), we
have a shifted isomorphism

(Ca(f)a)r + HIM (Cu(2), Cu(B,078)); Z[H]) ;1 — HIY (Cu(2), Ca(B,07 %)) Z[H]) .

-1
fu'o

In terms of the functor (77) on the action groupoid, the above map (C,,(f)« ). is the

image of the morphism f: 77 o fi — 771 of M(X)\Aut™ (H). If £, g are two

mapping classes, the composition formula (functoriality of (77)) states the following:
Cn((g © f)*) = Cn(g)* © (Cn(f)*)g;{l

We will need to compute compositions in specific bases. Note that a basis B for a

right Z[H]-module M is also a basis for the twisted module M., 7 € Aut(H).

Lemma 46 Let M, M’ be free right Z[H]|-modules with fixed bases B, B' and let

7 € Awt(H). If a Z[H]-linear map F : M — M’ has matrix Mat(F') in the bases B,
B', then the matrix of the shifted Z|H)-linear map F, : M, — M! is 7= (Mat(F)).
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The action of 7! on the matrix is given by its action on each individual coefficient.

Proof We note that the maps F and F. are equal as maps of Z-modules. Let
B = (Bj)jej, B = (fi)ie],Mat(F) = (mm)ig,je‘]. Then for coefficients hj cH,
j € J, we have

F, (ZJ: ej h_j) = F(zj: ejT(hj))
= iz:fimijT(hj)

= fir 7 Hmij)hy,
i

which gives the stated result. O
8.1 Genusone

Here we consider the genus-1 case with n = 2 configuration points. Let a, b be the
simple closed curves representing the symplectic basis of H; (%) previously denoted
by aq, by; see Fig. 4. We will use the same notation a, b for the curves, their homology
classes and their lifts in £ which were previously denoted by a, b. The corresponding
Dehn twists are denoted by T, Tj,. The surface braid group By (X) is generated by
the three elements «, 5, o, where we again drop the subscript ‘1°. We will depict «
and [ as the arcs in the middle of Fig. 4. Although these arcs are not based loops, they
may be completed to based loops, uniquely up to homotopy, by a path of configura-
tions contained in the bottom edge of the square, since the space of configurations
of two points in the bottom edge of the square is contractible and contains the base
configuration. In this notation, the quotient ¢ : Bo(2) — H (see Corollary 8) sends
a+a, B band o — u.

The homology module HPM (Cy(X),Co(X,07(X)); Z[H]) was computed using
the compression trick in Theorem 11. It is free of rank 3 over Z[H] with a basis
indexed by the ordered partitions of 2 into two parts. Here we replace the arcs

B o

oo

Sy
o
o

Fig.4 The closed curves a, b and the arcs o, 3, o', . In all of our figures, we depict surfaces¥ g 1as
rectangles with 2g holes, which are identified in pairs by reflections to form g handles
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1, vo from Fig. 2 with the arcs o, 8 depicted in Fig. 4, and the basis is denoted
by w(a) = E(2,0), w(B) = E(0,2), v(a, ) = E(1,1). The first two are represented
by properly embedded 2- 51mpllces while the third one is represented by a properly
embedded square. In more detail, w(«) is represented by the cycle in the 2-point con-
figuration space given by the subspace where both points lie on the arc . Similarly,
w() is given by the subspace where both points lie on 8 and v(«, 3) is given by the
subspace where exactly one point lies on each of these arcs.

In fact, we have to be even more careful to specify these elements precisely, since
the preceding description only determines them up to the action of the deck transfor-
mation group H, because we have just described cycles in the configuration space
C2(X0), whereas cycles for the Heisenberg-twisted homology are cycles in the covering
space 52(2). Let us fix, once and for all, a lift ¢y of the base configuration ¢y C 9X.
Then any contractible subspace X C C(%) has a canonical lift X C Cy(%) to the
covering space, after choosing a path in C2(X) from the base configuration ¢, to a
point in X, which is uniquely determined by requiring that the chosen path lifts to a
path in Cy (X) from ¢ to X. Once we have a simplex or square in Cz() representing
a relative cycle, a lift to C~2(E) is therefore determined by a choice of a path (called
a “tether”) in C3(X) from ¢ to a point in the cycle. For w(«), w(B) and v(a, 5), we
choose these tethers as illustrated in the top row of Fig. 5.

By Poincaré duality, and the fact that C5(X) is a connected, oriented 4-manifold
with boundary Co(3, 9%) = {c € C2(X) | ¢cN IX # T}, we have a non-degenerate
pairing

(= =)+ HYM(Ca(%), 075 ZIH]) @ Ha(C2(X), 075 Z[H]) — Z[H],  (78)

—t — : -

Fig.5 Tethers
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where 0T is an abbreviation of Cy(X, 0% (X)), and we note that the boundary
0C5(X) = C2(%, 0%) decomposes as 1 U 9, corresponding to the decomposition
of the boundary of the surface 9% = 97 (X) U &~ (X). (Formally, it is a manifold
triad.) The above pairing is linear in the first variable and antilinear in the second
one, where we use the anti-involution on the Heisenberg group ring that extends
the inverse map. Similarly to the standard case, under transversality hypotheses, the
pairing is given by an intersection formula that counts, with signs, the geometric
intersections in the Heisenberg cover of a smooth cycle S with all of the H-translated
copies of a smooth cycle T:

([S1, 111y = > _(S.Th)h. (79)

heH

There are natural elements of Hz(Co(X2), 07; Z[H]) that are dual to w(c), w(3) and
v(a, B) with respect to this pairing, which we denote by w(«’), wW(5’) and v(c/, 8')
respectively. The element v(a/, ') is defined exactly as above: it is given by the
subspace of 2-point configurations where one point lies on each of the arcs o and /5’
of Fig. 4. The element w(«') is defined as follows: first replace the arc o’ with two
parallel copies o} and o (as in the bottom-left of Fig. 5), and then w(a') is given by
the subspace of 2-point configurations where one point lies on each of ) and o. The
element w(A') is defined exactly analogously. Again, in order to specify these ele-
ments precisely, we have to choose tethers; the choices that we make are illustrated
in the bottom row of Fig. 5.

A practical description of the pairing (78) is as follows. Let x = w(v) or v(7, d)
for disjoint arcs ~y, § with endpoints on 9~ (X), and choose a tether for x, namely a
path ¢, from cg to a point in x. Similarly, let y = wW(e) or v(e, ¢) for disjoint arcs e,
¢ with endpoints on 91 (X), and choose a tether ¢, for y. Suppose that the arcs v LI &
intersect the arcs e U ¢ transversely. Then the pairing (78) is given by the formula

<[;U, te], [y, ty]> = Z sgn(p1).sgn(p2).sgn(ly).¢(¢p), (80)

p={p1,p2}€xNy
where £, € Bo(X) is the loop in C2(X) given by concatenating:

The tether ¢, from ¢ to a point in x,

A path in x to the intersection point p,

A path in y from p to the endpoint of the tether ¢,
The reverse of the tether ¢, back to co,

the Heisenberg evaluation ¢(¥,,) of this loop (see Corollary 8) detects the contributing
translation in the formula (79), sgu(¢,) € {41, —1} denotes the sign of the induced
permutation in &5 and sgn(p;) € {+1, —1} is given by the sign convention in Fig. 6.

(In fact, there should be an extra global —1 sign on the right-hand side of (80),
which we have suppressed for simplicity. Thus (80) is really a formula for —(78).
This global sign ambiguity does not affect our calculations, since all we need is a
non-degenerate pairing of the form (78), and any non-degenerate pairing multiplied
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cycles representing elements of the homology
groups HBM (C,, (%), 8~ ; Z[H]) (vertical arcs) and

Fig. 6 Sign convention for intersections between /’\ /’\
Hy (Cn(X),0F; Z[H]) (horizontal arcs) ‘ ‘

-1 +1

by a unit is again a non-degenerate pairing. This extra global sign also appears in
Bigelow’s formula [2, page 475, ten lines above Lemma 2.1]. See Appendix A for
further explanations of these signs.)

With this description of (78), it is easy to verify that the matrix

([w(e)], [w(a)])  ([w(@)], [@(B)])  (w(a)], [v(e’, BN)])
( (lw(B)], [w(a)]) — (w@)], [w(B)])  (wB)], [v(a, 5)]) ) € Matg 3(Z[H])
([v(a, B)); [w(e)])  ([o(e, )], [w(B)])  ([v(a, B)], [o(e’, B)])

is the identity; this is the precise sense in which these two 3-tuples of elements are
“dual” to each other.'”

Theorem 47 With respect to the ordered basis (w(«), w(B), v(a, 8)):

(a) The matrix for the isomorphism

To = Co(Ta)x : HZY (C2(2), 07 Z[H]) — HZM (C2(X), 075 Z[H])

(T: n
is

1 w?a®=2 (u='—1)ab~!
M,=| 0 1 0

0 —ab~! 1

(b) The matrix for the isomorphism

Ty = Co(Ty)s « HyM(Co(2), 073 ZIH]) g1y, — HZM (C2(2), 075 Z[H])

is
w272 0 0
My = —u 1 1—ut
—u~ 1 0 b1

19Since we know that w(a), w(B), v(a, B) form a basis for the Z[H]-module HZM (C2(X), 075 Z[H])
, it follows that the elements w(a’), W(B'), v(a’, B') are Z[H]-linearly independent in the Z[H]-module
H5(C2(X), 01; Z[H]). In fact, they form a basis for this Z[H]-module (which is therefore free), by Poin-
caré duality and the compactly-supported cohomology version of Theorem 11.
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Proof Let us simplify the notation for the basis and the corresponding dual homology
classes by

(61,62’63) = (w(a)vw(ﬁ)’v(avﬁ)) (6/176/276;)) = (ﬁ(a’),@(ﬁ’),v(a’,ﬁ')).

Using the non-degenerate pairing (78) and elementary linear algebra, we have that
3
Ca(f)s(er) = ) ej-(Calf)ulen) €f)
j=1

for any f € 9M(X). Computing the matrices M, and M, therefore consists in com-
puting (7, (ei), €;) and (Ty(e;), €}) ford,j € {1,2,3}. We will explain how to com-
pute two of these 18 elements of Z[#], the remaining 16 being left as exercises for
the reader. In each case the idea is the same: apply the Dehn twist to the explicit cycle
(described above) representing the homology class e;, and then use the formula (80)
to compute the pairing.

We begin by computing (7, (e2), e}) = (To(w(B)),w(a')), the top-middle entry
of M,.

(Ta(w(B)),w(c)) =
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Here the grey figure represents the graph of a braid up to vertical isotopy (specifi-
cally, the loop £, from (80)), viewed from above, where the braid is moving down-
wards as we go forwards along the loop. Recall that we concatenate loops from right
to left.

We next calculate (7, (e3), ¢]) = (T (v(a, 8)),w(a’)), the top-right entry of M,.
This is slightly more complicated, since in this case there are two intersection points
in the configuration space C2(X), so we obtain a Heisenberg polynomial (i.e. element
of Z[H]) with two terms.

(Ta(v(e, B)), W(a)) = (v(a, Tu(B)), W(a'))

+ (+1).(=1).(+1).¢ @) @)

=¢(o " ap™) — ¢(af™)
=utabt —ab!

= =1ab "

The other 16 entries of the matrices M, and M; may be computed analogously.
O

Notation 48 To shorten the notation in the following, we will use the abbreviation

A:=HZM(Co(%),Co(2,07 () Z[H]) = HPM (Co(%), 075 Z[H]).

@ Springer



2040 C. Blanchet et al.

Remark 49 (Verifying the braid relation.) Recall that 9t(%, 1) is generated by T, and
T}, subject to the single relation 7,731, = T3, Ty. It must therefore be the case that the
isomorphism

(T“)me);i1 (Tb)m);{l

Ta
AT, o A O S P A A

(Ta) 7'

is equal to the isomorphism

(T0) (3,0 571 (Ta) (232

T
wnmy 2 Anray 2 Aayy — A4

A

in other words, using Lemma 46, we must have the following equality of matrices:
Ma~(Ta)H(Mb)~(TaTb)H(Ma) = Mb'(Tb)H(Ma)'(TbTa)'H(Mb)a (81)

where M, and M, are as in Theorem 47 and the automorphisms (73, )3, (1) € Aut(H)
are extended linearly to automorphisms of Z[#] and thus to automorphisms of matrices
over Z[H). Indeed, one may calculate that both sides of (81) are equal to

0 u2a?b=? 0
—u b 14+ w?—uHNa-—u%?® (1-ut)(1+u3a)|. (82)
0 —ab~ ! —uta?b ! u tab~!

Remark 50 (The Dehn twist around the boundary.) In a similar way, we may compute
the matrix My for the action 7 of the Dehn twist T around the boundary of ¥ ;.
We note that T} lies in the Chillingworth subgroup of 9t(3 1), so its action on H is
trivial and the action 73 is an automorphism

To: A — A

However, to compute its matrix Mpy, it is convenient to decompose Ty into isomor-
phisms as follows. By the 2-chain relation [45, Proposition 4.12], the Dehn twist
Tp decomposes as Tp = (T, Ty)°. If we write s = T,TyT, = T, T, Ty, this becomes
Ts = s*. Then T3 decomposes as

(To),—s (T2),—2 (T) =1 -
AZAS;L s A s M A 2 s As;{l — 5 A

S'H S'H

where 7T, denotes the action of s, given by the matrix (82) above. The matrix My
may therefore be obtained by multiplying together four copies of (82), shifted by the
actions of Id, sy, s3, and s3, respectively. This may be implemented in Sage to show
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that My is equal to the matrix displayed in Fig. 7. More details of these Sage calcula-
tions are given in Appendix C.

One may verify explicitly by hand that, if we set @ = b = u? = 1 in the matrix
Mgy = (Fig. 7), it simplifies to the identity matrix. This is expected, since applying
this specialisation to our representation recovers the second Moriyama representation
(as discussed in Sect. 6; see in particular the quotient (73) of 21(X)-representations),
whose kernel is the Johnson kernel J(2) by [12], which contains T}.

8.2 Higher genus

For arbitrary genus g > 1, we view the surface ¥ = X ; as the quotient of the punc-
tured rectangle depicted in Fig. 8, where the 2g holes are identified in pairs by reflec-
tion. The arcs «;, §; fori € {1,..., g} form a symplectic basis for the first homology
of ¥ relative to the lower edge of the rectangle. By Theorem 11, a basis for the free
Z[H)-module HPM (Co(X),Co(X,07(X)); Z[H]) is given by the homology classes
represented by the 2-cycles

g U}(E) foree {alaﬂ17a25527"'7a97ﬁg}5
o u(d,e)ford,e € {ar,f1,a2,B2,...,a4,0,} Withd < €

where we use the ordering a1 < 81 < ag < --+ < ety < 4. Here w(e) denotes the
subspace of configurations where both points lie on € and v(J, €) denotes the subspace
of configurations where one point lies on each of § and €. As in the genus-1 setting,
we have to be more careful to specify these elements precisely; this is done by choos-
ing, for each of the 2-cycles listed above, a path (called a “tether”) in C5(X) from a
point in the cycle to cg, the base configuration, which is contained in the bottom edge
of the rectangle. Since the space of configurations of two points in the bottom edge of
the rectangle is contractible, it is equivalent to choose a path in C3(X) from a point in
the cycle to any configuration contained in the bottom edge of the rectangle.

For cycles of the form w(e), we may choose tethers exactly as in the genus-1 set-
ting: see the top-left and top-middle of Fig. 5. For cycles of the form v(w;, 5;), we
may also choose tethers exactly as in the genus-1 setting: see the top-right of Fig. 5.
For other cycles of the form v(4, €), we choose tethers as illustrated in Fig. 9.

Exactly as in the genus-1 setting, there is a non-degenerate pairing (78) defined
via Poincaré duality for the 4-manifold-with-boundary C5(X). Associated to the col-
lection of arcs o}, 3] illustrated in Fig. § there are elements of Ho(C2(X), 0T ; Z[H]):
o w(e)fore € {ay, 8], a5,8, ..., ay, By},

o v(d,¢) ford, e € {a), 8], a5, B, ..., ay, By} withd < e

where we use the ordering o} < ] < ap < --- < ay < ;. Here, W(e) is the sub-
space of configurations where one point lies on each of ¢ and e¢~, where ¢, e~
are two parallel, disjoint copies of €. As above, we specify these elements precisely
by choosing tethers (paths in C5(X) from a point on the cycle to a configurations
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(—142u P —u" 2w w5y 14

w2 *a? —ua?b 24 (u?+1-2u" " u 2 4u" a2 2 —uap 4 (u—1)a?b 34 (w2 —u—u"'42u"2—u"3)a?b 24
(wt—u=?)a?p (w3 —u ab 2 (—w?tutu ' —u"2)a?b "3 —u 3024 (—u 34w Nab T4 (u "t —u%)ab 34
(w4 —u"5)ab~? (—14u a3 —u4)a?p ! (—u 2 4u 34w —u"6)ab =24

(—u=4u=ha?

(—u 4w~ T)a?p 14

1 -2 Ao —5_,~6yp—1
18 .is —d =BT, -2 —2 (+u™2—u "2 4u" ) tu%a2p 2 —u "2 4 (w7 —um w2 wTbT 4
—u w3 ou w202 sy, -2 1,3
1 4, 5y —1, _6.2 (w3 —u"Hab" 2+ (—14u" T +u
(u w2 —u w8 a w8 o o a4, e %
(3wt S u~T)a (u™" 20" u ful —u” Da
} (—u 24w 3 u 0w Oat (u O —u%)a%p !
(—u%4u"6)a?
—8_ =546
SEPT  S BT D —u P —u P 4w %)at
R G i e L ( }2“2 j“ f] )a,b_q t "b,2+ (—u ab™ 2 (—u" 2 +u"?)a?b 24
[ P A w2a2p 34 (1mu —u B ab 24 Ty
(vl —utpu%)ab " hu2a%b 4 (-2 g-5)a2p2 —3u~ 4 puT)ab" 4
p . u w2 4w %)a
(—u"3+u"%atu"%a? (curumu=5)a2b- 14 (a2 —uF)a—u—ta? (—u"tpu—2 u”%)a?b 4 (—u"t+u"5)p "2+
(u=? S a0l (—u hu%)a?

Fig.7 The action of the Dehn twist around the boundary of 31 1

Bi Q; 153 o1

Fig.8 The arcs «;, (;, a’i, ,8; and the closed genus-one-separating curve -y

contained in the bottom edge of the rectangle). For elements of the form w(e) or
v(ad, B1), we choose these exactly as in the genus-1 setting; see the bottom row of

Fig. 5. For other elements of the form v(d, €), we choose them as illustrated in Fig. 10.

Remark 51 These choices of tethers may seem a little arbitrary, and indeed they are;
however, any different choice would have the effect simply of changing the chosen
basis for the Heisenberg homology HZM (C5(X), 0~ ; Z[H]) by rescaling each basis
vector by a unit of Z[#]. This would have the effect of conjugating the matrices that
we calculate by an invertible diagonal matrix.

The geometric formula (80) for the non-degenerate pairing (— , —) holds exactly
as in the genus-1 setting, and one may easily verify using this formula that the bases

B ={w(e),v(d,€) | d <ee€{a,...,Bq}}

B = {w(e),v(6,¢) | 6 < e € {a,.... A} (83)

for HPM (Co (%), 07 ; Z[H]) and for Hy(C2(X), 0F; Z[H]) respectively are dual with
respect to this pairing. Choose a total ordering of B as follows:

g ’LU(OQ), w(/Bl)> ’U(O‘I, /81)3
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o v(aq,€) fore=ay,fa,...,a4, By,
g U(Bl,é) fore:a?aﬂ?v"'7a97ﬁgs
e Followed by all other basis elements in any order,

and similarly for . Denote by -y the genus-1 separating curve in 3 pictured in Fig. 8.

Theorem 52 With respect to the ordered bases (83), the matrix for the automorphism
Ty = Ca(T,). of HPM(Co(X), 07 ; Z[H)) is given in block form as

A0 0 0
|0 pI r1I O
My=1\0o q1 sI 0} (84)
0 0 0 I

where A is the 3 x 3 matrix depicted in Fig. 7, the middle two columns and rows
each have width/height 29 — 2 and the Heisenberg polynomials p, ¢, r, s € Z[H] are:

p=—ab ! +u2b"! +u2q,
g=1l—at4+u?2—-ula,
r=a(=b"t+b2+u?—u?1,
s=1-b"t4u2+u2ab"! —u2a,

where we are abbreviating the elements a;, b; € H as a, b respectively.

Proof As in the proof of Theorem 47, this reduces to computing (75 (e;), €}) as e; and
e;- run through the ordered bases (83).

First note that the basis elements come in three types: those entirely supported
in the genus-1 subsurface containing vy (the first three elements), those supported
partially in this subsurface and partially in the complementary genus-(g — 1) subsur-

Fig. 9 More tethers
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Fig. 10 Even more tethers

face (the next 4g — 4 elements) and those supported entirely outside of the genus-1
subsurface (the remaining elements). The Dehn twist 7, does not mix these two
complementary subsurfaces, so M, is a block matrix with respect to this partition.

The top-left 3 x 3 matrix involves only the basis elements w(a1 ), w(B1), v(a1, B1)
and their duals, and so the calculation of this submatrix is identical to the calculation
in genus 1, which is given by the matrix in Fig. 7.

The bottom-right submatrix involves only basis elements supported outside of the
genus-1 subsurface containing -, so the effect of 7 is the identity on these elements.

It remains to calculate the middle (49 — 4) x (4g — 4) submatrix, which records
the effect of 7, on v(aq,€) and v(By,€) for e € {a,...,B,}. Since e Ny = &, we
must have

(v(a1,€)) = pe-v(ai, €) + ge.v(Bi, €)
(v(B1,€)) =rev(ar, €) + sc.v(f1,€)

A A

for some pe, Ge, Te, Se € Z|H]. Precisely, we have

pe = (v(Ty (o), €),v(ah,€))  qe = (v(Ty (1), €),v(B],€))
<’U(T—Y(B1),E)7’U(O/1,€/)> Se = <U(T’Y(5 76 y U Bl? >1

ﬁ
N
Il

where ¢ denotes the dual of ¢, and we have again used the fact that e Ny = &
to rewrite T (v(aq,€)) = v(Ty(a1),Ty(€)) = v(Ty(cm1),€) and similarly for
T (v(aq,€)). From these formulas and (80) it is clear that p,, ¢, e, se do not in fact
depend on €. Indeed, when computing these values of the non-degenerate pairing, we
may ignore one of the two configuration points (the one that starts on the left in the
base configuration and which travels via the arcs € and €), since it contributes neither
to the signs nor to the loops ¢, in the formula (80). We will compute s. = s, leaving
the computation of the other three polynomials as exercises for the reader. In the fol-
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lowing computations, as mentioned above, we ignore one of the two configuration

points, since it does not contribute anything non-trivial to the formula (80).

S = <’U(Tfy(ﬂ1)7 6)7 ’U(/Biv EI»

+¢ /O

(5 intersection points: 1, ...

,$5)

+¢ | Q ﬁ 3
| \ -

=6( ) - ¢(o pa~ p ap " 0" Bap o) + ¢(o " o faf o)

+o(c af a7 fafT o) — ¢(07 B o)

=1-b'4+u2+u2ab ' —u2a.
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Appendix A: Signs in the intersection pairing formula

Here we explain the signs appearing in the formula (80) for the intersection pairing
on the homology of 2-point configuration spaces, including the extra global —1 sign
that was suppressed in (80) (see the comment in the paragraph below the formula).

We take the viewpoint that an orientation o of a d-dimensional smooth manifold
M is given by a consistent choice of vector o(p) € AT, M for all p € M. We either
choose a metric on the bundle AT'M and require o(p) to be a unit vector with respect
to this metric, or we consider o(p) up to rescaling by positive real numbers.

Let us fix an orientation ox; for the surface X. This determines an orientation
o¢,(x) of the configuration space C2(X) by setting

oc, () ({p1,p2}) = 0s(p1) A os(p2).
Recall that we have 2-dimensional submanifolds x and y of C2 (%) that intersect trans-
versely, and let p = {p1, p2} be a point of x N y. Let v, w be the tangent vectors at p;

and let v, w’ be the tangent vectors at ps illustrated in Fig. 11. We have

v Aw = sgn(p1).ox(p1)
v' Aw' = sgn(p2).os(p2),

where sgn(p;) is the sign of the intersection of the arcs in 3 underlying x and y at p;.
Similarly, we have

02(p) A 0y (p) = sgn(p).oc,(s)(p);
where sgn(p) is the sign that we are trying to compute: the sign of the intersection of

x and y in the configuration space. The orientations of x and y depend on the tethers
t., ty that have been chosen. Precisely, we have

o= (73 ) o= 3

where the possibilities ((x), (x)) or ((1), (f)) occur if sgn(¢,) = +1 and the possi-
bilities ((x), (1)) or ((1), (x)) occur if sgn(¢,) = —1. We therefore have

00(p) N oy (p) = sgn(£,)-(v A') A (w A u).

Putting this together with the formulas above, we obtain
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Fig. 11 Choices of tangent vectors from the computation of the sign of the intersection of x and y at
p={p1,p2} € C2(¥)

.0z (p1) A ox(p2)

.0c, () (P)

sgn(p).oz(p) A oy(p)
sgn(p).sgu(fy).(v AV ) A (w Aw')
sgn(ps).sgn(p).sgn(fy).(v Aw) A (v Aw'),

T
| &
=
T =
=3 3
=

S

~_~ N

and hence we have

sgn(p) = —sgn(p1).sgn(pz).sgn(fp).

Appendix B: Universal coefficient spectral sequence arguments

As noted in Remark 15, the general case of Theorem 11 (both for Borel-Moore
homology and for compactly-supported cohomology) may be deduced from the
result for Borel-Moore homology for a specific choice of V. The purpose of this
appendix is to explain precisely how this may be done, using some slightly delicate
universal coefficient spectral sequence arguments that are abstracted in Lemma 53
below, and which are similar to the argument of [46, Appendix A].

In this lemma, we interpret local coefficient systems on a space X as actions of
71(X) on (bi)modules, or equivalently as (bi)modules over the group ring of 1 (X).
The 71 (X )-action should be on the left for homology local coefficients and on the
right for cohomology local coefficients. Thus each (R[r(X)], S)-module V deter-
mines (R, S)-bimodules HPM (X; V) and each (R, S[r1(X)])-module W determines
(R, S)-bimodules H*(X;W). In particular, we note that HZM (X; R[r1(X)]) has
the structure of an (R, R[71(X)])-bimodule, since V = R[m(X)] is both a left and
right module over itself.

Lemma 53 Let X be a based, path-connected space admitting a universal cover. Sup-

pose that there is a sequence of natural numbers dy, such that, for any unital ring R
and each k > 0, there are isomorphisms

HM (X5 Rmy (X)]) = Rlmy (X)) (85)

@ Springer



2048 C. Blanchet et al.

of (R, R[m;(X)])-bimodules. Then we have isomorphisms
HPM(X; V)= Veh  and  HF(X; W) = W% (86)

of (R, S)-bimodules for any unital rings R, S, any (R[r;(X)], S)-bimodule ¥ and
(R, S[m;(X)])-bimodule W. The same is true for Borel-Moore homology and com-
pactly-supported cohomology relative to a subspace A C X.

Proof Twisted Borel-Moore homology and twisted compactly-supported cohomol-
ogy may both be computed using the complex of horizontally locally finite chains
SME(X; R), where 7 : X — X is the universal covering of X. A k-dimensional hori-
zontally locally finite chain is a formal sum ), A;s; with \; € R and s; : AF 5 X
such that each point z € X has an open neighbourhood U such that 7=1(U) inter-
sects only finitely many of the s;(A*). Note that if 71 (X) is finite (in other words
m: X — X is a finite-sheeted covering), this is the same as the complex of locally
finite chains on X, but when 71 (X) is infinite it is a proper subcomplex. For any
(R[m1(X)], S)-bimodule ¥ and (R, S[m1(X)])-bimodule W, we have (R, S)-bimod-
ule isomorphisms:

HPM(X; V)~ H, (Sflf()?; R) ®Rir, (x)) V)
HE (X3 W) 2 . (Homgpr, () (SE(X:9), W) ).
Since 71 (X) acts freely on X, the chain complex SM(X; R) is free over R[m1 (X))

in each degree. Applying the algebraic universal coefficient theorem (see [47,
Ch. XVII] or [48, Thm. 2.3]), we get spectral sequences of (R, S)-bimodules:

B2 = TorHm X (HBM (X R[ry (X)), V) = HPM(X;V)

1
Ep" = Ext§ . v (HZY (X S[m(X)), W) = H(X;W)

Assumption (85) implies that E2 = 0 = E4* for ¢ > 0, so these spectral sequences
degenerate to isomorphisms of (R, S)-bimodules:
HM(X3V) 2 Rlm (X)) @i, ) V 2 V"
HE(X; W) = Homglr, (x)) (S[r1 (X)] 9%, W) = W&,

The analogous result for Borel-Moore homology and compactly-supported cohomol-
ogy relative to a subspace A C X follows by exactly the same argument if we first

replace the chain complex Si‘lf()? ; R) with its quotient by the subcomplex consisting
of those horizontally locally finite chains Y, A;s; with s;(A*) C 7= 1(A). O
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ProofofTheorem 11 assumingthatitholdsinaspecial case Letusassume thatthe Borel—
Moore homology version of Theorem 11 holds when V = S = R[m;(C,(%))].1!
Lemma 53 then immediately implies the general result for Borel-Moore homology
(resp. for compactly-supported cohomology) with coefficients in any left (resp. right)
representation ¥ of 71 (C,, (X)) (in particular, for those that factor through the quotient
onto the Heisenberg group H). (I

Appendix C: Sage computations

Here we give the worksheet of the Sage computations used in the calculation of the matrix V5 displayed
in Fig. 7 (cf. Remark 50).

[1]: load("HeisLatex_.sage") #available on demand

[2]: # R is the centre of Heisenberg group ring
R.<u>= LaurentPolynomialRing(ZZ,1)

[31: | # H is Heisenberg group ring
H = Heis(base=R, category=Rings())

[4]: a=H(dict({(1,0):1})) #generator (0,a)
b=H(dict ({(0,1):1}))
am=H(dict({(-1,0):1})) #inverse generators
bm=H(dict ({(0,-1):1}))

[5]:  a*b-u~2%b*a #check relation
[5]: 0

[6]: # a->a , b -> ba"-1 (T_a action on H)
def Ha(h:HeisEl):
dO=h.d
h1=HQO
for k in dO:
i=k[0]
j=k[1]
hi+= H({(i-j,}) :d0 kI *u~ (G* (G+1)})
return hil
def MHa(M): # same on matrices
Mi=matrix(H,3)

' Recall from Remark 12 that Theorem 11 for Borel-Moore homology is true (with the same proof) when

V' is any left representation of BH(E) =T (Cn (E)), not necessarily factoring through the quotient
onto the Heisenberg group .
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[7]: # a-
def

def

for i in range(3):
for j in range(3):
M1[i,jl=Ha(M[i,]])
return M1

>a , b -> ba (T_a"-1 action on H)
Ham(h:HeisEl):
dOo=h.d
h1=H(Q)
for k in dO:

i=k[0]

j=k[1]

hi+= H({(i+j,j) :d0[k]*u~(-j*(G+1O})
return hl
MHam(M) : # same on matrices
Mi=matrix(H,3)
for i in range(3):

for j in range(3):

M1[i,j]=Ham(M[i,j1)

return M1

[8]: Ha(b)

[8]: (u"2
[9]: Ham(
[9]: (Da

[10]:  # a-
def

def

[11]: def

@ Springer

)a~-1b~1
Ha(am~2*b~3))
~-2b"3

>ba , b -> b (T_b action on H)
Hb(h:HeisEl):
do=h.d
h1=H(Q)
for k in dO:

i=k[0]

j=k[1]

hi+= H({(i,i+j):d0[k]*u~(-i*(i+1))})
return hl
MHb(M): # same on matrices
Mi=matrix(H,3)
for i in range(3):

for j in range(3):

M1[i,j1=Hb(M[i,]]1)

return M1

Hbm(h:HeisEl): #7_b~-1 action on H
dO=h.d
hi1=H()
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[12]:

[12]:

[13]:

[13]:

[14]:

[15]:

[16]:

def

for k in dO:

i=k[0]

3=k[1]

hi+= H({(i,-i+j) :dO[K]*u~(i*(i+1))})
return hl
MHbm(M) : # same on matrices
Mi=matrix(H,3)
for i in range(3):

for j in range(3):

M1[i,jl=Hbm(M[i,jl)

return M1

Hb(a)

(u~-

2)a"1b~1

Hbm (Hb (am~3+b~2) )

(1)a~-3b"2
def Hab(h): #other actions
return Ha(Hb(h))
def Hba(h):
return Hb(Ha(h))
def Haba(h):
return Ha(Hba(h))
def Hbab(h):
return Hb(Hab(h))
def Hs(h):

def

def

def

def

def

def

return(Haba (Haba (h)))

MHab (M) : #same on matrices
return MHa(MHb(M))

MHba (M) :

return MHb(MHa(M))

MHaba (M) :

return MHa(MHba(M))

MHbab (M) :

return MHb(MHab(M))

MHs (M) :

return(MHaba (MHaba (M) ) )

Habm(h) : #other actions
return Hbm(Ham(h))

Hbam(h) :

return Ham(Hbm(h))

Habam(h) :

return Ham(Habm(h))
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def Hbabm(h):
return Hbm(Hbam(h))
def Hsm(h):
return (Habam(Habam(h)))

[17]: def MHabm(M): #same on matrices

return MHbm(MHam(M))

def MHbam(M) :
return MHam(MHbm(M) )

def MHabam(M) :
return MHam(MHabm(M))

def MHbabm(M) :
return MHbm(MHbam(M))

def MHsm(M):
return (MHabam(MHabam (M) ) )

[18]: Ma=matrix([[H(1),u"2*a”(2)*bm~2, (H(u~(-1))-H(1))*a*bm],
[H(0) ,H(1),H(0)], [H(0) ,H(-1)*a*bm,H(1)]1])

[19]:  %display latex
Ma #Ta action

[19]:

1 w?a?? (—14+u Hald!
0 1 0
0 —a'd! 1

[20]: Mb=matrix([[H(u"(-2))*bm~2,H(0),H(0)], [H(-u~(-1)),H(1) ,H({1-u~(-1))],
[H(-u~(~1))*bm,H(0) ,bm]])

w272 0 0
—u~t 1 1—ut
—u~ 0 b=t

[22]: MHa(Mb) # Ta shifted action of Tb

a’h™? 0 0
—u b 1 1—ut
—u"ta'b™! 0 a'b~!

[23]: MHb(Ma) #Tb shifted action of Ta

[21]: | Mb #Tb action

[21]:

[22]:

[23]:
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[24]: MHab(Ma) #TaTb shifted action of Ta

[24] :

[25] :

[25]:

[26]:

[26]:

[27]:

[27]:

[28]:

[28]:

[29]:

[30] :

[30]:

[31]:

[31]:

1 w*a® (—u?+u3)al
0 1 0
0 —uZa! 1

MHba(Mb) #TbTa shifted action of Tb

u=%a% 0 0
—u ' 1 1—u!
—u"%al 0 w7 ?at

X=Ma*MHa (Mb) *MHab(Ma) #action of TaTbTa

X

0 u?a?b=? 0
—u™l —uP@? 4+ 14 (—u 24 u)al (u—ual 1wt
0 —a'b! —u a2 ! utalp!

Y=Mb*MHb (Ma) *MHba (Mb) #action of TbTaTb

Y

0 u?a?b=? 0
—ul —ua? 1+ (—u et 1—u 4 (T —u el
0 —u"la?bt —alp? ulalbt

X-Y #check braid relation TalbTa=TbTaTd

o o o
o O O
o o O

Z=X*MHaba (X) #action of (TaTbTa) 2

Z[:,0]

z[:,1]

# first column

—ua’b—?
u % + —ut + (v —u)al
utatbt 4 u 2?7t

—u3a? +u?a?b7 2 + (-1 +u Ha?b!
—u? + —u%a? + 1+ (—u 2 +u et + (—uT2 + um3)bt 4 (—u® + u%)ald?
uPalb! —a'b + —uta?b 7 4+ (u? —u)al + —uta?
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[321: Z[:,2]
[32]:
ut “2)a?b7 + (u? — u)a?b?
(w3 =™+ (uw C—uNab + (—u P +u e+ 1 —u 4 (—ur 4 203 —u el
(—u3 +uMa' +uPa® + (=1 +uVad™ + (—u"t +u2)a?b !
[33]: | ZZ=Z*MHs(Z) #action of Tc=(TaTbTa)"4

[34]: | zz[:,0]

[34]:
w82 t w42 4 —ua2b=2 4 (vl —w=2)a2p 1 4 (w3 —u—h)ale—2 4 (u—4 —5)alp—1
( —uml— w8 o o T r w2072 p et w2 —wmt Sy e pw%a? 4w wmd ~Tyal )
—uCa=1p 1 p (w8 p ot T —ud g w — e 5)ale ! pw2a2p ) 4 (cu 3 4w 6)al 4 u5a2

[35]: ZZ[:,1]

[35]:

w2+t -2t pu 2 puHa2e 2 4 —wa2 b (—u2 fudut —u2)a2e 8 w82 p (1wl B

B T i R T el

b2 4 (w3 = u’:)u‘zﬁQ (=14 u—

tum? — 208 p T w0~ Tyalp Tl —u a2 (w2 p w3 w T —w6)al 4
(-1—u2 42073 —u0)alp1 fuTlalp 3 1 w2023 f 1 —w "l w3 puHalem2 4w - u’f +u—5)a2p—2
Fl—u b um? w5 a2l f (w2~ wB)al 4 —u—ta2
[36]: ZZ[:,2]
[36]:
(—142e7t w2 m w4 w2 b - 1)a2 T3 (W —w - w2072 - w)a2em 2 4 (—u I fuhal L
Fum? = w5 alb 3 4 (w2 w8 p w8~ 6)alb T2 4 (w8 fuY)a?
O e T O L i L e e L e B S SR Ak T Ty
+u—6 +(~u"2 203 —umt p S O pu el 4 (w2 w3 (1w b w8 —wma (w8 6)a?

w3 4 (w2 w3 w5 4 u6)al 4 (—u —u5 4 u0)alp—2 4 (— +u"3)a2p 7+(;J+‘u 2073 —3u~4 4 u=T)alp—1

- w2 —w P wm%a2 (w2 (w2 B w0 (—ut  uB)a2

[37]:  ZZ*Ma-Ma*MHa(ZZ) # check that Tc is central

[37]:

[38]: ZZ*Mb-Mb*MHb(ZZ)

[38]:
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