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Abstract
Motivated by the Lawrence–Krammer–Bigelow representations of the classical 
braid groups, we study the homology of unordered configurations in an orientable 
genus-g surface with one boundary component, over non-commutative local sys-
tems defined from representations of the discrete Heisenberg group. Mapping class-
es act on the local systems and for a general representation of the Heisenberg group 
we obtain a representation of the mapping class group that is twisted by this action. 
For the linearisation of the affine translation action of the Heisenberg group we ob-
tain a genuine, untwisted representation of the mapping class group. In the case of 
the generic Schrödinger representation, by composing with a Stone-von Neumann 
isomorphism we obtain a projective representation by bounded operators on a Hil-
bert space, which lifts to a representation of the stably universal central extension 
of the mapping class group. We also discuss the finite dimensional Schrödinger 
representations, especially in the even case. Based on a natural intersection pairing, 
we show that our representations preserve a sesquilinear form.
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C. Blanchet et al.

1  Introduction

The braid group Bm was defined by Artin in terms of geometric braids in R3; equiva-
lently, it is the fundamental group of the configuration space Cm(R2) of m unordered 
points in the plane. Another equivalent description is as the mapping class group 
M(Dm) = Diff(Dm, S1)/Diff0(Dm, S1) of the closed 2-disc with m interior points 
removed. (The mapping class group of a surface is the group of isotopy classes of 
self-diffeomorphisms fixing the boundary pointwise.)

There is also a natural action of Diff(Dm, S1) on configuration spaces Cn(Dm); 
considering the induced action on the homology of these configuration spaces, Law-
rence [1] defined a representation of Bm for each n ⩾ 1. The n = 2 version is known 
as the Lawrence-Krammer-Bigelow representation, and a celebrated result of Bigelow 
[2] and Krammer [3] states that this representation of Bm is faithful, i.e. injective.

On the other hand, for almost all other surfaces Σ, the question of whether the 
mapping class group M(Σ) admits a faithful, finite-dimensional representation over 
a field (whether it is linear) is open. The mapping class group of the torus is SL2(Z), 
which is evidently linear, and the mapping class group of the closed orientable sur-
face of genus 2 was shown to be linear by Bigelow and Budney [4], as a corollary of 
the linearity of B5. However, nothing is known in genus g ⩾ 3.

Our programme is to study the action of the positive-genus and connected-bound-
ary mapping class groups M(Σg,1) on the homology of the configuration spaces 
Cn(Σg,1), equipped with local systems that are similar to the Lawrence-Krammer-
Bigelow construction. We first argue that abelian local systems would not retain 
enough information, in the sense that they cannot faithfully encode the “writhe” of 
loops of configurations. In general, for any surface Σ and n ⩾ 2, the abelianisation 
of π1(Cn(Σ)) is canonically isomorphic to H1(Σ) × C, where C is a cyclic group of 
order ∞ if Σ is planar (embeds into R2), of order 2n − 2 if Σ = S2 and of order 2 in 
all other cases (see for example [5, Proposition 6.32]). In the case Σ = Dm, the abe-
lianisation is Zm × Z, and the Lawrence representations are defined using the local 
system given by the quotient π1(Cn(Dm)) ↠ Zm × Z ↠ Z × Z, where the second 
map is addition of the first m factors. However, in the non-planar case (in particular 
if Σ = Σg,1), we lose information by passing to the abelianisation, since the cyclic 
factor C– which counts the self-winding or “writhe” of a loop of configurations– has 
order 2 rather than order ∞.

To obtain a better analogue of the Lawrence representations in the set-
ting Σ = Σg,1 for g > 0, we consider instead a larger, non-abelian quotient of 
π1(Cn(Σ)), which is isomorphic to the discrete Heisenberg group H = H(Σ), 
defined as the central extension of the first homology H = H1(Σ,Z) associated to 
the intersection 2-cocycle, which concretely means H = Z × H  as a set, with group 
law (k, x)(l, y) = (k + l + x.y, x + y). This is a 2-nilpotent group that arises very 
naturally as a quotient of the surface braid group π1(Cn(Σ)) by forcing a single ele-
ment to be central. It may also be realised concretely as a group of (g + 2) × (g + 2) 
matrices, as explained in Remark 6 below. In the case n ⩾ 3 it is known by [6] to be 
the 2-nilpotentisation of the surface braid group (in fact it is the maximal nilpotent 
quotient of the surface braid group), but for n = 2 it differs from the 2-nilpotentisa-
tion. A key property of this Heisenberg quotient is that it still detects the self-winding 
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(or “writhe”) of a loop of configurations without reducing modulo two. Any repre-
sentation V of the discrete Heisenberg group H(Σ) defines a local system on the 
configuration space Cn(Σ).

An and Ko studied in [7] extensions of the Lawrence–Krammer–Bigelow repre-
sentations to homological representations of surface braid groups; see also [8]. Their 
purpose was to extend the homological representation of the classical braid group to 
some homology of configurations in an n-punctured surface and produce representa-
tions of the surface braid groups. In our case the surface has no punctures, and the 
goal is to represent the full mapping class group. Our constructions based on the 
Heisenberg quotient of the surface braid group have a similar flavour but are signifi-
cantly simpler; moreover we obtain strong improvements by specialising to explicit 
representations.

We speculate about faithfulness results for our representations and linearity results 
for the mapping class group. This would involve two steps. 

1.	 Prove that the action on the homology of the Heisenberg covering space of Cn(Σ) 
is faithful. Following Bigelow’s strategy, this would follow from a key lemma 
showing that an algebraic intersection form on homology detects the geometric 
intersection of curves on the surface.

2.	 Find a good finite-dimensional representation of the Heisenberg group that 
retains faithfulness.

It was shown in [9, 10] that the adjoint representation of quantum sl(2) at roots of 1 
has a topological realisation as homology of configurations with local coefficients in 
the once-punctured torus. Following this programme, De Renzi and Martel [11] have 
recently produced a homological model for non-semisimple TQFT representations 
derived from quantum sl(2). They use the local system on surface configurations 
given by the Schrödinger representation at an odd root of 1, which is a special case in 
our construction. We believe that our work contributes to a promising programme for 
topological interpretations of quantum constructions and possible classical construc-
tions of quantum invariants and TQFTs.

Notation 1  Henceforth we will use the abbreviation Σ = Σg,1 for an integer g ⩾ 1.

General representations. Our first main result is a calculation of a Borel–Moore 
relative homology group with coefficients twisted by any representation of the 
Heisenberg group, together with a twisted action of the mapping class group. In the 
following, HBM

∗  denotes Borel–Moore homology and Cn(Σ, ∂−(Σ)) is the properly 
embedded subspace of Cn(Σ) consisting of all configurations intersecting a given 
closed arc ∂−Σ ⊂ ∂Σ. The twisted action is formulated as a representation of an 
action groupoid. The key point is that the mapping class group acts on the Heisenberg 
group, which induces an action on our local systems. We denote by fH ∈ Aut(H) the 
automorphism induced by f ∈ M(Σ). For a left representation ρ : H → GL(V ) and 
τ ∈ Aut(H), the τ -twisted representation ρ ◦ τ  is denoted by τV .
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Theorem A  (Theorems 11 and 23) Let n ⩾ 2 , g ⩾ 1  and let V be a left representation 
of the discrete Heisenberg group H = H(Σ) in (R, S)-bimodules, for unital rings R 
and S.

(a) The Borel–Moore homology H BM
n (Cn(Σ), Cn(Σ , ∂−(Σ)); V ) is isomorphic, 

as an (R, S)-bimodule, to the direct sum of 
(

2g+n−1
n

)
 copies of V. Furthermore, it is the 

only non-zero bimodule in the graded bimodule H BM
∗ (Cn(Σ), Cn(Σ , ∂−(Σ)); V ). The 

corresponding statements are also true if Borel–Moore homology H BM
∗  is replaced 

with compactly-supported cohomology H ∗
c .

(b) There is a natural twisted representation of the mapping class group M(Σ) on 
the collection of (R, S)-bimodules

	 HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ)); τV

)
τ ∈ Aut(H)

where the action of f ∈ M(Σ) is

	 Cn(f)∗ : HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ)); τ◦fHV

)
−→ HBM

n

(
Cn(Σ), Cn(Σ, ∂−(Σ)); τV

)
.� (1)

Remark 2  The case of a trivial representation of H is already something interesting; 
indeed, connecting with Moriyama’s work [12], we show that the Johnson filtration 
is recovered; see Sect. 6.

Remark 3  The Heisenberg group H(Σ) can be realised as a group of (g + 2) × (g + 2) 
matrices (see Remark  6); this gives a (g + 2)-dimensional representation, which 
we refer to as its tautological representation. We then obtain, for each n ⩾ 2, a 
family of twisted representations with polynomially growing dimension equal to 
(g + 2)

(
2g+n−1

n

)
.

The linearised translation action.
The discrete Heisenberg group H has a natural affine structure over Z for which 

the left translation action H ↷ H is by affine automorphisms. The linearisation func-
tor, from the category of affine spaces over Z to the category of Z-modules, applied 
to this affine action, gives a representation L = H ⊕ Z ∼= Z2g+2 of H over Z. A key 
feature of this representation is that, for an automorphism τ  of H, the twisted repre-
sentation τ L is canonically isomorphic to L. We deduce a genuine (i.e. untwisted) 
representation of the mapping class group.

Theorem B  (Theorem 26) For each n ⩾ 2  and g ⩾ 1  there is a representation of the 
mapping class group M(Σ) on the free Z-module of rank (2g + 2 )

(
2g+n−1

n

)
,

	 HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ)); L

)
.� (2)

The Schrödinger representation.
The centre of the real Heisenberg group HR(Σ) is one-dimensional, and acts by 

scalars on the Hilbert space W = L2(Rg) by t �→ eitℏ/2, where ℏ is a fixed non-
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zero real number (the Planck constant, for physicists). The famous Stone-von Neu-
mann Theorem (see for example [13, page 19], recalled as Theorem  27 below) 
states that there is, up to isomorphism, a unique irreducible unitary representation 
of HR(Σ) on W extending this action of its centre; this is the Schrödinger represen-
tation. We also denote by W this representation restricted to the discrete subgroup 
H = H(Σ) ⊂ HR(Σ). It depends on the parameter ℏ, so that we have a continuous 
family of Schrödinger representations W = W (ℏ). For τ ∈ Aut(H) the twisted rep-
resentation τ W  is isomorphic to W as a unitary representation and this isomorphism 
is unique up to a unit complex number. Using such isomorphisms we may identify the 
twisted local system with the original one and obtain an untwisted representation of 
the mapping class group to the projective group of bounded operators on the homol-
ogy with local coefficients W. Here, the Hilbert structure on homology is specified by 
a choice of CW-complex structure. We build a linear lift of this projective action to 
the stably universal central extension M̃(Σ).

Theorem C  (Theorem 38) For each n ⩾ 2  and g ⩾ 1  there is a representation of 
M̃(Σ) on the complex Hilbert space

	 Vn = HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ)); W

)
� (3)

by bounded operators, which lifts the natural projective action of M(Σ).
The group M̃(Σ) on which we construct our linear representation is a central 

extension of the mapping class group M(Σ) of the form:

	 0 → Z −→ M̃(Σ) −→ M(Σ) → 1,� (4)

and is the stably universal central extension of M(Σ), which we explain next.
The stably universal central extension.
A group G has a universal central extension (an initial object in the category 

of central extensions of G) if and only if H1(G;Z) = 0, and it is of the form 
0 → H2(G;Z) → G̃ → G → 1 when it exists (see [14, Theorem 6.9.5]). For genus 
g ⩾ 4, we have H1(M(Σg,1);Z) = 0 and H2(M(Σg,1);Z) ∼= Z (see [15, Theorems 
5.1 and 6.1]). Moreover, there are natural inclusion maps

	 M(Σ1,1) −→ M(Σ2,1) −→ · · · −→ M(Σg,1) −→ M(Σg+1,1) −→ · · · ,� (5)

which induce isomorphisms on H1(−;Z) and H2(−;Z) for g ⩾ 4 (by homologi-
cal stability for mapping class groups of surfaces, due originally to Harer [16]; see 
[17, Theorem 1.1] for the optimal stability range). This implies that, for g ⩾ 4, the 
pullback along (5) of the universal central extension of M(Σg+1,1) to M(Σg,1) is 
the universal central extension of M(Σg,1). Hence we may define, for all g ⩾ 1, the 
stably universal central extension of M(Σg,1) to be the pullback along (5) of the 
universal central extension of M(Σh,1) for any h ⩾ max(g, 4).
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A finite-dimensional Schrödinger representation. When the parameter ℏ control-
ling the action of the centre is 2π times a rational number, the discrete Heisenberg 
group has finite-dimensional Schrödinger representations, which may be realised 
either by theta functions, by induction or by an abelian TQFT. For a positive even 
integer N, we will follow [18–20], which connect nicely the different approaches 
when ℏ = 2π

N . We denote by WN = L2((Z/N)g) the Ng-dimensional representation 
that is the unique unitary irreducible representation of the finite quotient HN = H/IN  
of H by the normal subgroup IN = {(2Nk, Nx) | k ∈ Z, x ∈ H} ⊂ H = Z × H , 
where each central element (k, 0) acts by e iπk

N . The analogue of the Stone-von Neu-
mann Theorem in this context [19, Theorem 2.4] allows us to construct an untwisted 
representation of a finite-index subgroup of the mapping class group to a projective 
linear group. We identify this subgroup as the stabiliser subgroup M(Σ, q0) for the 
spin structure represented by the quadratic form q0 : H1(Σ;Z/2) → Z/2 that is zero 
on the preferred basis.

Theorem D  (Theorem 39) For each g ⩾ 1 , n ⩾ 2  and N ⩾ 2  with N even, there is 
a complex projective representation of M(Σ , q0 ) on the 

(
2g+n−1

n

)
N g-dimensional 

complex Hilbert space

	 VN,n = HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ)); WN

)
� (6)

Remark 4  A similar construction for odd N is used in [11]. In this case 
the Stone-von Neumann Theorem applies to the quotient HN = H/IN , 
IN = {(Nk, Nx) | k ∈ Z, x ∈ H} ⊂ H = Z × H , and produces a projective action 
of the full mapping class group on the homology spaces VN,n.

For any complex vector space V, the adjoint action of GL(V) on EndC(V ) induces 
a canonical embedding PGL(V ) ↪→ GL(EndC(V )). Applying this to the natural 
projective action M(Σ) → PGL(VN,n) for odd N, we obtain an untwisted complex 
representation

	 M(Σ) −→ GL(EndC(VN,n))� (7)

of dimension 
(

2g+n−1
n

)2
N2g . Because PGL(VN,n) ↪→ GL(EndC(VN,n)) is injec-

tive, we see that:

Observation 5  Injectivity of the representation (7) is equivalent to injectivity of 
the projective representation M(Σ) → PGL(VN ,n). Thus a proof of injectivity of 
M(Σ) → PGL(VN ,n) for any (N, n) with N , n ⩾ 2  and N odd would imply that the 
mapping class group M(Σ) is linear. The same observation holds for N even, with 
M(Σ) replaced by its finite-index subgroup M(Σ , q0 ).

Unitarity.
When using a Hilbert space as local coefficients, although a CW-complex struc-

ture can be used to specify a Hilbert structure on (cellular) homology, it is not true 
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that mapping classes will act as unitary operators on cellular chains. This is due to the 
fact that the cellular approximation theorem produces a homotopic map that may fail 
to be a homeomorphism. It is nevertheless possible to find a kind of unitarity property 
similar to the one stated for the Burau and Gassner representations in [21, 22]. We 
will state this as the property that a certain perfect sesquilinear form on homology is 
preserved; see Sect. 5.5, in particular Proposition 40.

Kernels.
To describe an upper bound on the kernels of our representations, we first recall 

the Johnson filtration of the mapping class group.
The mapping class group M(Σ) acts naturally on the fundamental group 

π1(Σ) =: Γ1 of the surface. Denote by Γi, i ⩾ 2, the subgroups of the lower central 
series defined recursively by Γi := [Γ1, Γi−1]. Each term of the lower central series 
of a group is fully invariant, so there is a well-defined induced action of M(Σ) on the 
quotient π1(Σ)/Γi+1, which is the largest (i + 1)-step nilpotent quotient of π1(Σ). 
The Johnson filtration J(∗) is then defined by setting J(i) to be the kernel of this 
induced action. Thus J(0) is the whole mapping class group and J(1) is the Torelli 
group. The intersection of all terms in the filtration is trivial, i.e., it is an exhaustive 
filtration of the mapping class group [23].

One may also consider the induced action of the mapping class group M(Σ) on 
the universal metabelian quotient π1(Σ)/π1(Σ)(2) of the fundamental group of the 
surface (the quotient by its second derived subgroup); its kernel is the Magnus kernel 
of M(Σ), which we denote by Mag(Σ) ⊆ M(Σ). In Sect.  6 (Proposition  44) we 
prove:

Proposition E  (Proposition 44) For each n ⩾ 2 , g ⩾ 1 , considering the regular rep-
resentation V = Z[H] of the discrete Heisenberg group H = H(Σ), the kernel of the 
representation constructed in Theorem A is contained in J(n) ∩ Mag(Σ).

Computability.
We emphasise that our representations are explicit and computable. First, the 

underlying (R, S)-bimodule in Theorem A is a direct sum of finitely many copies of 
the (R, S)-bimodule V that underlies the chosen representation of the discrete Heisen-
berg group H(Σ). This is Theorem A(a); an explicit basis is described in Theorem 11.

Moreover, the actions of elements of the mapping class group on the canonical 
basis provided by Theorem  11 may be explicitly computed. To demonstrate this, 
we calculate in Sect.  7 explicit matrices for our representations in the case when 
n = 2 and V = Z[H] is the regular representation of H = H(Σ). For example, when 
g = 1, the Dehn twist around the boundary of Σ1,1 acts by the 3 × 3 matrix over 
Z[H] = Z[u±1]⟨a±1, b±1⟩/(ab = u2ba) depicted in Fig. 7.

Outline.
In Sect. 1 we define and study the quotient H of the surface braid group. In Sect. 2 

we study the Borel–Moore homology with local coefficients of configuration spaces 
on Σ, proving Theorem A(a) and showing in particular that, with coefficients in 
V = Z[H], it is a free module with an explicit free generating set. Next, in Sect. 3, we 
show that the action of the mapping class group on the surface braid group descends 
to the Heisenberg quotient H.
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In Sect. 4 we construct twisted representations (Theorem A(b)) of the full mapping 
class group, as well as the untwisted representations associated to the linearised trans-
lation action L = H ⊕ Z (Theorem B). In Sect. 5 we prove Theorems C and D for 
the Schrödinger representation of H and its finite-dimensional analogues. In Sect. 6 
we discuss connections with the Moriyama and Magnus representations of mapping 
class groups and deduce that the kernels of our twisted representations of M(Σ) from 
Theorem A, with coefficients in V = Z[H], are contained in the intersection of the 
Johnson filtration with the Magnus kernel.

In Sect. 7 we explain how to compute explicit matrices for our representations 
with respect to the free basis coming from Sect. 2. We carry out this computation 
in the case of configurations of n = 2 points and where V = Z[H] is the regular 
representation of H; this special case of our construction is a direct analogue of the 
Lawrence–Krammer–Bigelow representations of the braid groups.

The first version of this paper also contained further results about untwisted rep-
resentations of subgroups of the mapping class group on Heisenberg homology. In 
order to improve readability, we have moved this part to a separate article [24].

2  A non-commutative local system on configuration spaces of 
surfaces

Let Σ = Σg,1 be a compact, connected, orientable surface of genus g ⩾ 1 with one 
boundary component. For n ⩾ 2, the n-point unordered configuration space of Σ is

	 Cn(Σ) = {{c1, c2, . . . , cn} ⊂ Σ | ci ̸= cj for i ̸= j},

topologised as a quotient of a subspace of Σn. The surface braid group Bn(Σ) is then 
defined as Bn(Σ) = π1(Cn(Σ)). We will use the presentation of this group given by 
Bellingeri and Godelle [25], which in turn follows from Bellingeri’s presentation 
[26]. We fix based loops, α1, . . . , αg, β1, . . . , βg on Σ, as depicted in Fig. 1. The 
basepoint ∗1 on Σ belongs to the base configuration ∗ in Cn(Σ). We use the same 

Fig. 1  Model surface; inner circles are identified in pairs according to the dotted arcs
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notation αr, βr for the π1-type generators of Bn(Σ), which are loops in Cn(Σ) where 
only the first point moves.

The braid group Bn(Σ) has generators α1, . . . , αg , β1, . . . , βg, together with the 
classical braid generators σ1, . . . , σn−1 obtained from embedding a disc around the 
base configuration, and relations:

	





(BR1) [σi, σj ] = 1 for |i − j| ⩾ 2,
(BR2) σiσjσi = σjσiσj for |i − j| = 1,
(CR1) [αr, σi] = [βr, σi] = 1 for i > 1 and all r,
(CR2) [αr, σ1αrσ1] = [βr, σ1βrσ1] = 1 for all r,
(CR3) [αr, σ−1

1 αsσ1] = [αr, σ−1
1 βsσ1] =

= [βr, σ−1
1 αsσ1] = [βr, σ−1

1 βsσ1] = 1 for all r < s,
(SCR) σ1βrσ1αrσ1 = αrσ1βr for all r.

We note that composition of loops is written from right to left. Our relation (CR3) 
is a slight modification of the relation (CR3) of [25], but it is equivalent to it via the 
relation (CR2).

The first homology group H1(Σ) = H1(Σ;Z) is equipped with a symplectic 
intersection form H1(Σ) × H1(Σ) → Z, denoted by x.y, and the Heisenberg group 
H = H(Σ) is defined to be the central extension of H1(Σ) determined by this inter-
section 2-cocycle. Concretely, it is the set-theoretic product Z × H1(Σ) with the 
operation

	 (k, x)(l, y) = (k + l + x.y, x + y).� (8)

Denote by ψ : H ↠ H1(Σ) the projection onto the second factor and by i : Z ↪→ H 
the inclusion of the first factor; the central extension may then be written as:

Remark 6  The Heisenberg group H may be realised as a group of matrices, which 
gives a faithful finite-dimensional representation, defined as follows:

	

(
k, x =

g∑
i=1

piai + qibi

)
�−→

(
1 p k+p·q

2
0 Ig q
0 0 1

)

where p = (pi) is a row vector and q = (qi) is a column vector. This matrix form is 
often given as the definition of the Heisenberg group; we therefore refer to this rep-
resentation of H as its tautological representation.

There is a general recipe for computing a presentation of an extension of two groups, 
given presentations of these two groups and some information about the structure of 
the extension (we will use the formulation of [5, Appendix B]; an alternative reference 
is [27, Sect. 2.4.3]). In particular, for a central extension 1 → H → G → K → 1 
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with H = ⟨X|R⟩ and K = ⟨Y |S⟩, we have G = ⟨X ⊔ Y |R ⊔ S̃ ⊔ T ⟩, where S̃ is 
any collection of relations that are true in G and that project to the relations S in K 
and where T is a collection of relations saying that the generators X are central in G.

Applying this to our setting, we obtain the following presentation of H, where we 
write u = (1, 0) and where a1, . . . , ag , b1, . . . , bg is a symplectic basis of H1(Σ).

Proposition 7  The Heisenberg group H = H(Σ) admits a presentation with genera-
tors u, ãi = (0 , ai), ̃bi = (0 , bi) for 1 ⩽ i ⩽ g and relations:

	

{
all pairs of generators commute, except:
ãib̃i = u2b̃iãi for each i.

� (9)

Proof  We apply the above procedure to the presentations Z = ⟨X|R⟩ and 
H1(Σ) = ⟨Y |S⟩ where X = {u}, Y = {ã1, . . . , ãg, b̃1, . . . , b̃g}, the relations R are 
empty and the relations S say that all pairs of elements of Y commute. The relations 
T say that u commutes with each of {ã1, . . . , ãg, b̃1, . . . , b̃g}, so to show that (9) is a 
correct presentation of H it will suffice to show that the relations ãib̃i = u2b̃iãi and 
ãib̃j = b̃j ãi for i ̸= j are true in H, because we may then take S̃ to be this collection 
of relations, since it projects to S. To verify these, we compute that

	 ãib̃j = (0, ai + bj) = (0, bj + ai) = b̃iãj

since ai.bj = 0 when i ̸= j, and

	 ãib̃i = (1, ai + bi) = (1, bi + ai) = (2, 0)(−1, bi + ai) = u2b̃iãi,

since ai.bi = 1 and bi.ai = −1. � □
It follows immediately from this presentation that:

Corollary 8  For each g ⩾ 1  and n ⩾ 2 , there is a surjective homomorphism

 sending each σi  to u and sending αi �→ ãi , βi �→ b̃i .

In the case n ⩾ 3, this quotient of the surface braid group has previously been 
considered in [6, 8, 28], which also consider the more general setting where Σ is 
closed or has several boundary components. The alternative approach in these arti-
cles allows one to identify the kernel of ϕ as a characteristic subgroup. We include 
below a description of the kernel valid for all n ⩾ 2.

Proposition 9  (a) For n ⩾ 2 , the kernel of ϕ is the normal subgroup generated by the 
commutators [σ1 , x] for x ∈ Bn(Σ).

(b) For n ⩾ 3 , the kernel of ϕ is the subgroup of 3-commutators Γ3 (Bn(Σ)).
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For a proof of statement (b), we refer to [6, Theorem 2]. More precisely, statement 
(10) on page 1416 of [6] is the analogous fact for the closed surface Σg: that there 
is a surjective homomorphism Bn(Σg) ↠ Hg/⟨u2(n+g−1)⟩ whose kernel is exactly 
Γ3(Bn(Σg)). The proof given there works also in our case where the surface has one 
boundary component and we do not quotient by ⟨u2(n+g−1)⟩. In this paper we will 
use statement (a) and focus on the case n = 2 in our explicit computations.

Proof  Let Kn ⊆ Bn(Σ) be the normal subgroup generated by the commutators [σ1, x] 
for x ∈ Bn(Σ). The image ϕ(σ1) being central, we have Kn ⊆ ker(ϕ), hence we see 
that ϕ may be factored through a surjective homomorphism ϕ : Bn(Σ)/Kn → H. If 
we add centrality of σ1 to the defining relations for Bn(Σ), we may:

	● Replace (BR2) by σi = σ1 for all i,
	● Remove (BR1), (CR1) and (CR2),
	● Replace (CR3) by commutators of all pairs of generators except for (αr, βr),
	● Replace (SCR) with αrβr = σ2

1βrαr.

Finally the presentations of Bn(Σ)/Kn and H coincide and ϕ is an isomorphism, 
which proves (a). � □

In contrast to the case of n ⩾ 3, the kernel ker(ϕ) when n = 2 lies strictly between 
the terms Γ2 and Γ3 of the lower central series of B2(Σ).

Proposition 10  There are proper inclusions

	 Γ3 (B2 (Σ)) ↪→ ker(φ) ↪→ Γ2 (B2 (Σ)).

Proof  By the above proposition, ker(ϕ) is normally generated by commutators, so 
it must lie inside Γ2(B2(Σ)). On the other hand, the Heisenberg group H = Hg is a 
central extension of an abelian group, hence 2-nilpotent. The kernel of any homomor-
phism G → H  with target a 2-nilpotent group contains Γ3(G), so ker(ϕ) contains 
Γ3(B2(Σ)). To see that ker(ϕ) is not equal to Γ2, it suffices to note that the Heisen-
berg group is not abelian. To see that ker(ϕ) is not equal to Γ3, we will construct a 
quotient

	 ψ : B2(Σ) −→ Q

where Q is 2-nilpotent and [σ1, α1] ̸∈ ker(ψ). Given this for the moment, suppose for 
a contradiction that ker(ϕ) = Γ3. Then we have [σ1, α1] ∈ ker(ϕ) = Γ3 ⊆ ker(ψ), 
due to the fact that Q is 2-nilpotent, which is a contradiction.

It therefore remains to show that there exists a quotient Q with the claimed proper-
ties. We will take Q = D4 = ⟨τ, τ ′ | τ2 = (τ ′)2 = (ττ ′)4 = 1⟩, the dihedral group 
with 8 elements. Let us set ψ(αi) = ψ(βi) = τ ′ and ψ(σ1) = τ . It is easy to verify 
from the presentations that this is a well-defined surjective homomorphism. The 
dihedral group D4 is 2-nilpotent (its centre is generated by (ττ ′)2 and the quotient 
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by this element is isomorphic to the abelian group (Z/2)2), and we compute that 
ψ([σ1, α1]) = (ττ ′)2 ̸= 1, which completes the proof. � □

3  Heisenberg homology

Using the homomorphism ϕ, any left representation V of the Heisenberg group H 
over a ring R becomes a left module over R[Bn(Σ)]. If V also has a right module 
structure over another ring S, i.e. if it is a left representation of H in (R, S)-bimodules, 
then it becomes an (R[Bn(Σ)], S)-bimodule. Following for example [29, Ch. 3.H] 
or [30, Ch. 5] we then have homology groups with local coefficients H∗(Cn(Σ); V ), 
which are again (R, S)-bimodules. Let C̃n(Σ) be the regular covering of Cn(Σ) asso-
ciated with the kernel of ϕ. When V is the regular representation R[H], the homol-
ogy H∗(Cn(Σ); R[H]) is the homology of the singular chain complex S∗(C̃n(Σ)) 
considered as a right R[H]-module by deck transformations. In general, given any V 
as above, the (R, S)-bimodule H∗(Cn(Σ); V ) is the homology of the chain complex 
S∗(C̃n(Σ)) ⊗R[H] V .

Relative homology with local coefficients is defined in the usual way. We also use 
Borel–Moore homology, defined by

	
HBM

n (Cn(Σ); V ) = lim←−
T

Hn(Cn(Σ), Cn(Σ) \ T ; V ),� (10)

where the inverse limit is taken over all compact subsets 
T ⊂ Cn(Σ). In general, writing K(X) for the poset of compact subsets of a space 
X, the Borel–Moore homology module HBM

n (X, A; V ) is the limit of the functor 
Hn(X, A ∪ (X \ −); V ) : K(X)op →R ModS  for any local system V on X and any 
properly embedded subspace A ⊆ X .

All of the properties concerning Borel–Moore homology that will be used here 
may be checked by elementary arguments. The interested reader will also find a gen-
eral exposition based on cosheaves in [31, Chapter 5], which includes the case of 
local coefficients. One could also work with locally finite singular homology. From 
[32, Theorem 7.3] this gives homology groups isomorphic to the inverse limit (10) 
provided that there exists an exhausting sequence of compact subsets T for which 
the lim1 contribution vanishes. This is satisfied in our case. Indeed, the configuration 
space Cn(Σ) is the complement of the big diagonal in the symmetric power Symn(Σ). 
By removing an open tubular neighbourhood of the big diagonal in Symn(Σ) we 
obtain a manifold with boundary that is a compactification of Cn(Σ). This shows that 
the limit process is stationary with limit the homology of the compactification rela-
tive to its boundary.

Borel–Moore homology is functorial with respect to proper maps: If f : Y → X  
is a proper map taking B ⊆ Y  into A ⊆ X , then there is an induced func-
tor f−1 : K(X) → K(Y ) by taking pre-images, and a natural transformation 
Hn(Y, B ∪ (Y \ −); f∗(V )) ◦ f−1 ⇒ Hn(X, A ∪ (X \ −); V ) (where f∗(V ) 
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denotes the pullback of the local system V on X to Y) arising from the naturality of 
singular homology. Taking limits, these induce maps

	

HBM
n (Y, B; f∗(V )) = lim Hn(Y, B ∪ (Y \ −); f∗(V ))

−→ lim
(
Hn(Y, B ∪ (Y \ −); f∗(V )) ◦ f−1)

−→ lim Hn(X, A ∪ (X \ −); V ) = HBM
n (X, A; V ).

In particular, homeomorphisms are proper maps, so self-homeomorphisms of a space 
act on its Borel–Moore homology.

We will adapt a method used by Bigelow in the genus-zero case [33] (see also [7, 
34, 35]) for computing the relative Borel–Moore homology

	
HBM

∗ (Cn(Σ), Cn(Σ, ∂−(Σ)); V ) = lim←−
T

(Cn(Σ), Cn(Σ, ∂−(Σ)) ∪ (Cn(Σ) \ T ); V ),

where Cn(Σ, ∂−(Σ)) is the closed (thus properly embedded) subspace of configura-
tions containing at least one point in a fixed closed interval ∂−(Σ) ⊂ ∂Σ. In general 
for a pair (X, Y) the notation Cn(X, Y ) will be used for configurations of n points in 
X containing at least one point in Y.

The surface Σ can be represented as a thickened interval [0, 1] × I  with 2g handles, 
whose cores are attached along {1} × {w1, w2, w′

1, w′
2, . . . , w2g−1, w2g, w′

2g−1, w′
2g} 

as depicted in Fig. 2. We view Σ as a relative cobordism from ∂−(Σ) = {0} × I  (in 
blue below) to ∂+(Σ) (in green below), where ∂+(Σ) is the closure of the comple-
ment of ∂−(Σ) in ∂(Σ). For 1 ⩽ i ⩽ 2g, we denote by γi the union of the core of the 
ith handle with [0, 1] × {wi, w′

i}, oriented from wi to w′
i, and we set Γ = ⨿iγi (in 

red in Fig. 2).
Let K be the set of sequences k = (k1, k2, . . . , k2g) such that ki is a non-negative 

integer and 
∑

i ki = n. We will associate to each k ∈ K an element of the relative 
Borel–Moore homology HBM

n (Cn(Σ), Cn(Σ, ∂−(Σ)); V ), as follows.
For k ∈ K we consider the submanifold Ek ⊂ Cn(Σ) consisting of all configu-

rations having ki points on γi. This manifold inherits an orientation from the ori-
entations of the arcs γi together with the ordering of the points on Γ defined by 
declaring that x < y for x ∈ γi, y ∈ γj  if either i < j or i = j and x comes before 
y according to the orientation of γi. Moreover, it is a properly embedded Euclid-
ean half-space Rn

+ in Cn(Σ) with boundary in Cn(Σ, ∂−(Σ)). After choosing a 

Fig. 2  The surface Σ together with the decomposition of its boundary into ∂+(Σ) and ∂−(Σ)
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path connecting it to the basepoint in Cn(Σ), Ek represents a homology class in 
HBM

n (Cn(Σ), Cn(Σ, ∂−(Σ)); V ), which we also denote by Ek.

Theorem 11  (Theorem A(a)) Let V be any left representation of the discrete Heisen-
berg group H in (R, S)-bimodules, for two rings R, S. Then, for n ⩾ 2 , there is an 
isomorphism of (R, S)-bimodules

	
HBM

n (Cn(Σ), Cn(Σ, ∂−(Σ)); V ) ∼=
⊕
k∈K

V.� (11)

Furthermore, this is the only non-zero bimodule in the graded bimodule 
H BM

∗ (Cn(Σ), Cn(Σ , ∂−(Σ)); V ). In particular, in the case when (R, S) = (Z,Z[H]) 
and V = Z[H], the graded right Z[H]-module H BM

∗ (Cn(Σ), Cn(Σ , ∂−(Σ));Z[H]) 
is concentrated in degree n and free of dimension 

(
2g+n−1

n

)
 with basis {Ek}k∈K. The 

corresponding statements are also true if Borel–Moore homology H BM
∗  is replaced 

by compactly-supported cohomology H ∗
c  and V is a right representation of H in 

(R, S)-bimodules.

Remark 12  Theorem 11 is true (with the same proof) more generally for Borel–Moore 
homology (or compactly-supported cohomology) with coefficients in any represen-
tation V of the surface braid group Bn(Σ) = π1(Cn(Σ)), not necessarily factoring 
through the quotient Bn(Σ) ↠ H. However, we will only need Theorem 11 for rep-
resentations of the Heisenberg group.

The isomorphism (11) of Theorem 11 is natural in V in the following sense.

Proposition 13  The decomposition (11) is natural in the following sense: for any 
morphism ξ : V → V ′ of left representations of H over a pair of rings (R, S), the 
induced map on homology

	 H BM
n (Cn(Σ), Cn(Σ , ∂−(Σ)); V ) −→ H BM

n (Cn(Σ), Cn(Σ , ∂−(Σ)); V ′),

under the identifications (11), is equal to 
⊕

k∈K ξ. Thus we have an isomorphism

	 H BM
n (Cn(Σ), Cn(Σ , ∂−(Σ)); −) ∼= (−)⊕K

of functors R[H]ModS →R ModS  for any pair of rings (R, S).
In order to prove Theorem 11 (and Proposition 13), we need a preliminary lemma. 

To state it, we recall that a deformation retraction h : [0, 1] × Σ → Σ from Σ to Y ⊂ Σ 
is a continuous map (t, x) �→ h(t, x) = ht(x) such that h0 = IdΣ, h1(Σ) = Y  and 
(ht)|Y

= IdY  for all 0 ⩽ t ⩽ 1.

Lemma 14  There exists a metric d on Σ , inducing the standard topology, and a 
deformation retraction h from Σ  to Γ ∪ ∂−(Σ), such that for all 0 ⩽ t < 1 , the map 
ht : Σ → Σ  is a 1-Lipschitz embedding.
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Proof  We have a model for (Σ, Γ) by gluing 2g bands bj = [−1, 1] × [−l, l], 
1 ⩽ j ⩽ 2g and 4g + 1 squares cν = [0, 1] × [0, 1], 0 ⩽ j ⩽ 4g according to the iden-
tifications depicted in Fig. 3. We obtain a deformation retraction h which is defined 
on each band by the formula ht(u, v) = ((1 − t)u, v) and on each square by 
ht(u, v) = (u, (1 − t)v). It remains to show that for an appropriate metric d the map 
ht, 0 ⩽ t < 1, is a 1-Lipschitz embedding. On each band and square we use the stan-
dard Euclidean metric. Then for points x, y ∈ Σ, the distance d(x, y) is defined as the 
shortest length of a path from x to y. It is convenient to assume that l is big enough so 
that no shortest path can go across a handle. Then d is a metric which is flat outside 4g 
boundary points where the curvature is concentrated. We have that ht, for 0 ⩽ t < 1, 
is a 1-Lipshitz embedding in each band or square, from which we deduce that ht, for 
0 ⩽ t < 1, is globally a 1-Lipschitz embedding. � □

Proof of Theorem  11  We use a metric d and a deformation retraction h from 
Lemma 14. For ϵ > 0 and Y ⊂ Σ we denote by Cϵ

n(Y ) the subspace of configurations 
x = {x1, x2, . . . , xn} ⊂ Y  such that d(xi, xj) < ϵ for some i ̸= j. For 0 ⩽ t ⩽ 1, 
let us write Σt = ht(Σ). Also, in order to shorten the notation in this proof, we will 
abbreviate Cϵ,−

n (Σt) := Cn(Σt, ∂−(Σ)) ∪ Cϵ
n(Σt) (in particular when t = 0, in which 

case Σt = Σ).

For 0 ⩽ t < 1 we have an inclusion

	
(
Cn(Σt), Cϵ,−

n (Σt)
)

⊂
(
Cn(Σ), Cϵ,−

n (Σ)
)

,� (12)

which is a homotopy equivalence with homotopy inverse Cn(ht), which is a map of 
pairs because ht is 1-Lipschitz. This implies that we also have a homotopy equiva-
lence of pairs of covering spaces, as follows. Let us write π : C̃n(Σ) → Cn(Σ) for 
the universal covering of Cn(Σ) and denote by X̃ := π−1(X) the corresponding lift 
of each subspace X ⊆ Cn(Σ).1 By taking (homotopy) pullbacks along the covering 
maps, the homotopy equivalence (12) induces a homotopy equivalence

	

(
C̃n(Σt), C̃ϵ,−

n (Σt)
)

⊂
(

C̃n(Σ), C̃ϵ,−
n (Σ)

)
,� (13)

1 Note that this is not necessarily the universal covering of X.

Fig. 3  A model for Σ
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and therefore a chain homotopy equivalence of the corresponding relative chain 
complexes

	
S∗

(
C̃n(Σt), C̃ϵ,−

n (Σt)
)

≃ S∗

(
C̃n(Σ), C̃ϵ,−

n (Σ)
)

.� (14)

The compactness of Σ ensures that h1 is the uniform limit of ht as t → 1, which 
implies that for each ϵ > 0 we may choose t = tϵ < 1 such that for all p ∈ Σ we have 
d(ht(p), h1(p)) < ϵ

2 . For such t, let At ⊂ Cn(Σt) be the subset of configurations 
x = {x1, . . . , xn} ⊂ Σt such that (h1 ◦ h−1

t )(xi) = (h1 ◦ h−1
t )(xj) for some i ̸= j. 

We have that At is closed and (by our definition of t = tϵ) contained in the open sub-
set Cϵ

n(Σt) ⊂ Cn(Σt) and hence in the interior of the subset Cϵ,−
n (Σt) ⊂ Cn(Σt). The 

excision theorem therefore implies that the inclusion of pairs

	
(
Cn(Σt) \ At, Cϵ,−

n (Σt) \ At

)
⊂

(
Cn(Σt), Cϵ,−

n (Σt)
)
� (15)

induces isomorphisms on homology with any twisted coefficients pulled back from 
Cn(Σt). (We recall from [30, Theorem 5.13] that the excision theorem for homology 
with twisted coefficients may be formulated in exactly the same way as for untwisted 
coefficients.) In fact, the proof of the excision theorem shows that this isomorphism 
is a consequence of a stronger property: the inclusion of pairs (15) induces a chain 
homotopy equivalence of relative chain complexes of pairs of covering spaces pulled 
back from any covering space of Cn(Σt). (Cf. [29, Proposition 2.21]; see also [36] for 
a slightly different formulation of the excision theorem in terms of homotopy equiva-
lences of chain complexes.) In particular, taking this covering space to be C̃n(Σt), we 
have a chain homotopy equivalence:

	
S∗

(
(Cn(Σt) \ At)∼, (Cϵ,−

n (Σt) \ At)∼)
≃ S∗

(
C̃n(Σt), C̃ϵ,−

n (Σt)
)

,� (16)

where we have written (−)∼ = (̃−) on the left-hand side for typographical reasons.
The map Cn(h1) ◦ Cn(h−1

t ) gives a well-defined map of pairs

	
(
Cn(Σt) \ At, Cϵ,−

n (Σt) \ At

)
−→

(
Cn(Σ1), Cϵ,−

n (Σ1)
)

,

which is a homotopy inverse to the inclusion. Taking (homotopy) pullbacks along 
covering maps and passing to relative chain complexes, it follows that the inclusion 
induces a chain homotopy equivalence:

	
S∗

(
C̃n(Σ1), C̃ϵ,−

n (Σ1)
)

≃ S∗
(
(Cn(Σt) \ At)∼, (Cϵ,−

n (Σt) \ At)∼)
.� (17)

Combining the chain homotopy equivalences (14), (16) and (17), we deduce that the 
inclusion of pairs (Cn(Σ1), Cϵ,−

n (Σ1)) ⊂ (Cn(Σ), Cϵ,−
n (Σ)) induces a chain homo-

topy equivalence

1 3

2004



Heisenberg homology on surface configurations

	
S∗

(
C̃n(Σ1), C̃ϵ,−

n (Σ1)
)

≃ S∗

(
C̃n(Σ), C̃ϵ,−

n (Σ)
)

.� (18)

At the level of relative chain complexes, we have therefore “compressed” configura-
tions on the surface Σ to configurations on the subspace Σ1 = h1(Σ); recall that this 
is equal to Γ ∪ ∂−(Σ). The next step is to compress further to configurations on Γ. In 
the following, we will use the abbreviation Cϵ,−

n (Γ) := Cn(Γ, W −) ∪ Cϵ
n(Γ), where 

W − is defined by

	 W − := {0} × {w1, w2, w′
1, w′

2, . . . , w2g−1, w2g, w′
2g−1, w′

2g} ⊂ ∂−(Σ)

in other words it is the finite set consisting of the 4g endpoints of the arcs γ1, . . . , γ2g  
in Fig. 2 (recall that Γ is the disjoint union of these arcs).

Let Uϵ ⊂ ∂−(Σ) be the open subset given by x ∈ Uϵ ⇔ d(x, W −) < ϵ
2  and define 

Bϵ ⊂ Cn(Σ1) to be the subspace of configurations x = {x1, . . . , xn} ⊂ Σ1 such that 
either xi ∈ ∂−(Σ) \ Uϵ for some i or there are indices i ̸= j such that xi and xj  lie in the 
same component of Uϵ. It is straightforward to see that Bϵ is closed in Cn(Σ1). More-
over, Bϵ is also contained in the interior of Cϵ,−

n (Σ1) = Cn(Σ1, ∂−(Σ)) ∪ Cϵ
n(Σ1) 

because, for any configuration x = {x1, . . . , xn} ∈ Bϵ and any other configuration 
y = {y1, . . . , yn} in a sufficiently small neighbourhood of x in Cn(Σ1):

	● If xi ∈ ∂−(Σ) \ Uϵ for some i, then yi ∈ ∂−(Σ) and so we have 
y ∈ Cn(Σ1, ∂−(Σ));

	● If xi and xj  lie in the same component of Uϵ for some i ̸= j, then d(yi, yj) < ϵ 
and so we have y ∈ Cϵ

n(Σ1).

Hence we may apply excision (in its formulation with relative chain complexes of 
pairs of covering spaces) to deduce that the inclusion induces a chain homotopy 
equivalence:

	
S∗

(
(Cn(Σ1) \ Bϵ)∼, (Cϵ,−

n (Σ1) \ Bϵ)∼)
≃ S∗

(
C̃n(Σ1), C̃ϵ,−

n (Σ1)
)

.� (19)

Next, since configurations in Cn(Σ1) \ Bϵ are contained in Γ ∪ Uϵ and no compo-
nent of Uϵ contains more than one configuration point, we may deformation retract 
Cn(Σ1) \ Bϵ onto Cn(Γ) by contracting each (interval) component of Uϵ to its mid-
point. The deformation retraction Γ ∪ Uϵ ≃ Γ is through 1-Lipschitz maps and sends 
Uϵ into itself, so the induced deformation retraction Cn(Σ1) \ Bϵ ≃ Cn(Γ) preserves 
the subspace Cϵ,−

n (Σ1). Thus it provides a homotopy inverse for the inclusion of pairs

	
(
Cn(Γ), Cϵ,−

n (Γ)
)

⊂
(
Cn(Σ1) \ Bϵ, Cϵ,−

n (Σ1) \ Bϵ

)
,� (20)

where we note that Cϵ,−
n (Γ) = Cn(Γ) ∩ Cϵ,−

n (Σ1). Taking (homotopy) pullbacks 
along covering maps and passing to relative chain complexes, (20) therefore induces 
a chain homotopy equivalence:
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S∗

(
C̃n(Γ), C̃ϵ,−

n (Γ)
)

≃ S∗
(
(Cn(Σ1) \ Bϵ)∼, (Cϵ,−

n (Σ1) \ Bϵ)∼)
.� (21)

Combining the chain homotopy equivalences (18), (19) and (21), we have shown that 
the inclusion of pairs (Cn(Γ), Cϵ,−

n (Γ)) ⊂ (Cn(Σ), Cϵ,−
n (Σ)) induces a chain homo-

topy equivalence

	
S∗

(
C̃n(Γ), C̃ϵ,−

n (Γ)
)

≃ S∗

(
C̃n(Σ), C̃ϵ,−

n (Σ)
)

,� (22)

in other words we have (at the level of relative chain complexes) “compressed” con-
figurations on the surface Σ to configurations on the disjoint union of arcs Γ.

The fundamental chain homotopy equivalence (22) immediately implies isomor-
phisms both for twisted relative Borel–Moore homology and for twisted relative 
compactly-supported cohomology. First, we may tensor (22) over R[π1(Cn(Σ))] 
with V and take homology to obtain an isomorphism of twisted relative homology 
groups for each ϵ > 0; then taking the inverse limit as 0 ← ϵ, we obtain an isomor-
phism of twisted relative Borel–Moore homology:

	 HBM
∗ (Cn(Γ), Cn(Γ, W −); V ) ∼= HBM

∗ (Cn(Σ), Cn(Σ, ∂−(Σ)); V ).� (23)

Here we are using the fact that, if Y ⊂ Σ is closed, then Cϵ
n(Y ) is a cofinal family of 

co-compact subsets of Cn(Y ), which implies that for a pair (Y, Z) of closed subspaces 
of Σ, we have

	
HBM

∗ (Cn(Y ), Cn(Y, Z); V ) ∼= lim
0←ϵ

H∗(Cn(Y ), Cn(Y, Z) ∪ Cϵ
n(Y ); V ).� (24)

(As a notational point, we note that we simply write V for the restriction to subspaces 
of Cn(Σ) of the local system V, which is defined a priori on Cn(Σ).)

Alternatively, if V is a right (rather than left) representation of H in (R, S)-bimod-
ules, we may apply the operation HomS[π1(Cn(Σ))](−, V ) to (22) and take homology 
to obtain an isomorphism of twisted relative cohomology groups for each ϵ > 0; 
then taking the direct limit as ϵ → 0, we obtain an isomorphism of twisted relative 
compactly-supported cohomology:

	 H∗
c (Cn(Γ), Cn(Γ, W −); V ) ∼= H∗

c (Cn(Σ), Cn(Σ, ∂−(Σ)); V ).� (25)

In each case, to justify taking the limit, we need to know that (22) is is a chain 
homotopy equivalence of inverse systems as ϵ > 0 varies. However, this is 
clear since it is induced by the inclusion of (pairs of) configuration spaces 
(Cn(Γ), Cϵ,−

n (Γ)) ⊂ (Cn(Σ), Cϵ,−
n (Σ)).

Finally, to complete the proof of the theorem, we need to calculate the left-hand 
sides of (23) and (25). We will do this in the first case (for Borel–Moore homology); 
the calculation in the second case (for compactly-supported cohomology) is exactly 
dual.
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We first observe that Cn(Γ) is a disjoint union indexed by K, where each con-
nected component Ek (k ∈ K) is a product of configuration spaces on the intervals 
γi. Configurations of at least two points in an interval form a simplex where the diag-
onal part of the boundary has been removed and the remaining boundary is the union 
of two faces. Hence, for each k ∈ K, the product Ek is a topological ball where part 
of the boundary has been removed. The disjoint union of the topological boundaries 
∂Ek is precisely the subspace Cn(Γ, W −) ⊂ Cn(Γ).

For ϵ > 0, let us consider the subspace Cϵ
n(Γ) = ⨿k∈KEϵ

k of configurations 
where two points are ϵ-close. For sufficiently small ϵ > 0, the pair (Ek, Eϵ

k ∪ ∂Ek) 
is homotopy equivalent to the pair (Dn, ∂Dn). Using that the complements 
Cn(Γ) \ Cϵ

n(Γ) form a family of compact subspaces cofinal to all compact subspaces 
in Cn(Γ), we deduce the computation of Borel–Moore homology: For each k we 
have HBM

∗ (Ek, ∂Ek; V ) = HBM
n (Ek, ∂Ek; V ) ∼= V . Here we use the restriction 

of the local system V to Ek, which is constant (i.e.  trivialisable). We obtain that 
the Borel–Moore homology (23) is trivial when ∗ ̸= n and that each Borel–Moore 
homology class Ek generates a direct summand isomorphic to the coefficients V in 
degree ∗ = n. In particular, when V is the regular representation Z[H], these classes 
form a basis over Z[H] for the degree-n Borel–Moore homology. � □

Remark 15  If one is just interested in the version of Theorem 11 for Borel–Moore 
homology (and not compactly-supported cohomology), then one could work directly 
with isomorphisms of twisted relative homology groups at each stage, rather than 
chain homotopy equivalences of relative chain complexes of pairs of covering 
spaces. The unified proof that we give above has the advantage that it simultaneously 
provides explicit bases both for twisted relative Borel–Moore homology and twisted 
relative compactly-supported cohomology, from which one may easily deduce a per-
fect pairing between the two; this is discussed further in Sect. 5.5.

We note that one could also deduce both results (for Borel–Moore homology and 
for compactly-supported cohomology) from the result for Borel–Moore homology 
in a specific case (i.e. with a specific choice of V); this is explained in Appendix B.

Proof of Proposition  13  The statement of Theorem  11 in the case S = V = R[H] 
implies that HBM

∗ (Cn(Σ), Cn(Σ, ∂−(Σ)); R[H]) is free in each degree as a right R[H]
-module. The universal coefficient theorem2 provides (R, S)-module isomorphisms

	 HBM
n (Cn(Σ), Cn(Σ, ∂−(Σ)); V ) ∼= HBM

n (Cn(Σ), Cn(Σ, ∂−(Σ)); R[H]) ⊗R[H] V �(26)

for any (R[H], S)-bimodule V. Moreover, both sides are functorial in V and (26) is 
a natural isomorphism between these functors, i.e. the map on homology induced 
by ξ : V → V ′, under the identification (26), is of the form Id ⊗ ξ. The left-hand 
identity component of Id ⊗ ξ decomposes into a direct sum over k ∈ K of copies of 
IdR[H] under the decomposition (11) of Theorem 11 in the case S = V = R[H]. (We 
note that this is not circular, because here we are only using the tautological fact that 

2 Compare the proof of Lemma 53 in Appendix B.
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the identity decomposes as a direct sum of identities.) Since ⊗ distributes (naturally) 
over ⊕, we deduce that the map on homology induced by ξ : V → V ′, under the 
decomposition (11) of Theorem 11, is the direct sum over k ∈ K of copies of ξ. � □

4  Action of mapping classes

The mapping class group of Σ, denoted by M(Σ), is the group of orientation-
preserving diffeomorphisms of Σ fixing the boundary pointwise, modulo iso-
topies relative to the boundary. The isotopy class of a diffeomorphism f is 
denoted by [f]. An oriented self-diffeomorphism fixing the boundary pointwise 
f : Σ → Σ gives us a homeomorphism Cn(f) : Cn(Σ) → Cn(Σ), defined by 
{x1, x2, . . . , xn} �→ {f(x1), f(x2), . . . , f(xn)}. If we ensure that the basepoint 
configuration of Cn(Σ) is contained in ∂Σ, then it is fixed by Cn(f) and this in turn 
induces a homomorphism fBn(Σ) = π1(Cn(f)) : Bn(Σ) → Bn(Σ), which depends 
only on the isotopy class [f] of f.

4.1  Action on the Heisenberg group

We first study the induced action on the Heisenberg group quotient.

Proposition 16  There exists a unique homomorphism fH : H → H such that the fol-
lowing square commutes:

	

� (27)

Thus, there is an action of M(Σ) on the Heisenberg group H given by

	 Ψ : f �→ fH : M(Σ) −→ Aut(H).� (28)

Proof  Since ϕ is surjective, the homomorphism fH will be uniquely determined by 
the formula fH(ϕ(γ)) = ϕ(fBn(Σ)(γ)) if it exists. To show that it exists, we need to 
show that the composition ϕ ◦ fBn(Σ) factors through ϕ, which is equivalent to say-
ing that fBn(Σ) sends ker(ϕ) into itself.

Recall that the classical generator σ1 is represented by a loop of configurations on 
a disc D ⊂ Σ containing the base configuration. Let T ⊂ Σ be a tubular neighbour-
hood of ∂Σ containing D. Since f fixes ∂Σ pointwise, we may isotope f so that it is the 
identity on T, in particular on D, which implies that fBn(Σ) fixes σ1. We then deduce 
from part (a) of Proposition 9 that fBn(Σ) sends ker(ϕ) to itself, which completes the 
proof. � □
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4.2  Structure of automorphisms of the Heisenberg group

Recall that the centre of the Heisenberg group H is infinite cyclic, generated by the 
element u. Any automorphism of H must therefore send u to u±1.

Definition 17  We denote the index-2 subgroup of those automorphisms of H that fix 
u by Aut+(H), and call these orientation-preserving.

From the proof of Proposition 16, we observe that, for any f ∈ M(Σ), the automor-
phism fH is orientation-preserving in the sense of Definition 17. We may therefore 
refine the action Ψ as follows:

	 Ψ : f �→ fH : M(Σ) −→ Aut+(H).� (29)

The quotient of H by its centre may be canonically identified with H = H1(Σ), so 
every automorphism of H induces an automorphism of H. Moreover, if it is orientation-
preserving, then the induced automorphism of H preserves the symplectic form. on H: 
to see this, apply the automorphism to the equation (0, x)(0, y)(0, −x) = (2x.y, y) 
in H. Thus we have a homomorphism L : Aut+(H) → Sp(H) denoted by φ �→ φ.

Lemma 18  There exists a split short exact sequence

 where j(c) = [(k, x) �→ (k + c(x), x)].

Proof  We observe that for an automorphism φ ∈ Aut+(H) we have 
φ(k, x) = (k + c(x), φ(x)). By applying φ to (k, x)(l, y) = (k + l + x.y, x + y)), we 
deduce that c is a homomorphism. We thus have c ∈ Hom(H1(Σ;Z),Z) ∼= H1(Σ;Z). 
We see that j : H1(Σ;Z) → Aut+(H) is a group homomorphism whose image is 
in ker(L). We next identify the kernel of L: an automorphism φ ∈ ker(L) takes 
the form φ(k, x) = (k + c(x), x) where c ∈ H1(Σ;Z) and φ = j(c). This proves 
exactness in the middle of the sequence above. Injectivity of j and surjectivity of 
L may also be checked easily. Finally, a splitting of L is given by the assignment 
g �→ φg = [(k, x) �→ (k, g(x))]. � □

As corollary, we obtain that Aut+(H) is the affine symplectic group. The split-
ting gives a decomposition as Sp(H) ⋉ H1(Σ;Z), where the semi-direct product 
structure on the right-hand side is induced by the natural action of Sp(H). Corre-
sponding to the splitting given in the proof, there is a function (which is not a group 
homomorphism) Aut+(H) → H1(Σ;Z) ∼= Hom(H,Z) defined by φ �→ φ�, where 
φ(0, x) = (φ⋄(x), L(x)). We formulate the result below.
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Corollary 19  The homomorphism L : Aut+(H) → Sp(H ) and function 
(−)⋄ : Aut+(H) → H ∗ induce an isomorphism

	 Aut+(H) ∼= Sp(H) ⋉ H1(Σ;Z), φ �→ (φ, φ⋄),� (30)

where the semi-direct product structure on the right-hand side is induced by the natu-
ral action of Sp(H) on H 1 (Σ ;Z).

Remark 20  Fixing a symplectic basis of H, the right-hand side of (30) is a subgroup 
of GL2g(Z) ⋉ Z2g, which may be embedded into GL2g+1(Z). In this way, any ori-
entation-preserving action of a group G on H may be viewed as a linear representa-
tion of G over Z of rank 2g + 1.

The general form of an oriented automorphism φ is therefore

	 φ(k, x) = (k + φ⋄(x), φ(x))

where φ⋄ ∈ H∗ and φ ∈ Sp(H) is the induced symplectic automorphism. From the 
proof of Proposition 16 we observe that, for any f ∈ M(Σ), the automorphism fH 
is orientation-preserving in the sense of Definition 17. Hence for a mapping class 
f ∈ M(Σ), the map fH is represented as follows:

	 fH : (k, x) �→ (k + δf (x), f∗(x)),� (31)

where δf = (fH)⋄ ∈ H1(Σ;Z).

4.3  Recovering Morita’s crossed homomorphism

In [37], Morita introduced a crossed homomorphism d : M(Σ) → H1(Σ), f �→ df  
representing a generator for H1(M(Σ); H1(Σ)) ∼= Z. We will recover this crossed 
homomorphism from the action f �→ fH on the Heisenberg group.

Recall that, for a given action of a group G on an abelian group K, a crossed homo-
morphism θ : G → K is a function with the property that θ(g2g1) = θ(g1) + g1θ(g2) 
for all g1, g2 ∈ G.

Remark 21  Crossed homomorphisms G → K are in one-to-one correspondence with 
lifts

 where the diagonal arrow is the given action of G on K.
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Proposition 22  The map δ : M(Σ) → H 1 (Σ), f �→ δf , is a crossed homomorphism 
equal to Morita’s crossed homomorphism d.

Proof  We first show that δ is a crossed homomorphism. Let f, g be mapping classes; 
then we have, for (k, x) ∈ H,

	(g ◦ f)H(k, x) = gH(k + δf (x), f∗(x)) = (k + δf (x) + δg(f∗(x)), (g ◦ f)∗(x))

and so we obtain δg◦f (x) = δf (x) + f∗(δg)(x), as required.
Recall that we use the same notation for the (free) generators αi, βi, 1 ⩽ i ⩽ g, for 

π1(Σ) and the corresponding π1 generators of the braid group Bn(Σ). For γ ∈ π1(Σ), 
let us denote by γi the element in the free group generated by αi, βi that is the image 
of γ under the homomorphism that maps the other generators to 1. Then we have a 
decomposition

	 γi = αν1
i βµ1

i . . . ανm
i βµm

i

where νj  and µj  are 0, −1 or 1. The integer di(γ) is then defined3 by

	

di(γ) =
m∑

j=1
νj

m∑
k=j

µk −
m∑

j=1
µj

m∑
k=j+1

νk

=
m∑

j=1

m∑
k=1

ιjkνjµk,

� (32)

where ιjk = +1 when j ⩽ k and ιjk = −1 when j > k. The definition for the Morita 
crossed homomorphism is as follows:

	
∂f (γ) =

g∑
i=1

di(π1(f)(γ)) − di(γ)� (33)

For γ ∈ π1(Σ), consider the pure braid obtained by adding n − 1 trivial strands to γ, 
which we also denote by γ. The above decomposition of γ used for the definition of 
di is also a decomposition in the generators of the braid group, and from the defini-
tion of the product in H we have that

	
ϕ(γ) =

(
g∑

i=1
di(γ), [γ]

)
∈ H

3 There is a small misprint in [37].
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This formula may be checked by recursion on the length of γ as a word in the free 
generators of π1(Σ). It can also be deduced from [37, Lemma 6.1]. The equality 
df = δf  follows. � □

5  Constructing the representations

In this section we construct (Sect. 4.1) the twisted representation of Theorem A, as 
well as (Sect. 4.2) the untwisted representation of Theorem B associated to the lin-
earised translation action of H.

5.1  A twisted representation of the mapping class group

The quotient homomorphism ϕ : Bn(Σ) ↠ H (Corollary 8) corresponds to a regular 
covering C̃n(Σ) → Cn(Σ). Let f ∈ M(Σ) and write fH for its action on the Heisen-
berg group H and Cn(f) for its action on the configuration space Cn(Σ). From Propo-
sition  16 we know that π1(Cn(f)) = fBn(Σ) preserves ker(ϕ), which implies that 
there exists a unique lift of Cn(f) fixing the basepoint:

	 Cn(f) : C̃n(Σ) → C̃n(Σ)� (34)

Following a classical construction in covering spaces [29], a model for C̃n(Σ) is 
given by equivalence classes [δ] of paths δ starting at the base configuration in Cn(Σ), 
with [γ] = [δ] if and only if ϕ(γ δ) = (0, 0), where γ denotes the inverse path. In 
this model we have C̃n(f)([δ]) = [Cn(f) ◦ δ] and the deck action of h = ϕ([γ]) is 
[δ] · h = [δ γ]. Then we get

	

C̃n(f)([δ] · h) = [Cn(f) ◦ (δ γ)]
= [(Cn(f) ◦ δ)(Cn(f) ◦ γ)]
= [Cn(f) ◦ δ] · ϕ([Cn(f) ◦ γ])
= C̃n(f)([δ]) · fH(h).

We have therefore proven the formula

	 C̃n(f)(x · h) = C̃n(f)(x) · fH(h)� (35)

for any x ∈ C̃n(Σ) and h ∈ H. It follows that the induced action on the singular chain 
complex S∗(C̃n(Σ)) is twisted R[H]-linear, which may be formulated as an R[H]
-linear isomorphism

	
S∗

(
C̃n(f)

)
: S∗

(
C̃n(Σ)

)
f−1

H

→ S∗

(
C̃n(Σ)

)
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Here the subscript on the domain means that the right action of H is twisted by f−1
H . 

The result for R[H]-local homology is an R[H]-linear isomorphism

	 Cn(f)∗ : HBM
∗

(
Cn(Σ), Cn(Σ, ∂−(Σ)); R[H]

)
f−1

H
→ HBM

∗
(
Cn(Σ), Cn(Σ, ∂−Σ)); R[H]

)
�(36)

More generally, if V is a left representation of the Heisenberg group in (R, S)-bimod-
ules, then we obtain an (R, S)-linear isomorphism

	 Cn(f)∗ : HBM
∗

(
Cn(Σ), Cn(Σ, ∂−Σ)); fHV

)
−→ HBM

∗
(
Cn(Σ), Cn(Σ, ∂−(Σ)); V

)
�(37)

where the left-hand homology group is obtained from the chain complex

	

(
S∗

(
C̃n(Σ)

)
f−1

H

)
⊗R[H] V ∼= S∗

(
C̃n(Σ)

)
⊗R[H] (fHV )� (38)

Here, “obtained from” means that we consider the quotients of this chain complex 
given by the relative singular complexes for all subspaces of C̃n(Σ) of the form 
π−1(Cn(Σ, ∂−(Σ)) ∪ (Cn(Σ) ∖ T )) for compact subsets T ⊂ Cn(Σ), where π 
denotes the covering map C̃n(Σ) → Cn(Σ); we then take the homology of each of 
these quotients and take the inverse limit of this diagram.

Another way of describing this construction, and of keeping track of the twisting 
on each side, is to write the lifted action (34) of f as an H-equivariant map

	 C̃n(Σ)fH◦ϕ −→ C̃n(Σ)ϕ,� (39)

where the superscript indicates the quotient π1(Cn(Σ)) = Bn(Σ) ↠ H determin-
ing the covering space as a space equipped with a right H-action. Applying relative 
twisted Borel–Moore homology to (39), considered as a map of regular covering 
spaces, we obtain (36) with R[H]-local coefficients and (37) with V-local coefficients.

We may easily generalise this discussion by twisting both sides by an element 
τ ∈ Aut(H). The action Cn(f) : Cn(Σ) → Cn(Σ) lifts to a map of regular covering 
spaces

	 C̃n(Σ)τ◦fH◦ϕ −→ C̃n(Σ)τ◦ϕ� (40)

and, applying relative twisted Borel–Moore homology, we obtain an R[H]-linear 
isomorphism

	 HBM
∗ (Cn(Σ), Cn(Σ, ∂−(Σ)); R[H])f−1

H ◦τ−1 −→ HBM
∗ (Cn(Σ), Cn(Σ, ∂−(Σ)); R[H])τ−1 �(41)

with R[H]-local coefficients and an (R, S)-linear isomorphism

	 HBM
∗

(
Cn(Σ), Cn(Σ, ∂−(Σ)); τ◦fHV

)
−→ HBM

∗
(
Cn(Σ), Cn(Σ, ∂−(Σ)); τV

)
�(42)

with V-local coefficients.
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These isomorphisms together form a twisted representation of the mapping 
class group M(Σ). To formulate precisely the meaning of this statement, we con-
sider mapping classes as morphisms in a groupoid whose objects are elements of 
Aut+(H). In standard terminology, this is called the action groupoid for the left 
action M(Σ) → Aut+(H), which we denote by M(Σ)\\Aut+(H). Morphisms 
σ → τ  are the mapping classes f such that τ ◦ fH = σ.4 The above discussion 
proves the following, which is a functorial formulation of the twisted representation 
announced in Theorem A.

Theorem 23  (Theorem A(b)) Associated to any left representation V of H in (R, S)-
bimodules, there is a functor

	 M(Σ)\\Aut+(H) −→R ModS � (43)

where each object τ : H → H is sent to the (R, S)-bimodule

	 H BM
n

(
Cn(Σ), Cn(Σ , ∂−(Σ)); τV

)

and the morphism f : τ ◦ fH → τ  is sent to the (R, S)-linear isomorphism (42).
As a corollary of this theorem, with V equal to the tautological representation (see 

Remark  6), we obtain a twisted finite-dimensional representation of the mapping 
class group.

5.2  The linearised translation action

The underlying set of the Heisenberg group H is Z × H1(Σ;Z) ∼= Z2g+1, which we 
may endow with its usual affine structure (a simply transitive action of the abelian group 
Z2g+1). The first key observation is that left multiplication in H preserves this affine struc-
ture, in other words, for any h0 = (k0, x0) ∈ H, the left translation action lh0 : H → H 
is an affine automorphism. Indeed l(k0,x0)(k, x) = (k0 + k + x0.x, x0 + x). Left 
multiplication therefore gives us an affine action

	 H −→ Aff(Z2g+1).� (44)

Recall that an affine space over a ring R consists of an R-module M and a set A equipped 
with a simply transitive action of (M, +), the underlying additive group of M. By a 
usual abuse of notation in affine geometry, we denote this (simply transitive) action 
of (M, +) on A also by ‘+’. An affine automorphism of A is a bijection f : A → A 
such that f(a + m) = f(a) + φ(m) for all a ∈ A and m ∈ M  and some (neces-
sarily unique) R-linear automorphism φ ∈ AutR(M). After choosing an element 

4 In general, for a group homomorphism θ : G → H , the groupoid G\\H  has object set H and the mor-
phisms h → h′ are elements g ∈ G such that h′θ(g) = h, with composition given by the group opera-
tion of G. The notation comes from the fact that the connected components π0(G\\H) are given by 
the left cosets θ(G) \ H . The terminology action groupoid comes from the special case of a left action 
θ : G → Aut(X) on an object X. There is also a dual notion of a (right) action groupoid H//G associ-
ated to an anti-homomorphism θ : G ↛ H , for example a right action θ : G ↛ Aut(X) on an object X.
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a0 ∈ A the affine space A embeds as M × {1} ⊂ M ⊕ R via a0 + m �→ (m, 1), and 
any affine automorphism extends uniquely to an R-linear automorphism of M ⊕ R, 
which is given by

	

(
φ v0
0 1

)
,

where v0 ∈ HomR(R, M) ∼= M  is the unique element such that f(a0) = a0 + v0. 
This gives an injective group homomorphism, depending on a0 ∈ A:

 where Aff(A) denotes the group of affine automorphisms of A. Applying this 
to the affine space A = Z2g+1 over Z with a0 = 0, we obtain an injective group 
homomorphism

	 � (45)

given by the above formula with v0 = f(0). The Z-linear automorphism φ underly-
ing the affine automorphism f = l(k0,x0), given by the left translation action on H, 
is φ(k, x) = (k + x0.x, x). We also have v0 = f(0) = l(k0,x0)(0) = (k0, x0) in this 
case. The linearised action

	 ρL = (45) ◦ (44) : H −→ GL2g+2(Z)� (46)

on L = H ⊕ Z ∼= Z2g+2 is therefore given by the formula

	
(k0, x0) �−→

(1 x0.− k0
0 I x0
0 0 1

)
,� (47)

in other words ρL(k0, x0) acts by (k, x, t) �→ (k′, x′, t′), where

	

{
k′ = k + t k0 + x0.x
x′ = x + t x0
t′ = t.

The nice feature of this representation is that the twisted representation τL is canoni-
cally isomorphic to L, for any τ ∈ Aut+(H).

Lemma 24  For any τ ∈ Aut+(H), the linear map τ ⊕ IdZ : L → τL gives an iso-
morphism of Z[H]-modules.

Proof  We first observe that any orientation-preserving automorphism of H preserves 
the structure of H = Z2g+1 as a free Z-module (see Corollary 19 and Remark 20). 
We therefore have a tautological homomorphism
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	 Aut+(H) −→ GL2g+1(Z)

given by sending τ  to τ  via the identification of the underlying set of H with Z2g+1. 
Composing this with the inclusion GL2g+1(Z) ⊂ GL2g+2(Z) given by − ⊕ IdZ, we 
obtain a Z-linear automorphism τ ⊕ IdZ : L → L. Notice that this inclusion is the 
linearisation homomorphism (45) restricted to GL2g+1(Z) ⊂ Aff(Z2g+1).

We next check that τ  intertwines the affine action lh0  and the twisted affine action 
lτ(h0), for any h0 ∈ H. For any other h ∈ H, we have

	

lτ(h0)(h) = τ(h0)h
= τ(h0τ−1(h)) = τ

(
lh0(τ−1(h))

)
,

so we have the identity

	 lτ(h0) = τ ◦ lh0 ◦ τ−1

in Aff(Z2g+1). After linearisation, we obtain the formula

	 ρL(τ(h0)) = (τ ⊕ IdZ) ◦ ρL(h0) ◦ (τ−1 ⊕ IdZ),� (48)

which is precisely the statement that τ ⊕ IdZ intertwines the linear action ρL(h0) and 
its twist ρL(τ(h0)) by τ . � □

Remark 25  Alternatively, we may check formula (48) in coordinates. By Corollary 19 
and Remark 20 we may identify Aut+(H) with the subgroup

	
Sp(H) ⋉ H∨ =

(
1 H∨

0 Sp(H)

)
⊂ GL(Z ⊕ H),

where H∨ denotes Hom(H,Z). Each element τ  of Aut+(H) is then of 

the form 
(

1 v.−
0 M

)
 for M ∈ Sp(H) and v ∈ H . Each h0 = (k0, x0) ∈ H 

acts on L = H ⊕ Z = (Z ⊕ H) ⊕ Z by the block matrix (47). We have 
τ(k0, x0) = (k0 + v.x0, Mx0), which acts by the block matrix

	

(1 Mx0.− k0 + v.x0
0 I Mx0
0 0 1

)
.

The intertwining formula (48) then corresponds to the calculation:
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ρL(τ(h0)) ◦ (τ ⊕ IdZ) =

(1 Mx0.− k + v.x0
0 I Mx0
0 0 1

) (1 v.− 0
0 M 0
0 0 1

)

=

(
1 (v + x0).− k0 + v.x0
0 M Mx0
0 0 1

)

=

(1 v.− 0
0 M 0
0 0 1

) (1 x0.− k0
0 I x0
0 0 1

)

= (τ ⊕ IdZ) ◦ ρL(h0),

where for the second equality we use the fact that (Mx0.−) ◦ M = x0.− : H → Z 
since M ∈ Sp(H) preserves the symplectic form −.−.

The following theorem is then immediate from Lemma 24.

Theorem 26  (Theorem B) There is a representation

	 M(Σ) −→ AutZ
(
H BM

n
(
Cn(Σ), Cn(Σ , ∂−(Σ)); L

))

associating to f ∈ M(Σ) the composition of the isomorphism

	 H BM
n

(
Cn(Σ), Cn(Σ , ∂−(Σ)); L

)
−→ H BM

n
(
Cn(Σ), Cn(Σ , ∂−(Σ)); fHL

)

induced by the coefficient isomorphism fH ⊕ IdZ with the functorial homology 
isomorphism

	Cn(f )∗ : H BM
n

(
Cn(Σ), Cn(Σ , ∂−Σ)); fHL

)
→ H BM

n
(
Cn(Σ), Cn(Σ , ∂−(Σ)); L

)

6  The Schrödinger local system

A well-known representation of the Heisenberg group, which is infinite-dimensional 
and unitary, is the Schrödinger representation, which is parametrised by a non-zero 
real number ℏ. The left action on the Hilbert space L2(Rg) is given by the following 
formula:

	

[
Πℏ

(
k, x =

g∑
i=1

piai + qibi

)
ψ

]
(s) = eiℏ k+p·q

2 eiℏp·sψ(s + q).� (49)

The Schrödinger representation occupies a special place in the representation theory 
of the Heisenberg group, and in this section we explain how to leverage its properties 
to construct an untwisted representation of the full mapping class group M(Σ), after 
passing to a central extension.

In Sect. 5.1 we first discuss the Schrödinger representation in more detail, as well 
as the Stone–von Neumann theorem and its consequences. In Sect. 5.2 we discuss the 
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universal central extension of the mapping class group. We then prove Theorem C in 
Sect. 5.3, constructing untwisted representations of the universal central extension of 
the mapping class group. In Sect. 5.4 we explain how to adapt our construction to the 
finite-dimensional analogues of the Schrödinger representation to prove Theorem D. 
Finally, in Sect. 5.5 we show that, although these representations are not unitary in 
an obvious way, they do preserve a certain perfect sesquilinear pairing between two 
different homology groups (Proposition 40).

6.1  The Schrödinger representation and the Stone–von Neumann theorem

The continuous Heisenberg group is defined similarly to the discrete Heisen-
berg group. As a set it is R × H1(Σ;R), with multiplication given by 
(s, x)(t, y) = (s + t + x.y, x + y), where. is the intersection form on H1(Σ;R) = HR. 
We denote it by HR and note that the discrete Heisenberg group H is naturally a sub-
group of HR. The proofs of Lemma 18 and Corollary 19 work similarly for HR, and 
the group Aut+(HR) of automorphisms of HR acting trivially on the centre decom-
poses as a semi-direct product Aut+(HR) ∼= Sp(H1(Σ;R)) ⋉ H1(Σ;R). There is a 
natural inclusion

 denoted by φ �→ φR, such that φR is an extension of φ. This inclusion is compatible 
with the decompositions into semi-direct products.

As an alternative to the explicit formula (49), the Schrödinger representation may 
also be defined more abstractly as follows. First note that HR may be written as a 
semi-direct product

	 HR = R{(0, b1), . . . , (0, bg)} ⋉R{(1, 0), (0, a1), . . . , (0, ag)},

where a1, . . . , ag, b1, . . . , bg  form a symplectic basis for H1(Σ;R). Fix a real number 
ℏ > 0. There is a one-dimensional complex unitary representation

	 R{(1, 0), (0, a1), . . . , (0, ag)} −→ S1 = U(1)

defined by (t, x) �→ eℏit/2. This may then be induced to a complex uni-
tary representation of the whole group HR on the complex Hilbert space 
L2(R{(0, b1), . . . , (0, bg)}) = L2(Rg). This is the Schrödinger representation of 
HR. From now on, let us denote this representation by

	 W = L2(Rg) and ρW : HR −→ U(W ).� (50)

We will usually not make the dependence on ℏ explicit in the notation; in particular 
we write ρW  instead of ρW,ℏ. The key properties of ρW  that we shall need are the 
following.

Theorem 27  (The Stone–von Neumann theorem; [13, page 19]) 
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(a)	 The representation (50) is irreducible.
(b)	 If V is a complex Hilbert space and 

	 ρ : HR −→ U(V )

	  is an irreducible unitary representation such that ρ(t, 0) = eℏit/2IdV  for all 
t ∈ R, then there is an isomorphism κ : V → W  such that, for any (t, x) ∈ HR, 
the following diagram commutes:

Corollary 28  If ρ : HR → U (W ) is an irreducible unitary representation such that 
ρ(t, 0 ) = eℏit/2 IdW  for all t ∈ R, then there is a commutative diagram

for some element u ∈ U (W ), which is unique up to rescaling by an element of S1 . Here, adu  
denotes the adjoint action of u given by adu(v) = uvu−1 .

Proof  Applying Theorem 27 to the case V = W , the unitary isomorphism κ provides 
an element u as claimed. To see uniqueness up to a scalar in S1, note that any two 
such elements u differ by an automorphism of the irreducible representation ρW , 
which must therefore be a scalar (in C∗) multiple of the identity, by Schur’s lemma. 
Moreover, since ρW  is unitary, this scalar must lie in S1 ⊂ C∗. � □

Definition 29  Denote by PU(W ) = U(W )/S1 the projective unitary group of the 
Hilbert space W. Since scalar multiples of the identity are central, this fits into a 
central extension

	 � (51)

We denote by ωP U : PU(W ) × PU(W ) → S1 a choice of 2-cocycle corresponding 
to this central extension; in other words we write U(W ) ∼= S1 × PU(W ) with mul-
tiplication given by (s, g)(t, h) = (stωP U (g, h), gh).
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Definition 30  For an automorphism φ ∈ Aut(HR), Corollary 28 applied to the rep-
resentation ρ = ρW ◦ φ tells us that there is a unique element u = T (φ) ∈ PU(W ) 
such that ρW ◦ φ = T (φ)ρW T (φ)−1. The assignment φ �→ T (φ) defines a group 
homomorphism

	 T : Aut(HR) −→ PU(W ).� (52)

Restricting the homomorphism (52) to the subgroup 
Sp2g(R) = Sp(HR) ⊂ Aut+(HR) ⊂ Aut(HR), we obtain a projective 
representation

	 R = T |Sp2g(R) : Sp2g(R) −→ PU(W ).� (53)

This is the Shale–Weil projective representation of the symplectic group. (It is some-
times also called the Segal–Shale–Weil projective representation, see for example 
[13, page 53].) Pulling back the central extension (51) along the homomorphism (53), 
we then obtain a central extension

	 � (54)

and a lifted representation

	 R : Sp2g(R) −→ U(W ).� (55)

The group Sp2g(R) is sometimes known as the Mackey obstruction group of 
the projective representation (53). Since (54) is pulled back from (51) along 
R, we may write Sp2g(R) ∼= S1 × Sp2g(R) with multiplication given by 

(s, g)(t, h) = (s.t.ωSp(g, h), gh), where

	 ωSp = ωP U ◦ (R × R) : Sp2g(R) × Sp2g(R) −→ PU(W ) × PU(W ) −→ S1.

6.2  Universal central extensions

We recall the definition of the universal central extension of a group G (see for exam-
ple [14, Sect. 6.9] for more details).

Definition 31  If G is a perfect group, i.e.  if we have H1(G;Z) = 0, then there is 
an isomorphism H2(G; H2(G;Z)) ∼= Hom(H2(G;Z), H2(G;Z)) by the univer-
sal coefficient theorem, and the H2(G;Z)-central extension of G corresponding to 
the identity map is the universal central extension of G. For G = M(Σ) (recall that 
Σ = Σg,1), we have that G is perfect when g ⩾ 3 and we have H2(G;Z) ∼= Z when 
g ⩾ 4 (see [15, Theorems 5.1 and 6.1]). In particular, for g ⩾ 4, let us denote by

	 1 −→ Z −→ M̃(Σ) p−→ M(Σ) −→ 1
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the universal central extension of M(Σ).
Consider the inclusion of surfaces Σg,1 ↪→ Σh,1 given by boundary connected sum 
with Σh−g,1. This induces an inclusion of mapping class groups

	 � (56)

by extending diffeomorphisms by the identity on Σh−g,1. Recall from the intro-
duction that the inclusion map (56) induces isomorphisms on first and second (co)
homology for all h ⩾ g ⩾ 4 (see [16] or [17]), so the pullback of M̃(Σh,1) along this 
inclusion is M̃(Σg,1). The following definition is therefore consistent for any g ⩾ 1.

Definition 32  We define the stably universal central extension M̃(Σg,1) of M(Σg,1) 
to be the pullback of M̃(Σh,1) for any h ⩾ max(g, 4).

The following lemma explains how Morita’s crossed homomorphism d behaves with 
respect to increasing the genus via this inclusion. We first remark that the boundary 
connected sum decomposition Σh,1 ∼= Σg,1♮Σh−g,1, which induces the inclusion (56) 
above, also induces a free product decomposition π1(Σh,1) ∼= π1(Σg,1) ∗ π1(Σh−g,1) 
of fundamental groups. This, in turn, induces a direct sum decomposition 
H1(Σh,1) ∼= H1(Σg,1) ⊕ H1(Σh−g,1) on first cohomology, using the identification 
H1(−) ∼= Hom(π1(−),Z).

Lemma 33  The diagram

	

� (57)

commutes, where the bottom horizontal arrow is the inclusion of the left-hand sum-
mand of the decomposition H 1 (Σh,1 ) ∼= H 1 (Σg,1 ) ⊕ H 1 (Σh−g,1 ).

Proof  As in the definition of the Morita crossed homomorphism (see Eqs.  (33) in 
Sect. 3.3), we use the the identification H1(−) ∼= Hom(π1(−),Z). Under this iden-
tification, the bottom horizontal arrow in (57) is given by pre-composition with the 
projection pr1 : π1(Σh,1) ∼= π1(Σg,1) ∗ π1(Σh−g,1) ↠ π1(Σg,1) onto the first factor 
of the free product.

Let f ∈ M(Σg,1) and write f̂ ∈ M(Σh,1) for its image under (56). Let 
γ ∈ π1(Σh,1) and write γ1 = pr1(γ) ∈ π1(Σg,1) and γ2 = pr2(γ) ∈ π1(Σh−g,1) for 
its images under the projections onto the two free factors. Recall that the definition of 
di(γ) (see Eq. (32)) depends only on the decomposition of γ into the standard gen-
erators αj , βj  of π1(Σh,1) after forgetting those with j > i. This implies in particular 
that we have

1 3

2021



C. Blanchet et al.

	 di(γ) = di(γ1) and di(π1(f̂)(γ)) = di(π1(f)(γ1))

for 1 ⩽ i ⩽ g. Moreover, since f̂  acts by the identity on Σh−g,1, we also have

	 di(π1(f̂)(γ)) = di(γ)

for g + 1 ⩽ i ⩽ h. From the defining formula (33) we deduce that

	
df̂ ([γ]) =

h∑
i=1

di(π1(f̂)(γ)) − di(γ) =
g∑

i=1
di(π1(f)(γ1)) − di(γ1) = df ([γ1]) = (df ◦ pr1)([γ]),

and so (57) commutes. � □

6.3  Constructing the representations

We now prove Theorem C.
From the previous two subsections, we have the following diagram:

	

� (58)

where unmarked arrows denote inclusions. For g ⩾ 4, by the universality of M̃(Σ), 
there is a morphism of central extensions

	

� (59)

where the bottom horizontal arrow is the composition along the top of (58). More-
over, this extends to all g ⩾ 1 as follows. Consider the commutative diagram5

	

�(60)

The right-hand side of this diagram arises as follows. We consider L2(Rg) 
as the (closed) subspace of L2(Rh) of those L2-functions that factor through 
Rh = Rg × Rh−g ↠ Rg . Any closed subspace of a Hilbert space has an orthogo-
nal complement, so we may extend unitary automorphisms by the identity on this 
complement to obtain a homomorphism U(L2(Rg)) → U(L2(Rh)), which descends 

5 We freely pass between the different notations Sp2g(R) = Sp(HR) and R2g = HR, and similarly for 
the integral versions, depending on whether or not we wish to emphasise the genus g.
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to the projective unitary groups. The right-hand square of (60) is a pullback square 
(this is true for any closed subspace of a Hilbert space). Commutativity of the left-
hand square follows from Lemma 33 and commutativity of the middle square fol-
lows from the defining property of T (Definition 30). Let us write M(Σg,1) for the 
pullback of U(W ) → PU(W ) along T ◦ (s, d), and similarly for M(Σh,1). Then 
M(Σg,1) is the pullback of M(Σh,1) along the inclusion of mapping class groups. 
From Definitions 31 and 32, we also have that M̃(Σg,1) is the pullback of M̃(Σh,1) 
along the inclusion.

If we now take h ⩾ 4, then M̃(Σh,1) is by definition the universal central exten-
sion, so there is a unique morphism of central extensions M̃(Σh,1) → M(Σh,1). 
Pulling back along the inclusion, we obtain a canonical morphism of central exten-
sions M̃(Σg,1) → M(Σg,1), even though M̃(Σg,1) is not universal for g ⩽ 3. This 
gives us the desired morphism of central extensions (59).

Notation 34  We denote by

	 S : M̃(Σ) −→ U(W )

the top horizontal map of (59).

Notation 35  By abuse of notation, we write

	 ρW : H −→ U(W )

for the restriction of the Schrödinger representation (50) to the subgroup H ⊂ HR.
A consequence of Definition 30 is the following.

Lemma 36  For g ∈ M̃(Σ) and h ∈ H, we have the following equation in U(W):

	 S(g).ρW (h).S(g)−1 = ρW (Φ(p(g))(h)).� (61)

We now use this to construct untwisted representations of the universal central 
extension M̃(Σ) of M(Σ) on the homology of configuration spaces with coefficients 
in the Schrödinger representation.

Let C̃n(Σ) → Cn(Σ) denote the connected covering of Cn(Σ) corresponding to 
the kernel of the surjective homomorphism π1(Cn(Σ)) ↠ H. This is a principal H
-bundle. Taking free abelian groups fibrewise, we obtain

	 Z[C̃n(Σ)] −→ Cn(Σ),� (62)

which is a bundle of right Z[H]-modules. Via the Schrödinger representation ρW , the 
Hilbert space W becomes a left Z[H]-module, and we may take a fibrewise tensor 
product to obtain
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	 Z[C̃n(Σ)] ⊗Z[H] W −→ Cn(Σ),� (63)

which is a bundle of Hilbert spaces. There is a natural action of the mapping class 
group M(Σ) (up to homotopy) on the base space Cn(Σ), and the induced action on 
π1(Cn(Σ)) preserves the kernel of the surjection π1(Cn(Σ)) ↠ H (Proposition 16), 
so that there is a well-defined twisted action of M(Σ) on the bundle (62), in the fol-
lowing sense. There are homomorphisms

	

α : M(Σ) −→ AutZ
(
Z[C̃n(Σ)] −→ Cn(Σ)

)

Φ : M(Σ) −→ Aut(H)

such that, for any g ∈ M(Σ), h ∈ H and m ∈ Z[C̃n(Σ)], we have

	 α(g)(m.h) = α(g)(m).Φ(g)(h).� (64)

In other words, Φ measures the failure of α to be an action by fibrewise Z[H]-module 
automorphisms. In the above, the target of α is the group of Z-module automor-
phisms of the bundle (62), in other words the group of self-homeomorphisms of the 
total space Z[C̃n(Σ)] that preserve the fibres of the projection and that are Z-linear 
(but not necessarily Z[H]-linear) on each fibre.

Theorem 37  The stably universal central extension M̃(Σ) of M(Σ) acts on (63) by 
Hilbert space bundle automorphisms

	
γ : M̃(Σ) −→ U

(
Z[C̃n(Σ)] ⊗Z[H] W −→ Cn(Σ)

)

via the formula

	 γ(g)(m ⊗ v) = α(p(g))(m) ⊗ S(g)(v)� (65)

for all g ∈ M̃(Σ), m ∈ Z[C̃n(Σ)] and v ∈ W .

Proof  We must verify that the formula (65) is additive in m, unitary in v and that it 
is Z[H]-balanced. The first two properties are evident by the definitions of α and S 
respectively. The key property to be verified is therefore the third one, which in more 
detail says the following. Since we are taking the (fibrewise) tensor product over 
Z[H], we have that m.h ⊗ v = m ⊗ ρW (h)(v) for any h ∈ H, m ∈ Z[C̃n(Σ)] and 
v ∈ W . (Note here that we denote the right H-action on the fibres of Z[C̃n(Σ)] simply 
by juxtaposition, whereas the left H-action on W is the Schrödinger representation, 
denoted by ρW .) We therefore have to verify that, for each fixed g ∈ M̃(Σ), the for-
mula (65) gives the same answer when applied to m.h ⊗ v or to m ⊗ ρW (h)(v). To 
see this, we calculate:
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γ(g)(m.h ⊗ v) = α(p(g))(m.h) ⊗ S(g)(v) by definition
= α(p(g))(m).Φ(p(g))(h) ⊗ S(g)(v) by eq. (64)
= α(p(g))(m) ⊗ ρW (Φ(p(g))(h))(S(g)(v)) since ⊗ is over Z[H]
= α(p(g))(m) ⊗ S(g) ◦ ρW (h) ◦ S(g)−1(S(g)(v)) by eq. (61)[Lemma 36]
= α(p(g))(m) ⊗ S(g)(ρW (h)(v)) simplifying
= γ(g)(m ⊗ ρW (h)(v)). by definition

This tells us that the formula (65) gives a well-defined fibrewise unitary bundle auto-
morphism (i.e.  an automorphism of Hilbert space bundles) of (63) for each fixed 
g ∈ M̃(Σ). It is then clear from the formula (65) that γ is a group homomorphism. 
� □

Theorem 38  (Theorem C) The action of the mapping class group on the Borel–Moore 
homology of the configuration space Cn(Σ) with coefficients in the Schrödinger rep-
resentation induces a well-defined complex representation of the stably universal 
central extension M̃(Σ) of the mapping class group M(Σ):

	 M̃(Σ) −→ GLbd(
HBM

n

(
Cn(Σ), Cn(Σ, ∂−(Σ)); W

))
� (66)

lifting a natural projective representation of M(Σ) on the same space. Here, GLbd 
denotes the group of bounded linear operators with respect to a certain Hilbert 
structure.

Proof  By Theorem 37, we have a well-defined functor from the group M̃(Σ) to the 
category of spaces equipped with bundles of Hilbert spaces. Moreover, elements of 
the mapping class group fix the boundary of Σ pointwise, so the action of the map-
ping class group on Cn(Σ) preserves the subspace Cn(Σ, ∂−(Σ)). Thus we have a 
functor from the group M̃(Σ) to the category of pairs of spaces equipped with bun-
dles of Hilbert spaces.

On the other hand, relative twisted Borel–Moore homology HBM
n (−) is a functor 

from the category of pairs of spaces equipped with bundles of Hilbert spaces (and 
bundle maps whose underlying map of spaces is proper) to the category of complex 
vector spaces (cf. [31, Sects. V.4 and V.5]). Moreover, on the full subcategory of 
pairs of spaces admitting a finite relative Borel–Moore CW-complex structure, it may 
be augmented to take values in the category of Hilbert spaces and bounded opera-
tors. For objects, the Hilbert structure on Borel–Moore homology is induced by the 
Hilbert structure on Borel–Moore cellular chain complexes given by an orthogonal 
direct sum, over all cells, of copies of the Hilbert space coefficients. For morphisms, 
we may assume by cellular approximation that the underlying map is cellular, so 
it induces a bounded operator of Borel–Moore cellular chain complexes and hence 
a bounded operator on Borel–Moore homology. (We note that for boundedness it 
is essential that the relative Borel–Moore CW-complex structure has finitely many 
cells.)
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The pair (Cn(Σ), Cn(Σ, ∂−(Σ))) admits a finite relative Borel–Moore CW-com-
plex structure, so we may compose these two functors to obtain the representation 
(66) of M̃(Σ) by bounded linear operators on a Hilbert space, as desired.

This automatically descends to a projective representation of M(Σ) since it sends 
the kernel of the central extension M̃(Σ) → M(Σ) into the centre of the bounded 
linear automorphism group, which is contained in the kernel of the projection onto 
the projective bounded linear automorphism group. � □

6.4  Finite-dimensional Schrödinger representations

For an integer N ⩾ 2, the finite-dimensional Schrödinger representation is a left 
action of the discrete Heisenberg group H on the Hilbert space WN = L2((Z/N)g), 
which may be defined as follows:

	

[
ϖN

(
k, x =

g∑
i=1

piai + qibi

)
ψ

]
(s) = eiπ k+p·q

N ei 2π
N p·sψ(s + q).� (67)

Note that this matches the generic formula with ℏ = 2π
N . It may also be constructed 

by composing the natural finite quotient

 with the representation of HN  obtained by induction from the one-dimensional 
representation Z/2N × (Z/N)g ↠ Z/2N ↪→ S1 = U(C), where the sec-
ond map is t �→ exp

(
πit
N

)
. Note that the kernel of the quotient map H ↠ HN  

may be written, in the original definition H = Z × H , as the normal subgroup 
IN = {(2Nk, Nx) | k ∈ Z, x ∈ H}.

We may adapt the above construction using WN  in place of W and using the ana-
logue of the Stone–von Neumann theorem for WN , proven for N even in [19, Theo-
rem 2.4] (see also [20, Theorem 3.2] and [18, Theorem 2.6]). The proof for odd N 
works similarly. The theorem states that WN  is, up to projectively unique unitary 
isomorphism, the unique unitary representation of the finite group HN  where the 
action of u = (1, 0) is multiplication by e iπ

N . The odd case is studied in [11] with 
explicit formulas for the untwisting process. We quote from [11] that for odd N the 
mapping class group action on H fixes the kernel IN  so that the Stone-von Neumann 
theorem constructs a projective representation of the mapping class group on the 
Borel–Moore homology of the configuration space Cn(Σ) with coefficients in WN .

If N is even, then the action fH of a mapping class f on the Heisenberg group H 
may fail to preserve the normal subgroup IN . From the formula (31) we see that 
fH(IN ) = IN  if and only if δf (x) is even for every x, equivalently f is in the kernel 
of the reduced-modulo-2 crossed homomorphism δ : M(Σ) → H1(Σ;Z/2). From 
Eq. (33) (and Proposition 22), we see that δf (x) ∈ Z/2 depends only on the mod-
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ulo-2 symplectic action f∗ on H1(Σ;Z/2). Denoting by Af = (αi j) the matrix of 
this action in the symplectic basis (a1, . . . , ag, b1, . . . , bg), we have

	
δf

(
g∑

i=1
siai + si+gbi

)
=

2g∑
j=1

g∑
i=1

αi jαi+g jsj � (68)

This crossed homomorphism has a spin structure interpretation; indeed a spin 
structure can be defined as a quadratic form q : H1(Σ;Z/2) → Z/2, q(0) = 0 and 
q(x + y) = q(x) + q(y) + x.y. It defines a modulo-2 crossed homomorphism dq  via 
the formula dq(x) = q(f∗(x)) − q(x). One can check that δ = dq0 , where q0 is the 
quadratic form that vanishes on the canonical basis. It follows that the kernel of δ is 
the spin mapping class group M(Σ, q0). The Arf invariant of q0 is 0, meaning that the 
index of this subgroup is 2g−1(2g + 1). From the Stone–von Neumann theorem we 
obtain with the previous untwisting method:

Theorem 39  (Theorem D) For N even, there exists a projective action of the spin 
mapping class group M(Σ , q0 ) on the Borel–Moore homology of the configuration 
space Cn(Σ) with coefficients in WN  obtained by composing a coefficient isomor-
phism with the homological action. This gives a projective representation of the of the 
spin mapping class group on the 

(
2g+n−1

n

)
N g-dimensional complex Hilbert space

	 VN,n = HBM
n

(
Cn(Σ), Cn(Σ, ∂−(Σ)); WN

)
.� (69)

6.5  Preservation of a sesquilinear form

As explained in the proof of Theorem 38, when using a Hilbert space as local coef-
ficients, after choosing a CW-complex structure, which gives a Hilbert structure on 
the cellular chain groups as an orthogonal sum indexed by the cells, we get a Hilbert 
structure on homology.6 However, it is not true that mapping classes will act as uni-
tary operators on chains (or on homology). This is because, although we may use 
the cellular approximation theorem to represent the action of any mapping class by a 
cellular self-map of the configuration space, this self-map will in general fail to be an 
automorphism of the CW-complex structure, in particular it will fail to be a homeo-
morphism. Nevertheless, we will exhibit, in this section, a perfect sesquilinear form 
on homologies that is preserved by the action of mapping classes.

Suppose that V is a representation of the discrete Heisenberg group H defined over 
a commutative ring with involution R, equipped with a perfect7 Hermitian pairing 
V ⊗ V → R. By Poincaré duality, and the fact that Cn(Σ) is a connected, oriented 
2n-manifold with boundary Cn(Σ, ∂Σ) = {c ∈ Cn(Σ) | c ∩ ∂Σ ̸= ∅}, we obtain a 
sesquilinear pairing

6 In general we would have to quotient the closed subspace of cycles by the closure of the boundary sub-
space, but here we can use a finite cell structure.

7 Recall that a perfect pairing A ⊗ B → R is an R-linear map such that both dual maps A → HomR(B, R) 
and B → HomR(A, R) are isomorphisms.
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	 ⟨−, −⟩ : HBM
n (Cn(Σ), ∂−; V ) ⊗ Hn(Cn(Σ), ∂+; V ) −→ R,� (70)

where ∂± is an abbreviation of Cn(Σ, ∂±(Σ)), and we note that the boundary 
∂Cn(Σ) = Cn(Σ, ∂Σ) decomposes as ∂+ ∪ ∂− with ∂∂+ = ∂∂− = ∂+ ∩ ∂− (i.e. 
forming a manifold triad), corresponding to the decomposition of the boundary of the sur-
face ∂Σ = ∂+(Σ) ∪ ∂−(Σ). In more detail, the pairing (70) is constructed by pre-com-
posing the evaluation map H ⊗ HomR(H, R) → R, where H = HBM

n (Cn(Σ), ∂−; V ), 
with Id ⊗ η, where η is Poincaré duality composed with the canonical morphism 
from compactly-supported cohomology to the dual of Borel–Moore homology:

	 η = ε ◦ PD : Hn(Cn(Σ), ∂+; V )
∼=−−→ Hn

c (Cn(Σ), ∂−; V ) −→ HomR(H, R).�(71)

By naturality of the homomorphism ε and of Poincaré duality, the pairing (70) is 
preserved by the actions of homeomorphisms of Cn(Σ) (that fix its boundary) and of 
coefficient isomorphisms. Since the mapping class group acts via homeomorphisms 
of the configuration space and coefficient isomorphisms, this means that (70) is pre-
served by the mapping class group action.

Let us from now on assume that V is a free R-module and choose a basis (vj)j∈J  
for V. Since the Hermitian pairing on V is perfect, we may also choose another basis 
(v′

j)j∈J  for V that is dual to (vj)j∈J  with respect to this pairing. It follows from 
Theorem 11 that the R-module H = HBM

n (Cn(Σ), ∂−; V ) has a basis of the form 
Ẽk ⊗ vj , indexed by k ∈ K and j ∈ J , where Ẽk is a lift to the Heisenberg cover 
C̃n(Σ) of the product of simplices Cki

(γi) for 1 ⩽ i ⩽ 2g and k1 + · · · + k2g = n. 
Moreover, in Theorem 11, we also computed the compactly-supported cohomology 
Hn

c (Cn(Σ), ∂−; V ), which is Poincaré dual to Hn(Cn(Σ), ∂+; V ). As an R-module, 
it has a basis of the form Ẽ′

k ⊗ v′
j , indexed by k ∈ K and j ∈ J , where Ẽ′

k is a lift to 
the Heisenberg cover C̃n(Σ) of the n-cube E′

k given by the product of n pairwise dis-
joint arcs in Σ with boundary on ∂+(Σ) where exactly ki of them intersect γi trans-
versely for each 1 ⩽ i ⩽ 2g. (This dual basis is described in more detail in Sect. 7.) 
With respect to the pairing (70), we have that ⟨Ẽk ⊗ vj , Ẽ′

k′ ⊗ v′
j′⟩ evaluates to the 

Kronecker δ(k′,j′)
(k,j)  up to a sign. This proves that the pairing (70) is perfect:

Proposition 40  Let R be a commutative ring with involution and V be a free R-module 
equipped with a perfect Hermitian pairing V ⊗ V → R. Suppose that we have a 
representation of the discrete Heisenberg group H on V respecting this pairing. Then 
the sesquilinear pairing (70) is perfect.

Remark 41  This applies in particular if V is a complex Hilbert space with a unitary 
representation of H, so it applies to the (projective) representations of M(Σ) and of 
M(Σ, q0) constructed in Theorems 38 and 39 (Theorems C and D).
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7  Relation to the Moriyama and Magnus representations

In this section we study the kernels of the twisted representations that we have con-
structed in Theorem A in the case when the coefficients are V = Z[H], and prove 
Proposition E. The proof will use:

	● A theorem of Moriyama [12], which identifies each J(i) with the kernel of a cer-
tain homological representation of M(Σ);

	● A theorem of Suzuki [38], which identifies the Magnus kernel with the kernel 
of a certain twisted homological representation of M(Σ) (a homological inter-
pretation of the Magnus representation, which was originally defined via Fox 
calculus);

together with a study of the connections between our representations and those of 
Moriyama and Suzuki.

7.1  The Moriyama representation

Moriyama [12] studied the action of the mapping class group M(Σ) on the homol-
ogy group HBM

n (Fn(Σ′);Z) with trivial coefficients, where Σ′ denotes Σ minus a 
point on its boundary and Fn(−) denotes the ordered configuration space, where 
elements are ordered n-tuples of distinct points. On the other hand, our construction 
(43) (Theorem 23) may be re-interpreted as a twisted representation

	
M(Σ) −→ AuttwZ[H]

(
HBM

n (Cn(Σ′);Z[H])
)

.� (72)

We pause to explain this re-interpretation. We must first of all explain the twisted auto-
morphism group on the right-hand side of (72). Let us write Mod• for the category 
whose objects are pairs (R, M) consisting of a ring R and a right R-module M, and whose 
morphisms are pairs (θ : R → R′, φ : M → M ′) such that φ(mr) = φ(m)θ(r). The 
automorphism group of (R, M) in Mod• is written AuttwR (M); note that this is gener-
ally larger than the automorphism group AutR(M) of M in ModR.

If we set R = V = Z[H] in Theorem  23, then the functor (43) that it supplies 
is of the form M(Σ)\\Aut+(H) → ModZ[H]. In general, for any left group action 
θ : G → Aut(K), each functor F : G\\Im(θ) → ModZ[K] corresponds to a group 
homomorphism G → AuttwZ[K](F (IdK)).8 Thus (43) corresponds to a homomorphism

	
M(Σ) −→ AuttwZ[H]

(
HBM

n

(
Cn(Σ), Cn(Σ, ∂−(Σ));Z[H]

))
.

Finally, removing a point (equivalently, removing the closed interval ∂−(Σ)) from 
the boundary of Σ corresponds, on Borel–Moore homology of configuration spaces 
Cn(Σ), to taking homology relative to the subspace Cn(Σ, ∂−(Σ)) of configurations 

8 See footnote 4 on page 21 for an explanation of the groupoid G\\H  in general.
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having at least one point in the interval. Thus HBM
n (Cn(Σ), Cn(Σ, ∂−(Σ));Z[H]) 

and HBM
n (Cn(Σ′);Z[H]) are isomorphic as Z[H]-modules, and we obtain (72).

Remark 42  Forgetting the Z[H]-module structure gives an embedding of the right-hand 
side of (72) into the (untwisted) automorphism group AutZ(HBM

n (Cn(Σ′);Z[H])) 
over Z.

When n = 2, Moriyama’s representation is a quotient of ours. To see this, we con-
sider the quotient of groups H ↠ Z/2 = S2 given by sending σ �→ σ and ai, bi �→ 1, 
which induces a map of twisted M(Σ)-representations

	 � (73)

The map (73) is surjective by Proposition 13, which tells us that it is isomorphic to 
a direct sum of copies of the surjective ring homomorphism Z[H] ↠ Z[S2] induced 
by the quotient of groups H ↠ S2. The isomorphism on the right-hand side of (73) 
follows from Shapiro’s lemma. (Shapiro’s lemma holds for arbitrary coverings with 
ordinary homology, and for finite-sheeted coverings with Borel–Moore homology. 
The proof for Borel–Moore homology, interpreted as the homology of the complex 
of locally-finite chains, is exactly the same as for ordinary homology, using the 
assumption that the covering is finite-sheeted to preserve the locally-finite property 
when projecting down the covering.) It therefore follows that the kernel of our rep-
resentation is a subgroup of the kernel of HBM

2 (F2(Σ′);Z), which was proven by 
Moriyama to be the Johnson kernel J(2). In Sect. 7 we will compute the action of a 
genus-1 separating twist Tγ ∈ J(2) on HBM

2 (C2(Σ′);Z[H]), and in particular show 
that it is (very) non-trivial; see Theorem 52. Thus the kernel of HBM

2 (C2(Σ′);Z[H]) 
is strictly smaller than J(2).

For any n ⩾ 2, we have a map of twisted M(Σ)-representations

 which is surjective by Proposition  13 and the fact that the augmentation map 
Z[H] ↠ Z is surjective. By Shapiro’s lemma and the calculations in Sect.  2 of 
HBM

n (Cn(Σ′); V ) for any local system V on Cn(Σ′), there are isomorphisms of abe-
lian groups:

	 HBM
n (Fn(Σ′);Z) ∼= HBM

n (Cn(Σ′);Z[Sn]) ∼= HBM
n (Cn(Σ′);Z) ⊗ Z[Sn].�(74)

Moreover, these are in fact both isomorphisms of M(Σ)-representations over 
Z: for the left-hand side this is due to the naturality of Shapiro’s lemma; for the 
right-hand side, it is because this isomorphism is induced by the natural map 
HBM

n (Cn(Σ′);Z) ⊗ Z[Sn] → HBM
n (Cn(Σ′);Z[Sn]) (one of the maps involved in 

the universal coefficient theorem) and the M(Σ)-action is induced from an action (up 
to homotopy) at the level of spaces. Since M(Σ) acts trivially on Sn, the right-hand 
side of (74) is a direct sum of n! copies of HBM

n (Cn(Σ′);Z). We therefore deduce that 
the kernel of the M(Σ)-representation HBM

n (Cn(Σ′);Z) is the same as the kernel of 
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the M(Σ)-representation HBM
n (Fn(Σ′);Z). (This is also shown in [39].) The latter 

kernel was proven by Moriyama to be the nth term J(n) of the Johnson filtration.
Summarising this discussion, we have:

Proposition 43  The kernel of the twisted M(Σ)-representation (72) is contained in 
the nth term J(n) of the Johnson filtration. When n = 2  it is moreover a proper sub-
group of the Johnson kernel J(2 ).

7.2  The Magnus representation

The kernel of our representation (72) is also contained in the kernel of the Mag-
nus representation. This may be seen as follows. The M(Σ)-equivariant surjection 
H ↠ H  induces a map of twisted M(Σ)-representations

	 � (75)

which is surjective by Proposition 13. By a similar argument as in Sect. 6.1 above, 
the kernel of the twisted M(Σ)-representation HBM

n (Cn(Σ′);Z[H]) is the same as 
the kernel of the twisted M(Σ)-representation HBM

n (Fn(Σ′);Z[H]). Moreover, it is 
shown in [39] that there is an inclusion of twisted M(Σ)-representations

	 � (76)

By a result of Suzuki [38], HBM
1 (F1(Σ′);Z[H]) is the Magnus representation of 

M(Σ) (this is a homological interpretation of the Magnus representation, which was 
originally defined via Fox calculus). The maps of representations (75) and (76) imply 
that

	

ker
[
HBM

n (Cn(Σ′);Z[H])
]

⊆ ker
[
HBM

n (Cn(Σ′);Z[H])
]

= ker
[
HBM

n (Fn(Σ′);Z[H])
]

⊆ ker(Magnus⊗n).

In general, if V is a representation of a group G over an integral domain R, the ker-
nel of the tensor power V ⊗n consists of those g ∈ G that act on V by an element of 
{λ ∈ R | λn = 1}. For the Magnus representation, the ground ring is Z[H], whose 
only roots of 1 are {1} when n is odd and {±1} when n is even. Thus when n is odd 
we have ker(Magnus⊗n) = ker(Magnus) and when n is even we either have the 
same equality or ker(Magnus⊗n) contains ker(Magnus) as an index-2 subgroup.

Combining this discussion with the statement of Proposition  43 and writing 
Mag(Σ) for the kernel of the Magnus representation, we may complete the proof of 
Proposition E.

Proposition 44  (Proposition E) The kernel of (72) is contained in J(n) ∩ Mag(Σ).

Proof  Let f be an element of the kernel of (72). By Proposition 43, we know that 
f ∈ J(n). By the discussion above, we know that the action of f under the Magnus 
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representation is either Id or −Id. It remains to rule out the possibility that it is 
−Id, so let us suppose this and derive a contradiction. Consider the morphism of 
representations

	 HBM
1 (F1(Σ′);Z[H]) −→ HBM

1 (F1(Σ′);Z)

induced by the augmentation map Z[H] → Z of the coefficients. Assuming that f 
acts by −Id under the Magnus representation (the left-hand side), it follows that 
it also acts by −Id on the representation on the right-hand side. But the right-hand 
side may be identified with the symplectic action of the mapping class group on 
H = H1(Σ;Z), so in particular it follows that f does not lie in the Torelli group, 
i.e. f /∈ J(1). But we know from above that f ∈ J(n) ⊆ J(1), a contradiction. � □

Remark 45  It is known [40, Sect. 6] that the kernel of the Magnus representation does 
not contain J(n) for any n ⩾ 1, so Proposition 44 implies that the kernel of (72) is 
strictly contained in J(n).

7.3  Other related representations

Recently, the representations of M(Σ) on the ordinary (rather than Borel–Moore) 
homology of the configuration space Fn(Σ) has been studied9 by Bianchi, Miller and 
Wilson [41]: they prove that, for each n and i, the kernel of the M(Σ)-representation 
Hi(Fn(Σ);Z) contains J(i), and is in general strictly larger than J(i). They conjec-
ture that the kernel of the M(Σ)-representation on the total homology H∗(Fn(Σ);Z) 
is equal to the subgroup generated by J(n) and the Dehn twist around the boundary. 
Even more recently, Bianchi and Stavrou [42] have shown that, for g ⩾ 2, the kernel 
of the M(Σ)-representation Hn(Fn(Σ);Z) does not contain J(n − 1).

The M(Σ)-representation Hi(Cn(Σ);F), for certain field coefficients F, has been 
completely computed. For F = F2 it has been computed in [43, Theorem 3.2] and is 
symplectic, i.e. it restricts to the trivial action on the Torelli group T(Σ) = J(1). For 
F = Q it has been computed in [44, Theorem 1.4] and is not symplectic, i.e. its kernel 
does not contain J(1), but it restricts to the trivial action on the Johnson kernel J(2).

8  Computations for n = 2

In this section we will do some computations in the case n = 2, when V is the regu-
lar representation Z[H] of the Heisenberg group H. The main goal is to obtain in 
this case an explicit formula for the action of a Dehn twist along a genus-1 separat-
ing curve on the generic Heisenberg homology HBM

2 (C2(Σ), C2(Σ, ∂−(Σ));Z[H]). 
When the surface has genus 1 this is displayed in Fig. 7; in general, the formula is 
given by Theorem 52. One may compare these calculations to the calculations of An 

9 This is equivalent to studying the homology of Fn(Σ′) since the inclusion Fn(Σ′) ↪→ Fn(Σ) is a 
homotopy equivalence. On the other hand, for Borel–Moore homology, this would not be equivalent, 
since the inclusion is not a proper homotopy equivalence.

1 3

2032



Heisenberg homology on surface configurations

and Ko [7, page 274], although they consider representations of surface braid groups 
whereas we consider representations of mapping class groups.

We will start with the case where the surface itself has genus 1, where we first 
compute the action of the Dehn twists Ta, Tb, along the standard essential curves 
a, b. Since Ta and Tb act non-trivially on the local system Z[H], they do not act by 
automorphisms, but give isomorphisms in the category of spaces with local systems, 
which, after taking homology with local coefficients, give isomorphisms in the cat-
egory of Z[H]-modules. We refer to [30, Chapter 5] for functoriality results concern-
ing homology with local coefficients. The upshot is a twisted representation of the 
full mapping class group M(Σ). Recall that in Theorem 23 we obtained a groupoid 
formulation of the twisted mapping class group representation as a functor on the 
action groupoid M(Σ)\\Aut+(H), which gives here a functor

	 M(Σ)\\Aut+(H) −→ ModZ[H].� (77)

We briefly recall from Sect. 4 some of the relevant details of the construction of this 
twisted representation. Let f ∈ M(Σ) and let fH be its action on the Heisenberg 
group. Then the Heisenberg homology HBM

∗ (Cn(Σ), Cn(Σ, ∂−(Σ));Z[H]) is defined 
from the regular covering space C̃n(Σ) associated with the quotient ϕ : Bn(Σ) ↠ H. 
As explained in Sect. 4, at the level of homology there is a twisted functoriality and, 
in particular, associated with f, we get a right Z[H]-linear isomorphism

	Cn(f)∗ : HBM
∗

(
Cn(Σ), Cn(Σ, ∂−(Σ));ZH]

)
f−1

H
→ HBM

∗
(
Cn(Σ), Cn(Σ, ∂−Σ));Z[H]

)

Our choice for twisting on the source with f−1
H  rather than on the target with fH will 

slightly simplify the writing of the matrix. Note also that when working with coeffi-
cients in a left Z[H]-representation V the twisting on the right by f−1

H  will correspond 
to twisting the action on V by fH (see (38)). More generally, for any τ ∈ Aut(H), we 
have a shifted isomorphism

	(Cn(f)∗)τ : HBM
∗

(
Cn(Σ), Cn(Σ, ∂−Σ));Z[H]

)
f−1

H ◦τ
→ HBM

∗
(
Cn(Σ), Cn(Σ, ∂−Σ));Z[H]

)
τ

In terms of the functor (77) on the action groupoid, the above map (Cn(f)∗)τ  is the 
image of the morphism f : τ−1 ◦ fH → τ−1 of M(Σ)\\Aut+(H). If f, g are two 
mapping classes, the composition formula (functoriality of (77)) states the following:

	 Cn((g ◦ f)∗) = Cn(g)∗ ◦ (Cn(f)∗)g−1
H

We will need to compute compositions in specific bases. Note that a basis B for a 
right Z[H]-module M is also a basis for the twisted module Mτ , τ ∈ Aut(H).

Lemma 46  Let M , M ′ be free right Z[H]-modules with fixed bases B, B′ and let 
τ ∈ Aut(H). If a Z[H]-linear map F : M → M ′ has matrix Mat(F) in the bases B, 
B′, then the matrix of the shifted Z[H]-linear map Fτ : Mτ → M ′

τ  is τ−1 (Mat(F)).
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The action of τ−1 on the matrix is given by its action on each individual coefficient.

Proof  We note that the maps F and Fτ  are equal as maps of Z-modules. Let 
B = (ej)j∈J , B′ = (fi)i∈I , Mat(F ) = (mi,j)i∈I,j∈J . Then for coefficients hj ∈ H, 
j ∈ J , we have

	

Fτ

(∑
j

ej ·τ hj

)
= F

(∑
j

ejτ(hj)
)

=
∑
i,j

fimijτ(hj)

=
∑
i,j

fi ·τ τ−1(mij)hj ,

which gives the stated result. � □

8.1  Genus one

Here we consider the genus-1 case with n = 2 configuration points. Let a, b be the 
simple closed curves representing the symplectic basis of H1(Σ) previously denoted 
by a1, b1; see Fig. 4. We will use the same notation a, b for the curves, their homology 
classes and their lifts in H which were previously denoted by ã, ̃b. The corresponding 
Dehn twists are denoted by Ta, Tb. The surface braid group B2(Σ) is generated by 
the three elements α, β, σ, where we again drop the subscript ‘1’. We will depict α 
and β as the arcs in the middle of Fig. 4. Although these arcs are not based loops, they 
may be completed to based loops, uniquely up to homotopy, by a path of configura-
tions contained in the bottom edge of the square, since the space of configurations 
of two points in the bottom edge of the square is contractible and contains the base 
configuration. In this notation, the quotient ϕ : B2(Σ) ↠ H (see Corollary 8) sends 
α �→ a, β �→ b and σ �→ u.

The homology module HBM
2 (C2(Σ), C2(Σ, ∂−(Σ));Z[H]) was computed using 

the compression trick in Theorem  11. It is free of rank 3 over Z[H] with a basis 
indexed by the ordered partitions of 2 into two parts. Here we replace the arcs 

Fig. 4  The closed curves a, b and the arcs α, β, α′, β′. In all of our figures, we depict surfacesΣg,1as 
rectangles with 2g holes, which are identified in pairs by reflections to form g handles
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γ1, γ2 from Fig. 2 with the arcs α, β depicted in Fig. 4, and the basis is denoted 
by w(α) = E(2,0), w(β) = E(0,2), v(α, β) = E(1,1). The first two are represented 
by properly embedded 2-simplices, while the third one is represented by a properly 
embedded square. In more detail, w(α) is represented by the cycle in the 2-point con-
figuration space given by the subspace where both points lie on the arc α. Similarly, 
w(β) is given by the subspace where both points lie on β and v(α, β) is given by the 
subspace where exactly one point lies on each of these arcs.

In fact, we have to be even more careful to specify these elements precisely, since 
the preceding description only determines them up to the action of the deck transfor-
mation group H, because we have just described cycles in the configuration space 
C2(Σ), whereas cycles for the Heisenberg-twisted homology are cycles in the covering 
space C̃2(Σ). Let us fix, once and for all, a lift c̃0 of the base configuration c0 ⊂ ∂Σ. 
Then any contractible subspace X ⊂ C2(Σ) has a canonical lift X̃ ⊂ C̃2(Σ) to the 
covering space, after choosing a path in C2(Σ) from the base configuration c0 to a 
point in X, which is uniquely determined by requiring that the chosen path lifts to a 
path in C̃2(Σ) from c̃0 to X̃ . Once we have a simplex or square in C2(Σ) representing 
a relative cycle, a lift to C̃2(Σ) is therefore determined by a choice of a path (called 
a “tether”) in C2(Σ) from c0 to a point in the cycle. For w(α), w(β) and v(α, β), we 
choose these tethers as illustrated in the top row of Fig. 5.

By Poincaré duality, and the fact that C2(Σ) is a connected, oriented 4-manifold 
with boundary C2(Σ, ∂Σ) = {c ∈ C2(Σ) | c ∩ ∂Σ ̸= ∅}, we have a non-degenerate 
pairing

	 ⟨−, −⟩ : HBM
2 (C2(Σ), ∂−;Z[H]) ⊗ H2(C2(Σ), ∂+;Z[H]) −→ Z[H],� (78)

Fig. 5  Tethers
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where ∂± is an abbreviation of C2(Σ, ∂±(Σ)), and we note that the boundary 
∂C2(Σ) = C2(Σ, ∂Σ) decomposes as ∂+ ∪ ∂−, corresponding to the decomposition 
of the boundary of the surface ∂Σ = ∂+(Σ) ∪ ∂−(Σ). (Formally, it is a manifold 
triad.) The above pairing is linear in the first variable and antilinear in the second 
one, where we use the anti-involution on the Heisenberg group ring that extends 
the inverse map. Similarly to the standard case, under transversality hypotheses, the 
pairing is given by an intersection formula that counts, with signs, the geometric 
intersections in the Heisenberg cover of a smooth cycle S with all of the H-translated 
copies of a smooth cycle T:

	
⟨[S], [T ]⟩ =

∑
h∈H

(S . Th) h.� (79)

There are natural elements of H2(C2(Σ), ∂+;Z[H]) that are dual to w(α), w(β) and 
v(α, β) with respect to this pairing, which we denote by w(α′), w(β′) and v(α′, β′) 
respectively. The element v(α′, β′) is defined exactly as above: it is given by the 
subspace of 2-point configurations where one point lies on each of the arcs α′ and β′ 
of Fig. 4. The element w(α′) is defined as follows: first replace the arc α′ with two 
parallel copies α′

1 and α′
2 (as in the bottom-left of Fig. 5), and then w(α′) is given by 

the subspace of 2-point configurations where one point lies on each of α′
1 and α′

2. The 
element w(β′) is defined exactly analogously. Again, in order to specify these ele-
ments precisely, we have to choose tethers; the choices that we make are illustrated 
in the bottom row of Fig. 5.

A practical description of the pairing (78) is as follows. Let x = w(γ) or v(γ, δ) 
for disjoint arcs γ, δ with endpoints on ∂−(Σ), and choose a tether for x, namely a 
path tx from c0 to a point in x. Similarly, let y = w(ϵ) or v(ϵ, ζ) for disjoint arcs ϵ, 
ζ with endpoints on ∂+(Σ), and choose a tether ty  for y. Suppose that the arcs γ ⊔ δ 
intersect the arcs ϵ ⊔ ζ transversely. Then the pairing (78) is given by the formula

	

⟨
[x, tx], [y, ty]

⟩
=

∑
p={p1,p2}∈x∩y

sgn(p1).sgn(p2).sgn(ℓp).ϕ(ℓp),� (80)

where ℓp ∈ B2(Σ) is the loop in C2(Σ) given by concatenating:

	● The tether tx from c0 to a point in x,
	● A path in x to the intersection point p,
	● A path in y from p to the endpoint of the tether ty ,
	● The reverse of the tether ty  back to c0,

the Heisenberg evaluation ϕ(ℓp) of this loop (see Corollary 8) detects the contributing 
translation in the formula (79), sgn(ℓp) ∈ {+1, −1} denotes the sign of the induced 
permutation in S2 and sgn(pi) ∈ {+1, −1} is given by the sign convention in Fig. 6.

(In fact, there should be an extra global −1 sign on the right-hand side of (80), 
which we have suppressed for simplicity. Thus (80) is really a formula for −(78). 
This global sign ambiguity does not affect our calculations, since all we need is a 
non-degenerate pairing of the form (78), and any non-degenerate pairing multiplied 
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by a unit is again a non-degenerate pairing. This extra global sign also appears in 
Bigelow’s formula [2, page 475, ten lines above Lemma 2.1]. See Appendix A for 
further explanations of these signs.)

With this description of (78), it is easy to verify that the matrix

	

( ⟨[w(α)], [w(α′)]⟩ ⟨[w(α)], [w(β′)]⟩ ⟨[w(α)], [v(α′, β′)]⟩
⟨[w(β)], [w(α′)]⟩ ⟨[w(β)], [w(β′)]⟩ ⟨[w(β)], [v(α′, β′)]⟩

⟨[v(α, β)], [w(α′)]⟩ ⟨[v(α, β)], [w(β′)]⟩ ⟨[v(α, β)], [v(α′, β′)]⟩

)
∈ Mat3,3(Z[H])

is the identity; this is the precise sense in which these two 3-tuples of elements are 
“dual” to each other.10

Theorem 47  With respect to the ordered basis (w(α), w(β), v(α, β)):

(a) The matrix for the isomorphism

	 Ta = C2 (Ta)∗ : H BM
2

(
C2 (Σ), ∂−;Z[H]

)
(T−1

a )H
→ H BM

2
(
C2 (Σ), ∂−;Z[H]

)

is

	
Ma =

( 1 u2a2b−2 (u−1 − 1)ab−1

0 1 0
0 −ab−1 1

)

(b) The matrix for the isomorphism

	 Tb = C2 (Tb)∗ : H BM
2 (C2 (Σ), ∂−;Z[H])(T−1

b )H
−→ H BM

2 (C2 (Σ), ∂−;Z[H])

is

	
Mb =


 u−2b−2 0 0

−u−1 1 1 − u−1

−u−1b−1 0 b−1




10 Since we know that w(α), w(β), v(α, β) form a basis for the Z[H]-module HBM
2 (C2(Σ), ∂−;Z[H])

, it follows that the elements w(α′), w(β′), v(α′, β′) are Z[H]-linearly independent in the Z[H]-module 
H2(C2(Σ), ∂+;Z[H]). In fact, they form a basis for this Z[H]-module (which is therefore free), by Poin-
caré duality and the compactly-supported cohomology version of Theorem 11.

Fig. 6  Sign convention for intersections between 
cycles representing elements of the homology 
groups HBM

n (Cn(Σ), ∂−;Z[H]) (vertical arcs) and 
Hn(Cn(Σ), ∂+;Z[H]) (horizontal arcs)
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Proof  Let us simplify the notation for the basis and the corresponding dual homology 
classes by

	(e1, e2, e3) = (w(α), w(β), v(α, β)) (e′
1, e′

2, e′
3) = (w(α′), w(β′), v(α′, β′)).

Using the non-degenerate pairing (78) and elementary linear algebra, we have that

	
C2(f)∗(ei) =

3∑
j=1

ej .⟨C2(f)∗(ei), e′
j⟩

for any f ∈ M(Σ). Computing the matrices Ma and Mb therefore consists in com-
puting ⟨Ta(ei), e′

j⟩ and ⟨Tb(ei), e′
j⟩ for i, j ∈ {1, 2, 3}. We will explain how to com-

pute two of these 18 elements of Z[H], the remaining 16 being left as exercises for 
the reader. In each case the idea is the same: apply the Dehn twist to the explicit cycle 
(described above) representing the homology class ei, and then use the formula (80) 
to compute the pairing.

We begin by computing ⟨Ta(e2), e′
1⟩ = ⟨Ta(w(β)), w(α′)⟩, the top-middle entry 

of Ma.
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 Here the grey figure represents the graph of a braid up to vertical isotopy (specifi-
cally, the loop ℓp from (80)), viewed from above, where the braid is moving down-
wards as we go forwards along the loop. Recall that we concatenate loops from right 
to left.

We next calculate ⟨Ta(e3), e′
1⟩ = ⟨Ta(v(α, β)), w(α′)⟩, the top-right entry of Ma. 

This is slightly more complicated, since in this case there are two intersection points 
in the configuration space C2(Σ), so we obtain a Heisenberg polynomial (i.e. element 
of Z[H]) with two terms.

 The other 16 entries of the matrices Ma and Mb may be computed analogously. 
� □

Notation 48  To shorten the notation in the following, we will use the abbreviation

	 A:=HBM
2 (C2(Σ), C2(Σ, ∂−(Σ));Z[H]) = HBM

2 (C2(Σ), ∂−;Z[H]).
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Remark 49  (Verifying the braid relation.) Recall that M(Σ1,1) is generated by Ta and 
Tb subject to the single relation TaTbTa = TbTaTb. It must therefore be the case that the 
isomorphism

 is equal to the isomorphism

 in other words, using Lemma 46, we must have the following equality of matrices:

	 Ma.(Ta)H(Mb).(TaTb)H(Ma) = Mb.(Tb)H(Ma).(TbTa)H(Mb),� (81)

where Ma and Mb are as in Theorem 47 and the automorphisms (Ta)H, (Tb)H ∈ Aut(H) 
are extended linearly to automorphisms of Z[H] and thus to automorphisms of matrices 
over Z[H]. Indeed, one may calculate that both sides of (81) are equal to

	


 0 u2a2b−2 0

−u−1 1 + (u−3 − u−2)a − u−5a2 (1 − u−1)(1 + u−3a)
0 −ab−1 − u−1a2b−1 u−1ab−1


 .� (82)

Remark 50  (The Dehn twist around the boundary.) In a similar way, we may compute 
the matrix M∂  for the action T∂  of the Dehn twist T∂  around the boundary of Σ1,1. 
We note that T∂  lies in the Chillingworth subgroup of M(Σ1,1), so its action on H is 
trivial and the action T∂  is an automorphism

	 T∂ : A −→ A.

However, to compute its matrix M∂ , it is convenient to decompose T∂  into isomor-
phisms as follows. By the 2-chain relation [45, Proposition  4.12], the Dehn twist 
T∂  decomposes as T∂ = (TaTb)6. If we write s = TaTbTa = TbTaTb, this becomes 
T∂ = s4. Then T∂  decomposes as

 where Ts denotes the action of s, given by the matrix (82) above. The matrix M∂  
may therefore be obtained by multiplying together four copies of (82), shifted by the 
actions of Id, sH, s2

H and s3
H respectively. This may be implemented in Sage to show 
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that M∂  is equal to the matrix displayed in Fig. 7. More details of these Sage calcula-
tions are given in Appendix C.

One may verify explicitly by hand that, if we set a = b = u2 = 1 in the matrix 
M∂ = (Fig. 7), it simplifies to the identity matrix. This is expected, since applying 
this specialisation to our representation recovers the second Moriyama representation 
(as discussed in Sect. 6; see in particular the quotient (73) of M(Σ)-representations), 
whose kernel is the Johnson kernel J(2) by [12], which contains T∂ .

8.2  Higher genus

For arbitrary genus g ⩾ 1, we view the surface Σ = Σg,1 as the quotient of the punc-
tured rectangle depicted in Fig. 8, where the 2g holes are identified in pairs by reflec-
tion. The arcs αi, βi for i ∈ {1, . . . , g} form a symplectic basis for the first homology 
of Σ relative to the lower edge of the rectangle. By Theorem 11, a basis for the free 
Z[H]-module HBM

2 (C2(Σ), C2(Σ, ∂−(Σ));Z[H]) is given by the homology classes 
represented by the 2-cycles

	● w(ϵ) for ϵ ∈ {α1, β1, α2, β2, . . . , αg, βg},
	● v(δ, ϵ) for δ, ϵ ∈ {α1, β1, α2, β2, . . . , αg, βg} with δ < ϵ

where we use the ordering α1 < β1 < α2 < · · · < αg < βg . Here w(ϵ) denotes the 
subspace of configurations where both points lie on ϵ and v(δ, ϵ) denotes the subspace 
of configurations where one point lies on each of δ and ϵ. As in the genus-1 setting, 
we have to be more careful to specify these elements precisely; this is done by choos-
ing, for each of the 2-cycles listed above, a path (called a “tether”) in C2(Σ) from a 
point in the cycle to c0, the base configuration, which is contained in the bottom edge 
of the rectangle. Since the space of configurations of two points in the bottom edge of 
the rectangle is contractible, it is equivalent to choose a path in C2(Σ) from a point in 
the cycle to any configuration contained in the bottom edge of the rectangle.

For cycles of the form w(ϵ), we may choose tethers exactly as in the genus-1 set-
ting: see the top-left and top-middle of Fig. 5. For cycles of the form v(αi, βi), we 
may also choose tethers exactly as in the genus-1 setting: see the top-right of Fig. 5. 
For other cycles of the form v(δ, ϵ), we choose tethers as illustrated in Fig. 9.

Exactly as in the genus-1 setting, there is a non-degenerate pairing (78) defined 
via Poincaré duality for the 4-manifold-with-boundary C2(Σ). Associated to the col-
lection of arcs α′

i, β′
i illustrated in Fig. 8 there are elements of H2(C2(Σ), ∂+;Z[H]):

	● w(ϵ) for ϵ ∈ {α′
1, β′

1, α′
2, β′

2, . . . , α′
g, β′

g},
	● v(δ, ϵ) for δ, ϵ ∈ {α′

1, β′
1, α′

2, β′
2, . . . , α′

g, β′
g} with δ < ϵ

where we use the ordering α′
1 < β′

1 < α′
2 < · · · < α′

g < β′
g . Here, w(ϵ) is the sub-

space of configurations where one point lies on each of ϵ+ and ϵ−, where ϵ+, ϵ− 
are two parallel, disjoint copies of ϵ. As above, we specify these elements precisely 
by choosing tethers (paths in C2(Σ) from a point on the cycle to a configurations 
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contained in the bottom edge of the rectangle). For elements of the form w(ϵ) or 
v(α′

i, β′
i), we choose these exactly as in the genus-1 setting; see the bottom row of 

Fig. 5. For other elements of the form v(δ, ϵ), we choose them as illustrated in Fig. 10.

Remark 51  These choices of tethers may seem a little arbitrary, and indeed they are; 
however, any different choice would have the effect simply of changing the chosen 
basis for the Heisenberg homology HBM

2 (C2(Σ), ∂−;Z[H]) by rescaling each basis 
vector by a unit of Z[H]. This would have the effect of conjugating the matrices that 
we calculate by an invertible diagonal matrix.

The geometric formula (80) for the non-degenerate pairing ⟨− , −⟩ holds exactly 
as in the genus-1 setting, and one may easily verify using this formula that the bases

	

B = {w(ϵ), v(δ, ϵ) | δ < ϵ ∈ {α1, . . . , βg}}
B′ = {w(ϵ), v(δ, ϵ) | δ < ϵ ∈ {α′

1, . . . , β′
g}}� (83)

for HBM
2 (C2(Σ), ∂−;Z[H]) and for H2(C2(Σ), ∂+;Z[H]) respectively are dual with 

respect to this pairing. Choose a total ordering of B as follows:

	● w(α1), w(β1), v(α1, β1),

Fig. 8  The arcs αi, βi, α′
i, β′

i and the closed genus-one-separating curve γ

 

Fig. 7  The action of the Dehn twist around the boundary of Σ1,1
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	● v(α1, ϵ) for ϵ = α2, β2, . . . , αg, βg ,
	● v(β1, ϵ) for ϵ = α2, β2, . . . , αg, βg ,
	● Followed by all other basis elements in any order,

and similarly for B′. Denote by γ the genus-1 separating curve in Σ pictured in Fig. 8.

Theorem 52  With respect to the ordered bases (83), the matrix for the automorphism 
Tγ = C2 (Tγ)∗ of H BM

2 (C2 (Σ), ∂−;Z[H]) is given in block form as

	

Mγ =




Λ 0 0 0
0 p.I r.I 0
0 q.I s.I 0
0 0 0 I


 ,� (84)

where Λ is the 3 × 3  matrix depicted in Fig. 7, the middle two columns and rows 
each have width/height 2g − 2  and the Heisenberg polynomials p, q, r , s ∈ Z[H] are:

	● p = −ab−1 + u−2b−1 + u−2a,
	● q = 1 − a−1 + u−2 − u−2a,
	● r = a(−b−1 + b−2 + u−2 − u−2b−1),
	● s = 1 − b−1 + u−2 + u−2ab−1 − u−2a,

where we are abbreviating the elements a1 , b1 ∈ H as a, b respectively.

Proof  As in the proof of Theorem 47, this reduces to computing ⟨Tγ(ei), e′
j⟩ as ei and 

e′
j  run through the ordered bases (83).

First note that the basis elements come in three types: those entirely supported 
in the genus-1 subsurface containing γ (the first three elements), those supported 
partially in this subsurface and partially in the complementary genus-(g − 1) subsur-

Fig. 9  More tethers
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face (the next 4g − 4 elements) and those supported entirely outside of the genus-1 
subsurface (the remaining elements). The Dehn twist Tγ  does not mix these two 
complementary subsurfaces, so Mγ  is a block matrix with respect to this partition.

The top-left 3 × 3 matrix involves only the basis elements w(α1), w(β1), v(α1, β1) 
and their duals, and so the calculation of this submatrix is identical to the calculation 
in genus 1, which is given by the matrix in Fig. 7.

The bottom-right submatrix involves only basis elements supported outside of the 
genus-1 subsurface containing γ, so the effect of Tγ  is the identity on these elements.

It remains to calculate the middle (4g − 4) × (4g − 4) submatrix, which records 
the effect of Tγ  on v(α1, ϵ) and v(β1, ϵ) for ϵ ∈ {α2, . . . , βg}. Since ϵ ∩ γ = ∅, we 
must have

	

Tγ(v(α1, ϵ)) = pϵ.v(α1, ϵ) + qϵ.v(β1, ϵ)
Tγ(v(β1, ϵ)) = rϵ.v(α1, ϵ) + sϵ.v(β1, ϵ)

for some pϵ, qϵ, rϵ, sϵ ∈ Z[H]. Precisely, we have

	

pϵ =
⟨
v(Tγ(α1), ϵ), v(α′

1, ϵ′)
⟩

qϵ =
⟨
v(Tγ(α1), ϵ), v(β′

1, ϵ′)
⟩

rϵ =
⟨
v(Tγ(β1), ϵ), v(α′

1, ϵ′)
⟩

sϵ =
⟨
v(Tγ(β1), ϵ), v(β′

1, ϵ′)
⟩
,

where ϵ′ denotes the dual of ϵ, and we have again used the fact that ϵ ∩ γ = ∅ 
to rewrite Tγ(v(α1, ϵ)) = v(Tγ(α1), Tγ(ϵ)) = v(Tγ(α1), ϵ) and similarly for 
Tγ(v(α1, ϵ)). From these formulas and (80) it is clear that pϵ, qϵ, rϵ, sϵ do not in fact 
depend on ϵ. Indeed, when computing these values of the non-degenerate pairing, we 
may ignore one of the two configuration points (the one that starts on the left in the 
base configuration and which travels via the arcs ϵ and ϵ′), since it contributes neither 
to the signs nor to the loops ℓp in the formula (80). We will compute sϵ = s, leaving 
the computation of the other three polynomials as exercises for the reader. In the fol-

Fig. 10  Even more tethers
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lowing computations, as mentioned above, we ignore one of the two configuration 
points, since it does not contribute anything non-trivial to the formula (80).

�  
� □
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Appendix A: Signs in the intersection pairing formula

Here we explain the signs appearing in the formula (80) for the intersection pairing 
on the homology of 2-point configuration spaces, including the extra global −1 sign 
that was suppressed in (80) (see the comment in the paragraph below the formula).

We take the viewpoint that an orientation o of a d-dimensional smooth manifold 
M is given by a consistent choice of vector o(p) ∈ ΛdTpM  for all p ∈ M . We either 
choose a metric on the bundle ΛdTM  and require o(p) to be a unit vector with respect 
to this metric, or we consider o(p) up to rescaling by positive real numbers.

Let us fix an orientation oΣ for the surface Σ. This determines an orientation 
oC2(Σ) of the configuration space C2(Σ) by setting

	 oC2(Σ)({p1, p2}) = oΣ(p1) ∧ oΣ(p2).

Recall that we have 2-dimensional submanifolds x and y of C2(Σ) that intersect trans-
versely, and let p = {p1, p2} be a point of x ∩ y. Let v, w be the tangent vectors at p1 
and let v′, w′ be the tangent vectors at p2 illustrated in Fig. 11. We have

	

v ∧ w = sgn(p1).oΣ(p1)
v′ ∧ w′ = sgn(p2).oΣ(p2),

where sgn(pi) is the sign of the intersection of the arcs in Σ underlying x and y at pi. 
Similarly, we have

	 ox(p) ∧ oy(p) = sgn(p).oC2(Σ)(p),

where sgn(p) is the sign that we are trying to compute: the sign of the intersection of 
x and y in the configuration space. The orientations of x and y depend on the tethers 
tx, ty  that have been chosen. Precisely, we have

	
ox(p) =

{
v ∧ v′ (∗)
v′ ∧ v (†)

}
oy(p) =

{
w ∧ w′ (∗)
w′ ∧ w (†)

}
,

where the possibilities ((∗), (∗)) or ((†), (†)) occur if sgn(ℓp) = +1 and the possi-
bilities ((∗), (†)) or ((†), (∗)) occur if sgn(ℓp) = −1. We therefore have

	 ox(p) ∧ oy(p) = sgn(ℓp).(v ∧ v′) ∧ (w ∧ w′).

Putting this together with the formulas above, we obtain
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(v ∧ w) ∧ (v′ ∧ w′) = sgn(p1).sgn(p2).oΣ(p1) ∧ oΣ(p2)
= sgn(p1).sgn(p2).oC2(Σ)(p)
= sgn(p1).sgn(p2).sgn(p).ox(p) ∧ oy(p)
= sgn(p1).sgn(p2).sgn(p).sgn(ℓp).(v ∧ v′) ∧ (w ∧ w′)
= −sgn(p1).sgn(p2).sgn(p).sgn(ℓp).(v ∧ w) ∧ (v′ ∧ w′),

and hence we have

	 sgn(p) = −sgn(p1).sgn(p2).sgn(ℓp).

Appendix B: Universal coefficient spectral sequence arguments

As noted in Remark  15, the general case of Theorem  11 (both for Borel–Moore 
homology and for compactly-supported cohomology) may be deduced from the 
result for Borel–Moore homology for a specific choice of V. The purpose of this 
appendix is to explain precisely how this may be done, using some slightly delicate 
universal coefficient spectral sequence arguments that are abstracted in Lemma 53 
below, and which are similar to the argument of [46, Appendix A].

In this lemma, we interpret local coefficient systems on a space X as actions of 
π1(X) on (bi)modules, or equivalently as (bi)modules over the group ring of π1(X). 
The π1(X)-action should be on the left for homology local coefficients and on the 
right for cohomology local coefficients. Thus each (R[π1(X)], S)-module V deter-
mines (R, S)-bimodules HBM

k (X; V ) and each (R, S[π1(X)])-module W determines 
(R, S)-bimodules Hk

c (X; W ). In particular, we note that HBM
k (X; R[π1(X)]) has 

the structure of an (R, R[π1(X)])-bimodule, since V = R[π1(X)] is both a left and 
right module over itself.

Lemma 53  Let X be a based, path-connected space admitting a universal cover. Sup-
pose that there is a sequence of natural numbers dk  such that, for any unital ring R 
and each k ⩾ 0 , there are isomorphisms

	 HBM
k (X; R[π1(X)]) ∼= R[π1(X)]⊕dk � (85)

Fig. 11  Choices of tangent vectors from the computation of the sign of the intersection of x and y at 
p = {p1, p2} ∈ C2(Σ)
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of (R, R[π1 (X)])-bimodules. Then we have isomorphisms

	 HBM
k (X; V ) ∼= V ⊕dk and Hk

c (X; W ) ∼= W ⊕dk � (86)

of (R, S)-bimodules for any unital rings R, S, any (R[π1 (X)], S)-bimodule V and 
(R, S [π1 (X)])-bimodule W. The same is true for Borel–Moore homology and com-
pactly-supported cohomology relative to a subspace A ⊆ X .

Proof  Twisted Borel–Moore homology and twisted compactly-supported cohomol-
ogy may both be computed using the complex of horizontally locally finite chains 
Shlf

∗ (X̃; R), where π : X̃ → X  is the universal covering of X. A k-dimensional hori-
zontally locally finite chain is a formal sum 

∑
i λisi with λi ∈ R and si : ∆k → X̃  

such that each point x ∈ X  has an open neighbourhood U such that π−1(U) inter-
sects only finitely many of the si(∆k). Note that if π1(X) is finite (in other words 
π : X̃ → X  is a finite-sheeted covering), this is the same as the complex of locally 
finite chains on X̃ , but when π1(X) is infinite it is a proper subcomplex. For any 
(R[π1(X)], S)-bimodule V and (R, S[π1(X)])-bimodule W, we have (R, S)-bimod-
ule isomorphisms:

	

HBM
∗ (X; V ) ∼= H∗

(
Shlf

∗ (X̃; R) ⊗R[π1(X)] V
)

H∗
c (X; W ) ∼= H∗

(
HomS[π1(X)]

(
Shlf

∗ (X̃; S), W
))

.

Since π1(X) acts freely on X̃ , the chain complex Shlf
∗ (X̃; R) is free over R[π1(X)] 

in each degree. Applying the algebraic universal coefficient theorem (see [47, 
Ch. XVII] or [48, Thm. 2.3]), we get spectral sequences of (R, S)-bimodules:

	

E2
p,q = TorR[π1(X)]

q

(
HBM

p (X; R[π1(X)]), V
)

=⇒ HBM
∗ (X; V )

Ep,q
2 = Extq

S[π1(X)]
(
HBM

p (X; S[π1(X)]), W
)

=⇒ H∗
c (X; W )

Assumption (85) implies that E2
p,q = 0 = Ep,q

2  for q > 0, so these spectral sequences 
degenerate to isomorphisms of (R, S)-bimodules:

	

HBM
k (X; V ) ∼= R[π1(X)]⊕dk ⊗R[π1(X)] V ∼= V ⊕dk

Hk
c (X; W ) ∼= HomS[π1(X)]

(
S[π1(X)]⊕dk , W

) ∼= W ⊕dk .

The analogous result for Borel–Moore homology and compactly-supported cohomol-
ogy relative to a subspace A ⊆ X  follows by exactly the same argument if we first 
replace the chain complex Shlf

∗ (X̃; R) with its quotient by the subcomplex consisting 
of those horizontally locally finite chains 

∑
i λisi with si(∆k) ⊆ π−1(A). � □
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Proof of Theorem 11 assuming that it holds in a special case  Let us assume that the Borel–
Moore homology version of Theorem  11 holds when V = S = R[π1(Cn(Σ))].11 
Lemma 53 then immediately implies the general result for Borel–Moore homology 
(resp. for compactly-supported cohomology) with coefficients in any left (resp. right) 
representation V of π1(Cn(Σ)) (in particular, for those that factor through the quotient 
onto the Heisenberg group H). � □

Appendix C: Sage computations

Here we give the worksheet of the Sage computations used in the calculation of the matrix M∂  displayed 
in Fig. 7 (cf. Remark 50).

11 Recall from Remark 12 that Theorem 11 for Borel–Moore homology is true (with the same proof) when 
V is any left representation of Bn(Σ) = π1(Cn(Σ)), not necessarily factoring through the quotient 
onto the Heisenberg group H.
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