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Abstract
For any infinite-type surface 𝑆, a natural question is
whether the homology of its mapping class group con-
tains any non-trivial classes that are supported on (i) a
compact subsurface; or (ii) a finite-type subsurface. Our
purpose here is to study this question, in particular giv-
ing an almost-complete answer when the genus of 𝑆 is
positive (including infinite) and a partial answer when
the genus of 𝑆 is zero. Our methods involve the notion
of shiftable subsurfaces as well as homological stability
for mapping class groups of finite-type surfaces.

MSC 2020
57K20, 20J06 (primary)

INTRODUCTION

In their seminal work [25], Madsen and Weiss calculated the stable homology of the mapping
class groups of compact, connected, orientable surfaces, in particular confirming the Mumford
conjecture [29]. Let 𝐿 denote the Loch Ness monster surface, the unique infinite-genus surface
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with one end and no boundary, and writeMap𝑐(𝐿) for the subgroup of the mapping class group
Map(𝐿) = 𝜋0(Homeo(𝐿)) of elements admitting compactly supported representatives. Rationally,
the Madsen–Weiss theorem has the following consequence.

Theorem [25]. 𝐻∗(Map𝑐(𝐿); ℚ) ≅ ℚ[𝜅1, 𝜅2, …], where 𝜅𝑖 is the Miller–Morita–Mumford class of
degree 2𝑖.

Recently, much progress has been made towards calculating the homology of mapping class
groups of infinite-type surfaces [1, 11, 26, 30, 31]. In particular, for the Loch Ness monster surface
𝐿, the authors showed in [30, Proposition 5.3] that𝐻∗(Map(𝐿); ℤ) is uncountable in every positive
degree. The proof is constructive, but the (uncountably many) homology classes constructed do
not have compact support. It is therefore natural to wonder whether𝐻∗(Map(𝐿); ℤ) contains any
(non-zero) classes with compact support, in other words, whether the map 𝐻∗(Map𝑐(𝐿); ℤ) →
𝐻∗(Map(𝐿); ℤ) induced by the inclusionMap𝑐(𝐿) ⊂ Map(𝐿) has non-trivial image. In particular,
does the dual class 𝜅∗

𝑖
of any Miller–Morita–Mumford class 𝜅𝑖 survive in 𝐻∗(Map(𝐿); ℚ)?

Theorem A. For any field 𝐾, the map 𝐻∗(Map𝑐(𝐿); 𝐾) → 𝐻∗(Map(𝐿); 𝐾) is zero in positive
degrees. In particular, for 𝐾 = ℚ, all dual Miller–Morita–Mumford classes 𝜅∗

𝑖
are sent to zero in

𝐻∗(Map(𝐿); ℚ).

We do not know whether this result remains true if the field 𝐾 is replaced by ℤ (see
Remark 0.12).

The general questions

For any (connected, second-countable, orientable) infinite-type surface 𝑆 with 𝜕𝑆 = ∅, we study
the following two questions about its mapping class groupMap(𝑆) = 𝜋0(Homeo(𝑆)):

Question. Does Map(𝑆) contain non-zero classes in the image of 𝐻∗(Map(Σ)) → 𝐻∗(Map(𝑆))

for

(I) some compact subsurface Σ ⊂ 𝑆;
(III) some properly embedded finite-type subsurface Σ ⊂ 𝑆?

The assumption in (III) that Σ ⊂ 𝑆 is properly embedded is necessary for there to be a well-
defined induced mapMap(Σ) → Map(𝑆) given by extending by the identity; see Lemma 2.2.
As the numbering suggests, there is in fact another intermediate question between (I) and (III).

To see this, we first discuss some subgroups of Map(𝑆) as well as some colimit groups mapping
into it.

Definition0.1. LetMap𝑐(𝑆) ⊆ Map(𝑆) = 𝜋0(Homeo(𝑆))denote the subgroup ofmapping classes
thatmay be represented by a homeomorphism𝜑whose support supp(𝜑) = {𝑝 ∈ 𝑆 ∣ 𝜑(𝑝) ≠ 𝑝} ⊆ 𝑆
is compact. Similarly, defineMap𝑓(𝑆) ⊆ Map(𝑆) to be the subgroup of mapping classes that may
be represented by a homeomorphism 𝜑 whose support is contained in a properly embedded finite-
type subsurface of 𝑆, namely a subsurface of 𝑆 that is closed as a subset and whose fundamental
group is finitely generated.
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COMPACT AND FINITE-TYPE SUPPORT IN THE HOMOLOGY OF BIG MAPPING CLASS GROUPS 3 of 35

Definition 0.2. Let us denote by ℭ(𝑆) ⊆ 𝔉(𝑆) the posets of compact subsurfaces of 𝑆 and of
properly embedded finite-type subsurfaces of 𝑆, ordered by inclusion. For a finite-type surface Σ,
let us write PMap(Σ) for the subgroup of elements ofMap(Σ) that fix the punctures of Σ pointwise.
(This is an index-𝑝! subgroup if Σ has 𝑝 punctures.) Define

Mapℭ(𝑆) ∶= colim
Σ∈ℭ(𝑆)

(Map(Σ))

Map𝔉(𝑆) ∶= colim
Σ∈𝔉(𝑆)

(Map(Σ))

PMap𝔉(𝑆) ∶= colim
Σ∈𝔉(𝑆)

(PMap(Σ)).

Note that the analogous PMapℭ(𝑆) is simply Mapℭ(𝑆) again, since compact surfaces have
no punctures.

There are natural homomorphisms

Mapℭ(𝑆)⟶ PMap𝔉(𝑆)⟶Map𝔉(𝑆)⟶Map(𝑆) (0.1)

induced by the inclusion of posetsℭ(𝑆) ⊆ 𝔉(𝑆), the inclusions PMap(Σ) ⊆ Map(Σ) and the homo-
morphisms Map(Σ) → Map(𝑆) given by extending homeomorphisms of Σ by the identity on
𝑆 ⧵ Σ.
Since homology commutes with colimits, Questions (I) and (III) above may be reformulated as

follows, where we have added one intermediate question.

Question. Is there a non-zero element of 𝐻∗(Map(𝑆)) in the image of the map on homology
induced by

(I) Mapℭ(𝑆) → Map(𝑆);
(II) PMap𝔉(𝑆) → Map(𝑆);
(III) Map𝔉(𝑆) → Map(𝑆)?

Questions (II) and (III) may be reformulated in terms of inclusions of subgroups ofMap(𝑆) as
follows (see Definition 0.6 for the notation 𝑝𝑆).

Lemma 0.3 (Lemma 2.3). The homomorphisms (0.1) have the following properties:

∙ PMap𝔉(𝑆) → Map𝔉(𝑆) → Map(𝑆) are injective with imagesMap𝑐(𝑆) ⊆ Map𝑓(𝑆) ⊂ Map(𝑆);
∙ Mapℭ(𝑆) → PMap𝔉(𝑆) is a central extension whose kernel is free abelian of rank 𝑝𝑆 .

In particular, Questions (II) and (III) are equivalent to:

(II) Does the inclusionMap𝑐(𝑆) ⊂ Map(𝑆) induce a non-zero map on homology?
(III) Does the inclusionMap𝑓(𝑆) ⊂ Map(𝑆) induce a non-zero map on homology?

Moreover, if 𝑝𝑆 = 0 then Questions (I) and (II) are equivalent.

Since the natural maps intoMap(𝑆) factor as in (0.1), we immediately observe:
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4 of 35 PALMER and WU

TABLE 1 Summary of the results of Theorems B–F answering Questions (I)–(III); see Notation 0.9 for
terminology.

𝑝𝑆 = ∞ 4 ⩽ 𝑝𝑆 < ∞ 𝑝𝑆 ∈ {2, 3} 𝑝𝑆 = 1 𝑝𝑆 = 0

g𝑆 = ∞
∃Mixed end: ✗✗✗

✗✓✓ ✗✗✗
∄Mixed end: ✗??

0 < g𝑆 < ∞ ✓✓✓

g𝑆 = 0

Ends(𝑆) is TD⩾4: ✓✓✓

✓✓✓ ??✓ ✗✗✗Ends(𝑆) ≅ [0, 𝜔𝛼]: ✗✗✗

Otherwise: ???

Remark 0.4. A positive answer to Question (I) implies a positive answer to Question (II), which
implies a positive answer to Question (III). However, a positive answer to Question (II) does not
necessarily imply a positive answer to Question (I), as the surjective mapMapℭ(𝑆) → PMap𝔉(𝑆)

does not necessarily induce surjective maps on homology in degrees greater than 1.

Remark 0.5. Theorem A says that (with field coefficients) the answer to Question (II) is negative
for the surface 𝑆 = 𝐿. It follows by Remark 0.4 that the answer to Question (I) is also negative
for 𝑆 = 𝐿. In fact, since 𝐿 has no punctures (𝑝𝑆 = 0), Questions (I) and (II) are equivalent by
Lemma 0.3.

Our answers to Questions (I)–(III) depend on the genus g𝑆 and the number of punctures 𝑝𝑆 of
𝑆.

Definition 0.6 (Punctures). Consider the space Ends(𝑆) of ends of 𝑆, together with its closed
subspaceEnds𝑛𝑝(𝑆) of non-planar ends. A puncture of 𝑆 is an isolated point of the spaceEnds(𝑆) ⧵
Ends𝑛𝑝(𝑆); in other words, it is an end of 𝑆 that is not accumulated by genus and is not a limit
points of other ends of 𝑆. Denote the set of punctures by(𝑆). Since the spaceEnds(𝑆) ⧵ Ends𝑛𝑝(𝑆)
is separable, this set is at most countable and we write 𝑝𝑆 ∈ {0, 1, 2, 3, … ,∞} for its cardinality.

Notation 0.7. For integers g , 𝑛, 𝑏 ⩾ 0, we write Σ𝑛
g ,𝑏

for the unique connected, finite-type, ori-
entable surface of genus g with 𝑏 boundary components and 𝑛 punctures. If 𝑛 = 0 we elide it
from the notation, and similarly for 𝑏.

Definition 0.8 (Genus). Let 𝑆 be any surface. Its genus g𝑆 is themaximum integer g ⩾ 0 for which
there is an embedding Σg ,1 ↪ 𝑆, if there is such a maximum. Otherwise, we set g𝑆 = ∞.

Theorem (Theorems B–F). Let 𝑆 be any connected, second countable, orientable, infinite-type
surface with 𝜕𝑆 = ∅. Answers to Questions (I)–(III) for 𝑆 are given in Table 1.

Notation 0.9. In Table 1, a triple ABC with A,B,C ∈ {✓,✗, ?} encodes the answers to Questions
(I), (II), (III) in that order. The answer to Question (I) is positive if A = ✓, negative if A = ✗ and
unknown (to us) if A = ?, and similarly for Questions (II) and (III) with A replaced by B and C,
respectively. One caveat is that (almost) all negative answers assume field coefficients for homol-
ogy, whereas all positive answers assume integral coefficients for homology; see Theorems B–F
for the precise statements. The other notation in Table 1 is explained in Definitions 0.6, 0.8, 0.10,
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COMPACT AND FINITE-TYPE SUPPORT IN THE HOMOLOGY OF BIG MAPPING CLASS GROUPS 5 of 35

0.16 and Notation 0.14. In the rest of this paper, we will sometimes write simply𝐻∗(−) to refer to
integral homology𝐻∗(−;ℤ).

In the remainder of the introduction, we explain the results summarised in Table 1 in
more detail.

Results in infinite genus

We begin with the infinite-genus (g𝑆 = ∞) setting, for which we need one preliminary definition.
If both g𝑆 and 𝑝𝑆 are infinite, then 𝑆 must have at least one end that is accumulated by genus
(every neighbourhood of the end has infinite genus) and at least one end that is accumulated by
punctures (every neighbourhood of the end has infinitely many punctures).

Definition 0.10 (Mixed end). We say that 𝑆 has amixed end if it has an end that is accumulated
by both genus and punctures.

Having a mixed end implies, of course, that g𝑆 = 𝑝𝑆 = ∞. The converse is not true, however:
if we remove from the Loch Ness monster surface a subset homeomorphic to ℕ+, the one-point
compactification of ℕ, then the resulting surface has g𝑆 = 𝑝𝑆 = ∞ but no mixed ends.
Generalising Theorem A for the Loch Ness monster surface, we have the following result.

Theorem B. Suppose that g𝑆 = ∞.

(1) The answer to Question (I) is negative for homology with any field coefficients.

For Questions (II) and (III):

(2) if 𝑝𝑆 = 0 thenMap𝑓(𝑆) ⊂ Map(𝑆) induces the zero map on homology with field coefficients;
(3) if 0 < 𝑝𝑆 < ∞ thenMap𝑐(𝑆) ⊂ Map(𝑆) induces a non-zero map on integral homology;
(4) if 𝑝𝑆 = ∞ and 𝑆 has a mixed end, thenMap𝑓(𝑆) ⊂ Map(𝑆) induces the zero map on homology

with field coefficients.

In the context of Questions (II) and (III), our methods do not apply if g𝑆 = 𝑝𝑆 = ∞ but 𝑆 does
not have a mixed end, so in this case Questions (II) and (III) remain open.

Remark 0.11. In case (3) of Theorem B, we prove something stronger than simply the state-
ment that the induced map 𝐻∗(Map𝑐(𝑆); ℤ) → 𝐻∗(Map(𝑆); ℤ) is non-zero: its image contains a
ℤ summand in every even degree; see Proposition 8.1.

Remark 0.12. In the caseswherewe prove, in TheoremB, that a grouphomomorphism induces the
zero map on homology with all field coefficients, it does not automatically follow that the same
statement is also true with integral coefficients. Indeed it is possible in general for homomor-
phisms𝐺 → 𝐻 to induce trivial maps on homology with all field coefficients but not with integral
coefficients. An example is given by any non-trivial homomorphismℤ → ℚ∕ℤ: it is non-trivial on
𝐻1(−;ℤ) by construction, but trivial on homology with field coefficients because ℚ∕ℤ⊗ℤ 𝐾 = 0

for any field 𝐾; see also Remark 3.14 for why we require field coefficients in the proof.
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6 of 35 PALMER and WU

Results in finite positive genus

In the case when 𝑆 has finite but positive genus, the answers to Questions (I)–(III) are easy to
state.

Theorem C. Suppose that 0 < g𝑆 < ∞. Then the integral homology 𝐻∗(Map(𝑆); ℤ) contains
non-zero classes that are supported on Map(Σ) for compact Σ ⊂ 𝑆. In other words, with integral
coefficients, the answer to Question (I) is positive; hence the answers to Questions (II) and (III) are
also positive.

Results in genus zero

When 𝑆 has genus zero, its homeomorphism type is completely determined by its space of ends
Ends(𝑆), which may be any space that is homeomorphic to a closed subset of the Cantor set 
(see §1 for more details). In this case punctures of 𝑆 are simply isolated points of Ends(𝑆). If the
set (𝑆) of punctures is finite, then Ends(𝑆) is homeomorphic to the topological disjoint union
 ⊔ (𝑆), where (𝑆) has the discrete topology (see §1.2). There are therefore two cases:

1. Ends(𝑆) is homeomorphic to  ⊔ {1, … , 𝑝} for some non-negative integer 𝑝 = 𝑝𝑆 < ∞;
2. Ends(𝑆) has (countably) infinitely many isolated points, that is, 𝑝𝑆 = ∞.

Case 1

In the first case (finitely many punctures) we have the following.

Theorem D. Suppose that g𝑆 = 0 and 0 ⩽ 𝑝𝑆 < ∞. Then we have:

(1) if 𝑝𝑆 ∈ {0, 1} thenMap𝑓(𝑆) ⊂ Map(𝑆) induces the zero map on homology with any coefficients;
(2) if 𝑝𝑆 ⩾ 2 then Map𝑓(𝑆) ⊂ Map(𝑆) induces a non-zero map on homology with integral

coefficients;
(3) if 𝑝𝑆 ⩾ 4 then𝐻∗(Map(𝑆); ℤ) contains non-zero classes supported on a compact Σ ⊂ 𝑆.

In short, using the terminology of Notation 0.9 and the implications of Remark 0.4, the answers
to Questions (I)–(III) in the three cases of Theorem D are ✗✗✗, ??✓ and ✓✓✓ respectively. The
two settings not covered by Theorem D are Questions (I) and (II) when g𝑆 = 0 and 𝑝𝑆 ∈ {2, 3}.

Case 2

In the second case (infinitelymany punctures), our results aremuchmore partial, and the answers
to Questions (I)–(III) appear to depend very subtly on the structure of Ends(𝑆), which may be
very complicated (in particular, there are uncountablymany different homeomorphism types that
Ends(𝑆)may have in the case 𝑝𝑆 = ∞). To state our results, we need some preliminary definitions
and recollections.

 14697750, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70258 by T

est, W
iley O

nline L
ibrary on [01/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



COMPACT AND FINITE-TYPE SUPPORT IN THE HOMOLOGY OF BIG MAPPING CLASS GROUPS 7 of 35

Definition 0.13. A subset 𝐴 of a space 𝑋 is topologically distinguished if one can detect whether
a point 𝑥 ∈ 𝑋 lies in 𝐴 by looking at an arbitrarily small neighbourhood of 𝑥 in 𝑋. Formally, this
means that if 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝑋 ⧵ 𝐴 and 𝑈,𝑉 are neighbourhoods of 𝑎, 𝑥 in 𝑋, respectively, then
the based spaces (𝑈, 𝑎) and (𝑉, 𝑥) are not homeomorphic.

Notation 0.14. Write 𝜔 for the first infinite ordinal (the ordinal of ℕ) and denote by [0, 𝛽] the
closed ordinal interval below 𝛽, that is, the ordinal 𝛽 + 1 given the order topology; see §1.3 for
more details.

The space Ends(𝑆) is compact and Hausdorff, so if it is in addition countable (and non-empty),
then it must be homeomorphic to the disjoint union of 𝑛 copies of [0, 𝜔𝛼] for a (unique) positive
integer 𝑛 and countable ordinal 𝛼. This is a theorem ofMazurkiewicz and Sierpiński [28], recalled
as Theorem 1.8 in §1.3.

Notation 0.15. For a positive integer 𝑛 and countable ordinal 𝛼, write 𝑂(𝑛, 𝛼) for the topological
disjoint union of 𝑛 copies of the space [0, 𝜔𝛼].

The discussion above implies that, if Ends(𝑆) is countable and non-empty, then it is
homeomorphic to 𝑂(𝑛, 𝛼) for a unique pair (𝑛, 𝛼).

Definition 0.16. For an integer 𝑛 ⩾ 0, we say that a space𝑋 is TD⩾𝑛 if it has a finite, topologically
distinguished subset 𝐴 ⊆ 𝑋 of cardinality at least 𝑛.

Example 0.17. For example, the maximal element 𝜔𝛼 ∈ [0, 𝜔𝛼] is topologically distinguished (it
is the unique point of Cantor–Bendixson rank 𝛼 + 1), so it follows that 𝑂(𝑛, 𝛼) is TD⩾𝑚 for any
𝑚 ⩽ 𝑛.

Our first result in the setting (g𝑆, 𝑝𝑆) = (0,∞) is the following, in which the end-space Ends(𝑆)
may be either countable or uncountable.

TheoremE. Suppose that g𝑆 = 0and thatEnds(𝑆) is TD⩾4. Then𝐻∗(Map(𝑆); ℤ) contains non-zero
classes supported on a compact Σ ⊂ 𝑆.

If Ends(𝑆) is uncountable (and g𝑆 = 0) we do not have any further answers to Questions (I)–
(III). However, if Ends(𝑆) is countable — and is therefore homeomorphic to 𝑂(𝑛, 𝛼) for some
𝑛 and 𝛼 by the discussion above — we may go further. Let us therefore assume that g𝑆 = 0
and Ends(𝑆) ≅ 𝑂(𝑛, 𝛼) for a positive integer 𝑛 and countable ordinal 𝛼. We first observe that,
if 𝑛 ⩾ 4, Questions (I)–(III) are all answered positively by Theorem E, since 𝑂(𝑛, 𝛼) is TD⩾4
by Example 0.17. It therefore remains to consider 𝑛 ∈ {1, 2, 3}. Our second result in the setting
(g𝑆, 𝑝𝑆) = (0,∞) provides the (opposite) answer in the case 𝑛 = 1.

Theorem F. Suppose that g𝑆 = 0 and that Ends(𝑆) ≅ 𝑂(1, 𝛼) = [0, 𝜔𝛼]. ThenMap𝑓(𝑆) ⊂ Map(𝑆)
induces the zero map on homology with any field coefficients.

The special case when 𝛼 = 1 corresponds to the flute surface, which is the planeminus a count-
able discrete subset (for example, it may be modelled concretely asℝ2 ⧵ ℤ2). Theorem F therefore
includes the following special case, which we highlight as a corollary.
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8 of 35 PALMER and WU

Corollary G. For any field 𝐾, the homology 𝐻∗(Map(ℝ2 ⧵ ℤ2); 𝐾) does not contain any non-zero
classes that admit compact support, or even support of finite type.

By contrast, we note that the (integral) homology ofMap(ℝ2 ⧵ ℤ2) is very large: it is uncount-
able in every positive degree, by [30, Theorem B]. More generally, [30, Theorem B] implies the
same statement about the integral homology ofMap(𝑆) whenever g𝑆 = 0 and Ends(𝑆) ≅ 𝑂(1, 𝛼)
for a countable successor ordinal 𝛼. (Whether 𝛼 is a successor or a limit ordinal is an important
qualitative difference in the topology of 𝑆, and indeed the proof of Theorem F is different in these
two cases.)
The remaining cases (in the setting (g𝑆, 𝑝𝑆) = (0,∞) and for countable Ends(𝑆)) are 𝑛 ∈ {2, 3}.

For these two cases, we believe that the case 𝑛 = 2 will behave as in Theorem F whereas the case
𝑛 = 3 will behave as in Theorem E.

Outline

After recollections about infinite-type surfaces and their end-spaces in §1, the organisation of the
proofs of Theorems B–F is explained in §2. We prove our vanishing results in §3–§6, with the core
argument in most cases being Proposition 3.6 in §3, and we prove our non-vanishing results in §7
and §8.

1 INFINITE-TYPE SURFACES AND THEIR END-SPACES

1.1 Surfaces

Throughout this paper, all surfaces are assumed to be second countable, connected, orientable
and to have compact boundary. A surface 𝑆 has finite type if its fundamental group is finitely
generated; otherwise it has infinite type. The classification of surfaces is due to von Kerékjártó
[37] and Richards [33], and crucially involves the end-space Ends(𝑆) of a surface 𝑆, which is by
definition the boundary of the Freudenthal compactification 𝑆 of 𝑆 (see, for example, [30, §2.1] for
more details) and is always homeomorphic to a closed subset of the Cantor set . An end of 𝑆 is
planar if it has a neighbourhood in 𝑆 that embeds into the plane; otherwise it is non-planar. The
(closed) subspace of non-planar ends is denoted by Ends𝑛𝑝(𝑆) ⊆ Ends(𝑆).

Theorem 1.1 [33, Theorems 1 and 2]. Let 𝑆1, 𝑆2 be two surfaces of genera g1, g2 ∈ ℕ ∪ {∞} with
𝑏1, 𝑏2 ∈ ℕ boundary components, respectively. They are homeomorphic if andonly if g1 = g2,𝑏1 = 𝑏2
and there is a homeomorphism of pairs of spaces

(Ends(𝑆1), Ends𝑛𝑝(𝑆1)) ≅ (Ends(𝑆2), Ends𝑛𝑝(𝑆2)).

Conversely, given any tuple (g , 𝑏, 𝑌, 𝑋), where g ∈ ℕ ∪ {∞}, 𝑏 ∈ ℕ and 𝑋 ⊆ 𝑌 ⊆  is a nested pair
of closed subsets of the Cantor set , subject to the condition that g = ∞ if and only if 𝑋 ≠ ∅, there
exists a surface 𝑆 of genus g with 𝑏 boundary components such that (Ends(𝑆), Ends𝑛𝑝(𝑆)) ≅ (𝑌, 𝑋).
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COMPACT AND FINITE-TYPE SUPPORT IN THE HOMOLOGY OF BIG MAPPING CLASS GROUPS 9 of 35

1.2 End-spaces

By Theorem 1.1, the possible end-spaces of surfaces are precisely the closed subsets of the Cantor
set ; this motivates the following terminology.

Definition 1.2. A space 𝑋 is an end-space if it is homeomorphic to a closed subset of the Cantor
set .

An important result about the structure of end-spaces is the Cantor–Bendixson theorem,which
we recall next.

Definition 1.3. Let 𝑋 be any space. The Cantor–Bendixson filtration of 𝑋 is the transfinite
descending filtration 𝑋𝛼 of 𝑋 defined by 𝑋0 = 𝑋, 𝑋𝛼+1 is obtained from 𝑋𝛼 by discarding all
isolated points (in other words 𝑋𝛼+1 is the derived set of 𝑋𝛼) and 𝑋𝜆 =

⋂
𝛼<𝜆 𝑋𝛼 for limit ordi-

nals 𝜆. For cardinality reasons, there is always some 𝛼 such that 𝑋𝛼+1 = 𝑋𝛼, in other words 𝑋𝛼
has no isolated points. The Cantor–Bendixson rank |𝑋|CB of a space 𝑋 is the smallest 𝛼 such
that 𝑋𝛼+1 = 𝑋𝛼; this subspace is called the perfect kernel 𝜅(𝑋) of 𝑋. For a point 𝑥 ∈ 𝑋 ⧵ 𝜅(𝑋),
its Cantor–Bendixson rank CB𝑋(𝑥) is the smallest 𝛼 for which 𝑥 ∉ 𝑋𝛼. Thus we have |𝑋|CB =
sup{CB𝑋(𝑥) ∣ 𝑥 ∈ 𝑋 ⧵ 𝜅(𝑋)}.

Theorem 1.4 (Cantor–Bendixson). If 𝑋 is a Polish space, that is, it is separable and completely
metrisable, then its Cantor–Bendixson rank |𝑋|CB is countable.

This applies in particular to all end-spaces, since they are Polish spaces. An immediate corollary
is the following important structural result about uncountable end-spaces.

Corollary 1.5. Every uncountable end-space 𝑋 ⊆  has a subspace homeomorphic to  whose
complement in 𝑋 is countable.

Proof. At each step of the Cantor–Bendixson filtration of 𝑋 only countably many points are
removed, so Theorem 1.4 implies that 𝑋 ⧵ 𝜅(𝑋) is countable. Thus 𝜅(𝑋) is non-empty, since 𝑋 is
uncountable. So 𝜅(𝑋) is a non-empty perfect subspace of, which implies that it is homeomorphic
to . □

In particular, if𝑋 is uncountable and has only finitelymany isolated points, it is homeomorphic
to  ⊔ {1, … , 𝑝} for some non-negative integer 𝑝.

1.3 Countable end-spaces and ordinal intervals

Despite the structural result of Corollary 1.5, the structure of uncountable end-spaces may still be
very complicated. In contrast, countable end-spaces are completely classified. It follows directly
from the definitions that countable end-spaces are the same as countable compactHausdorff spaces,
and the latter are classified in terms of certain ordinal spaces. We refer to [35] or [22] for the basic
notions of ordinals and ordinal arithmetic.
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10 of 35 PALMER and WU

Definition 1.6. For an ordinal 𝛼, the closed ordinal interval [0, 𝛼] is the ordinal 𝛼 + 1 =
{0, 1, 2, … , 𝛼} equipped with the order topology. For an ordinal 𝛼 and positive integer 𝑛, we write
𝑂(𝑛, 𝛼) for the ordinal interval [0, 𝜔𝛼.𝑛], equivalently the disjoint union of 𝑛 copies of the ordinal
interval [0, 𝜔𝛼].

Remark 1.7. The spaces 𝑂(𝑛, 𝛼) are pairwise non-homeomorphic: they may be distinguished by
the property that 𝑂(𝑛, 𝛼) has exactly 𝑛 points of Cantor–Bendixson rank 𝛼 + 1 and no points of
higher Cantor–Bendixson rank (so its Cantor–Bendixson rank as a space is also equal to 𝛼 + 1).

Closed ordinal intervals are compact and Hausdorff. Conversely, we have:

Theorem 1.8 [28]. Every countable compact Hausdorff space is homeomorphic to𝑂(𝑛, 𝛼) for some
(necessarily unique) positive integer 𝑛 and countable ordinal 𝛼.

Example 1.9. Any ordinal 𝛼 has a unique Cantor normal form 𝛼 = 𝜔𝛽1 .𝑛1 +⋯ + 𝜔𝛽𝑘 .𝑛𝑘 for
positive integers 𝑛1, … , 𝑛𝑘 and ordinals 𝛽1 >⋯ > 𝛽𝑘. In this case we have [0, 𝛼] ≅ 𝑂(𝑛1, 𝛽1).

This classification, together with the Cantor–Bendixson filtration, may be used to calculate the
results of various operations on closed ordinal intervals. We record here several of these that will
be used later.

Lemma1.10. Wehave the following identifications, where all ordinals are assumed to be countable.

∙ Let 𝛼1, … , 𝛼𝑛 be a finite sequence of ordinals with unique maximum 𝛼1. Then the disjoint union
[0, 𝜔𝛼1] ⊔⋯ ⊔ [0, 𝜔𝛼𝑛] is homeomorphic to [0, 𝜔𝛼1].

∙ The one-point compactification of the disjoint union of countably infinitely many copies of [0, 𝜔𝛼]
is homeomorphic to [0, 𝜔𝛼+1].

∙ Let 𝜆 be a limit ordinal and let (𝛼𝛽)𝛽<𝛿 be a 𝛿-indexed sequence of smaller ordinals, for another
ordinal 𝛿, whose supremum is 𝜆. Then the one-point compactification of the disjoint union over
all 𝛽 < 𝛿 of [0, 𝜔𝛼𝛽 ] is homeomorphic to [0, 𝜔𝜆].

Remark 1.11. Recall that the cofinality of an ordinal 𝛼 is the smallest ordinal 𝛿 that admits a strictly
increasing map 𝛿 → 𝛼 whose image is cofinal. If 𝜆 is a countable limit ordinal, its cofinality is
𝜔 = ℕ, so in this case there always exists an ordinary (ℕ-indexed) sequence as in the third point of
Lemma 1.10. We note however that the third point of Lemma 1.10 does not require the sequence
to be strictly increasing.

Proof of Lemma 1.10. In each case, the space under consideration is evidently compact, Hausdorff
and countable; we will study its Cantor–Bendixson filtration and then apply Theorem 1.8. In the
first case, since 𝛼1 is the unique maximum of 𝛼1, … , 𝛼𝑛, the 𝛼1th term of the Cantor–Bendixson
filtration is the single point 𝜔𝛼1 ∈ [0, 𝜔𝛼1]. Thus the result follows from Theorem 1.8 and the
characterisation of the spaces 𝑂(𝑛, 𝛼) in Remark 1.7.
In the second case, the 𝛼th term of the Cantor–Bendixson filtration is the disjoint union of

countably infinitely many copies of {𝜔𝛼} together with the point at infinity. The point at infinity
is therefore the unique point of (maximal) Cantor–Bendixson rank 𝛼 + 2.
In the third case, each component [0, 𝜔𝛼𝛽 ] of the disjoint union vanishes before the 𝜆th term

of the Cantor–Bendixson filtration, since 𝜆 > 𝛼𝛽 . It will therefore suffice to prove that the point
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COMPACT AND FINITE-TYPE SUPPORT IN THE HOMOLOGY OF BIG MAPPING CLASS GROUPS 11 of 35

at infinity of the one-point compactification does lie in the 𝜆th term of the Cantor–Bendixson
filtration, since it will then follow that it is the unique point of (maximal) Cantor–Bendixson rank
𝜆 + 1. Suppose for a contradiction that the point at infinity of the one-point compactification does
not lie in the 𝜆th term of the Cantor–Bendixson filtration; it must therefore vanish when passing
from the 𝛾th term to the (𝛾 + 1)st term of the Cantor–Bendixson filtration, for some 𝛾 < 𝜆. This
means that it is an isolated point in the 𝛾th term of the Cantor–Bendixson filtration. By definition
of the one-point compactification, this can only occur if the space that it is compactifying is already
compact, which means that all but finitely many of the components [0, 𝜔𝛼𝛽 ] of the disjoint union
must have vanished already by the 𝛾-th term of the Cantor–Bendixson filtration. However, the
component [0, 𝜔𝛼𝛽 ] vanishes precisely at the (𝛼𝛽 + 1)st term, so this means that all but finitely
many of the 𝛼𝛽 are smaller than 𝛾. But this contradicts the assumption that 𝜆 is the supremum of
the 𝛼𝛽 . □

2 PRELIMINARIES ON FINITE-TYPE AND COMPACT SUPPORT;
ORGANISATION OF THE PROOFS

For definiteness, let us first recall the definition of the mapping class group of a surface, as well
as a basic construction that says essentially that it is functorial with respect to proper inclusions
of surfaces.

Definition 2.1. For a surface 𝑆, its mapping class group isMap(𝑆) = 𝜋0(Homeo𝜕(𝑆)), the group
of isotopy classes of homeomorphisms of 𝑆 that restrict to the identity on 𝜕𝑆.

Lemma 2.2. If Σ ⊆ 𝑆 is a properly embedded subsurface, there is a well-defined homomorphism

𝜄 ∶ Map(Σ)⟶Map(𝑆) (2.1)

given by extending homeomorphisms of Σ by the identity onMap(𝑆).

Proof. To see that this is well-defined one just has to check that any homeomorphism represent-
ing an element of Map(Σ) is the identity on its topological boundary as a subset of 𝑆, which is
Σ ∩ (𝑆 ⧵ Σ). The assumption that Σ ⊆ 𝑆 is a subsurface that is properly embedded – equivalently:
closed as a subset of 𝑆 – implies thatΣ ∩ (𝑆 ⧵ Σ) is contained in 𝜕Σ, the boundary ofΣ as an abstract
surface. But by Definition 2.1, homeomorphisms representing elements ofMap(Σ) restrict to the
identity on 𝜕Σ, hence in particular on Σ ∩ (𝑆 ⧵ Σ). □

Our first goal in this section is to prove Lemma 0.3, which we recall here.

Lemma 2.3 (Lemma 0.3). The homomorphisms (0.1) have the following properties:

∙ PMap𝔉(𝑆) → Map𝔉(𝑆) → Map(𝑆) are injective with imagesMap𝑐(𝑆) ⊆ Map𝑓(𝑆) ⊂ Map(𝑆);
∙ Mapℭ(𝑆) → PMap𝔉(𝑆) is a central extension whose kernel is free abelian of rank 𝑝𝑆 .

(The remaining statements of Lemma 0.3 follow immediately from these ones.) We will deduce
this lemma from the following fact, which is well known in the finite-type setting and generalises
with no change to the infinite-type setting.
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12 of 35 PALMER and WU

Proposition 2.4. Let 𝑆 be an infinite-type surface with 𝜕𝑆 = ∅ and Σ ⊂ 𝑆 a properly embedded
finite-type subsurface. Assume that Σ is not an annulus and that 𝑆 is obtained from Σ by attaching
𝑆1, … , 𝑆𝑏 along the boundary components 𝐶1, … , 𝐶𝑏 of Σ, where each 𝜕𝑆𝑖 is a circle and none of the
𝑆𝑖 is a disc. Then the kernel of (2.1) is the central subgroup ofMap(Σ) freely generated by those Dehn
twists 𝑇𝐶𝑖 for which 𝑆𝑖 is a once-punctured disc.

Proof. If 𝑆were instead a finite-type surface then this would be a special case of [14, Theorem 3.18],
which is proven using the Alexandermethod. (Note that we assume stronger hypotheses than [14,
Theorem 3.18], in that we require each component 𝑆𝑖 of the closure of the complement 𝑆 ⧵ Σ to
have a single boundary component.) In our setting, exactly the same proof goes through, using
the fact that the Alexander method is valid also for infinite-type surfaces, as proven in [19]. □

Proof of Lemma 2.3. The statement that PMap𝔉(𝑆) → Map𝔉(𝑆) is injective is obvious, since
PMap(Σ) ⊂ Map(Σ) is injective and we are taking a colimit over the same poset𝔉(𝑆) on each side.
To prove thatMap𝔉(𝑆) → Map(𝑆) is injective it will suffice, by general properties of colimits, to

show that there is a cofinal family of Σ ∈ 𝔉(𝑆) such thatMap(Σ) → Map(𝑆) is injective. Let Σ ⊂ 𝑆
be any properly embedded finite-type subsurface with 𝑏 boundary components𝐶1, … , 𝐶𝑏. Wemay
enlarge it if necessary to ensure that each 𝐶𝑖 is a separating curve of 𝑆. Denote the connected
components of (the closure of) 𝑆 ⧵ Σ by 𝑆1, … , 𝑆𝑏. We now enlarge Σ further by taking its union
with those 𝑆𝑖 that are of finite type (if any). Finally, we may enlarge Σ if necessary to ensure that it
is not an annulus, by increasing its genus (if 𝑆 has positive genus) or increasing 𝑏 (if 𝑆 has genus
zero, inwhich case itmust have infinitelymany ends).We are now in the setting of Proposition 2.4,
which implies that Map(Σ) → Map(𝑆) is injective since none of the 𝑆𝑖 is a once-punctured disc
(indeed, we have ensured that none of the 𝑆𝑖 is of finite type). By construction, the Σ ∈ 𝔉(𝑆) for
which we have proven this form a cofinal family in𝔉(𝑆), so the result follows.
It is clear by construction that we have image(Map𝔉(𝑆) → Map(𝑆)) = Map𝑓(𝑆) and that

image(PMap𝔉(𝑆) → Map(𝑆)) ⊇ Map𝑐(𝑆) (2.2)

since compact surfaces are of finite type. What is slightly less clear is the converse of the inclusion
(2.2). To see this, suppose that 𝜑 ∈ Homeo(𝑆) represents an element in the image of PMap𝔉(𝑆) →
Map(𝑆), so wemay assume that it has support contained in some finite-type subsurface Σ ⊂ 𝑆 and
the punctures of Σ are fixed pointwise by 𝜑. Denote by Σ′ ⊂ Σ a compact subsurface obtained by
removing a small open annular neighbourhood of each puncture of Σ. Since 𝜑 fixes the punctures
of Σ pointwise, we may modify it by an isotopy to have support contained in Σ′, and hence [𝜑] ∈
Map𝑐(𝑆). This completes the proof of the first point of the lemma.
By general properties of colimits, in order to prove that Mapℭ(𝑆) → PMap𝔉(𝑆) is surjective it

suffices to prove that, for any Σ ∈ 𝔉(𝑆), there exists Σ′ ∈ ℭ(𝑆) with Σ′ ⊆ Σ such thatMap(Σ′) →
PMap(Σ) is surjective. The argument in the previous paragraph proves exactly this.
To complete the proof of the second point of the lemma, it now just remains to identify the

kernel of Mapℭ(𝑆) → PMap𝔉(𝑆). Since we already know that PMap𝔉(𝑆) → Map(𝑆) is injective,
this is the same as the kernel of Mapℭ(𝑆) → Map(𝑆). To identify this, we use Proposition 2.4
again. Let Σ ⊂ 𝑆 be any compact subsurface with 𝑏 boundary components 𝐶1, … , 𝐶𝑏. As before,
we may enlarge it if necessary to ensure that each 𝐶𝑖 is a separating curve of 𝑆 and denote the
connected components of (the closure of) 𝑆 ⧵ Σ by 𝑆1, … , 𝑆𝑏. We may enlarge Σ by taking its
union with those 𝑆𝑖 that are compact (if any), and ensure that Σ is not an annulus (as before).
After doing this, none of the 𝑆𝑖 are discs (since we have arranged that none of them are compact)
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COMPACT AND FINITE-TYPE SUPPORT IN THE HOMOLOGY OF BIG MAPPING CLASS GROUPS 13 of 35

so we are in the setting of Proposition 2.4, which tells us that the kernel ofMap(Σ) → Map(𝑆) is
the central subgroup freely generated by those Dehn twists 𝑇𝐶𝑖 for which 𝑆𝑖 is a once-punctured
disc. Taking colimits, it follows that the kernel of Mapℭ(𝑆) → Map(𝑆) is the central subgroup
freely generated by all colimits of Dehn twists of this form that arise as we allow the compact
subsurface Σ ⊂ 𝑆 to vary. There is exactly one such colimit of Dehn twists in Mapℭ(𝑆) for each
puncture 𝑝 of 𝑆, represented by the family of Dehn twists around 𝐶𝜖 for 𝜖 > 0, where 𝐶𝜖 is the
boundary component surrounding 𝑝 of a compact subsurface Σ ⊂ 𝑆 that is locally given by
removing an open annulus of radius 𝜖 from around 𝑝. Thus the kernel is a central subgroup with
a basis in one-to-one correspondence with the punctures of 𝑆. □

Remark 2.5. The group Mapℭ(𝑆) may be a little counterintuitive since it is not a subgroup of a
mapping class group in general. As an illustration, we note that it makes sense to consider it also
when 𝑆 is finite type, for example, the once-punctured disc 𝑆 = {𝑥 ∈ ℝ2 ∣ 0 < |𝑥| ⩽ 1}. The fam-
ily of annuli 𝐴𝜖 = {𝑥 ∈ ℝ2 ∣ 𝜖 ⩽ |𝑥| ⩽ 1} for 𝜖 ∈ (0, 1) is cofinal in ℭ(𝑆), eachMap(𝐴𝜖) is infinite
cyclic and the homomorphisms Map(𝐴𝜖) → Map(𝐴𝜖′) for 𝜖 ⩾ 𝜖′ are isomorphisms, so it follows
that the colimitMapℭ(𝑆) is also infinite cyclic, althoughMap(𝑆) is trivial. In this case a generator
ofMapℭ(𝑆) is represented (for example) by the formal colimit of the Dehn twists around the inner
boundary components of the annuli𝐴𝜖, just like at the end of the proof above.More generally, one
may see by the same reasoning thatMapℭ(𝑆), for any finite-type surface 𝑆, is naturally isomorphic
to the mapping class group of the compact surface obtained from 𝑆 by blowing up each puncture
to a boundary component.

Remark 2.6. As a complement to Lemma 2.3 we discuss briefly the difference betweenMap𝑐(𝑆)
and Map𝑓(𝑆). If 𝜑 is a self-homeomorphism of 𝑆, its induced action on Ends(𝑆) sends the sub-
set (𝑆) of punctures (cf. Definition 0.6 for this notation) onto itself. If 𝜑 has support contained
in a finite-type subsurface, the induced permutation of (𝑆) lies in the subgroup Bij𝑓((𝑆)) ⊆
Bij((𝑆)) of bijections with finite support. If the induced permutation is trivial, we may shrink
the support of 𝜑 outside of an open neighbourhood of the punctures of 𝑆, which is then compact,
so in this case [𝜑] lies inMap𝑐(𝑆). Putting this together, we have a short exact sequence

1 → Map𝑐(𝑆)⟶Map𝑓(𝑆)⟶ Bij𝑓((𝑆)) → 1. (2.3)

Alternatively, thismay be deduced as a corollary of Lemma2.3. For each properly embedded finite-
type Σ ⊂ 𝑆 we have a short exact sequence 1 → PMap(Σ) → Map(Σ) → Bij((Σ)) → 1; taking the
colimit over Σ ∈ 𝔉(𝑆) and applying the first part of Lemma 2.3, we obtain (2.3).

We have the following observation, part of which was already stated in Lemma 0.3.

Corollary 2.7. We have the following coincidences of questions.

∙ If 𝑝𝑆 ∈ {0, 1} thenMap𝑐(𝑆) = Map𝑓(𝑆) and so Questions (II) and (III) coincide.
∙ If 𝑝𝑆 = 0 thenMapℭ(𝑆) = PMap𝔉(𝑆) and so Questions (I)–(III) all coincide.

Proof. The first statement follows from the short exact sequence (2.3) and the second statement
follows from the second point of Lemma 2.3 (and the first statement). □
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14 of 35 PALMER and WU

Organisation of the proofs

We finish this section by briefly describing the overall organisation of the proofs of TheoremsA–F,
which occupy §3–§8. All of the vanishing results are proven in §3–§6 and all of the non-vanishing
results are proven in §7–§8, organised as follows:

§3— Theorem A;
§4— Theorem B, except for part B(3);
§5— Theorem F, and hence in particular Corollary G;
§6— Theorem D(1);
§7—most of our non-vanishing results, namely:

§7.1— Theorem C;
§7.2— Theorem D(2);
§7.3— Theorem D(3) and, more generally, Theorem E;

§8— our last non-vanishing result, Theorem B(3), whose proof has a different flavour from
§7.

3 GRID SURFACES AND SHIFTABLE SUBSURFACES

Most of our vanishing results, including Theorem A, use the idea of grid surfaces. In this section,
we introduce this notion, prove the key Proposition 3.6 and use it to prove Theorem A.

Remark 3.1. The proof of Proposition 3.6 uses an infinite iteration argument that goes back to [27],
who applied it to the groupHomeo𝑐(ℝ𝑑) of compactly supported homeomorphisms of Euclidean
space. The argument was axiomatised by [3] into the concept ofmitotic groups, which are always
acyclic. These are related to the concept of the suspension of a group, and the argument is therefore
sometimes called a suspension argument. The argument was further generalised in [6] to binate
groups (which include all mitotic groups), which were also discovered independently (under the
name pseudo-mitotic groups) by [36]. A particular class of binate groups is the class of dissipated
groups [7]; see [15, §3] for further information.
In each of those cases, the argument aims to prove the vanishing of the homology of a group,

whereas, in our case, we aim to prove that a group homomorphism induces the zero map on
homology. This is a little more subtle and requires a kind of ‘two-dimensional’ infinite iteration,
which we formalise in the notion of grid surfaces (Definition 3.2). Another effect of this sub-
tlety is that we can only prove our vanishing results on homology with coefficients in a field;
see Remark 3.14 for why this is the case. We note that one could also use [36, Proposition 1.4] to
prove Proposition 3.6; see Remark 3.7.

Definition 3.2. Let Σ be a surface with one boundary component. The associated grid surface
Gr(Σ) is constructed as follows:

∙ Glue an annulus to 𝜕Σ and denote the resulting surface by Σ̄. Identify 𝜕Σ̄ with 𝜕[0, 1]2 ⊂ ℝ2.
∙ Define Gr(Σ) to be the quotient of ℤ × ℕ × Σ̄ that glues the boundaries ℤ × ℕ × 𝜕Σ̄ together in
a half-plane grid; see Figure 1.
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COMPACT AND FINITE-TYPE SUPPORT IN THE HOMOLOGY OF BIG MAPPING CLASS GROUPS 15 of 35

F IGURE 1 The grid surface Gr(Σ) together with subsurfaces Gr𝐴(Σ) for various subsets 𝐴 ⊆ ℕ. Each circle
contains a copy of Σ; the region between each circle and the boundary of the corresponding square is the annulus
in the first point in Definition 3.2.

∙ Similarly, define Grℤ(Σ) to be the quotient of ℤ × ℤ × Σ̄ that glues the boundaries ℤ × ℤ × 𝜕Σ̄
together in a full-plane grid.

Notation 3.3. In the above setting, for a subset 𝐴 ⊆ ℕ, we write Gr𝐴(Σ) for the subsurface of
Gr(Σ) given by the image ofℤ × 𝐴 × Σ̄. For example, see Figure 1 for illustrations ofGr[𝑛,∞)(Σ) =∶
Gr⩾𝑛(Σ), Gr{𝑛}(Σ) =∶ Gr𝑛(Σ) and Gr[0,𝑛](Σ).
We also write Σ𝑖,𝑗 for the (𝑖, 𝑗)th copy of Σ in Gr(Σ). Unless otherwise specified, we will always

identify Σ with Σ0,0 ⊂ Gr(Σ).

Remark 3.4. Themeaning of the notation Σ𝑖,𝑗 explained in Notation 3.3 is used only in the present
section, and so it should not cause confusion with the more standard meaning of Σg ,𝑏 to denote
the connected, compact, orientable surface of genus g with 𝑏 boundary components, which is its
meaning in the other sections of this paper.

Remark 3.5. The mapping class group of the surface (with non-compact boundary) Gr(Σ) is
defined in the usual way, as the group of isotopy classes of homeomorphisms that preserve the
boundary pointwise.

The key technical result of this section is the following.

Proposition 3.6. For any surface Σ with one boundary component, the map

Map(Σ)⟶Map(Gr(Σ)), (3.1)

given by extending homeomorphisms by the identity, induces the zero map on homology with field
coefficients in all positive degrees. Hence the same is true also forMap(Σ) → Map(Grℤ(Σ)).
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16 of 35 PALMER and WU

F IGURE 2 The infinite strip surface Str(Σ) (Definition 3.8).

Remark 3.7. We give a direct proof of this proposition below. One could also prove it using
the notion of pseudo-mitosis [36, Definition 1.2], as follows. One first notes that the embedding
Map(Σ) ↪ Map(Gr0(Σ)) has a pseudo-mitosis. Hence, by [36, Proposition 1.4], it induces the zero
map on homology in degree 1 for any field coefficients. To promote this to any degree we use the
self-similarity of the grid surface. Let Str(Σ) be the strip surface in Figure 2, embedded as a vertical
strip inGr(Σ). Let us take𝐻 = Map(Str(Σ)) and𝐺 = Map(Gr(Σ)) in [36, Proposition 1.4]; the ‘hor-
izontal translation’ (modified in a neighbourhood of the boundary line so as to fix it pointwise) is
then part of a pseudo-mitosis for𝐻 ⊂ 𝐺. Taking𝐴 ⊂ 𝐻 to beMap(Σ) ↪ Map(Str(Σ)), we thennote
that this embedding induces the zero map on homology in degree 1 for any field coefficients by
what we showed above, since we may factor it through the embedding Map(Σ) ↪ Map(Gr0(Σ))

using the inclusion Gr0(Σ) ⊂ Gr(Σ) and a homeomorphism Str(Σ) ≅ Gr(Σ) that is the identity
on the preferred embedded copy of Σ (see, for example, Lemma 3.9). Hence [36, Proposition
1.4] implies that the composition 𝐴 ⊂ 𝐻 ⊂ 𝐺, which is the embedding Map(Σ) ↪ Map(Gr(Σ)),
induces the zero map on homology in degrees 1 and 2 with any field coefficients. Iterating this
trick, we conclude inductively thatMap(Σ) ↪ Map(Gr(Σ)) induces the zero map on homology in
all positive degrees with any field coefficients.

In order to apply Proposition 3.6 in examples, it will be useful to have a simpler description of
Gr(Σ).

Definition 3.8. Let Σ be a surface with one boundary component. The infinite strip surface Str(Σ)
is constructed, similarly to Definition 3.2, to be the quotient of ℕ × Σ̄ that glues the boundaries
ℕ × 𝜕Σ̄ together in a one-dimensional ray; see Figure 2.

Clearly Str(Σ) embeds properly into Gr(Σ) (compare Figures 1 and 2). But in fact we have:

Lemma 3.9. The surfaces Str(Σ) and Gr(Σ) are homeomorphic. Moreover, this homeomorphism
may be chosen to act by the identity on the preferred embedded copy of Σ, namely the left-most copy
for Str(Σ) and the copy at coordinates (0,0) for Gr(Σ).

Proof. Let 𝑆 ⊂ Str(Σ) be the complement of a closed collar neighbourhood (this is, of course,
homeomorphic to Str(Σ)). It will suffice to describe a proper embedding of 𝑆 into Gr(Σ) such that
the complement of its image is a closed collar neighbourhood ofGr(Σ). Such a proper embedding
may be constructed easily as soon as one chooses a bijection 𝜐∶ ℕ → ℤ × ℕ such that 𝜐(𝑛) and
𝜐(𝑛 + 1) are neighbours (at 𝓁1-distance 1 from each other) for every 𝑛. To ensure that the second
statement of the lemma holds, wemust also arrange that 𝑣(0) = (0, 0). For example, onemay take
the ‘snake bijection’ that progressively fills each 𝓁∞-ball around (0,0). Alternatively, the fact that
Str(Σ) andGr(Σ) are homeomorphic may be deduced from the classification of surfaces with non-
compact boundary [10] (although quoting this much more general classification result is overkill
here). □
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COMPACT AND FINITE-TYPE SUPPORT IN THE HOMOLOGY OF BIG MAPPING CLASS GROUPS 17 of 35

Definition 3.10. A properly embedded subsurface Σ ⊂ 𝑆 is called shiftable if the inclusion Σ ⊂ 𝑆
extends to a proper embedding Str(Σ) ↪ 𝑆.

Remark 3.11. Elsewhere, a subsurface Σ ⊂ 𝑆 is sometimes called ‘shiftable’ if there is a homeo-
morphism of 𝑆 such that all of the iterated images of Σ under this homeomorphism are pairwise
disjoint. In fact, these two definitions are equivalent, although we will not need this equivalence
here. In one direction, suppose thatΣ ⊂ 𝑆 is shiftable in the sense ofDefinition 3.10. ByLemma3.9,
we therefore have a proper embedding Gr0(Σ) ⊂ Gr(Σ) ≅ Str(Σ) ↪ 𝑆. The evident shift homeo-
morphism of Gr0(Σ)may then be extended by the identity to obtain a shift homeomorphism of 𝑆
for Σ. In the other direction:

Lemma 3.12. Suppose that Σ ⊂ 𝑆 is a properly embedded subsurface with non-empty, connected
boundary that admits a shift homeomorphism, that is, a homeomorphism 𝑓∶ 𝑆 → 𝑆 such that
𝑓𝑛(Σ) ∩ Σ = ∅ for all 𝑛 ⩾ 1. Then Σ ⊂ 𝑆 is shiftable in the sense of Definition 3.10.

Proof. Let us denote by 𝑇 ⊂ 𝑆 the surface obtained from 𝑆 by removing the interior of each 𝑓𝑛(Σ)
for 𝑛 ⩾ 0 andwrite 𝐵𝑛 = 𝑓𝑛(𝜕Σ), so that the boundary of𝑇 is the disjoint union of the𝐵𝑛 for 𝑛 ⩾ 0.
Also write𝑈 for the surface (without boundary) obtained from 𝑇 by collapsing each 𝐵𝑛 to a point
𝑏𝑛 ∈ 𝑈.
In order to show that Σ ⊂ 𝑆 extends to a proper embedding Str(Σ) ↪ 𝑆, it will suffice to find

a locally finite, pairwise disjoint collection of arcs 𝛼𝑖 in 𝑇, for 𝑖 ⩾ 0, such that 𝛼𝑖 connects 𝐵𝑛𝑖 to
𝐵𝑛𝑖+1 for some increasing sequence 𝑛𝑖 . This is because, given such a collection of arcs, the union
of the 𝑓𝑛𝑖 (Σ) and tubular neighbourhoods of the arcs 𝛼𝑖 for 𝑖 ⩾ 0 will give the desired proper
embedding Str(Σ) ↪ 𝑆. Passing to the surface 𝑈 and the sequence of points (𝑏𝑛)𝑛⩾0 in 𝑈, it is
therefore sufficient to find a locally finite collection of arcs 𝛼𝑖 in 𝑈, connecting 𝑏𝑛𝑖 to 𝑏𝑛𝑖+1 for
some subsequence (𝑏𝑛𝑖 )𝑖⩾0 of (𝑏𝑛)𝑛⩾0, that are pairwise disjoint except at their endpoints.
To do this, choose any subsequence that converges in the Freudenthal compactification 𝑈 of

𝑈 to an end 𝑒 ∈ 𝑈 ⧵ 𝑈 = Ends(𝑈). Write 𝑈 as an increasing union of compact, connected sub-
surfaces 𝐶𝑘 ⊂ 𝑈 for 𝑘 ⩾ 0 and let 𝑈𝑘 ⊂ 𝑈 be the connected component of 𝑈 ⧵ 𝐶𝑘 such that 𝑒 is
a limit point of 𝑈𝑘 in 𝑈. We may choose the 𝐶𝑘 such that each 𝑈𝑘 has a single boundary com-
ponent 𝐴𝑘, which implies that each stratum 𝑈𝑘 ⧵ int(𝑈𝑘+1) is connected and has two boundary
components𝐴𝑘 and𝐴𝑘+1. Since 𝑏𝑛𝑖 → 𝑒 in𝑈, wemay pass to appropriate subsequences of𝐶𝑘 and
𝑏𝑛𝑖 to arrange that 𝑏𝑛𝑖 ∈ 𝑈𝑖 ⧵ 𝑈𝑖+1 for each 𝑖 ⩾ 0. Choose a point 𝑥𝑖 on each circle 𝐴𝑖 and choose
arcs 𝛽𝑖 and 𝛾𝑖 in𝑈𝑖 ⧵ int(𝑈𝑖+1) such that 𝛽𝑖(0) = 𝑥𝑖 , 𝛽𝑖(1) = 𝛾𝑖(0) = 𝑏𝑛𝑖 , 𝛾𝑖(1) = 𝑥𝑖+1 and 𝛽𝑖, 𝛾𝑖 are
disjoint except at the point 𝑏𝑛𝑖 . The desired collection of arcs 𝛼𝑖 is then obtained by gluing 𝛾𝑖 to
𝛽𝑖+1 for each 𝑖 ⩾ 0. □

Corollary 3.13. Let Σ ⊂ 𝑆 be a properly embedded subsurface and suppose that it is shiftable. Then
the natural mapMap(Σ) → Map(𝑆) induces the zero map on homology with field coefficients in all
positive degrees.

Proof. Since Σ is shiftable, the map Map(Σ) → Map(𝑆) factors as Map(Σ) → Map(Str(Σ)) →

Map(𝑆). Hence the result follows from Proposition 3.6 and Lemma 3.9. □

Proof of Proposition 3.6. The second statement of the proposition follows from the first statement,
sinceMap(Σ) → Map(Grℤ(Σ)) factors through (3.1).
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18 of 35 PALMER and WU

To prove the first statement, we first define various homomorphisms that we will need. For
𝑚 ∈ ℤ and 𝑛 ∈ ℕ, let

𝜓̄𝑚,𝑛 ∶ Map(Σ)⟶Map(Gr𝑛(Σ)) (3.2)

be the homomorphism that sends [𝜑] ∈ Map(Σ) to the mapping class represented by the homeo-
morphism of Gr𝑛(Σ) that acts by 𝜑 on Σ𝑖,𝑛 for each 𝑖 ⩾ 𝑚 and by the identity elsewhere. We also
write

𝜓𝑚,𝑛 ∶ Map(Σ)⟶Map(Gr⩾𝑛(Σ)) (3.3)

for the composition of 𝜓̄𝑚,𝑛 with the natural homomorphism Map(Gr𝑛(Σ)) → Map(Gr⩾𝑛(Σ))

given by extension by the identity. We write

𝜄𝑛 ∶ Map(Σ)⟶Map(Gr⩾𝑛(Σ)) (3.4)

for the homomorphism sending [𝜑] to the mapping class represented by the homeomorphism of
Gr⩾𝑛(Σ) that acts by 𝜑 on Σ0,𝑛 and by the identity elsewhere. Note that 𝜄0 is precisely the map (3.1)
in Proposition 3.6. Finally, we define

𝜂𝑛 and 𝜈𝑛 ∶ Map(Σ) × Map(Σ)⟶Map(Gr⩾𝑛(Σ)) (3.5)

to send ([𝜑1], [𝜑2]) to themapping class represented by the homeomorphism ofGr⩾𝑛(Σ) that acts:

∙ by 𝜑2 on Σ𝑖,𝑛 for all 𝑖 ⩾ 1;
∙ (for 𝜂𝑛:) by 𝜑1 on Σ0,𝑛;
∙ (for 𝜈𝑛:) by 𝜑1 on Σ0,𝑛+1;
∙ by the identity elsewhere.

The proof will use the following commutative diagram:

(3.6)

Here, Δ denotes the diagonal map and ‘glue’ is the map that takes two homeomorphisms defined
on Gr⩾𝑛+1(Σ) and on Gr𝑛(Σ) and glues them to a homeomorphism on Gr⩾𝑛(Σ) = Gr⩾𝑛+1(Σ) ∪
Gr𝑛(Σ). The right-hand vertical maps 𝑐sh and 𝑐rot are conjugation by the (vertically bounded)
homeomorphisms sh and rot∶ Gr⩾𝑛(Σ) → Gr⩾𝑛(Σ) defined, respectively, by shifting one step to
the right on the 𝑛th row and by rotating by 90◦ in the subsurface containing Σ𝑖,𝑗 for 𝑖 ∈ {−1, 0} and
𝑗 ∈ {𝑛, 𝑛 + 1}. (These maps in diagram (3.6) are depicted with double arrows; the direction of the
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COMPACT AND FINITE-TYPE SUPPORT IN THE HOMOLOGY OF BIG MAPPING CLASS GROUPS 19 of 35

arrow depends on which side one conjugates on and (in the case of 𝑐rot) the sense of rotation of
the subsurface.)
The statement that we will prove — by induction on 𝑗— is the following. Let us fix a field 𝐾.

Then for every 𝑛 ∈ ℕ and 𝑗 ⩾ 1, the induced map

(𝜄𝑛)∗ ∶ 𝐻𝑗(Map(Σ); 𝐾)⟶ 𝐻𝑗(Map(Gr⩾𝑛(Σ)); 𝐾) (3.7)

is the zero map. In particular, this will complete the proof of the proposition, which corresponds
to the special case of 𝑛 = 0. The base case 𝑗 = 0 is vacuous, so we let 𝑗 ⩾ 1, fix any 𝑛 ∈ ℕ and
assume as inductive hypothesis that (3.7) is the zero map for smaller values of 𝑗 and for all values
of 𝑛.
Let us apply the Künneth theorem to the product ofmaps 𝜄𝑛+1 × 𝜓̄1,𝑛 in diagram (3.6). It implies

that we have a commutative square:

in which the vertical maps are isomorphisms and the coefficients of homology are 𝐾 in each
case. Let 𝛼 ∈ 𝐻𝑗(Map(Σ); 𝐾) be any element. Naturality of the Künneth decomposition, applied
to the two projections Map(Σ) × Map(Σ) ↠ Map(Σ), implies that the image of Δ∗(𝛼) in the
top-left corner of this square has 0th component equal to 1 ⊗ 𝛼 and 𝑗th component equal to
𝛼 ⊗ 1. The inductive hypothesis implies that the top horizontal map is the zero map on the
𝑘th component for all 0 < 𝑘 < 𝑗. It follows that the image of Δ∗(𝛼) in the top-right corner of
the square is 1 ⊗ (𝜓̄1,𝑛)∗(𝛼) + (𝜄𝑛+1)∗(𝛼) ⊗ 1. Composing this with the right-hand vertical iso-
morphism and the map on homology induced by the ‘glue’ map of (3.6), we obtain the element
(𝜓1,𝑛)∗(𝛼) + (𝜄𝑛+1)∗(𝛼) ∈ 𝐻𝑗(Map(Gr⩾𝑛(Σ)); 𝐾). It therefore follows that the map on 𝐻𝑗(−;𝐾)
induced by themap across diagram (3.6) is equal to (𝜓1,𝑛)∗ + (𝜄𝑛+1)∗. But it is also equal to (𝜓1,𝑛)∗,
so we must have (𝜄𝑛+1)∗ = 0. Since 𝜄𝑛 and 𝜄𝑛+1 are conjugate as mapsMap(Σ) → Map(Gr⩾𝑛(Σ)), it
follows that also (𝜄𝑛)∗ = 0, as claimed. □

Remark 3.14. The obstruction to upgrading our vanishing results from field coefficients to
arbitrary (in particular, integral) coefficients is due to the failure of naturality of the Künneth
decomposition (that is, the failure of the Künneth short exact sequence to admit a natural split-
ting), which prevents the last paragraph of the above proof from going through unless one knows
that the Tor terms vanish.

In §4 we will apply Corollary 3.13 to prove the vanishing results of Theorem B. We finish this
section by proving, directly from Proposition 3.6, the special case of Theorem B corresponding to
Theorem A.

Proof of TheoremA. Let Σ be a compact subsurface of 𝐿, the Loch Ness monster surface. Our goal
is to prove that the homomorphismMap(Σ) → Map(𝐿) induces the zero map on homology with
field coefficients in all positive degrees (that is, a negative answer to Question (I) for 𝐿, which is
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20 of 35 PALMER and WU

equivalent to Question (II) for 𝐿 by Lemma 0.3 since 𝐿 has no punctures). By including Σ into
a larger compact subsurface if necessary, we may assume that it has exactly one boundary com-
ponent and positive genus. The pair (𝐿, Σ) is homeomorphic to the pair (Grℤ(Σ), Σ), so the result
follows from Proposition 3.6. □

4 TRANSFERRING HOMOLOGY CLASSES TO SHIFTABLE
SUBSURFACES

In this section we generalise Theorem A by proving the vanishing results of Theorem B (namely
all of Theorem B except for part B(3), which we prove later in §8). This depends fundamentally on
Corollary 3.13 from the previous section, togetherwith a technique (Proposition 4.1) to transfer the
support of homology classes to shiftable subsurfaces using Harer’s homological stability results
for mapping class groups of finite-type surfaces.

Proposition 4.1. Suppose that g𝑆 = ∞ and let Σ ⊂ 𝑆 be a properly embedded finite-type subsurface
of 𝑆. If Σ is not compact, then we additionally assume either that 𝑝𝑆 = 0 or that 𝑆 has a mixed end.
For each integer 𝑖 ⩾ 1, there exists another properly embedded subsurface Σ′ ⊆ 𝑆 such that

(1) Σ ∩ Σ′ is an interval in 𝜕Σ and in 𝜕Σ′;
(2) Σ′ is shiftable in 𝑆;
(3) the extension mapMap(Σ′) → Map(Σ ∪ Σ′) is surjective on homology up to degree 𝑖.

This proposition, along with Corollary 3.13, quickly implies the vanishing results of TheoremB.

Proof of the vanishing results of Theorem B assuming Proposition 4.1. Let 𝑆 and its subsurface
Σ ⊂ 𝑆 be as in Proposition 4.1; we need to prove that the homomorphism Map(Σ) → Map(𝑆)

induces the zero map on homology with field coefficients in all positive degrees. Let 𝐾 be a
field and fix a homological degree 𝑖 ⩾ 1. Let the subsurface Σ′ ⊂ 𝑆 be as in the conclusion
of Proposition 4.1. Since Σ′ is shiftable, we know from Corollary 3.13 that the induced map
𝐻𝑖(Map(Σ

′); 𝐾) → 𝐻𝑖(Map(𝑆); 𝐾) is zero. Since the intersection of Σ and Σ′ is an interval in each
of their boundaries, their union in 𝑆 is their boundary connected sum, and we may consider the
extension map Map(Σ′) → Map(Σ ∪ Σ′), which by part (3) of Proposition 4.1 induces a surjec-
tion𝐻𝑖(Map(Σ′); 𝐾) ↠ 𝐻𝑖(Map(Σ ∪ Σ

′); 𝐾). From the commutative diagram of homomorphisms
induced by extension maps

it then follows that𝐻𝑖(Map(Σ); 𝐾) → 𝐻𝑖(Map(𝑆); 𝐾) is also the zero map. □

The proof of Proposition 4.1 has two ingredients: Lemma 4.2 and Theorem 4.3.
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COMPACT AND FINITE-TYPE SUPPORT IN THE HOMOLOGY OF BIG MAPPING CLASS GROUPS 21 of 35

Lemma 4.2. Let 𝑆 and its subsurface Σ ⊂ 𝑆 be as in Proposition 4.1. If Σ has exactly one boundary
component, then it is shiftable.

Proof. For any infinite-type surface 𝑆, it follows from the construction in [33, §5] that, if 𝑒 is a non-
planar end of 𝑆 and g is any non-negative integer then there exists a proper embedding Str(Σg ,1) ↪
𝑆 of the infinite strip surface such that all unbounded sequences in Str(Σg ,1) converge to 𝑒 in the
Freudenthal compactification 𝑆 of 𝑆 (cf. §1.1). Similarly, if 𝑒 is a mixed end of 𝑆 (Definition 0.10)
and g , 𝑛 are non-negative integers then there exists a proper embedding Str(Σ𝑛

g ,1
) ↪ 𝑆 such that

all unbounded sequences in Str(Σ𝑛
g ,1
) converge to 𝑒 in 𝑆.

Putting ourselves now in the setting of Lemma 4.2, suppose first that Σ is compact, so it is
homeomorphic to Σg ,1 for some g ⩾ 0. Since g𝑆 = ∞ there is at least one non-planar end 𝑒 of
𝑆, so we may choose a proper embedding Str(Σg ,1) ⊂ 𝑆 as in the previous paragraph. Since the
property of being shiftable is preserved under self-homeomorphisms of 𝑆, we may assume by
applying an appropriate self-homeomorphism of 𝑆 that the subsurface Σ ⊂ 𝑆 is the subsurface of
Str(Σg ,1) ⊂ 𝑆 corresponding to the left-most copy of Σg ,1 in the infinite strip (cf. Figure 2). Thus
Σ ⊂ 𝑆 is shiftable.
Now suppose that Σ is non-compact, so it is homeomorphic to Σ𝑛

g ,1
for some g ⩾ 0 and 𝑛 ⩾

1. This implies that 𝑝𝑆 > 0, which by assumption means that 𝑆 has a mixed end 𝑒, and so we
may choose a proper embedding Str(Σ𝑛

g ,1
) ⊂ 𝑆 as in the first paragraph of the proof. As above, we

may assume by applying a self-homeomorphism of 𝑆 that the subsurface Σ ⊂ 𝑆 is the subsurface
of Str(Σ𝑛

g ,1
) ⊂ 𝑆 corresponding to the left-most copy of Σ𝑛

g ,1
in the infinite strip. Thus Σ ⊂ 𝑆 is

shiftable. □

The second ingredient is a collection of homological stability results for mapping class groups
of connected, finite-type, orientable surfaces.We recall just the statements about surjectivity, since
these are all that we will need.

Theorem 4.3. The genus-increasing, boundary-component-increasing, puncture-increasing and
capping maps, which are each defined by extending homeomorphisms by the identity, induce
surjections on homology in the following ranges of degrees.

(1) The map𝐻𝑖(Σ𝑛g ,𝑏) → 𝐻𝑖(Σ
𝑛
g ,𝑏
♮Σ1,1) = 𝐻𝑖(Σ

𝑛
g+1,𝑏

) is surjective for g ⩾ 3
2
𝑖.

(2) The map𝐻𝑖(Σ𝑛g ,𝑏) → 𝐻𝑖(Σ
𝑛
g ,𝑏
♮Σ0,2) = 𝐻𝑖(Σ

𝑛
g ,𝑏+1

) is surjective for g ⩾ 3
2
𝑖.

(3) The map𝐻𝑖(Σ𝑛g ,1) → 𝐻𝑖(Σ
𝑛
g
) filling the boundary circle with a disc is surjective for g ⩾ 3

2
(𝑖 − 1).

(4) The map𝐻𝑖(Σ𝑛g ,𝑏) → 𝐻𝑖(Σ
𝑛
g ,𝑏
♮Σ1
0,1
) = 𝐻𝑖(Σ

𝑛+1
g ,𝑏
) is surjective for 𝑛 ⩾ 2𝑖.

Proof. Parts (1)–(3) are all due to Harer [17, Theorem 0.1], except with a larger lower bound on g

(Harer does not directly consider the capping map, but part (3) follows indirectly from his results
about his map called 𝜂). Improvements to this lower boundweremade by Ivanov [21], Boldsen [9]
and Randal-Williams [32]; see also the survey by Wahl [38], which gives the best-known ranges.
Part (4) is due to Hatcher-Wahl [18, Proposition 1.5]. □

Proof of Proposition 4.1. Assume first that Σ is compact, so it is homeomorphic to Σg ,𝑏 for some
g ⩾ 0 and 𝑏 ⩾ 1. Since g𝑆 = ∞, the definition of g𝑆 implies that we may find another subsurface
Σ′′ ⊂ 𝑆, disjoint from Σ, that is homeomorphic to Σℎ,1 for a genus ℎ as large as we choose. Let
us choose ℎ ⩾ 3

2
𝑖. Since 𝑆 is path-connected, we may choose a path from a point on the bound-
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22 of 35 PALMER and WU

ary of Σ to a point on the boundary of Σ′′ and whose interior is contained in 𝑆 ⧵ (Σ ⊔ Σ′′). Let
Σ′ be the union of Σ′′ and a tubular neighbourhood of this path; this is again homeomorphic to
Σℎ,1. It satisfies condition (1) of the proposition by construction. Since it has exactly one boundary
component, it satisfies condition (2) of the proposition by Lemma 4.2. Since ℎ ⩾ 3

2
𝑖, it satisfies

condition (3) of the proposition by parts (1) and (2) of Theorem 4.3, since the extension map
Map(Σ′) → Map(Σ ∪ Σ′) may be factored into finitely many genus-increasing maps and finitely
many boundary-component-increasing maps.
Now suppose that Σ is non-compact, so it is homeomorphic to Σ𝑛

g ,𝑏
for some g ⩾ 0 and 𝑏, 𝑛 ⩾ 1.

This implies that𝑆 has at least one puncture, that is,𝑝𝑆 > 0, so by assumption𝑆 has amixed end, in
particular 𝑝𝑆 = ∞. The proof is then the same as in the previous paragraph, except that we choose
Σ′′ to be homeomorphic to Σ𝑚

ℎ,1
for ℎ ⩾ 3

2
𝑖 and𝑚 ⩾ 2𝑖, using the fact that g𝑆 = 𝑝𝑆 = ∞. The rest of

the proof is then identical, except that to verify condition (3) of the proposition we also need part
(4) of Theorem4.3, factoring the extensionmapMap(Σ′) → Map(Σ ∪ Σ′) into finitelymany genus-
increasing maps, boundary-component-increasing maps and puncture-increasing maps. □

Remark 4.4. Part (2) of Theorem 4.3 is notable in that, when increasing the number 𝑏 of boundary
components, the range inwhichhomological stability holds depends on the genus g , not on 𝑏. This
was crucial in the proof of Proposition 4.1, since we were free to choose Σ′ to have as high genus
and as many punctures as necessary, but it had to have a single boundary component, in order to
be able to apply Lemma 4.2.

5 GENUS ZERO SURFACESWITH COUNTABLY INFINITELY
MANY PUNCTURES

In this section we prove Theorem F, concerning the case when 𝑆 has genus zero and its space of
ends is a closed ordinal interval of the form [0, 𝜔𝛼]. The proof is different when 𝛼 is a (countable)
successor ordinal and when it is a (countable) limit ordinal; we will deal with these two cases
separately — see Proposition 5.3 and Corollary 5.5.

Definition 5.1. For a countable ordinal 𝛼, let us write Σ(𝛼) = 𝕊2 ⧵ [0, 𝜔𝛼] and Σ◦(𝛼) = 𝔻2 ⧵

[0, 𝜔𝛼]. In otherwords, up to homeomorphism,Σ(𝛼) is the unique genus-zero surfacewhose space
of ends is homeomorphic to [0, 𝜔𝛼] and Σ◦(𝛼) is the result of removing the interior of a closed disc
from Σ(𝛼).

5.1 Successor ordinals

Let us first suppose that 𝛼 is a successor ordinal, in other words 𝛼 = 𝛽 + 1 for some ordinal 𝛽. In
this case, Σ(𝛼)may be realised as a (full-plane) grid surface:

Lemma 5.2. There is a homeomorphism Grℤ(Σ
◦(𝛽)) ≅ Σ(𝛼).

Proof. ClearlyGrℤ(Σ◦(𝛽))has genus zero, so by the classification of surfaces it suffices to show that
its space of ends is homeomorphic to [0, 𝜔𝛼]. By construction, its space of ends is the one-point
compactification of disjoint union of countably infinitely many copies of [0, 𝜔𝛽]; by Lemma 1.10
this is [0, 𝜔𝛼]. □
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COMPACT AND FINITE-TYPE SUPPORT IN THE HOMOLOGY OF BIG MAPPING CLASS GROUPS 23 of 35

Half of Theorem F— the case when 𝛼 is a successor ordinal — is given by the following.

Proposition 5.3. Suppose that 𝛼 is a countable successor ordinal. Then the inclusion

𝜄𝑓(Σ(𝛼))∶ Map𝑓(Σ(𝛼)) ↪ Map(Σ(𝛼))

induces the zero map on homology in positive degrees with any field coefficients.

Proof. Let Σ ⊂ Σ(𝛼) be a properly embedded subsurface of finite type and denote by 𝜄 the
homomorphism Map(Σ) → Map(Σ(𝛼)) given by extending homeomorphisms by the identity.
Identifying Σ(𝛼) with the grid surface Grℤ(Σ◦(𝛽)) by Lemma 5.2, the subsurface Σ ⊂ Grℤ(Σ◦(𝛽))
must be bounded, since it is of finite type and therefore must be bounded away from the non-
isolated end ‘at infinity’. Hence Σ is contained in a sub-square of the grid of side-length 𝑛 for
some 𝑛 ⩾ 1. Zooming out by a factor of 𝑛, we may identify Grℤ(Σ◦(𝛽)) with the grid surface
Grℤ(♮

𝑛2Σ◦(𝛽)), in which each ‘piece’ of the grid is the boundary connected sum of 𝑛2 copies of
Σ◦(𝛽). Applying an appropriate shift homeomorphism, we may assume that Σ is contained in the
copy of ♮𝑛2Σ◦(𝛽) at the coordinates (0,0) in the grid. The homomorphism 𝜄 therefore factors as

Map(Σ)⟶Map(♮𝑛
2
Σ◦(𝛽))⟶Map(Grℤ(♮

𝑛2Σ◦(𝛽))) = Map(Σ(𝛼)),

where each homomorphism is given by extending homeomorphisms by the identity. The result
therefore follows by applying Proposition 3.6 to the surface ♮𝑛2Σ◦(𝛽). □

5.2 Limit ordinals

Let us now suppose that 𝛼 = 𝜆 is a limit ordinal. Since it is also countable, its cofinality is precisely
𝜔 (see Remark 1.11), meaning that there is a strictly increasing sequence 𝛼𝑛 of ordinals (indexed
by natural numbers 𝑛 ∈ ℕ = 𝜔) whose supremum is 𝜆. Let us fix a choice of such a sequence for
the remainder of this section.

Proposition 5.4. LetΣ be a properly embedded finite-type subsurface ofΣ(𝜆). ThenΣ is contained in
a properly embedded subsurface homeomorphic to Σ◦(𝛼𝑛) for some 𝑛 ∈ ℕ. Moreover, this subsurface
is shiftable in Σ(𝜆).

The second half of Theorem F – the case when 𝛼 = 𝜆 is a limit ordinal — follows immediately:

Corollary 5.5. Suppose that 𝜆 is a countable limit ordinal. Then the inclusion

𝜄𝑓(Σ(𝜆))∶ Map𝑓(Σ(𝜆)) ↪ Map(Σ(𝜆))

induces the zero map on homology in positive degrees with any field coefficients.

Proof. Let Σ ⊂ Σ(𝜆) be a properly embedded subsurface of finite type. Proposition 5.4 implies
that the homomorphismMap(Σ) → Map(Σ(𝜆)) factors asMap(Σ) → Map(Σ◦(𝛼𝑛)) → Map(Σ(𝜆)),
where the second homomorphism Map(Σ◦(𝛼𝑛)) → Map(Σ(𝜆)) is induced by the inclusion of a
shiftable subsurface; the result therefore follows from Corollary 3.13. □
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24 of 35 PALMER and WU

F IGURE 3 The surface 𝑆 ≅ Σ(𝜆) from the proof of Proposition 5.4, where each square labelled by 𝛼𝑛 denotes
a copy of Σ◦(𝛼𝑛) = 𝔻2 ⧵ [0, 𝜔𝛼] (see Definition 5.1). There is an exhaustive filtration of 𝑆 by properly embedded
subsurfaces 𝑆𝑛 ≅ Σ◦(𝛼𝑛), described in the proof of Proposition 5.4; the boundaries of 𝑆1 and 𝑆3 are outlined in red.

Proof of Proposition 5.4. Let us construct a full-plane ‘grid surface’ similarly to Definition 3.2,
except that each square in the grid with coordinates (𝑖, 𝑗) ∈ ℤ × ℤ is filled in with a copy of
Σ◦(𝛼max(−𝑗,0)). Equivalently, we begin with a copy of the half-plane grid surface Gr(Σ◦(𝛼0)), glue
on a new row to the bottom of the grid filled with copies of Σ◦(𝛼1), then another row filled with
copies of Σ◦(𝛼2), etc., until the whole grid is filled; see Figure 3. Let us denote this surface by 𝑆.
Also, for each 𝑛 ⩾ 1, we denote by 𝑆𝑛 ⊂ 𝑆 the subsurface given by the union of all (2𝑛 − 1)2 pieces
whose coordinates (𝑖, 𝑗) satisfy max(|𝑖|, |𝑗|) ⩽ 𝑛 − 1, together with the piece whose coordinates
are (0, −𝑛); see Figure 3. It follows from Lemma 1.10 that 𝑆 is homeomorphic to Σ(𝜆) and each 𝑆𝑛
is homeomorphic to Σ◦(𝛼𝑛). Also, the 𝑆𝑛 (for 𝑛 ∈ ℕ) form an exhaustive filtration of 𝑆 by properly
embedded subsurfaces.
Now let Σ ⊂ Σ(𝜆) ≅ 𝑆 be any properly embedded finite-type subsurface. It must be bounded

away from the non-isolated end of 𝑆 ‘at infinity’, so it must be contained in 𝑆𝑛 for some 𝑛 ∈ ℕ. To
finish the proof, we just have to show that 𝑆𝑛 is shiftable in 𝑆: this is demonstrated pictorially in
Figure 4. □

6 THE PUNCTURED AND UNPUNCTURED CANTOR TREE
SURFACES

In this section we prove Theorem D(1), dealing with the case when 𝑆 has genus zero and has
either 0 or 1 punctures (isolated planar ends). This corresponds to exactly two possible homeo-
morphism types of surfaces: the sphere minus a Cantor set 𝕊2 ⧵  (the ‘Cantor tree surface’) and
the plane minus a Cantor set ℝ2 ⧵  (the ‘punctured Cantor tree surface’). In both cases, we use
the following result about the discminus a Cantor set𝔻2 ⧵  (the ‘one-holed Cantor tree surface’).

Theorem 6.1 [31, Theorem B]. Map(𝔻2 ⧵ ) is acyclic, that is,𝐻𝑖(Map(𝔻2 ⧵ )) = 0 for all 𝑖 > 0.
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COMPACT AND FINITE-TYPE SUPPORT IN THE HOMOLOGY OF BIG MAPPING CLASS GROUPS 25 of 35

F IGURE 4 An extension of the inclusion 𝑆𝑛 ⊂ 𝑆 (depicted in the case 𝑛 = 3) to a proper embedding
Str(𝑆𝑛) ↪ 𝑆, proving that 𝑆𝑛 is shiftable in 𝑆.

Proof of Theorem D(1). Let 𝑆 be an infinite-type surface of genus zero with either no punctures
(isolated ends) or exactly one puncture; in other words 𝑆 is homeomorphic either to 𝕊2 ⧵  or
to ℝ2 ⧵ . Let Σ ⊂ 𝑆 be a properly embedded finite-type subsurface; our goal is to prove that
Map(Σ) → Map(𝑆) induces the zero map on homology in all positive degrees.
First assume that Σ is compact. Since 𝑆 has genus zero, so does Σ, so it is homeomorphic to a

sphere with 𝑛 holes for some 𝑛 ⩾ 1. The complement 𝑆 ⧵ Σ thus has 𝑛 components, partitioning
the end-space of 𝑆 into 𝑛 clopen subsets 𝐸1, … , 𝐸𝑛. Since the end-space of 𝑆 is homeomorphic
either to  or to  ⊔ {∗}, and all non-empty clopen subsets of  are homeomorphic to  again, we
may assume (reordering if necessary) that𝐸1, … , 𝐸𝑛−1 are each homeomorphic to  or∅ and 𝐸𝑛 is
homeomorphic to  or∅ or  ⊔ {∗} or {∗}. Denote by Σ′ the subsurface of 𝑆 given by the union of Σ
together with the 𝑛 − 1 components of the complement 𝑆 ⧵ Σ corresponding to 𝐸1, … , 𝐸𝑛−1. Since
Σ′ has genus zero, one (compact) boundary component and has end-space homeomorphic to the
disjoint union of some number (possibly zero) of copies of , it is homeomorphic either to 𝔻2 or
to 𝔻2 ⧵ . The homomorphism Map(Σ) → Map(𝑆) factors through Map(Σ′), which is either the
trivial group (if Σ′ ≅ 𝔻2) or isomorphic to Map(𝔻2 ⧵ ), whose homology in all positive degrees
vanishes by Theorem 6.1.
Now assume that Σ is non-compact (but still finite type). This implies that we must have 𝑆 ≅

ℝ2 ⧵  and Σ ≅ Σ1
0,𝑛

for some 𝑛 ⩾ 1. Removing an open annular neighbourhood of the unique
puncture (point at infinity) of 𝑆, we obtain subsurfaces 𝑆′ ⊂ 𝑆 and Σ′ ⊂ Σ such that 𝑆′ ≅ 𝔻2 ⧵ ,
Σ′ ≅ Σ0,𝑛+1 and Σ′ = Σ ∩ 𝑆′. Their mapping class groups fit into a map of central extensions

(6.1)

We claim that the central extension 0 → ℤ → Map(Σ′) → Map(Σ) → 1 on the top row is a trivial
extension. Note that this will complete the proof, because it will then follow that the homo-
morphism Map(Σ) → Map(𝑆) factors through Map(𝑆′) ≅ Map(𝔻2 ⧵ ), whose homology in all
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26 of 35 PALMER and WU

positive degrees vanishes by Theorem 6.1. The middle group isMap(Σ′) ≅ Map(Σ0,𝑛+1), which is
the pure ribbon braid group on 𝑛 strands. It decomposes asℤ𝑛 × 𝑃𝐵𝑛, where 𝑃𝐵𝑛 denotes the pure
braid group on 𝑛 strands. By [14, §9.3, p. 252], this decomposes as 𝑃𝐵𝑛 ≅ (𝑃𝐵𝑛) × 𝑃𝐵𝑛∕(𝑃𝐵𝑛),
where (𝑃𝐵𝑛) denotes the centre of 𝑃𝐵𝑛, which is infinite cyclic generated by the full twist Δ2.
Putting this all together, we have a decomposition Map(Σ′) ≅ ℤ𝑛 × ℤ{Δ2} × 𝑃𝐵𝑛∕(𝑃𝐵𝑛). The
central subgroup ℤ ⊂ Map(Σ′) under consideration is generated by the Dehn twist around the
outer boundary, which corresponds under this identification to the element ((1, … , 1), Δ2) ∈ ℤ𝑛 ×
ℤ{Δ2}. Via this description it is clear that it generates a direct factor of Map(Σ′), in other words
the quotient by this central subgroup admits a section: hence it is a trivial central extension. □

Remark 6.2. In contrast to our other vanishing results, Theorem D(1) holds for any coefficients,
not only for coefficients in a field.

7 NON-TRIVIAL COMPACTLY SUPPORTED CLASSES

In this section we prove all of our non-vanishing results, except for Theorem B(3) whose proof is
deferred to §8. In §7.1 we prove Theorem C, dealing with the case when 𝑆 has non-zero but finite
genus. In §7.2 we prove Theorem D(2), concerning Question (III) in the case when 𝑆 has finitely
many but at least two punctures. In §7.3 we prove Theorem E, concerning the case when 𝑆 has
genus zero and there is a finite, topologically distinguished subset 𝐴 ⊂ Ends(𝑆) with |𝐴| ⩾ 4. In
the special case when 𝐴 is the set of punctures of 𝑆, this also proves Theorem D(3).

7.1 Finite, non-zero genus

In this subsection, we prove Theorem C, which we state slightly more precisely as the following:

Proposition 7.1. Suppose that 1 ⩽ g𝑆 < ∞. Then the integral homology𝐻∗(Map(𝑆)) contains non-
zero classes that are supported on a compact subsurface of 𝑆 homeomorphic to Σg𝑆,1. More precisely,
we may find such classes in degree 1 when g𝑆 = 1 and in degree 2 when g𝑆 ⩾ 2.

In the proof, wewill need the following calculations of low-degree homology groups ofmapping
class groups of closed, orientable surfaces.

Lemma 7.2. We have𝐻1(Map(Σ1)) ≅ ℤ∕12 and

𝐻2(Map(Σg )) ≅

⎧⎪⎨⎪⎩

ℤ∕2 g = 2

ℤ⊕ ℤ∕2 g = 3

ℤ g ⩾ 4.

Proof. For the first statement,Map(Σ1) is isomorphic to 𝑆𝐿2(ℤ), whose abelianisation isℤ∕12. For
the second statement, see [24, Theorem 6.1 and the paragraph following it] for g ⩾ 4 and g = 2.
The case g = 3 is not unambiguously settled in [24]; instead, see [34, Corollary 4.10]. See also [4,
Lemma A.1] for these and many more related calculations. □
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COMPACT AND FINITE-TYPE SUPPORT IN THE HOMOLOGY OF BIG MAPPING CLASS GROUPS 27 of 35

Proof of Proposition 7.1. Since 𝑆 has finite genus g𝑆 , all of its ends are planar and it is homeo-
morphic to Σg𝑆 ⧵ 𝐸, where 𝐸 is the image of an embedding Ends(𝑆) ↪ Σg𝑆 of the end-space of 𝑆.
Choose an embedded disc 𝐷 ⊂ Σg𝑆 containing 𝐸 in its interior. There are homomorphisms

Map(Σg𝑆 ⧵ 𝐷̊)⟶Map(Σg𝑆 ⧵ 𝐸)⟶Map(Σg𝑆 ) (7.1)

given, respectively, by extending homeomorphisms of Σg𝑆 ⧵ 𝐷̊ (that are the identity on 𝜕𝐷) by the
identity on 𝐷 ⧵ 𝐸 and extending homeomorphisms of Σg𝑆 ⧵ 𝐸 to (its Freudenthal compactifica-
tion) Σg𝑆 in the unique possible way (see [30, Appendix B] for why this determines a well-defined
homomorphism of mapping class groups). The composition of the two homomorphisms (7.1) is
the classical capping mapMap(Σg𝑆 ⧵ 𝐷̊) → Map(Σg𝑆 ) that extends homeomorphisms by the iden-
tity on 𝐷. This map induces a surjection on𝐻𝑖 whenever g𝑆 ⩾

3
2
(𝑖 − 1) by part (3) of Theorem 4.3.

In particular, it induces a surjection on𝐻1 whenever g𝑆 ⩾ 1 and on𝐻2 whenever g𝑆 ⩾ 2. It there-
fore suffices to check that𝐻1(Map(Σ1)) ≠ 0 and that𝐻2(Map(Σg𝑆 )) ≠ 0when g𝑆 ⩾ 2. This follows
from Lemma 7.2. □

7.2 Finitely many punctures but at least two

In this subsection, we prove Theorem D(2). In fact, this part of Theorem D does not require the
assumption that g𝑆 = 0, so we may strengthen it to:

Proposition 7.3. Suppose that 2 ⩽ 𝑝𝑆 < ∞. Then 𝐻∗(Map(𝑆)) contains a non-trivial class that is
supported on a properly embedded finite-type subsurface of 𝑆.

Proof. Since 𝑝 = 𝑝𝑆 is finite, there is a properly embedded subsurface of 𝑆 homeomorphic to
the punctured disc 𝔻2 ⧵ 𝑃, where 𝑃 is a finite set of size 𝑝 in the interior of 𝔻2. This induces an
extensionmap 𝐵𝑝 = Map(𝔻2 ⧵ 𝑃) → Map(𝑆), where 𝐵𝑝 denotes the braid group on 𝑝 strands. For
any homeomorphism of 𝑆, its induced action on the end-space Ends(𝑆) must send the subset
of punctures onto itself, so there is a well-defined map Map(𝑆) → 𝔖𝑝 recording this permuta-
tion. The composition 𝐵𝑝 → 𝔖𝑝 records the permutation induced by a braid, and is surjective.
Since abelianisation (−)𝑎𝑏 = 𝐻1(−) is a right-exact functor, the composition of the induced maps
𝐻1(𝐵𝑝) → 𝐻1(Map(𝑆)) → 𝐻1(𝔖𝑝) is also surjective. Since 𝐻1(𝔖𝑝) ≅ ℤ∕2 (here we are using the
assumption that𝑝 ⩾ 2), wemay choose a lift𝛼 ∈ 𝐻1(𝐵𝑝) of the non-trivial element of𝐻1(𝔖𝑝). The
image of 𝛼 in𝐻1(Map(𝑆)) is then a non-trivial class supported on a properly embedded finite-type
subsurface. □

The above proof does not work when 𝑝 = 𝑝𝑆 = 1, since 𝐻1(𝔖𝑝) is trivial in this case. Indeed,
in this case, the answer to Question (III) depends also on the genus of 𝑆. If g𝑆 = 0 then 𝑆 must be
homeomorphic to ℝ2 ⧵  and the answer is given in §6. The case when 0 < g𝑆 < ∞ is covered by
Proposition 7.1. The case when g𝑆 = ∞ is dealt with in §8.

7.3 Genus zero with a finite, topologically distinguished set of ends

Wenext prove TheoremE (which in particular implies TheoremD(3)). Recall fromDefinition 0.13
the notion of a topologically distinguished subset. The following is a refinement of Theorem E.
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28 of 35 PALMER and WU

Proposition 7.4. Suppose that 𝑆 has genus zero and that Ends(𝑆) has a finite, topologically distin-
guished subset of size 𝑛 ⩾ 2. Set 𝑘 = 𝑛 − 1 if 𝑛 is even and 𝑘 = 1

2
(𝑛 − 1) if 𝑛 is odd. Then there is a

compact subsurface Σ ⊂ 𝑆 and a commutative diagram

(7.2)

where the left-hand vertical map is induced by Map(Σ) ⊂ Map(𝑆), the right-hand vertical map is
multiplication by 2 and the top horizontal map is surjective. In particular, if 𝑛 ⩾ 4, there are non-
trivial classes in𝐻1(Map(𝑆)) that are supported on the compact subsurface Σ ⊂ 𝑆.

Remark 7.5. We do not require the finite, topologically distinguished subset of Ends(𝑆) in Propo-
sition 7.4 to be homogeneous; for example, it may consist of 𝑛 points that are each (individually)
topologically distinguished. The bottom horizontal map of (7.2) is surjective if and only if this is
not the case, that is, two of the points of the (chosen) topologically distinguished subset are similar,
that is, have homeomorphic open neighbourhoods.

Proof of Proposition 7.4. We first note that the second statement follows from the first: when
𝑛 ⩾ 4 we have 𝑘 ⩾ 2, so the element 2 ∈ ℤ∕2𝑘 is non-trivial and pulls back through 𝐻1(Map(𝑆))
to𝐻1(Map(Σ)). Hence we just have to prove the first statement.
Denote by 𝐴 ⊂ Ends(𝑆) a topologically distinguished subset of size 𝑛. Since Ends(𝑆) is Haus-

dorff and zero-dimensional, we may partition it into clopen subsets 𝐸1, … , 𝐸𝑛 such that each 𝐸𝑖
contains exactly one point of 𝐴. Let 𝑆𝑖 = 𝔻2 ⧵ 𝐸𝑖 for 𝑖 ∈ {1, … , 𝑛} and denote by Σ0,𝑛 the compact,
connected, genus-0 surface with 𝑛 boundary components. Gluing 𝑆1, … , 𝑆𝑛 into the 𝑛 holes of Σ0,𝑛
we obtain 𝕊2 ⧵ Ends(𝑆), which is homeomorphic to 𝑆. There is therefore an extension homomor-
phismMap(Σ0,𝑛) → Map(𝑆) given by extending homeomorphisms by the identity on each 𝑆𝑖 . On
the other hand, since 𝐴 ⊂ Ends(𝑆) is a topologically distinguished subset, we have a homomor-
phism Map(𝑆) → Map(𝕊2 ⧵ 𝐴) given by filling in all ends of 𝑆 except 𝐴. Next, there is a central
extension [14, §9.1.4]

1 → ℤ∕2⟶ 𝐵𝑛(𝕊
2)⟶Map(𝕊2 ⧵ 𝐴) → 1,

where the generator of the kernel is sent to a full twist in the spherical braid group 𝐵𝑛(𝕊2). This
is sent to 𝑛(𝑛 − 1) in 𝐵𝑛(𝕊2)

𝑎𝑏
≅ ℤ∕(2𝑛 − 2), which is 0 if 𝑛 is even and 𝑛 − 1 if 𝑛 is odd. Let us

consider the quotient of 𝐵𝑛(𝕊2) onto its abelianisation ℤ∕(2𝑛 − 2)when 𝑛 is even and the further
quotient onto ℤ∕(𝑛 − 1) when 𝑛 is odd; we may write this uniformly as the quotient 𝐵𝑛(𝕊2) ↠
ℤ∕2𝑘 where 𝑘 = 𝑛 − 1 if 𝑛 is even and 𝑘 = 1

2
(𝑛 − 1) if 𝑛 is odd. By construction, the kernel ℤ∕2 ⊂

𝐵𝑛(𝕊
2) of the central extension above is sent to zero in this quotient, so it factors through a quotient

Map(𝕊2 ⧵ 𝐴) ↠ ℤ∕2𝑘. Putting everything together, we have maps

Map(Σ0,𝑛)⟶Map(𝑆)⟶Map(𝕊2 ⧵ 𝐴)⟶ ℤ∕2𝑘. (7.3)

The compositionMap(Σ0,𝑛) → ℤ∕2𝑘 is not surjective: its image is instead the cyclic subgroup of
order 𝑘 generated by 2 ∈ ℤ∕2𝑘. To see this, first note that a pre-image of the element 2 ∈ ℤ∕2𝑘
inMap(Σ0,𝑛) is given by a homeomorphism that ‘pushes’ one boundary component in a full loop
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COMPACT AND FINITE-TYPE SUPPORT IN THE HOMOLOGY OF BIG MAPPING CLASS GROUPS 29 of 35

around another boundary component. This implies that the image contains the cyclic subgroup
generated by 2. On the other hand, it cannot be larger than this, since each element ofMap(Σ0,𝑛)
fixes the 𝑛 boundary components pointwise and hence its induced permutation of 𝐴 is trivial,
which is an even permutation. Thus we have the following commutative diagram:

Taking abelianisations, we obtain the desired commutative diagram (7.2) with Σ = Σ0,𝑛. □

8 CLASSES DETECTED BYWREATH PRODUCTS OF THE CIRCLE
GROUP

In this section we prove Theorem B(3), which we restate in a stronger form as Proposition 8.1.
We want to consider surfaces of infinite genus with finitely many (and at least one) punctures.
However, it will bemore convenient to think of the punctures asmarked points, so we fix a surface
𝑆 of infinite genus and no punctures, together with a non-empty, finite subset 𝑃 ⊂ 𝑆, and we will
be interested in Question (II) for the surface 𝑆 ⧵ 𝑃. In other words, we are interested in the image
of the map

𝐻∗(Map𝑐(𝑆 ⧵ 𝑃))⟶ 𝐻∗(Map(𝑆 ⧵ 𝑃)) (8.1)

induced by the inclusionMap𝑐(𝑆 ⧵ 𝑃) ⊂ Map(𝑆 ⧵ 𝑃). Question (II) asks whether the image of the
map (8.1) is non-zero for some positive degree ∗> 0. In fact we may prove that it is non-zero in
every even degree:

Proposition 8.1. Let 𝑆 be a connected, orientable surface of infinite genus with no punctures and
𝑃 ⊂ 𝑆 a non-empty, finite subset. Then the image of the map (8.1) contains a ℤ summand in every
even degree; in particular it is non-zero.

A key ingredient of the proof is a construction due to Bödigheimer and Tillmann [8].

Notation 8.2. For a surface 𝑆 (possiblywith boundary) and finite subset𝑃 ⊂ 𝑆̊ of its interior, denote
by Dif f (𝑆, 𝑃) the topological group of diffeomorphisms of 𝑆 that fix 𝑃 setwise and 𝜕𝑆 pointwise,
equipped with the weak (smooth compact-open) topology [20, §2.1].

Definition 8.3 [8, §3]. For a surface 𝑆 (possibly with boundary) and finite subset 𝑃 ⊂ 𝑆̊ of size
𝑝 = |𝑃|, let

𝜏∶ Dif f (𝑆, 𝑃)⟶ 𝕊1 ≀ 𝔖𝑝 = (𝕊
1)
𝑝
⋊𝔖𝑝 (8.2)

be the continuous homomorphism defined as follows. Choose a bijection 𝑖 ↦ 𝑥𝑖 ∶ {1, … , 𝑝} → 𝑃

and choose a non-zero tangent vector 𝑣𝑖 ∈ 𝑇𝑥𝑖𝑆 for each 𝑖 ∈ {1, … , 𝑝}, as well as an inner prod-
uct on each of these tangent spaces. For a diffeomorphism 𝜑, the map 𝜏 records the induced
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30 of 35 PALMER and WU

permutation 𝜎(𝜑) of {1, … , 𝑝} under the chosen bijection and the angle 𝜃𝑖(𝜑) between 𝐷𝜑(𝑣𝑖) and
𝑣𝜎(𝜑)(𝑖) for each 𝑖 ∈ {1, … , 𝑝}, where 𝐷𝜑 denotes the derivative of 𝜑.†

Notation 8.4. Write 𝐵𝐺 for the classifying space of a topological group 𝐺. When 𝐺 is discrete the
homology of 𝐵𝐺 agrees with the group homology of 𝐺, so we will write𝐻∗(𝐵𝐺) = 𝐻∗(𝐺).

Construction 8.5. Let 𝑆 be a surface with no punctures and 𝑃 ⊂ 𝑆 a finite subset of size 𝑝 = |𝑃|.
We will use (8.2) to construct a map

𝐵Map𝑓(𝑆 ⧵ 𝑃)⟶ 𝐵(𝕊1 ≀ 𝔖𝑝). (8.3)

Let Σ ⊂ 𝑆 be a compact subsurface containing 𝑃 in its interior. We then have maps

Map(Σ ⧵ 𝑃) ≅ 𝜋0(Dif f (Σ, 𝑃)) ↞ Dif f (Σ, 𝑃)⟶ 𝕊1 ≀ 𝔖𝑝, (8.4)

where the right-hand map is (8.2). These are all compatible with the maps induced by inclusions
of subsurfaces, so there are induced maps of colimits

colim
Σ

(Map(Σ ⧵ 𝑃)) ≅ colim
Σ

(𝜋0(Dif f (Σ, 𝑃))) ↞ colim
Σ

(Dif f (Σ, 𝑃))⟶ 𝕊1 ≀ 𝔖𝑝, (8.5)

where each colimit is taken over the poset of all compact subsurfaces Σ ⊂ 𝑆 with 𝑃 ⊂ Σ̊. Since 𝑆
has no punctures, the subsurfaces Σ ⧵ 𝑃 ⊂ 𝑆 ⧵ 𝑃 form a cofinal family in𝔉(𝑆 ⧵ 𝑃), so the left-hand
group in (8.5) may be identified withMap𝑓(𝑆 ⧵ 𝑃), by Lemma 2.3.
The middle map in (8.4) is a weak homotopy equivalence by [12, 13] and hence so is the middle

map in (8.5). Taking classifying spaces and inverting this map, we obtain the desired map (8.3).

Remark 8.6. By construction, restricting (8.3) to (the classifying space of)Map𝑐(𝑆 ⧵ 𝑃), we obtain
a commutative square:

(8.6)

The key ingredient to prove Proposition 8.1 is the following corollary of the main result of [8].

Theorem 8.7. If 𝑆 is a connected, orientable surface of infinite genus with no punctures and 𝑃 ⊂ 𝑆
is a finite subset, then the maps

𝐻∗(Map𝑓(𝑆 ⧵ 𝑃))⟶ 𝐻∗(𝐵(𝕊
1 ≀ 𝔖𝑝)) and 𝐻∗(Map𝑐(𝑆 ⧵ 𝑃))⟶ 𝐻∗(𝐵(𝕊

1)
𝑝
) (8.7)

† In order for this to be a group homomorphism, we must restrict to the subgroup of Dif f (𝑆, 𝑃) of those diffeomorphisms
whose derivatives, restricted to the tangent spaces at the points of 𝑃, respect the chosen inner products on these tangent
spaces. However, the inclusion of this subgroup into the full group Dif f (𝑆, 𝑃) is a homotopy equivalence (because the
inclusion 𝑆𝑂(2) ↪ 𝐺𝐿+

2
(ℝ) is a homotopy equivalence), so this is not a problem, and we will not comment further on this

subtlety.
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COMPACT AND FINITE-TYPE SUPPORT IN THE HOMOLOGY OF BIG MAPPING CLASS GROUPS 31 of 35

induced on homology by (8.6) each admit a section. Moreover, these sections are compatible in the
sense that if we consider the commutative square induced on homology by (8.6) and replace its
horizontal maps with these two sections, then the result is still a commutative square.

Proof. In fact, [8]makes a stronger statement. Let uswrite (−)+ for theQuillen plus-construction of
a topological space (see [8, §2] for a brief summary of some key properties of the plus-construction
and, for example, [5] for further details). According to [8, Theorem 1.1 (2)], the space 𝐵Map𝑓(𝑆 ⧵
𝑃)+ splits, up to homotopy equivalence, as the product of𝐵Γ+∞ and𝐵(𝕊1 ≀ 𝔖𝑝)

+, whereΓ∞ denotes
the colimit ofMap(Σg ,1) as g →∞, and (the plus-construction of) the map (8.3) is the projection
onto the second factor of this decomposition. It therefore admits a section up to homotopy, so the
result follows upon taking homology since (−)+ does not change the homology of a space. In [8],
this result is stated for the particular surface 𝑆 = colimg→∞(Σg ,1), but the homology𝐻∗(Map𝑓(𝑆 ⧵
𝑃)) is the same for any surface 𝑆 satisfying the hypotheses of the theorem, by [17]; alternatively, the
proof of [8] goes through for any such surface 𝑆, by taking the colimit of an appropriate diagram
of stabilisation maps, corresponding to a filtration of 𝑆 by compact subsurfaces.
This deals with the left-hand map of (8.7). Restricting to Map𝑐(𝑆 ⧵ 𝑃) ⊆ Map𝑓(𝑆 ⧵ 𝑃) corre-

sponds to restricting to the pure mapping class group for each finite-type subsurface over which
we are taking the colimit (see Lemma 2.3). Hence the exact same argument also proves that the
right-hand map of (8.7) admits a section, using [8, Theorem 1.1(1)] instead of [8, Theorem 1.1(2)].
Finally, to see that these two sections are compatible in the sense described, we first note that

the homotopy splittings [8, Theorems 1.1(1) and 1.1(2)] are both special cases of the homotopy
splitting [8, Theorem 3.1]. The latter depends on a choice of subgroup of the symmetric group𝔖𝑘

(where 𝑘 denotes the cardinality of the finite set 𝑃); then [8, Theorems 1.1(1) and 1.1(2)] correspond
to the trivial subgroup {1} and the whole group𝔖𝑘, respectively. Now it is clear from the proof of
[8, §3] that the splitting of [8, Theorem 3.1] is natural with respect to the lattice of subgroups of𝔖𝑘.
In particular, naturality with respect to {1} ⊂ 𝔖𝑘 implies the desired compatibility statement. □

To complete the proof of Proposition 8.1 we need one further ingredient.

Proposition 8.8. If 𝑆 is a connected, orientable surface with no punctures and 𝑃 ⊂ 𝑆 is a finite
subset, then the map (8.3) extends along 𝐵(incl)∶ 𝐵Map𝑓(𝑆 ⧵ 𝑃) → 𝐵Map(𝑆 ⧵ 𝑃).

Before proving this, we first explain how (together with Theorem 8.7) it implies Proposition 8.1,
and hence Theorem B(3).

Proof of Proposition 8.1. By Theorem 8.7 and Proposition 8.8, we have a commutative diagram

in which the horizontal compositions 𝐻∗(𝐵(𝕊
1)
𝑝
) → 𝐻∗(𝐵(𝕊

1)
𝑝
) and 𝐻∗(𝐵(𝕊

1 ≀ 𝔖𝑝)) →

𝐻∗(𝐵(𝕊
1 ≀ 𝔖𝑝)) are identities. The top-left horizontal map is induced by the homomorphism
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32 of 35 PALMER and WU

F IGURE 5 The diagram used to construct the extension of (8.3) to 𝐵Map(𝑆 ⧵ 𝑃) in the proof of
Proposition 8.8. The surface 𝑆 is connected, orientable and has no punctures (in other words, all of its ends are
either non-planar or non-isolated), 𝑃 ⊂ 𝑆 is a finite subset and Σ ⊂ 𝑆 is a compact subsurface containing 𝑃 in its
interior.

𝕊1 → (𝕊1)
𝑝 sending 𝑡 ↦ (𝑡, 0, … , 0) and the bottom-right vertical map is induced by the homo-

morphism 𝕊1 ≀ 𝔖𝑝 → 𝕊1 sending (𝑡1, … , 𝑡𝑝; 𝜎) ↦ 𝑡1 +⋯ + 𝑡𝑝. By construction, the map from the
top-left to the bottom-right of the diagram is the identity map. Thus we have factored the identity
map of 𝐻∗(𝐵𝕊1) = 𝐻∗(ℂℙ∞) through the map (8.1). It follows that the image of (8.1) contains a
direct summand isomorphic to 𝐻∗(ℂℙ∞), which is a copy of ℤ in every even degree. □

Proof of Proposition 8.8. At the level of diffeomorphism groups, the construction clearly extends to
a well-defined continuous homomorphism Dif f (𝑆, 𝑃) → 𝕊1 ≀ 𝔖𝑝. Indeed, Definition 8.3 does not
make any compactness assumptions. The only subtlety lies in descending this homomorphism to
the mapping class group.
We first recall the construction of themap (8.3) inmore detail. In the diagram in Figure 5, 𝑆 and

𝑃 ⊂ 𝑆 are as in Proposition 8.8 and Σ ⊂ 𝑆 is any compact subsurface containing 𝑃 in its interior.
The natural map from the diffeomorphism group to the homeomorphism group of any smooth
surface is a weak equivalence (in particular an isomorphism on 𝜋0)† and the restriction map
Homeo(𝑆, 𝑃) → Homeo(𝑆 ⧵ 𝑃) is an isomorphism of topological groupswhen 𝑆 has no punctures,
since onemay define an inverse by extending homeomorphisms uniquely to the Freudenthal com-
pactification of 𝑆 ⧵ 𝑃 and then discarding all ends that are not punctures (these are preserved by
any homeomorphism). Thus all of the vertical maps in Figure 5 are either weak equivalences or
isomorphisms. The horizontal map across the top is the homomorphism (8.2) of Definition 8.3.

† This follows essentially from smoothing theory [23, Essay V]. See [31, Appendix A] for a brief explanation, which
emphasises that the underlying surface does not have to be compact.

 14697750, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70258 by T

est, W
iley O

nline L
ibrary on [01/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



COMPACT AND FINITE-TYPE SUPPORT IN THE HOMOLOGY OF BIG MAPPING CLASS GROUPS 33 of 35

To identify its domain withMap(Σ ⧵ 𝑃) = 𝜋0(Homeo(Σ ⧵ 𝑃)), we need to know that the diagonal
maps on the left-hand side are also weak equivalences, which follows either from [12, 13] at the
level of diffeomorphism groups or from [16] at the level of homeomorphism groups. Taking the
colimit over all Σ, and then taking classifying spaces, we obtain the map (8.3).
To see that (8.3) extends to 𝐵Map(𝑆 ⧵ 𝑃), we need to know that the diagonal maps on the right-

hand side are also weak equivalences. This follows from the main result of [39], which extends
[16] to non-compact surfaces, proving thatHomeo(𝑆 ⧵ 𝑃) has contractible components (and thus
contractible path-components), so the projection Homeo(𝑆 ⧵ 𝑃) → 𝜋0(Homeo(𝑆 ⧵ 𝑃)) is a weak
equivalence. There is a small additional subtlety: for this projectionmap tomake sense, one has to
equipMap(𝑆 ⧵ 𝑃) = 𝜋0(Homeo(𝑆 ⧵ 𝑃)) with the quotient topology induced by the compact-open
topology, whereas we are interested in it as an abstract group, equivalently equipped with the
discrete topology. Let us temporarily take the convention that Map(𝑆 ⧵ 𝑃) denotes the mapping
class group with the quotient topology andMap(𝑆 ⧵ 𝑃)𝛿 denotes the same group with the discrete
topology. SinceMap(𝑆 ⧵ 𝑃) is totally disconnected (in fact it is homeomorphic to the Baire space
ℕℕ [2, Thm 4.2]), the map Map(𝑆 ⧵ 𝑃)𝛿 → Map(𝑆 ⧵ 𝑃) given by the identity of the underlying
groups is a weak equivalence. Together, this implies that the map (8.3) extends from 𝐵Map𝑓(𝑆 ⧵

𝑃) = 𝐵colim
Σ

(Map(Σ ⧵ 𝑃)) to 𝐵Map(𝑆 ⧵ 𝑃)𝛿. □
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