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INTRODUCTION

In their seminal work [25], Madsen and Weiss calculated the stable homology of the mapping
class groups of compact, connected, orientable surfaces, in particular confirming the Mumford
conjecture [29]. Let L denote the Loch Ness monster surface, the unique infinite-genus surface
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with one end and no boundary, and write Map_.(L) for the subgroup of the mapping class group
Map(L) = 7,(Homeo(L)) of elements admitting compactly supported representatives. Rationally,
the Madsen-Weiss theorem has the following consequence.

Theorem [25]. H*(Map,(L); Q) = Q[x,, x5, ...], where x; is the Miller-Morita—Mumford class of
degree 2i.

Recently, much progress has been made towards calculating the homology of mapping class
groups of infinite-type surfaces [1, 11, 26, 30, 31]. In particular, for the Loch Ness monster surface
L, the authors showed in [30, Proposition 5.3] that H,(Map(L); Z) is uncountable in every positive
degree. The proof is constructive, but the (uncountably many) homology classes constructed do
not have compact support. It is therefore natural to wonder whether H,(Map(L); Z) contains any
(non-zero) classes with compact support, in other words, whether the map H,(Map.(L); Z) —
H,(Map(L); Z) induced by the inclusion Map_.(L) C Map(L) has non-trivial image. In particular,
does the dual class x; of any Miller-Morita-Mumford class x; survive in H,(Map(L); @)?

Theorem A. For any field K, the map H,(Map.(L);K) - H,(Map(L);K) is zero in positive
degrees. In particular, for K = Q, all dual Miller-Morita-Mumford classes x; are sent to zero in
H,(Map(L); Q).

We do not know whether this result remains true if the field K is replaced by Z (see
Remark 0.12).

The general questions

For any (connected, second-countable, orientable) infinite-type surface S with dS = @, we study
the following two questions about its mapping class group Map(S) = 7,(Homeo(S)):

Question. Does Map(S) contain non-zero classes in the image of H,(Map(X)) - H,(Map(S))
for

(I) some compact subsurface = C S;
(IIT) some properly embedded finite-type subsurface T C S?

The assumption in (III) that X C S is properly embedded is necessary for there to be a well-
defined induced map Map(X) — Map(S) given by extending by the identity; see Lemma 2.2.

As the numbering suggests, there is in fact another intermediate question between (I) and (III).
To see this, we first discuss some subgroups of Map(S) as well as some colimit groups mapping
into it.

Definition 0.1. Let Map,(S) € Map(S) = 7,(Homeo(S)) denote the subgroup of mapping classes

that may be represented by a homeomorphism ¢ whose supportsupp(¢) ={p € S | ¢(p) # p} C S
is compact. Similarly, define Map ((S) € Map(S) to be the subgroup of mapping classes that may
be represented by a homeomorphism ¢ whose support is contained in a properly embedded finite-
type subsurface of S, namely a subsurface of S that is closed as a subset and whose fundamental
group is finitely generated.
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Definition 0.2. Let us denote by €(S) C F(S) the posets of compact subsurfaces of S and of
properly embedded finite-type subsurfaces of S, ordered by inclusion. For a finite-type surface Z,
let us write PMap(Z) for the subgroup of elements of Map(Z) that fix the punctures of X pointwise.
(This is an index-p! subgroup if  has p punctures.) Define

aps(S) 20061(1511)( ap(%))
Mapx(S) := colim(Map(Z
pg(S) e gl(s)( p(X))

PMapg(S) := gg%i(r?)(PMap(E)).

Note that the analogous PMapg(S) is simply Mapg(S) again, since compact surfaces have
no punctures.

There are natural homomorphisms
Maps(S) — PMap%(S) — Map%(S) — Map(S) (0.1)

induced by the inclusion of posets €(S) C &(S), the inclusions PMap(Z) C Map(Z) and the homo-
morphisms Map(X) — Map(S) given by extending homeomorphisms of £ by the identity on
S\ =.

Since homology commutes with colimits, Questions (I) and (IIT) above may be reformulated as
follows, where we have added one intermediate question.

Question. Is there a non-zero element of H,(Map(S)) in the image of the map on homology
induced by

(I Mapg(S) — Map(S);
(I) PMapg(S) — Map(S);
(IIT) Mapg(S) — Map(S)?

Questions (II) and (IIT) may be reformulated in terms of inclusions of subgroups of Map(S) as
follows (see Definition 0.6 for the notation pg).
Lemma 0.3 (Lemma 2.3). The homomorphisms (0.1) have the following properties:

. PMap%(S) - Map%(S) — Map(S) are injective with images Map,(S) C Mapf(S) C Map(S);
* Mapg(S) — PMapg(S) is a central extension whose kernel is free abelian of rank pg.

In particular, Questions (II) and (II1) are equivalent to:

(II) Does the inclusion Map,(S) C Map(S) induce a non-zero map on homology?
(IIT) Does the inclusion Map f(S) C Map(S) induce a non-zero map on homology?

Moreover, if ps = 0 then Questions (I) and (II) are equivalent.

Since the natural maps into Map(S) factor as in (0.1), we immediately observe:
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TABLE 1 Summary of the results of Theorems B-F answering Questions (I)-(III); see Notation 0.9 for
terminology.

bs = 4<pg <o | Ds €12,3} | ps=1 ps =0
3 Mixed end: XXX
gg = - XV XXX
A Mixed end: X??
0<gg<oo Y
Ends(S) is TD,,: VvV
gs =0 Ends(S) 2 [0, w¥]: XXX L4 144 XXX
Otherwise: ???

Remark 0.4. A positive answer to Question (I) implies a positive answer to Question (II), which
implies a positive answer to Question (IIT). However, a positive answer to Question (IT) does not
necessarily imply a positive answer to Question (I), as the surjective map Map(S) — PMapg(S)
does not necessarily induce surjective maps on homology in degrees greater than 1.

Remark 0.5. Theorem A says that (with field coefficients) the answer to Question (II) is negative
for the surface S = L. It follows by Remark 0.4 that the answer to Question (I) is also negative
for S = L. In fact, since L has no punctures (pg = 0), Questions (I) and (II) are equivalent by
Lemma 0.3.

Our answers to Questions (I)-(III) depend on the genus g and the number of punctures pg of
S.

Definition 0.6 (Punctures). Consider the space Ends(S) of ends of S, together with its closed
subspace Ends,, ,(S) of non-planar ends. A puncture of S is an isolated point of the space Ends(S) \
Ends,, ,(S); in other words, it is an end of S that is not accumulated by genus and is not a limit
points of other ends of S. Denote the set of punctures by P(S). Since the space Ends(S) \ Ends,, p(S)
is separable, this set is at most countable and we write pg € {0, 1,2, 3, ..., oo} for its cardinality.

Notation 0.7. For integers g,n,b > 0, we write X" b for the unique connected, finite-type, ori-
entable surface of genus g with b boundary components and n punctures. If n = 0 we elide it
from the notation, and similarly for b.

Definition 0.8 (Genus). Let S be any surface. Its genus gq is the maximum integer g > 0 for which
there is an embedding 91 & S, if there is such a maximum. Otherwise, we set g5 =

Theorem (Theorems B-F). Let S be any connected, second countable, orientable, infinite-type
surface with S = @. Answers to Questions (I)-(III) for S are given in Table 1.

Notation 0.9. In Table 1, a triple ABC with A, B, C € {/, X, ?} encodes the answers to Questions
(D, (I1), (IIT) in that order. The answer to Question (I) is positive if A = v/, negative if A = X and
unknown (to us) if A = ?, and similarly for Questions (IT) and (IIT) with A replaced by B and C,
respectively. One caveat is that (almost) all negative answers assume field coefficients for homol-
ogy, whereas all positive answers assume integral coefficients for homology; see Theorems B-F
for the precise statements. The other notation in Table 1 is explained in Definitions 0.6, 0.8, 0.10,
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0.16 and Notation 0.14. In the rest of this paper, we will sometimes write simply H,(—) to refer to
integral homology H,(—; Z).

In the remainder of the introduction, we explain the results summarised in Table 1 in
more detail.

Results in infinite genus

We begin with the infinite-genus (g¢ = o0) setting, for which we need one preliminary definition.
If both g5 and pg are infinite, then S must have at least one end that is accumulated by genus
(every neighbourhood of the end has infinite genus) and at least one end that is accumulated by
punctures (every neighbourhood of the end has infinitely many punctures).

Definition 0.10 (Mixed end). We say that S has a mixed end if it has an end that is accumulated
by both genus and punctures.

Having a mixed end implies, of course, that g¢ = pg = co0. The converse is not true, however:
if we remove from the Loch Ness monster surface a subset homeomorphic to N*, the one-point
compactification of N, then the resulting surface has g; = ps = oo but no mixed ends.

Generalising Theorem A for the Loch Ness monster surface, we have the following result.

Theorem B. Suppose that g = .
(1) The answer to Question (1) is negative for homology with any field coefficients.
For Questions (II) and (III):

(2) if ps = 0 then Map (S) C Map(S) induces the zero map on homology with field coefficients;

(3) if 0 < pg < oo then Map.(S) € Map(S) induces a non-zero map on integral homology;

(4) if pg = o0 and S has a mixed end, then Map f(S) C Map(S) induces the zero map on homology
with field coefficients.

In the context of Questions (II) and (III), our methods do not apply if g = ps = oo but S does
not have a mixed end, so in this case Questions (II) and (IIT) remain open.

Remark 0.11. In case (3) of Theorem B, we prove something stronger than simply the state-
ment that the induced map H,(Map.(S); Z) — H,(Map(S); Z) is non-zero: its image contains a
Z summand in every even degree; see Proposition 8.1.

Remark 0.12. In the cases where we prove, in Theorem B, that a group homomorphism induces the
zero map on homology with all field coefficients, it does not automatically follow that the same
statement is also true with integral coefficients. Indeed it is possible in general for homomor-
phisms G — H to induce trivial maps on homology with all field coefficients but not with integral
coefficients. An example is given by any non-trivial homomorphism Z — Q/Z: it is non-trivial on
H,(—; Z) by construction, but trivial on homology with field coefficients because Q/Z ® , K =0
for any field K; see also Remark 3.14 for why we require field coefficients in the proof.
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Results in finite positive genus

In the case when S has finite but positive genus, the answers to Questions (I)-(III) are easy to
state.

Theorem C. Suppose that 0 < gg¢ < co. Then the integral homology H,.(Map(S);Z) contains
non-zero classes that are supported on Map(Z) for compact = C S. In other words, with integral
coefficients, the answer to Question (I) is positive; hence the answers to Questions (II) and (III) are
also positive.

Results in genus zero

When S has genus zero, its homeomorphism type is completely determined by its space of ends
Ends(S), which may be any space that is homeomorphic to a closed subset of the Cantor set C
(see §1 for more details). In this case punctures of S are simply isolated points of Ends(S). If the
set P(S) of punctures is finite, then Ends(S) is homeomorphic to the topological disjoint union
C U P(S), where P(S) has the discrete topology (see §1.2). There are therefore two cases:

1. Ends(S) is homeomorphic to C LI {1, ..., p} for some non-negative integer p = pg < oo;
2. Ends(S) has (countably) infinitely many isolated points, that is, ps = 0.

Casel
In the first case (finitely many punctures) we have the following.

Theorem D. Suppose that g¢ = 0 and 0 < pg < oo. Then we have:

(1) if ps € {0,1} then Map (S) C Map(S) induces the zero map on homology with any coefficients;
N f

(2) if ps>2 then Map;(S) C Map(S) induces a non-zero map on homology with integral
coefficients;

3) i > 4 then a ; Z) contains non-zero classes supported on a compactZ C S.

(3) if ps > 4 then H,(Map(S); Z) ‘ ! pported pactx C S

In short, using the terminology of Notation 0.9 and the implications of Remark 0.4, the answers
to Questions (I)-(III) in the three cases of Theorem D are XXX, ??v and vV respectively. The
two settings not covered by Theorem D are Questions (I) and (II) when g¢ = 0 and pg € {2, 3}.

Case 2

In the second case (infinitely many punctures), our results are much more partial, and the answers
to Questions (I)—(III) appear to depend very subtly on the structure of Ends(S), which may be
very complicated (in particular, there are uncountably many different homeomorphism types that
Ends(S) may have in the case pg = o). To state our results, we need some preliminary definitions
and recollections.
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Definition 0.13. A subset A of a space X is topologically distinguished if one can detect whether
a point x € X lies in A by looking at an arbitrarily small neighbourhood of x in X. Formally, this
means thatifa € Aand x € X \ A and U,V are neighbourhoods of a, x in X, respectively, then
the based spaces (U, a) and (V, x) are not homeomorphic.

Notation 0.14. Write w for the first infinite ordinal (the ordinal of N) and denote by [0, ] the
closed ordinal interval below (3, that is, the ordinal 8 + 1 given the order topology; see §1.3 for
more details.

The space Ends(S) is compact and Hausdorff, so if it is in addition countable (and non-empty),
then it must be homeomorphic to the disjoint union of n copies of [0, w*] for a (unique) positive
integer n and countable ordinal a. This is a theorem of Mazurkiewicz and Sierpinski [28], recalled
as Theorem 1.8 in §1.3.

Notation 0.15. For a positive integer n and countable ordinal a, write O(n, o) for the topological
disjoint union of n copies of the space [0, »*].

The discussion above implies that, if Ends(S) is countable and non-empty, then it is
homeomorphic to O(n, @) for a unique pair (n, ).

Definition 0.16. For an integer n > 0, we say that a space X is TD,,,, if it has a finite, topologically
distinguished subset A C X of cardinality at least n.

Example 0.17. For example, the maximal element w* € [0, »*] is topologically distinguished (it
is the unique point of Cantor-Bendixson rank a + 1), so it follows that O(n, ) is TD,,, for any
m < n.

Our first result in the setting (g, ps) = (0, 00) is the following, in which the end-space Ends(S)
may be either countable or uncountable.

Theorem E. Supposethat g = 0 and that Ends(S) is TD., . Then H,(Map(S); Z) contains non-zero
classes supported on a compactZ C S.

If Ends(S) is uncountable (and g3 = 0) we do not have any further answers to Questions (I)-
(IIT1). However, if Ends(S) is countable — and is therefore homeomorphic to O(n, ) for some
n and a by the discussion above — we may go further. Let us therefore assume that g¢ =0
and Ends(S) = O(n, @) for a positive integer n and countable ordinal a. We first observe that,
if n > 4, Questions (I)-(III) are all answered positively by Theorem E, since O(n,«) is TD,,
by Example 0.17. It therefore remains to consider n € {1, 2, 3}. Our second result in the setting
(g5, ps) = (0, o) provides the (opposite) answer in the case n = 1.

Theorem F. Suppose that g5 = 0 and that Ends(S) = O(1, a) = [0, w*]. Then Map;(S) C Map(S)
induces the zero map on homology with any field coefficients.

The special case when o = 1 corresponds to the flute surface, which is the plane minus a count-
able discrete subset (for example, it may be modelled concretely as R? \ Z?). Theorem F therefore
includes the following special case, which we highlight as a corollary.
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Corollary G. For any field K, the homology H,(Map(R? \ Z2); K) does not contain any non-zero
classes that admit compact support, or even support of finite type.

By contrast, we note that the (integral) homology of Map(R? \ Z?) is very large: it is uncount-
able in every positive degree, by [30, Theorem B]. More generally, [30, Theorem B] implies the
same statement about the integral homology of Map(S) whenever g = 0 and Ends(S) = O(1, @)
for a countable successor ordinal a. (Whether « is a successor or a limit ordinal is an important
qualitative difference in the topology of S, and indeed the proof of Theorem F is different in these
two cases.)

The remaining cases (in the setting (gg, ps) = (0, o0) and for countable Ends(S)) are n € {2, 3}.
For these two cases, we believe that the case n = 2 will behave as in Theorem F whereas the case
n = 3 will behave as in Theorem E.

Outline

After recollections about infinite-type surfaces and their end-spaces in §1, the organisation of the
proofs of Theorems B-F is explained in §2. We prove our vanishing results in §3-§6, with the core
argument in most cases being Proposition 3.6 in §3, and we prove our non-vanishing results in §7
and §8.

1 | INFINITE-TYPE SURFACES AND THEIR END-SPACES
1.1 | Surfaces

Throughout this paper, all surfaces are assumed to be second countable, connected, orientable
and to have compact boundary. A surface S has finite type if its fundamental group is finitely
generated; otherwise it has infinite type. The classification of surfaces is due to von Kerékjarto
[37] and Richards [33], and crucially involves the end-space Ends(S) of a surface S, which is by
definition the boundary of the Freudenthal compactification S of S (see, for example, [30, §2.1] for
more details) and is always homeomorphic to a closed subset of the Cantor set C. An end of S is
planar if it has a neighbourhood in S that embeds into the plane; otherwise it is non-planar. The
(closed) subspace of non-planar ends is denoted by Ends,, ,(S) C Ends(S).

Theorem 1.1 [33, Theorems 1 and 2]. Let S;, S, be two surfaces of genera g,, g, € N U {oo} with
b,, b, € Nboundary components, respectively. They are homeomorphic ifand only if g, = g,,b; = b,
and there is a homeomorphism of pairs of spaces

(Ends(S;), Ends,, ,(S1)) = (Ends(S,), Ends,,(S,)).
Conversely, given any tuple (g,b,Y,X), where g e NU {0}, b ENand X CY C C is a nested pair

of closed subsets of the Cantor set C, subject to the condition that g = oo if and only if X # @, there
exists a surface S of genus g with b boundary components such that (Ends(S), Ends,, D (S)) = (Y, X).
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1.2 | End-spaces

By Theorem 1.1, the possible end-spaces of surfaces are precisely the closed subsets of the Cantor
set C; this motivates the following terminology.

Definition 1.2. A space X is an end-space if it is homeomorphic to a closed subset of the Cantor
set C.

An important result about the structure of end-spaces is the Cantor-Bendixson theorem, which
we recall next.

Definition 1.3. Let X be any space. The Cantor-Bendixson filtration of X is the transfinite
descending filtration X of X defined by X, = X, X, is obtained from X by discarding all
isolated points (in other words X, is the derived set of X, ) and X; = [, X, for limit ordi-
nals A. For cardinality reasons, there is always some « such that X, = X, in other words X,
has no isolated points. The Cantor-Bendixson rank |X|cp of a space X is the smallest « such
that X, = X_; this subspace is called the perfect kernel x(X) of X. For a point x € X \ x(X),
its Cantor-Bendixson rank CBy(x) is the smallest « for which x ¢ X . Thus we have |X |-z =
sup{CBx(x) | x € X \ x(X)}.

Theorem 1.4 (Cantor-Bendixson). If X is a Polish space, that is, it is separable and completely
metrisable, then its Cantor-Bendixson rank |X |y is countable.

This applies in particular to all end-spaces, since they are Polish spaces. An immediate corollary
is the following important structural result about uncountable end-spaces.

Corollary 1.5. Every uncountable end-space X C C has a subspace homeomorphic to C whose
complement in X is countable.

Proof. At each step of the Cantor-Bendixson filtration of X only countably many points are
removed, so Theorem 1.4 implies that X \ x(X) is countable. Thus x(X) is non-empty, since X is
uncountable. So x¥(X) is a non-empty perfect subspace of C, which implies that it is homeomorphic
toC. O

In particular, if X is uncountable and has only finitely many isolated points, it is homeomorphic
to C U {1, ..., p} for some non-negative integer p.

1.3 | Countable end-spaces and ordinal intervals

Despite the structural result of Corollary 1.5, the structure of uncountable end-spaces may still be
very complicated. In contrast, countable end-spaces are completely classified. It follows directly
from the definitions that countable end-spaces are the same as countable compact Hausdorff spaces,
and the latter are classified in terms of certain ordinal spaces. We refer to [35] or [22] for the basic
notions of ordinals and ordinal arithmetic.
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Definition 1.6. For an ordinal a, the closed ordinal interval [0,«] is the ordinal a +1 =
{0,1,2, ..., a} equipped with the order topology. For an ordinal « and positive integer n, we write
O(n, a) for the ordinal interval [0, w*.n], equivalently the disjoint union of n copies of the ordinal
interval [0, w®].

Remark 1.7. The spaces O(n, ) are pairwise non-homeomorphic: they may be distinguished by
the property that O(n, @) has exactly n points of Cantor-Bendixson rank « + 1 and no points of
higher Cantor-Bendixson rank (so its Cantor-Bendixson rank as a space is also equal to a + 1).

Closed ordinal intervals are compact and Hausdorff. Conversely, we have:

Theorem 1.8 [28]. Every countable compact Hausdorff space is homeomorphic to O(n, &) for some
(necessarily unique) positive integer n and countable ordinal a.

Example 1.9. Any ordinal « has a unique Cantor normal form o = wP1.n; + - + wPk.n, for
positive integers ny, ..., n; and ordinals §; > --- > ;. In this case we have [0, a] = O(n,, 3,).

This classification, together with the Cantor-Bendixson filtration, may be used to calculate the
results of various operations on closed ordinal intervals. We record here several of these that will
be used later.

Lemma 1.10. We have the following identifications, where all ordinals are assumed to be countable.

* Letay,...,a, be a finite sequence of ordinals with unique maximum o,. Then the disjoint union
[0, ™ ] L -+ L [0, w%] is homeomorphic to [0, w™ ].

* The one-point compactification of the disjoint union of countably infinitely many copies of [0, w®]
is homeomorphic to [0, w**1].

* Let A be a limit ordinal and let (ag)g5 be a 5-indexed sequence of smaller ordinals, for another
ordinal 8, whose supremum is A. Then the one-point compactification of the disjoint union over
all B < & of [0, w™ ] is homeomorphic to [0, w?].

Remark 1.11. Recall that the cofinality of an ordinal « is the smallest ordinal § that admits a strictly
increasing map § — a whose image is cofinal. If 4 is a countable limit ordinal, its cofinality is
w = N, so in this case there always exists an ordinary (N-indexed) sequence as in the third point of
Lemma 1.10. We note however that the third point of Lemma 1.10 does not require the sequence
to be strictly increasing.

Proof of Lemma 1.10. In each case, the space under consideration is evidently compact, Hausdorff
and countable; we will study its Cantor-Bendixson filtration and then apply Theorem 1.8. In the
first case, since a; is the unique maximum of «;, ..., «,,, the a;th term of the Cantor-Bendixson
filtration is the single point w® € [0, w*1]. Thus the result follows from Theorem 1.8 and the
characterisation of the spaces O(n, a) in Remark 1.7.

In the second case, the ath term of the Cantor-Bendixson filtration is the disjoint union of
countably infinitely many copies of {w*} together with the point at infinity. The point at infinity
is therefore the unique point of (maximal) Cantor-Bendixson rank o + 2.

In the third case, each component [0, w®? ] of the disjoint union vanishes before the Ath term
of the Cantor-Bendixson filtration, since 4 > ag. It will therefore suffice to prove that the point
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at infinity of the one-point compactification does lie in the Ath term of the Cantor-Bendixson
filtration, since it will then follow that it is the unique point of (maximal) Cantor-Bendixson rank
A + 1. Suppose for a contradiction that the point at infinity of the one-point compactification does
not lie in the Ath term of the Cantor-Bendixson filtration; it must therefore vanish when passing
from the yth term to the (y + 1)st term of the Cantor-Bendixson filtration, for some y < 1. This
means that it is an isolated point in the yth term of the Cantor-Bendixson filtration. By definition
of the one-point compactification, this can only occur if the space that it is compactifying is already
compact, which means that all but finitely many of the components [0, w“#] of the disjoint union
must have vanished already by the y-th term of the Cantor-Bendixson filtration. However, the
component [0, w*] vanishes precisely at the (atg + 1)st term, so this means that all but finitely
many of the oz are smaller than y. But this contradicts the assumption that 1 is the supremum of
the ag. O

2 | PRELIMINARIES ON FINITE-TYPE AND COMPACT SUPPORT;
ORGANISATION OF THE PROOFS

For definiteness, let us first recall the definition of the mapping class group of a surface, as well
as a basic construction that says essentially that it is functorial with respect to proper inclusions
of surfaces.

Definition 2.1. For a surface S, its mapping class group is Map(S) = my(Homeo,(S)), the group
of isotopy classes of homeomorphisms of S that restrict to the identity on 0S.

Lemma 2.2. IfX C S is a properly embedded subsurface, there is a well-defined homomorphism
t: Map(X) — Map(S) 2.1)
given by extending homeomorphisms of by the identity on Map(S).

Proof. To see that this is well-defined one just has to check that any homeomorphism represent-
ing an element of Map(ZX) is the identity on its topological boundary as a subset of S, which is
2N (S \ X). The assumption that X C S is a subsurface that is properly embedded - equivalently:
closed as a subset of S —implies that = N (S \ X) is contained in 0%, the boundary of X as an abstract
surface. But by Definition 2.1, homeomorphisms representing elements of Map(X) restrict to the
identity on 0%, hence in particular on 2N (S \ ). O

Our first goal in this section is to prove Lemma 0.3, which we recall here.

Lemma 2.3 (Lemma 0.3). The homomorphisms (0.1) have the following properties:

. PMap%(S) - Map%(S) — Map(S) are injective with images Map,.(S) C Mapf(S) C Map(S);
* Mapg(S) — PMapg(S) is a central extension whose kernel is free abelian of rank pg.

(The remaining statements of Lemma 0.3 follow immediately from these ones.) We will deduce
this lemma from the following fact, which is well known in the finite-type setting and generalises
with no change to the infinite-type setting.
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Proposition 2.4. Let S be an infinite-type surface with S = @ and £ C S a properly embedded
finite-type subsurface. Assume that X is not an annulus and that S is obtained from Z by attaching
S1, ..., Sy, along the boundary components Cy, ..., C}, of X, where each 05S; is a circle and none of the
S; is a disc. Then the kernel of (2.1) is the central subgroup of Map(Z) freely generated by those Dehn
twists T, forwhich S; is a once-punctured disc.

Proof. If S were instead a finite-type surface then this would be a special case of [14, Theorem 3.18],
which is proven using the Alexander method. (Note that we assume stronger hypotheses than [14,
Theorem 3.18], in that we require each component S; of the closure of the complement S \ Z to
have a single boundary component.) In our setting, exactly the same proof goes through, using
the fact that the Alexander method is valid also for infinite-type surfaces, as proven in [19]. [

Proof of Lemma 2.3. The statement that PMapg(S) — Mapg(S) is injective is obvious, since
PMap(Z) C Map(Z) is injective and we are taking a colimit over the same poset &(S) on each side.

To prove that Mapg(S) — Map(S) is injective it will suffice, by general properties of colimits, to
show that there is a cofinal family of € F(S) such that Map(X) — Map(S) is injective. Let X C S
be any properly embedded finite-type subsurface with b boundary components Cy, ..., C;,. We may
enlarge it if necessary to ensure that each C; is a separating curve of S. Denote the connected
components of (the closure of) S \ = by Sy, ..., S,. We now enlarge X further by taking its union
with those S; that are of finite type (if any). Finally, we may enlarge X if necessary to ensure that it
is not an annulus, by increasing its genus (if S has positive genus) or increasing b (if S has genus
zero, in which case it must have infinitely many ends). We are now in the setting of Proposition 2.4,
which implies that Map(Z) — Map(S) is injective since none of the S; is a once-punctured disc
(indeed, we have ensured that none of the S; is of finite type). By construction, the = € F(S) for
which we have proven this form a cofinal family in g(S), so the result follows.

It is clear by construction that we have image(Mapg(S) — Map(S)) = Map f(S) and that

image(PMapg(S) — Map(S)) 2 Map,.(S) (2.2)

since compact surfaces are of finite type. What is slightly less clear is the converse of the inclusion
(2.2). To see this, suppose that ¢ € Homeo(S) represents an element in the image of PMapg(S) —
Map(S), so we may assume that it has support contained in some finite-type subsurface £ C S and
the punctures of T are fixed pointwise by ¢. Denote by ¥’ C T a compact subsurface obtained by
removing a small open annular neighbourhood of each puncture of Z. Since ¢ fixes the punctures
of = pointwise, we may modify it by an isotopy to have support contained in ¥’, and hence [¢] €
Map,(S). This completes the proof of the first point of the lemma.

By general properties of colimits, in order to prove that Map(S) — PMapg(S) is surjective it
suffices to prove that, for any = € F(S), there exists £’ € €(S) with &’ C X such that Map(Z') —
PMap(X) is surjective. The argument in the previous paragraph proves exactly this.

To complete the proof of the second point of the lemma, it now just remains to identify the
kernel of Mapg(S) — PMap%(S). Since we already know that PMap%(S) — Map(S) is injective,
this is the same as the kernel of Mapg(S) — Map(S). To identify this, we use Proposition 2.4
again. Let £ C S be any compact subsurface with b boundary components Cy, ..., C,. As before,
we may enlarge it if necessary to ensure that each C; is a separating curve of S and denote the
connected components of (the closure of) S\ X by S;,...,S,. We may enlarge X by taking its
union with those S; that are compact (if any), and ensure that X is not an annulus (as before).
After doing this, none of the S; are discs (since we have arranged that none of them are compact)
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so we are in the setting of Proposition 2.4, which tells us that the kernel of Map(XZ) - Map(S) is
the central subgroup freely generated by those Dehn twists T, for which S; is a once-punctured
disc. Taking colimits, it follows that the kernel of Maps(S) — Map(S) is the central subgroup
freely generated by all colimits of Dehn twists of this form that arise as we allow the compact
subsurface = C S to vary. There is exactly one such colimit of Dehn twists in Mapg(S) for each
puncture p of S, represented by the family of Dehn twists around C, for € > 0, where C, is the
boundary component surrounding p of a compact subsurface X C S that is locally given by
removing an open annulus of radius € from around p. Thus the kernel is a central subgroup with
a basis in one-to-one correspondence with the punctures of S. [

Remark 2.5. The group Mapg(S) may be a little counterintuitive since it is not a subgroup of a
mapping class group in general. As an illustration, we note that it makes sense to consider it also
when S is finite type, for example, the once-punctured disc S = {x € R? | 0 < |x| < 1}. The fam-
ily of annuli A, = {x € R? | ¢ < |x| < 1} for € € (0,1) is cofinal in €(S), each Map(A,) is infinite
cyclic and the homomorphisms Map(A,) - Map(A.) for € > €’ are isomorphisms, so it follows
that the colimit Mapg(S) is also infinite cyclic, although Map(S) is trivial. In this case a generator
of Mapg(S) is represented (for example) by the formal colimit of the Dehn twists around the inner
boundary components of the annuli A_, just like at the end of the proof above. More generally, one
may see by the same reasoning that Map(S), for any finite-type surface S, is naturally isomorphic
to the mapping class group of the compact surface obtained from S by blowing up each puncture
to a boundary component.

Remark 2.6. As a complement to Lemma 2.3 we discuss briefly the difference between Map,(S)
and Map f(S). If ¢ is a self-homeomorphism of S, its induced action on Ends(S) sends the sub-
set P(S) of punctures (cf. Definition 0.6 for this notation) onto itself. If ¢ has support contained
in a finite-type subsurface, the induced permutation of P(S) lies in the subgroup Bij f(P(S)) -
Bij(P(S)) of bijections with finite support. If the induced permutation is trivial, we may shrink
the support of ¢ outside of an open neighbourhood of the punctures of S, which is then compact,
so in this case [¢] lies in Map.(S). Putting this together, we have a short exact sequence

1 - Map,(S) — Mapf(S) — Bijf(P(S)) - 1. (2.3)
Alternatively, this may be deduced as a corollary of Lemma 2.3. For each properly embedded finite-
type £ C S we have a short exact sequence 1 - PMap(Z) - Map(Z) — Bij(P(Z)) — 1; taking the
colimit over £ € §(S) and applying the first part of Lemma 2.3, we obtain (2.3).

We have the following observation, part of which was already stated in Lemma 0.3.

Corollary 2.7. We have the following coincidences of questions.
* If ps € {0, 1} then Map,(S) = Mapf(S) and so Questions (II) and (III) coincide.
* If pg = 0 then Mapg(S) = PMap%(S) and so Questions (I)-(III) all coincide.

Proof. The first statement follows from the short exact sequence (2.3) and the second statement
follows from the second point of Lemma 2.3 (and the first statement). O
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Organisation of the proofs

We finish this section by briefly describing the overall organisation of the proofs of Theorems A-F,
which occupy §3-§8. All of the vanishing results are proven in §3-§6 and all of the non-vanishing
results are proven in §7-§8, organised as follows:

§3— Theorem A;

§4— Theorem B, except for part B(3);

§5— Theorem F, and hence in particular Corollary G;
§6— Theorem D(1);

§7— most of our non-vanishing results, namely:

§7.1— Theorem C;
§7.2— Theorem D(2);
§7.3— Theorem D(3) and, more generally, Theorem E;

§8— our last non-vanishing result, Theorem B(3), whose proof has a different flavour from

§7.

3 | GRID SURFACES AND SHIFTABLE SUBSURFACES

Most of our vanishing results, including Theorem A, use the idea of grid surfaces. In this section,
we introduce this notion, prove the key Proposition 3.6 and use it to prove Theorem A.

Remark 3.1. The proof of Proposition 3.6 uses an infinite iteration argument that goes back to [27],
who applied it to the group Homeo,(R%) of compactly supported homeomorphisms of Euclidean
space. The argument was axiomatised by [3] into the concept of mitotic groups, which are always
acyclic. These are related to the concept of the suspension of a group, and the argument is therefore
sometimes called a suspension argument. The argument was further generalised in [6] to binate
groups (which include all mitotic groups), which were also discovered independently (under the
name pseudo-mitotic groups) by [36]. A particular class of binate groups is the class of dissipated
groups [7]; see [15, §3] for further information.

In each of those cases, the argument aims to prove the vanishing of the homology of a group,
whereas, in our case, we aim to prove that a group homomorphism induces the zero map on
homology. This is a little more subtle and requires a kind of ‘two-dimensional’ infinite iteration,
which we formalise in the notion of grid surfaces (Definition 3.2). Another effect of this sub-
tlety is that we can only prove our vanishing results on homology with coefficients in a field;
see Remark 3.14 for why this is the case. We note that one could also use [36, Proposition 1.4] to
prove Proposition 3.6; see Remark 3.7.

Definition 3.2. Let X be a surface with one boundary component. The associated grid surface
Gr(X) is constructed as follows:

* Glue an annulus to 0% and denote the resulting surface by 2. Identify 9% with 8[0,1]% C R2.
* Define Gr(Z) to be the quotient of Z X N x X that glues the boundaries Z x N x 3% together in
a half-plane grid; see Figure 1.
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FIGURE 1 The grid surface Gr(Z) together with subsurfaces Gr,(Z) for various subsets A C N. Each circle
contains a copy of Z; the region between each circle and the boundary of the corresponding square is the annulus
in the first point in Definition 3.2.

+ Similarly, define Gr,(Z) to be the quotient of Z x Z x £ that glues the boundaries Z X Z x 8%
together in a full-plane grid.

Notation 3.3. In the above setting, for a subset A C N, we write Gr,(X) for the subsurface of
Gr(Z) given by the image of Z x A x . For example, see Figure 1 for illustrations of Grpy o) (2) =t
Gr,,(2), Gry,(Z) = Gr,(2) and Gryg (2.

We also write Z; ; for the (i, j)th copy of X in Gr(Z). Unless otherwise specified, we will always
identify X with £, , C Gr(2).

Remark 3.4. The meaning of the notation X, ; explained in Notation 3.3 is used only in the present
section, and so it should not cause confusion with the more standard meaning of = g.b 1O denote
the connected, compact, orientable surface of genus ¢ with b boundary components, which is its
meaning in the other sections of this paper.
Remark 3.5. The mapping class group of the surface (with non-compact boundary) Gr(X) is
defined in the usual way, as the group of isotopy classes of homeomorphisms that preserve the
boundary pointwise.

The key technical result of this section is the following.
Proposition 3.6. For any surface X with one boundary component, the map

Map(XZ) — Map(Gr(2)), (3.1)

given by extending homeomorphisms by the identity, induces the zero map on homology with field
coefficients in all positive degrees. Hence the same is true also for Map(X) — Map(Gr,(X)).
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FIGURE 2 The infinite strip surface Str(Z) (Definition 3.8).

Remark 3.7. We give a direct proof of this proposition below. One could also prove it using
the notion of pseudo-mitosis [36, Definition 1.2], as follows. One first notes that the embedding
Map(Z) & Map(Gr,(Z)) has a pseudo-mitosis. Hence, by [36, Proposition 1.4], it induces the zero
map on homology in degree 1 for any field coefficients. To promote this to any degree we use the
self-similarity of the grid surface. Let Str(X) be the strip surface in Figure 2, embedded as a vertical
strip in Gr(Z). Let us take H = Map(Str(Z)) and G = Map(Gr(X)) in [36, Proposition 1.4]; the ‘hor-
izontal translation’ (modified in a neighbourhood of the boundary line so as to fix it pointwise) is
then part of a pseudo-mitosis for H C G. Taking A C H to be Map(Z) & Map(Str(X)), we then note
that this embedding induces the zero map on homology in degree 1 for any field coefficients by
what we showed above, since we may factor it through the embedding Map(Z) <& Map(Gr,(X))
using the inclusion Gry(X) C Gr(Z) and a homeomorphism Str(X) = Gr(X) that is the identity
on the preferred embedded copy of X (see, for example, Lemma 3.9). Hence [36, Proposition
1.4] implies that the composition A C H C G, which is the embedding Map(XZ) & Map(Gr(X)),
induces the zero map on homology in degrees 1 and 2 with any field coefficients. Iterating this
trick, we conclude inductively that Map(Z) & Map(Gr(Z)) induces the zero map on homology in
all positive degrees with any field coefficients.

In order to apply Proposition 3.6 in examples, it will be useful to have a simpler description of
Gr(2).

Definition 3.8. Let X be a surface with one boundary component. The infinite strip surface Str(Z)
is constructed, similarly to Definition 3.2, to be the quotient of N X £ that glues the boundaries
N X 0% together in a one-dimensional ray; see Figure 2.

Clearly Str(XZ) embeds properly into Gr(X) (compare Figures 1 and 2). But in fact we have:

Lemma 3.9. The surfaces Str(X) and Gr(X) are homeomorphic. Moreover, this homeomorphism
may be chosen to act by the identity on the preferred embedded copy of X, namely the left-most copy
for Str(X) and the copy at coordinates (0,0) for Gr(Z).

Proof. Let S C Str(Z) be the complement of a closed collar neighbourhood (this is, of course,
homeomorphic to Str(X)). It will suffice to describe a proper embedding of S into Gr(X) such that
the complement of its image is a closed collar neighbourhood of Gr(Z). Such a proper embedding
may be constructed easily as soon as one chooses a bijection v : N — Z X N such that v(n) and
v(n + 1) are neighbours (at #!-distance 1 from each other) for every n. To ensure that the second
statement of the lemma holds, we must also arrange that v(0) = (0, 0). For example, one may take
the ‘snake bijection’ that progressively fills each £*°-ball around (0,0). Alternatively, the fact that
Str(Z) and Gr(2) are homeomorphic may be deduced from the classification of surfaces with non-
compact boundary [10] (although quoting this much more general classification result is overkill
here). O
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Definition 3.10. A properly embedded subsurface X C S is called shiftable if the inclusion = C S
extends to a proper embedding Str(Z) & S.

Remark 3.11. Elsewhere, a subsurface ~ C S is sometimes called ‘shiftable’ if there is a homeo-
morphism of S such that all of the iterated images of X under this homeomorphism are pairwise
disjoint. In fact, these two definitions are equivalent, although we will not need this equivalence
here. In one direction, suppose that X C S is shiftable in the sense of Definition 3.10. By Lemma 3.9,
we therefore have a proper embedding Gr,(X) C Gr(X) = Str(X) < S. The evident shift homeo-
morphism of Gr,(Z) may then be extended by the identity to obtain a shift homeomorphism of S
for Z. In the other direction:

Lemma 3.12. Suppose that X C S is a properly embedded subsurface with non-empty, connected
boundary that admits a shift homeomorphism, that is, a homeomorphism f: S — S such that
ffE)NZ =@ foralln > 1. Then X C S is shiftable in the sense of Definition 3.10.

Proof. Let us denote by T C S the surface obtained from S by removing the interior of each f"(X)
for n > 0 and write B,, = f"(0X), so that the boundary of T is the disjoint union of the B,, forn > 0
Also write U for the surface (without boundary) obtained from T by collapsing each B,, to a point
b, eU.

In order to show that £ C S extends to a proper embedding Str(X) < S, it will suffice to find
a locally finite, pairwise disjoint collection of arcs a; in T, for i > 0, such that a; connects B,
B, for some increasing sequence n;. This is because, given such a collection of arcs, the union
of the f™(Z) and tubular neighbourhoods of the arcs o; for i > 0 will give the desired proper
embedding Str(Z) < S. Passing to the surface U and the sequence of points (b,),, in U, it is
therefore sufficient to find a locally finite collection of arcs «; in U, connecting b, to b,  for
some subsequence (b, ) 0f (b,),.5, that are pairwise disjoint except at their endpoints.

To do this, choose any subsequence that converges in the Freudenthal compactification U of
Utoanende € U\ U = Ends(U). Write U as an increasing union of compact, connected sub-
surfaces C;, C U for k > 0 and let U, C U be the connected component of U \ Cj, such that e is
a limit point of U, in U. We may choose the C}, such that each U, has a single boundary com-
ponent A,, which implies that each stratum U, \ int(U,.,,) is connected and has two boundary
components A, and A, ;.Since b, — ein U,we may pass to appropriate subsequences of C; and
b, toarrange thatb, € U; \ Uiy, for each i > 0. Choose a point x; on each circle A; and choose
arcs Biandy;inU; \ 1nt(Ul+1) such that 8;(0) = x;, 8;(1) = y;(0) = b, , 7;(1) = x;;, and §;, y; are
disjoint except at the point b, . The desired collection of arcs a; is then obtained by gluing y; to
Bi4q foreachi > 0. O

Corollary 3.13. Let X C S be a properly embedded subsurface and suppose that it is shiftable. Then
the natural map Map(Z) — Map(S) induces the zero map on homology with field coefficients in all
positive degrees.

Proof. Since X is shiftable, the map Map(X) - Map(S) factors as Map(X) —» Map(Str(X)) —
Map(S). Hence the result follows from Proposition 3.6 and Lemma 3.9. O

Proof of Proposition 3.6. The second statement of the proposition follows from the first statement,
since Map(Z) — Map(Gr,(X)) factors through (3.1).
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To prove the first statement, we first define various homomorphisms that we will need. For
me Zandn € N, let

Y - Map(E) — Map(Gr, (%)) (3.2)

be the homomorphism that sends [¢] € Map(Z) to the mapping class represented by the homeo-
morphism of Gr,(Z) that acts by ¢ on Z,; , for each i > m and by the identity elsewhere. We also
write

P - Map(Z) — Map(Gr,, (X)) (33)

for the composition of I/-)m,n with the natural homomorphism Map(Gr,(Z)) - Map(Gr,(Z))
given by extension by the identity. We write

L, - Map(2) — Map(Gr,,(2)) (3.4)

for the homomorphism sending [¢] to the mapping class represented by the homeomorphism of
Gr,,(2) that acts by ¢ on % ,, and by the identity elsewhere. Note that ¢, is precisely the map (3.1)
in Proposition 3.6. Finally, we define

7, and v, : Map(Z) X Map(Z) — Map(Gr,,,(Z)) (3.5)

tosend ([¢; ], [¢,]) to the mapping class represented by the homeomorphism of Gr,,,(Z) that acts:

* byp,onZ;, foralli>1;
* (forn,:) by p; on X, ,;;

* (forv,:) by @, on Xy, ,q;
* by the identity elsewhere.

The proof will use the following commutative diagram:

P1,n

Map(Gr;, (%))

Icsh

Map(Z) —————— Map(Z) X Map(Z) Map(Grs,(2))  (3.6)

- n
tht1 X P J{ \ Icml

Map(Grsp41(2)) X Map(Gry(2)) ——————— Map(Gr;,(2))

n

Here, A denotes the diagonal map and ‘glue’ is the map that takes two homeomorphisms defined
on Gr,,, (%) and on Gr,(Z) and glues them to a homeomorphism on Gr,,(Z) = Gr,,,;(Z) U
Gr,,(Z). The right-hand vertical maps cy, and c,,; are conjugation by the (vertically bounded)
homeomorphisms sh and rot: Gr,,(Z) — Gr,,(Z) defined, respectively, by shifting one step to
the right on the nth row and by rotating by 90° in the subsurface containing %, ; for i € {—1,0} and
j € {n,n + 1}. (These maps in diagram (3.6) are depicted with double arrows; the direction of the
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arrow depends on which side one conjugates on and (in the case of c,;) the sense of rotation of
the subsurface.)

The statement that we will prove — by induction on j — is the following. Let us fix a field K.
Then for every n € Nand j > 1, the induced map

(4), : H;(Map(2); K) — H;(Map(Gr.,,()); K) (3.7)

is the zero map. In particular, this will complete the proof of the proposition, which corresponds
to the special case of n = 0. The base case j = 0 is vacuous, so we let j > 1, fix any n € N and
assume as inductive hypothesis that (3.7) is the zero map for smaller values of j and for all values
of n.

Let us apply the Kiinneth theorem to the product of maps,,; X zﬁl’n in diagram (3.6). It implies
that we have a commutative square:

Jj Btnr1)s ® @rn)s J
@D H(Map(2)) ® H,_(Map()) P H(Map(Grs,.11(2)) ® H;_(Map(Gr,(Z)))
k= k=l
’ ZIIJ ’ JIIZ
H;(Map(2) x Map(=)) oo X010 H,(Map(Grs 41 (5)) X Map(Gr,(£)

in which the vertical maps are isomorphisms and the coefficients of homology are K in each
case. Let a € H;(Map(Z); K) be any element. Naturality of the Kiinneth decomposition, applied
to the two projections Map(Z) X Map(Z) » Map(Z), implies that the image of A (x) in the
top-left corner of this square has Oth component equal to 1 ® o and jth component equal to
a ® 1. The inductive hypothesis implies that the top horizontal map is the zero map on the
kth component for all 0 < k < j. It follows that the image of A,(«) in the top-right corner of
the square is 1 ® (zﬁl,n)*(oc) + (t41)+ (o) ® 1. Composing this with the right-hand vertical iso-
morphism and the map on homology induced by the ‘glue’ map of (3.6), we obtain the element
(®1,0): (@) + (4y41)(a) € H;(Map(Gr, ,(2)); K). It therefore follows that the map on H;(—;K)
induced by the map across diagram (3.6) is equal to (¥, ,,),. + (4,,11)..- Butitis also equal to (; ).,
so we must have (), = 0. Since ¢, and ¢, are conjugate as maps Map(Z) — Map(Gr,, (%)), it
follows that also (t,,),. = 0, as claimed. O

Remark 3.14. The obstruction to upgrading our vanishing results from field coefficients to
arbitrary (in particular, integral) coefficients is due to the failure of naturality of the Kiinneth
decomposition (that is, the failure of the Kiinneth short exact sequence to admit a natural split-
ting), which prevents the last paragraph of the above proof from going through unless one knows
that the Tor terms vanish.

In §4 we will apply Corollary 3.13 to prove the vanishing results of Theorem B. We finish this
section by proving, directly from Proposition 3.6, the special case of Theorem B corresponding to
Theorem A.

Proof of Theorem A. Let X be a compact subsurface of L, the Loch Ness monster surface. Our goal
is to prove that the homomorphism Map(Z) — Map(L) induces the zero map on homology with
field coefficients in all positive degrees (that is, a negative answer to Question (I) for L, which is
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equivalent to Question (IT) for L by Lemma 0.3 since L has no punctures). By including X into
a larger compact subsurface if necessary, we may assume that it has exactly one boundary com-
ponent and positive genus. The pair (L, X) is homeomorphic to the pair (Gr,(Z), Z), so the result
follows from Proposition 3.6. [l

4 | TRANSFERRING HOMOLOGY CLASSES TO SHIFTABLE
SUBSURFACES

In this section we generalise Theorem A by proving the vanishing results of Theorem B (namely
all of Theorem B except for part B(3), which we prove later in §8). This depends fundamentally on
Corollary 3.13 from the previous section, together with a technique (Proposition 4.1) to transfer the
support of homology classes to shiftable subsurfaces using Harer’s homological stability results
for mapping class groups of finite-type surfaces.

Proposition 4.1. Suppose that g¢ = oo and let X C S be a properly embedded finite-type subsurface
of S. If ¥ is not compact, then we additionally assume either that pg = 0 or that S has a mixed end.
For each integer i > 1, there exists another properly embedded subsurface ' C S such that

(1) =nZ¥ isaninterval in 8% and in 9%/';
(2) ¥/ is shiftable in S;
(3) the extension map Map(X') — Map(Z U T') is surjective on homology up to degree i.

This proposition, along with Corollary 3.13, quickly implies the vanishing results of Theorem B.

Proof of the vanishing results of Theorem B assuming Proposition 4.1. Let S and its subsurface
¥ C S be as in Proposition 4.1; we need to prove that the homomorphism Map(Z) - Map(S)
induces the zero map on homology with field coefficients in all positive degrees. Let K be a
field and fix a homological degree i > 1. Let the subsurface ' C S be as in the conclusion
of Proposition 4.1. Since X' is shiftable, we know from Corollary 3.13 that the induced map
H;(Map(Z'); K) — H;(Map(S); K) is zero. Since the intersection of £ and ¥’ is an interval in each
of their boundaries, their union in S is their boundary connected sum, and we may consider the
extension map Map(Z') - Map(Z U £’), which by part (3) of Proposition 4.1 induces a surjec-
tion H;(Map(Z'); K) » H;(Map(Z U £'); K). From the commutative diagram of homomorphisms
induced by extension maps

H;(Map(Z); K)

H;,(Map(ZuU Z');K) H;(Map(S); K)

H;(Map(Z'); K)
it then follows that H;(Map(Z); K) — H;(Map(S); K) is also the zero map. O

The proof of Proposition 4.1 has two ingredients: Lemma 4.2 and Theorem 4.3.
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Lemma 4.2. Let S and its subsurface  C S be as in Proposition 4.1. If ¥ has exactly one boundary
component, then it is shiftable.

Proof. For any infinite-type surface S, it follows from the construction in [33, §5] that, if e is a non-
planarend of S and g is any non-negative integer then there exists a proper embedding Str(Z, ;) <
S of the infinite strip surface such that all unbounded sequences in Str(Z, ;) converge to e in the

Freudenthal compactification S of S (cf. §1.1). Similarly, if e is a mixed end of S (Definition 0.10)
and g, n are non-negative integers then there exists a proper embedding Str(Z’; 1) © S such that

all unbounded sequences in Str(Z" ) converge to e in S.

Putting ourselves now in the settlng of Lemma 4.2, suppose first that ¥ is compact, so it is
homeomorphic to = ; for some g > 0. Since gg = oo there is at least one non-planar end e of
S, so we may choose a proper embedding Str(Z, ;) C S as in the previous paragraph. Since the
property of being shiftable is preserved under self-homeomorphisms of S, we may assume by
applying an appropriate self-homeomorphism of S that the subsurface £ C S is the subsurface of
Str(Z, ;) C S corresponding to the left-most copy of £ ; in the infinite strip (cf. Figure 2). Thus
% C S is shiftable.

Now suppose that ¥ is non-compact, so it is homeomorphic to Z” for some g >0 and n >
1. This implies that pg > 0, which by assumption means that S has a mixed end e, and so we
may choose a proper embedding Str(ZZ ) C S as in the first paragraph of the proof. As above, we
may assume by applying a self-homeomorphism of S that the subsurface £ C S is the subsurface
of Str(ZZ ) C S corresponding to the left-most copy of 2‘.” in the infinite strip. Thus £ C S is
shiftable. O

The second ingredient is a collection of homological stability results for mapping class groups
of connected, finite-type, orientable surfaces. We recall just the statements about surjectivity, since
these are all that we will need.

Theorem 4.3. The genus-increasing, boundary-component-increasing, puncture-increasing and
capping maps, which are each defined by extending homeomorphisms by the identity, induce
surjections on homology in the following ranges of degrees.

(1) The map Hi(Z'gl,b) - Hl-(Z'gl’bHZLI) = Hl-(Z’;H,b) is surjective for g >
(2) The map Hi(Z'g’,b) - Hl-(Z'gl’bhEO’z) = Hi(z’;,b+1) is surjective for g >
(3) The map Hl-(Z;1 D= Hl-(ZZ) filling the boundary circle with a disc is surjective for g > %(i -1).
(4) The map Hi(Z’g“ b) - Hl-(ZZ th )=H; (Z"“) is surjective for n > 2i.

3
Pl
3
Pl

Proof. Parts (1)-(3) are all due to Harer [17, Theorem 0.1], except with a larger lower bound on g
(Harer does not directly consider the capping map, but part (3) follows indirectly from his results
about his map called ). Improvements to this lower bound were made by Ivanov [21], Boldsen [9]
and Randal-Williams [32]; see also the survey by Wahl [38], which gives the best-known ranges.
Part (4) is due to Hatcher-Wahl [18, Proposition 1.5]. O

Proof of Proposition 4.1. Assume first that % is compact, so it is homeomorphic to £, for some
g > 0and b > 1. Since g5 = oo, the definition of g implies that we may find another subsurface
3" c S, disjoint from X, that is homeomorphic to X, ; for a genus h as large as we choose. Let

us choose h > %i. Since S is path-connected, we may choose a path from a point on the bound-
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ary of ¥ to a point on the boundary of £’" and whose interior is contained in S \ (ZuUZ"). Let
>/ be the union of £’ and a tubular neighbourhood of this path; this is again homeomorphic to
Zj,1- It satisfies condition (1) of the proposition by construction. Since it has exactly one boundary
component, it satisfies condition (2) of the proposition by Lemma 4.2. Since h > 21 it satisfies
condition (3) of the proposition by parts (1) and (2) of Theorem 4.3, since the extension map
Map(Z') - Map(Z U T’) may be factored into finitely many genus-increasing maps and finitely
many boundary-component-increasing maps.

Now suppose that X is non-compact, so it is homeomorphic to X" , for some g > 0 and b, n >
Thisimplies that S has atleast one puncture, thatis, pg > 0, so by assumptlon S has amixed end in
particular pg = 0. The proofis then the same as in the previous paragraph, except that we choose
= to be homeomorphic to ) forh > 51 and m > 2i, using the fact that g¢ = pg = o0. The rest of
the proof is then identical, except that to verify condition (3) of the proposition we also need part
(4) of Theorem 4.3, factoring the extension map Map(Z') — Map(Z U Z’) into finitely many genus-
increasing maps, boundary-component-increasing maps and puncture-increasing maps. O

Remark 4.4. Part (2) of Theorem 4.3 is notable in that, when increasing the number b of boundary
components, the range in which homological stability holds depends on the genus g, not on b. This
was crucial in the proof of Proposition 4.1, since we were free to choose X’ to have as high genus
and as many punctures as necessary, but it had to have a single boundary component, in order to
be able to apply Lemma 4.2.

5 | GENUS ZERO SURFACES WITH COUNTABLY INFINITELY
MANY PUNCTURES

In this section we prove Theorem F, concerning the case when S has genus zero and its space of
ends is a closed ordinal interval of the form [0, w*]. The proof is different when « is a (countable)
successor ordinal and when it is a (countable) limit ordinal; we will deal with these two cases
separately — see Proposition 5.3 and Corollary 5.5.

Definition 5.1. For a countable ordinal «, let us write (a) = S? \ [0, %] and Z°(a) = D?\
[0, w*]. In other words, up to homeomorphism, E(«) is the unique genus-zero surface whose space
of ends is homeomorphic to [0, w*] and Z°(«) is the result of removing the interior of a closed disc
from Z(a).

5.1 | Successor ordinals

Let us first suppose that « is a successor ordinal, in other words o = 8 + 1 for some ordinal 3. In
this case, () may be realised as a (full-plane) grid surface:

Lemma 5.2. There is a homeomorphism Gr,(Z°(B)) = Z(a).

Proof. Clearly Gr,(2°(f)) has genus zero, so by the classification of surfaces it suffices to show that
its space of ends is homeomorphic to [0, w*]. By construction, its space of ends is the one-point
compactification of disjoint union of countably infinitely many copies of [0, w”]; by Lemma 1.10
this is [0, w®]. O
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Half of Theorem F — the case when « is a successor ordinal — is given by the following.
Proposition 5.3. Suppose that « is a countable successor ordinal. Then the inclusion
L (2(e) 1 Map (@) & Map(Z(a)
induces the zero map on homology in positive degrees with any field coefficients.

Proof. Let X C Z(a) be a properly embedded subsurface of finite type and denote by ¢ the
homomorphism Map(X) — Map(Z(«)) given by extending homeomorphisms by the identity.
Identifying ¥(«) with the grid surface Gr,(Z°(f)) by Lemma 5.2, the subsurface £ C Gr,(Z°(5))
must be bounded, since it is of finite type and therefore must be bounded away from the non-
isolated end ‘at infinity’. Hence X is contained in a sub-square of the grid of side-length n for
some n > 1. Zooming out by a factor of n, we may identify Gr,(Z°(f)) with the grid surface
GrZ(h”22°([3)), in which each ‘piece’ of the grid is the boundary connected sum of n? copies of
2°(B). Applying an appropriate shift homeomorphism, we may assume that X is contained in the
copy of h”z >°(3) at the coordinates (0,0) in the grid. The homomorphism : therefore factors as

Map(Z) — Map(§" £°(8)) — Map(Gr,(§""Z°(8))) = Map((a)),

where each homomorphism is given by extending homeomorphisms by the identity. The result
therefore follows by applying Proposition 3.6 to the surface H"ZE"(ﬁ). O

5.2 | Limit ordinals

Let us now suppose that « = A4 is alimit ordinal. Since it is also countable, its cofinality is precisely
w (see Remark 1.11), meaning that there is a strictly increasing sequence «,, of ordinals (indexed
by natural numbers n € N = w) whose supremum is 1. Let us fix a choice of such a sequence for
the remainder of this section.

Proposition 5.4. Let X be a properly embedded finite-type subsurface of 2(1). Then X is contained in
a properly embedded subsurface homeomorphic to 2°(a,,) for some n € N. Moreover, this subsurface
is shiftable in ().

The second half of Theorem F - the case when o = A is a limit ordinal — follows immediately:
Corollary 5.5. Suppose that A is a countable limit ordinal. Then the inclusion

((E(2) 1 Map(Z(A)) & Map(Z(2))

induces the zero map on homology in positive degrees with any field coefficients.
Proof. Let £ C Z(1) be a properly embedded subsurface of finite type. Proposition 5.4 implies
that the homomorphism Map(Z) — Map(Z(24)) factors as Map(Z) - Map(Z°(«,,)) = Map(Z(1)),

where the second homomorphism Map(Z°(«,)) — Map(Z(4)) is induced by the inclusion of a
shiftable subsurface; the result therefore follows from Corollary 3.13. O
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FIGURE 3 Thesurface S = Z(4) from the proof of Proposition 5.4, where each square labelled by «,, denotes
a copy of =°(a,,) = D? \ [0, w*] (see Definition 5.1). There is an exhaustive filtration of S by properly embedded
subsurfaces S, = £°(«,,), described in the proof of Proposition 5.4; the boundaries of S; and S; are outlined in red.

Proof of Proposition 5.4. Let us construct a full-plane ‘grid surface’ similarly to Definition 3.2,
except that each square in the grid with coordinates (i, j) € Z x Z is filled in with a copy of
Z°(otmax(— j,O))' Equivalently, we begin with a copy of the half-plane grid surface Gr(Z°(«,)), glue
on a new row to the bottom of the grid filled with copies of £°(«; ), then another row filled with
copies of Z°(a,), etc., until the whole grid is filled; see Figure 3. Let us denote this surface by S.
Also, for each n > 1, we denote by S, C S the subsurface given by the union of all (2n — 1)? pieces
whose coordinates (i, j) satisfy max(|i|, | j|) < n — 1, together with the piece whose coordinates
are (0, —n); see Figure 3. It follows from Lemma 1.10 that S is homeomorphic to £(1) and each S,,
is homeomorphic to Z°(«,,). Also, the S, (for n € N) form an exhaustive filtration of S by properly
embedded subsurfaces.

Now let X C Z(1) = S be any properly embedded finite-type subsurface. It must be bounded
away from the non-isolated end of S ‘at infinity’, so it must be contained in S,, for some n € N. To
finish the proof, we just have to show that S,, is shiftable in S: this is demonstrated pictorially in
Figure 4. O

6 | THE PUNCTURED AND UNPUNCTURED CANTOR TREE
SURFACES

In this section we prove Theorem D(1), dealing with the case when S has genus zero and has
either 0 or 1 punctures (isolated planar ends). This corresponds to exactly two possible homeo-
morphism types of surfaces: the sphere minus a Cantor set S? \ C (the ‘Cantor tree surface’) and
the plane minus a Cantor set R? \ C (the ‘punctured Cantor tree surface’). In both cases, we use
the following result about the disc minus a Cantor set D? \ C (the ‘one-holed Cantor tree surface’).

Theorem 6.1 [31, Theorem B]. Map(D? \ C) is acyclic, that is, H;(Map(D? \ C)) = 0 forall i > 0.
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FIGURE 4 An extension of the inclusion S, C S (depicted in the case n = 3) to a proper embedding
Str(S,) < S, proving that S, is shiftable in S.

Proof of Theorem D(1). Let S be an infinite-type surface of genus zero with either no punctures
(isolated ends) or exactly one puncture; in other words S is homeomorphic either to S? \ C or
to R?\ C. Let £ C S be a properly embedded finite-type subsurface; our goal is to prove that
Map(Z) —» Map(S) induces the zero map on homology in all positive degrees.

First assume that ¥ is compact. Since S has genus zero, so does Z, so it is homeomorphic to a
sphere with n holes for some n > 1. The complement S \ X thus has n components, partitioning
the end-space of S into n clopen subsets Ej, ..., E,. Since the end-space of S is homeomorphic
either to C or to C U {*}, and all non-empty clopen subsets of C are homeomorphic to C again, we
may assume (reordering if necessary) that E, ..., E,_; are each homeomorphic to C or @ and E,, is
homeomorphic to C or @ or C LI {*} or {x}. Denote by X’ the subsurface of S given by the union of £
together with the n — 1 components of the complement S \ X corresponding to E, ..., E,,_;. Since
>/ has genus zero, one (compact) boundary component and has end-space homeomorphic to the
disjoint union of some number (possibly zero) of copies of C, it is homeomorphic either to D? or
to D? \ C. The homomorphism Map(Z) — Map(S) factors through Map(Z'), which is either the
trivial group (if £’ & D?) or isomorphic to Map(D? \ C), whose homology in all positive degrees
vanishes by Theorem 6.1.

Now assume that X is non-compact (but still finite type). This implies that we must have S =
R?\ C and T Zé,n for some n > 1. Removing an open annular neighbourhood of the unique
puncture (point at infinity) of S, we obtain subsurfaces S’ C S and =’ C X such that S’ = D?\ C,
PR~ 2o 41 and ¥/ =¥ nS’. Their mapping class groups fit into a map of central extensions

0 > Z > Map(Z') ——— Map(Z) —> 1
id l l (6.1)
0 > Z > Map(S’) ——— Map(S) — 1.

We claim that the central extension 0 - Z — Map(Z') — Map(Z) — 1 on the top row is a trivial
extension. Note that this will complete the proof, because it will then follow that the homo-
morphism Map(Z) — Map(S) factors through Map(S’) & Map(D? \ C), whose homology in all

85001 SUOWIWIOD 3AIEa1D) 8{dedt|dde au Aq peusenob a2 sajoie YO ‘88N JO SaIN. 104 ARIg1T8UIIUO AB]IA UO (SUORIPUOD-PUE-SWLIBH W0 A8 1M ATe.q 1B UO//SCIL) SUORIPUOD pue SWs | 8U88S *[5202/60/T0] Uo A%eiqiauliuo A8|IM ‘158 L Aq 85202 SW (/2T TT 0T/I0P/W00™A8 |IMAT.q)1 U 1UO"00SUIRWPUO |//:SANY WO} pepeoiumoq ‘g ‘5202 ‘0S.L69YT



26 of 35 | PALMER and WU

positive degrees vanishes by Theorem 6.1. The middle group is Map(X') = Map(Z, ,,,), which is
the pure ribbon braid group on # strands. It decomposes as Z" X PB,,, where PB,, denotes the pure
braid group on n strands. By [14, §9.3, p. 252], this decomposes as PB,, = Z(PB,,) X PB, /Z(PB,,),
where Z(PB,,) denotes the centre of PB,,, which is infinite cyclic generated by the full twist A2
Putting this all together, we have a decomposition Map(Z') = 7" x z{A?} x PB, /Z(PB,,). The
central subgroup Z C Map(Z’) under consideration is generated by the Dehn twist around the
outer boundary, which corresponds under this identification to the element ((1, ..., 1), A%) € 2" x
Z{A?}. Via this description it is clear that it generates a direct factor of Map(Z’), in other words
the quotient by this central subgroup admits a section: hence it is a trivial central extension. []

Remark 6.2. In contrast to our other vanishing results, Theorem D(1) holds for any coefficients,
not only for coefficients in a field.

7 | NON-TRIVIAL COMPACTLY SUPPORTED CLASSES

In this section we prove all of our non-vanishing results, except for Theorem B(3) whose proof is
deferred to §8. In §7.1 we prove Theorem C, dealing with the case when S has non-zero but finite
genus. In §7.2 we prove Theorem D(2), concerning Question (III) in the case when S has finitely
many but at least two punctures. In §7.3 we prove Theorem E, concerning the case when S has
genus zero and there is a finite, topologically distinguished subset A C Ends(S) with |[A| > 4. In
the special case when A is the set of punctures of S, this also proves Theorem D(3).

7.1 | Finite, non-zero genus

In this subsection, we prove Theorem C, which we state slightly more precisely as the following:
Proposition 7.1. Suppose that1 < gg < oo. Then the integral homology H,(Map(S)) contains non-
zero classes that are supported on a compact subsurface of S homeomorphic to X, ;. More precisely,

we may find such classes in degree 1 when g5 = 1 and in degree 2 when gg > 2.

In the proof, we will need the following calculations of low-degree homology groups of mapping
class groups of closed, orientable surfaces.

Lemma 7.2. We have H;(Map(Z,)) = Z/12 and

z/2 g=2
Hy(Map(Z)) =1Z2@Z/2 ¢g=3
Z g =4

Proof. For the first statement, Map(X, ) is isomorphic to SL,(Z), whose abelianisation is Z /12. For
the second statement, see [24, Theorem 6.1 and the paragraph following it] for g > 4 and ¢g = 2.
The case g = 3 is not unambiguously settled in [24]; instead, see [34, Corollary 4.10]. See also [4,
Lemma A.1] for these and many more related calculations. ]
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Proof of Proposition 7.1. Since S has finite genus gg, all of its ends are planar and it is homeo-
morphic to X, \ E, where E is the image of an embedding Ends(S) & X 4 Of the end-space of S.
Choose an embedded disc D C X, containing E in its interior. There are homomorphisms

Map(Z,, \ D) — Map(z o \E) — Map(Z, ) (7.1)

given, respectively, by extending homeomorphisms of £ \ D (that are the identity on D) by the
identity on D \ E and extending homeomorphisms of 9 \ E to (its Freudenthal compactifica-
tion) X, in the unique possible way (see [30, Appendix B] for why this determines a well-defined
homomorphism of mapping class groups). The composition of the two homomorphisms (7.1) is
the classical capping map Map(Z 9 \ D) = Map(z 95) that extends homeomorphisms by the iden-
tity on D. This map induces a surjection on H; whenever gg > %(i — 1) by part (3) of Theorem 4.3.
In particular, it induces a surjection on H; whenever g¢ > 1 and on H, whenever gg > 2. It there-
fore suffices to check that H;(Map(Z,)) # 0 and that H,(Map(Z g )) # 0 when g5 > 2. This follows
from Lemma 7.2. O

7.2 | Finitely many punctures but at least two

In this subsection, we prove Theorem D(2). In fact, this part of Theorem D does not require the
assumption that g¢ = 0, so we may strengthen it to:

Proposition 7.3. Suppose that 2 < pg < oo. Then H, (Map(S)) contains a non-trivial class that is
supported on a properly embedded finite-type subsurface of S.

Proof. Since p = py is finite, there is a properly embedded subsurface of S homeomorphic to
the punctured disc D? \ P, where P is a finite set of size p in the interior of D?. This induces an
extension map B, = Map(D? \ P) — Map(S), where B p» denotes the braid group on p strands. For
any homeomorphism of S, its induced action on the end-space Ends(S) must send the subset
of punctures onto itself, so there is a well-defined map Map(S) — &, recording this permuta-
tion. The composition B, — &, records the permutation induced by a braid, and is surjective.
Since abelianisation (—)® = H 1(—) is a right-exact functor, the composition of the induced maps
Hl(Bp) — H;(Map(S)) - H1(©p) is also surjective. Since H,(© ) = 7 /2 (here we are using the
assumption that p > 2), we may choose alifta € H;(B p) of the non-trivial element of H, (& p). The
image of a in H;(Map(S)) is then a non-trivial class supported on a properly embedded finite-type
subsurface. O

The above proof does not work when p = pg = 1, since H;(&,,) is trivial in this case. Indeed,
in this case, the answer to Question (IIT) depends also on the genus of S. If g¢ = 0 then S must be
homeomorphic to R? \ C and the answer is given in §6. The case when 0 < gg < oo is covered by
Proposition 7.1. The case when gg = oo is dealt with in §8.

7.3 | Genus zero with a finite, topologically distinguished set of ends

We next prove Theorem E (which in particular implies Theorem D(3)). Recall from Definition 0.13
the notion of a fopologically distinguished subset. The following is a refinement of Theorem E.
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Proposition 7.4. Suppose that S has genus zero and that Ends(S) has a finite, topologically distin-
guished subset of sizen > 2. Setk =n—1ifniseven and k = %(n —1) if nis odd. Then there is a
compact subsurface £ C S and a commutative diagram

H,(Map(X)) —» Z/k

| I 2

H,(Map(S)) —— Z/2k,

where the left-hand vertical map is induced by Map(Z) C Map(S), the right-hand vertical map is
multiplication by 2 and the top horizontal map is surjective. In particular, if n > 4, there are non-
trivial classes in H;(Map(S)) that are supported on the compact subsurface > C S.

Remark 7.5. We do not require the finite, topologically distinguished subset of Ends(S) in Propo-
sition 7.4 to be homogeneous; for example, it may consist of n points that are each (individually)
topologically distinguished. The bottom horizontal map of (7.2) is surjective if and only if this is
not the case, that is, two of the points of the (chosen) topologically distinguished subset are similar,
that is, have homeomorphic open neighbourhoods.

Proof of Proposition 7.4. We first note that the second statement follows from the first: when
n > 4 we have k > 2, so the element 2 € Z/2k is non-trivial and pulls back through H;(Map(S))
to H,(Map(Z)). Hence we just have to prove the first statement.

Denote by A C Ends(S) a topologically distinguished subset of size n. Since Ends(S) is Haus-
dorff and zero-dimensional, we may partition it into clopen subsets E, ..., E, such that each E;
contains exactly one point of A. Let S; = D? \ E; for i € {1, ..., n} and denote by ., the compact,
connected, genus-0 surface with n boundary components. Gluing S, ..., S,, into the n holes of %, ,,
we obtain S? \ Ends(S), which is homeomorphic to S. There is therefore an extension homomor-
phism Map(Z, ,,) — Map(S) given by extending homeomorphisms by the identity on each S;. On
the other hand, since A C Ends(S) is a topologically distinguished subset, we have a homomor-
phism Map(S) — Map(S? \ A) given by filling in all ends of S except A. Next, there is a central
extension [14, §9.1.4]

1 - 7Z/2 — B,(S*) — Map(s?*\ 4) - 1,

where the generator of the kernel is sent to a full twist in the spherical braid group B, (S?). This
is sent to n(n — 1) in Bn(SZ)ab ~ 7/(2n — 2), which is 0 if n is even and n — 1 if n is odd. Let us
consider the quotient of B,,(S?) onto its abelianisation Z/(2n — 2) when n is even and the further
quotient onto Z/(n — 1) when n is odd; we may write this uniformly as the quotient B,,(S?) -
Z/2k wherek =n —1ifnisevenand k = %(n — 1) if n is odd. By construction, the kernel Z/2 C
B, (S?) of the central extension above is sent to zero in this quotient, so it factors through a quotient
Map(S? \ A) » Z/2k. Putting everything together, we have maps

Map(Z, ) — Map(S) — Map(S* \ A) — Z/2k. (7.3)
The composition Map(Z, ,) — Z/2k is not surjective: its image is instead the cyclic subgroup of

order k generated by 2 € Z/2k. To see this, first note that a pre-image of the element 2 € Z/2k
in Map(Z, ,) is given by a homeomorphism that ‘pushes’ one boundary component in a full loop
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around another boundary component. This implies that the image contains the cyclic subgroup
generated by 2. On the other hand, it cannot be larger than this, since each element of Map(Z,, )
fixes the n boundary components pointwise and hence its induced permutation of A is trivial,
which is an even permutation. Thus we have the following commutative diagram:

Map(Z,,) —» Z/k

! |

Map(S) ——— Z/2k.

Taking abelianisations, we obtain the desired commutative diagram (7.2) with Z = %, .. O

8 | CLASSES DETECTED BY WREATH PRODUCTS OF THE CIRCLE
GROUP

In this section we prove Theorem B(3), which we restate in a stronger form as Proposition 8.1.
We want to consider surfaces of infinite genus with finitely many (and at least one) punctures.
However, it will be more convenient to think of the punctures as marked points, so we fix a surface
S of infinite genus and no punctures, together with a non-empty, finite subset P C S, and we will
be interested in Question (IT) for the surface S \ P. In other words, we are interested in the image
of the map

H,(Map,(S \ P)) — H,(Map(S \ P)) (8.1)

induced by the inclusion Map,(S \ P) C Map(S \ P). Question (II) asks whether the image of the
map (8.1) is non-zero for some positive degree x> 0. In fact we may prove that it is non-zero in
every even degree:

Proposition 8.1. Let S be a connected, orientable surface of infinite genus with no punctures and
P C S a non-empty, finite subset. Then the image of the map (8.1) contains a Z summand in every
even degree; in particular it is non-zero.

A key ingredient of the proof is a construction due to Bédigheimer and Tillmann [8].
Notation 8.2. For asurface S (possibly with boundary) and finite subset P C $ of its interior, denote
by Diff(S, P) the topological group of diffeomorphisms of S that fix P setwise and dS pointwise,

equipped with the weak (smooth compact-open) topology [20, §2.1].

Definition 8.3 [8, §3]. For a surface S (possibly with boundary) and finite subset P C S of size
p=|P|, let

7: Diff(S,P) — $'1©, = (s x©, (82)
be the continuous homomorphism defined as follows. Choose a bijection i — x; : {1,...,p} > P

and choose a non-zero tangent vector v; € TxiS for each i € {1, ..., p}, as well as an inner prod-
uct on each of these tangent spaces. For a diffeomorphism ¢, the map 7 records the induced
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permutation o(¢p) of {1, ..., p} under the chosen bijection and the angle 6;(¢) between Dgp(v;) and
Us(e)(0) for each i € {1, ..., p}, where D¢ denotes the derivative of ¢."

Notation 8.4. Write BG for the classifying space of a topological group G. When G is discrete the
homology of BG agrees with the group homology of G, so we will write H,(BG) = H,(G).

Construction 8.5. Let S be a surface with no punctures and P C S a finite subset of size p = |P]|.
We will use (8.2) to construct a map

BMap (S \ P) — B(S' 1 &)). (8.3)
Let X C S be a compact subsurface containing P in its interior. We then have maps
Map(Z \ P) = 7,(Diff(Z, P)) « Diff(Z,P) — S' 1 &, (8.4)

where the right-hand map is (8.2). These are all compatible with the maps induced by inclusions
of subsurfaces, so there are induced maps of colimits

cogm(Map(E \ P)) = colzim(ﬂo(Diff (Z,P))) « colzim(Diff(Z,P)) —sh® P (8.5)

where each colimit is taken over the poset of all compact subsurfaces £ ¢ S with P c 2. Since S
has no punctures, the subsurfaces = \ P C S \ P form a cofinal family in §(S \ P), so the left-hand
group in (8.5) may be identified with Map (S \ P), by Lemma 2.3.

The middle map in (8.4) is a weak homotopy equivalence by [12, 13] and hence so is the middle
map in (8.5). Taking classifying spaces and inverting this map, we obtain the desired map (8.3).

Remark 8.6. By construction, restricting (8.3) to (the classifying space of) Map,(S \ P), we obtain
a commutative square:

BMap, (S~ P) ———— B(S)?

1 ! (8:6)

BMap (S\P) —— B(S'1€)).
The key ingredient to prove Proposition 8.1 is the following corollary of the main result of [8].

Theorem 8.7. If S is a connected, orientable surface of infinite genus with no punctures and P C S
is a finite subset, then the maps

H,(Mapy(S\ P)) — H,(B(S':®,)) and  H,(Map,(S\P)) — H,(B(SY) (87)

In order for this to be a group homomorphism, we must restrict to the subgroup of Diff(S, P) of those diffeomorphisms
whose derivatives, restricted to the tangent spaces at the points of P, respect the chosen inner products on these tangent
spaces. However, the inclusion of this subgroup into the full group Diff(S, P) is a homotopy equivalence (because the
inclusion SO(2) & GL;r (R) is a homotopy equivalence), so this is not a problem, and we will not comment further on this
subtlety.
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induced on homology by (8.6) each admit a section. Moreover, these sections are compatible in the
sense that if we consider the commutative square induced on homology by (8.6) and replace its
horizontal maps with these two sections, then the result is still a commutative square.

Proof. In fact, [8] makes a stronger statement. Let us write (—)* for the Quillen plus-construction of
a topological space (see [8, §2] for a brief summary of some key properties of the plus-construction
and, for example, [5] for further details). According to [8, Theorem 1.1 (2)], the space BMap f(S \
P)* splits, up to homotopy equivalence, as the product of BT, and B(s'1© p)+, whereI' , denotes
the colimit of Map(Z ;) as g — oo, and (the plus-construction of) the map (8.3) is the projection
onto the second factor of this decomposition. It therefore admits a section up to homotopy, so the
result follows upon taking homology since (—)* does not change the homology of a space. In [8],
this result is stated for the particular surface S = colim,_, (£, ;), but the homology H,(Map (S \
P)) is the same for any surface S satisfying the hypotheses of the theorem, by [17]; alternatively, the
proof of [8] goes through for any such surface S, by taking the colimit of an appropriate diagram
of stabilisation maps, corresponding to a filtration of S by compact subsurfaces.

This deals with the left-hand map of (8.7). Restricting to Map,.(S \ P) C Mapf(S \ P) corre-
sponds to restricting to the pure mapping class group for each finite-type subsurface over which
we are taking the colimit (see Lemma 2.3). Hence the exact same argument also proves that the
right-hand map of (8.7) admits a section, using [8, Theorem 1.1(1)] instead of [8, Theorem 1.1(2)].

Finally, to see that these two sections are compatible in the sense described, we first note that
the homotopy splittings [8, Theorems 1.1(1) and 1.1(2)] are both special cases of the homotopy
splitting [8, Theorem 3.1]. The latter depends on a choice of subgroup of the symmetric group &,
(where k denotes the cardinality of the finite set P); then [8, Theorems 1.1(1) and 1.1(2)] correspond
to the trivial subgroup {1} and the whole group &,, respectively. Now it is clear from the proof of
[8, §3] that the splitting of [8, Theorem 3.1] is natural with respect to the lattice of subgroups of &,.
In particular, naturality with respect to {1} C &, implies the desired compatibility statement. []

To complete the proof of Proposition 8.1 we need one further ingredient.

Proposition 8.8. If S is a connected, orientable surface with no punctures and P C S is a finite
subset, then the map (8.3) extends along B(incl) : BMap f(S \ P) —» BMap(S \ P).

Before proving this, we first explain how (together with Theorem 8.7) it implies Proposition 8.1,
and hence Theorem B(3).

Proof of Proposition 8.1. By Theorem 8.7 and Proposition 8.8, we have a commutative diagram

H,(BS") —> H.(B(S")?) — H.(Map,(S~ P)) > H.(B(S")P)
H.(B(S':1©,)) — H.(Map(S\P)) > H.(B(S' 1 ©)))
H,(Map(S ~ P)) H.(BSY)

in which the horizontal compositions H,(B(SY)") — H,(B(S')") and H,(B(S!2 Q) -
H,(B(S'2 ©,)) are identities. The top-left horizontal map is induced by the homomorphism
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o(Diff (2, P)) o (Diff (S, P))
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Homeo(X, P) Homeo(S, P)

— —

mo(Homeo(X, P)) mo(Homeo(S, P))

1%
1%

1
1%

Homeo(X \ P) Homeo(S \ P)
—
mo(Homeo(X \ P)) —————— mp(Homeo(S \ P))
I |
Map(X \ P) Map(S \ P)
\ ;4
Map(S \ P)°

FIGURE 5 The diagram used to construct the extension of (8.3) to BMap(S \ P) in the proof of
Proposition 8.8. The surface S is connected, orientable and has no punctures (in other words, all of its ends are
either non-planar or non-isolated), P C S is a finite subset and £ C S is a compact subsurface containing P in its
interior.

st - (shP sending t — (¢,0,...,0) and the bottom-right vertical map is induced by the homo-
morphism S! z@p - st sending (¢, ..., tp;a) SR By construction, the map from the
top-left to the bottom-right of the diagram is the identity map. Thus we have factored the identity
map of H,(BS') = H,(CP*) through the map (8.1). It follows that the image of (8.1) contains a
direct summand isomorphic to H,(CP*), which is a copy of Z in every even degree. O

Proof of Proposition 8.8. At the level of diffeomorphism groups, the construction clearly extends to
a well-defined continuous homomorphism Diff(S,P) — S!? @Sp. Indeed, Definition 8.3 does not
make any compactness assumptions. The only subtlety lies in descending this homomorphism to
the mapping class group.

We first recall the construction of the map (8.3) in more detail. In the diagram in Figure 5, S and
P C S are as in Proposition 8.8 and X C S is any compact subsurface containing P in its interior.
The natural map from the diffeomorphism group to the homeomorphism group of any smooth
surface is a weak equivalence (in particular an isomorphism on 7,)" and the restriction map
Homeo(S, P) —» Homeo(S \ P) is an isomorphism of topological groups when S has no punctures,
since one may define an inverse by extending homeomorphisms uniquely to the Freudenthal com-
pactification of S \ P and then discarding all ends that are not punctures (these are preserved by
any homeomorphism). Thus all of the vertical maps in Figure 5 are either weak equivalences or
isomorphisms. The horizontal map across the top is the homomorphism (8.2) of Definition 8.3.

TThis follows essentially from smoothing theory [23, Essay V]. See [31, Appendix A] for a brief explanation, which
emphasises that the underlying surface does not have to be compact.
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To identify its domain with Map(Z \ P) = my(Homeo(Z \ P)), we need to know that the diagonal
maps on the left-hand side are also weak equivalences, which follows either from [12, 13] at the
level of diffeomorphism groups or from [16] at the level of homeomorphism groups. Taking the
colimit over all X, and then taking classifying spaces, we obtain the map (8.3).

To see that (8.3) extends to BMap(S \ P), we need to know that the diagonal maps on the right-
hand side are also weak equivalences. This follows from the main result of [39], which extends
[16] to non-compact surfaces, proving that Homeo(S \ P) has contractible components (and thus
contractible path-components), so the projection Homeo(S \ P) — 7,(Homeo(S \ P)) is a weak
equivalence. There is a small additional subtlety: for this projection map to make sense, one has to
equip Map(S \ P) = my(Homeo(S \ P)) with the quotient topology induced by the compact-open
topology, whereas we are interested in it as an abstract group, equivalently equipped with the
discrete topology. Let us temporarily take the convention that Map(S \ P) denotes the mapping
class group with the quotient topology and Map(S \ P)° denotes the same group with the discrete
topology. Since Map(S \ P) is totally disconnected (in fact it is homeomorphic to the Baire space
NN [2, Thm 4.2]), the map Map(S \ P)°> — Map(S \ P) given by the identity of the underlying
groups is a weak equivalence. Together, this implies that the map (8.3) extends from BMap ¢(S \
P)= Bcolzim(Map(Z \ P)) to BMap(S \ P)°. m
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