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0. Introduction

The Lawrence-Krammer-Bigelow representation was first introduced by Lawrence [20] as part of a more 
general family of representations of the braid group Bn. It was shown, independently by Bigelow [8] and 
by Krammer [19], to be faithful, thus proving that Bn is linear; in other words, the braid group Bn acts 
faithfully on a finite-dimensional vector space.

This representation is constructed via the action of Bn, which is also the mapping class group of the 
n-times punctured 2-disc Dn, on the configuration space C2(Dn) of two unordered, distinct points in Dn. 
There is a certain local system L2 on C2(Dn), defined over the ground ring Z[q±1, t±1] = Z[Z2], which is 
preseved by this action of Bn. The induced action on the second Borel-Moore homology group

V (2) := HBM
2 (C2(Dn);L2) (1)

is the Lawrence-Krammer-Bigelow representation. More generally, considering configurations of k ⩾ 2 points 
in Dn, one obtains the family of Lawrence representations

V (k) := HBM
k (Ck(Dn);Lk) (2)

of the braid group Bn. The Z[Z2]-module V (k) is free and has rank 
(
n+k−2

k

)
[10, Lem. 3.1].

One main significance of the Lawrence-Krammer-Bigelow (LKB) representation is its use in the proof of 
the linearity of the braid groups. Another significance of the whole family of Lawrence representations is 
their deep connection to the Jones polynomial [21,9], the slN polynomials [22,11] and the coloured Jones 
polynomials [2].

The pro-nilpotent LKB representation. Our first main construction upgrades the representation (1) of Bn

to a pro-nilpotent representation: a compatible family of representations over the group rings Z[Qr] for each 
Qr in a tower of groups Q•, where the nilpotency class of Qr is r − 1. See §1 for the precise definitions.

Theorem A. There is a nilpotent tower of groups Q• with Q2 = Z2 and a pro-nilpotent representation of 
Bn over Q• whose bottom layer is equal to (1).

Ribbon Lawrence representations. In fact, the pro-nilpotent representation of Theorem A is induced, for 
n ⩾ 3, by a representation of Bn over Z[Q∞] for a certain subgroup Q∞ of the pro-nilpotent group lim(Q•). 
This subgroup Q∞ is isomorphic to the semi-direct product Z2

⋊ϕZ where ϕ(1) is the automorphism of Z2

that swaps the two summands, which in turn is isomorphic to the ribbon braid group on two strands RB2. 
This is a special case of a more general construction involving the level k Lawrence representation (2). In 
the following theorem we denote the ribbon braid group on k strands by RBk

∼ = Zk
⋊ Bk.

Theorem B. There is a well-defined representation

RLk : Bn −→ AutZ[RBk](VR(k)) (3)

that recovers (2) after reducing along the abelianisation RBk ↠ (RBk)ab ∼ = Z2. For k = 2 and n ⩾ 3, this 
representation induces the pro-nilpotent tower of representations of Theorem A.
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In the above statement, the reduction of VR(k) along the abelianisation RBk ↠ Z2 means the tensor 
product VR(k) ⊗Z[RBk] Z[Z2], viewing Z[Z2] as a Z[RBk]-module via the map RBk ↠ Z2.

In particular, for k = 2, Theorem B upgrades the LKB representation, defined over Z[q±1, t±1], to a 
representation defined over the non-commutative three-variable Laurent polynomial ring

Θ = Z[Z2
⋊ Z] = Z〈q±1

1 , q±1
2 , t±1〉/(q1q2 = q2q1, q1t = tq2, q2t = tq1) (4)

that recovers the original LKB representation when setting q1 = q2. We explicitly compute the matrices for 
this representation in a natural basis:

Theorem C. The representation RL2 of Bn over the ring Θ is given concretely by assigning to the generators 
σi of Bn the matrices depicted in Table 1 on page 4.

The representation RL2 and each layer of the pro-nilpotent LKB representation of Theorem A are faithful, 
as a consequence of the faithfulness of the LKB representation (see Proposition 4.9).

We also note that the representation RL2 of Bn over Θ may be embedded into a complex representation 
(of twice the dimension) using an embedding of Θ into the matrix ring Mat2(C); this makes certain properties 
of the representation, such as questions of irreducibility, more tractable. In more detail, VR(2) is free as 
a module over Θ and an embedding of rings Θ ↪→ Mat2(C) induces an embedding of groups GLm(Θ) ↪→
GL2m(C) for any m. Such an embedding is given for example as follows.

Proposition D. In the notation of (4), an embedding Θ ↪→ Mat2(C) is given by the assignments

q1 �−→
(
w 0
0 x

)
q2 �−→

(
x 0
0 w

)
t �−→

(
0 y
z 0

)
(5)

for any choice of w, x, y, z ∈ C such that {w, x, yz} ⊂ C is an algebraically independent subset.

Explicit formulas for this embedding of the representation RL2 into a representation over C are obtained 
by applying the assignments (5) to each entry of the matrices in Table 1 (page 4).

More pro-nilpotent representations. The construction of the pro-nilpotent representation of Theorem A
follows a general recipe that we describe in §3. The key ingredient in this recipe, if one wishes to construct 
a pro-nilpotent representation of a group Γ, is a surjection of groups

G −↠ Γ. (6)

Whether or not the recipe produces a pro-nilpotent representation on this input depends on the properties 
of the lower central series of G, and in fact in a more subtle way on the interaction between the lower central 
series of G and the lower central series of ker(G ↠ Γ). For the construction of Theorem A, the surjection 
(6) is B2,n ↠ Bn, where B2,n is the partitioned braid group with n+ 2 strands partitioned into two blocks 
of sizes n and 2 respectively, and the surjection forgets the two strands of the second block.

Our construction applies to many other settings of this form, providing a wide variety of pro-nilpotent 
representations of surface braid groups Bn(S) and of (extended) welded braid groups wBn and w̃Bn (see 
§6 for background on these).

Theorem E. There are pro-nilpotent representations of the groups Γ, induced by the surjections (6), for each 
of the pairs listed in Table 2 on page 5.
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Table 1
The matrices of the three-variable LKB representation over the ring

Θ = Z[Z2
⋊ Z] = Z〈q±1

1 , q
±1
2 , t

±1〉/(q1q2 = q2q1, q1t = tq2, q2t = tq1),

indicating the action of the generator σi of Bn for 1 ⩽ i ⩽ n − 1. Recall that, as a Θ-module, the 
representation is free of rank 

(n
2 
)
, with basis given by ordered (n−1)-tuples of non-negative integers that 

sum to 2. 
When 2 ⩽ i ⩽ n − 2, the matrix consists of the 6 × 6 block described on the top row, together with 
(i − 2) + (n − i − 2) = n − 4 copies of the 3 × 3 blocks described on the bottom row, together with the (n−3

2 
)
×

(n−3
2 

)
identity matrix. In total, this is a square matrix of size 

(n
2 
)

= 6 + 3(n − 4) +
(n−3

2 
)
. 

When i ∈ {1, n − 1}, the matrix consists of one of the 3 × 3 blocks described on the top row, together 
with n−3 copies of one of the 2×2 blocks described on the bottom row, together with the 

(n−2
2 

)
×

(n−2
2 

)
identity matrix. In total, this is a square matrix of size 

(n
2 
)

= 3 + 2(n − 3) +
(n−2

2 
)
.

101 200 110 020 011 002

101

200

110

020

011

002

1

0

q2

(1 − t)q2

1

0

0

1

1

1

0

0

0

0

−q2

(t − 1)q2

0

0

0

0

0

−tq1q2

0

0

0

0

0

(t − 1)q1q2

−q1

0

0

0

0

q1q2

q1

1

The 6× 6 submatrix for the basis elements of the form · · ·xyz · · · , with the y in 
the i-th position. Here, and below, · · · indicates a string of 0s. If i = 1, the x is 
omitted and we consider the red (bottom right) submatrix. If i = n− 1, the z is 
omitted and we consider the blue (top left) submatrix.

100 010 001

100

010

001

1

1

0

0

−q1

0

0

q1

1

The 3 × 3 submatrices for the basis ele
ments of the form · · · 1 · · ·xyz · · · , with the 
y in the i-th position. If i = n−1 then the 
z is omitted and we consider the blue (top 
left) submatrix. 
There are i − 2 copies of this submatrix 
(except when i = 1, when there are none), 
corresponding to the possible choices in 
{1, . . . , i − 2} for the position of the ad
ditional ‘1’.

100 010 001

100

010

001

1

1

0

0

−q2

0

0

q2

1

The 3 × 3 submatrices for the basis ele
ments of the form · · ·xyz · · · 1 · · · , with the 
y in the i-th position. If i = 1 then the x is 
omitted and we consider the red (bottom 
right) submatrix. 
There are n − i − 2 copies of this subma
trix (except when i = n − 1, when there 
are none), corresponding to the possible 
choices in {i + 2, . . . , n − 1} for the posi
tion of the additional ‘1’.

Outline. The paper is organised as follows. Precise definitions of pro-nilpotent representations are given 
first in §1. The key technical input for the existence of our pro-nilpotent representations is a refinement of the 
notion of the (non-)stopping of the lower central series of a group, which has been studied comprehensively 
for (partitioned) braid groups and their relatives in [15]; this refinement is introduced in §2. In §3 we give 
the general recipe for constructing pro-nilpotent representations of groups, which is a refinement of a recipe 
introduced by the authors in [27]. In §4.1 we apply this in a special case to construct the pro-nilpotent LKB 
representation (Theorem A). The ribbon Lawrence representations (Theorem B) are then constructed in 
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Table 2
The pro-nilpotent representations constructed in the present paper. 
Columns: The first column lists the group Γ being represented; the second column 
lists the auxiliary group G whose (evident) surjection onto Γ induces the pro
nilpotent representation. The third column lists the abelian group A whose group 
ring Z[A] is the ground ring for the bottom (r = 2) layer of the pro-nilpotent 
representation. For the first two rows, we also have an explicit description of the 
ground ring of the limit of the tower of representations, as described in Proposi
tion 5.3. 
Further notation: In several rows we have fixed an l-tuple k = (k1, . . . , kl) of 
positive integers and l′ ⩽ l denotes the number of 1 ⩽ i ⩽ l such that ki ⩾ 2. The 
surface S is assumed to be non-closed, but it may have infinite type. The letter b
denotes either one of {2, 3}. The notation wB(λP , λS+ , λS) is explained in §6 and 
the relation (x1, y1, z1) ≽ (x2, y2, z2) between triples of partitions means that x2
is a sub-partition of x1, y2 is a sub-partition of y1 and z2 is a sub-partition of 
z1. 
† For wBn and w̃Bn we construct weakly pro-nilpotent representations; see Out
look 3.11 and §6 for why and see §1 for the definitions.

The pro-nilpotent representations constructed in the present paper 
Γ G A

Bn

B2,n Z2

B2,k,n (each ki ⩾ 3) Z(l+2
2 )+l′+1

B1,1,1,n Z6

B1,1,1,k,n Z(l+4
2 )+l′

B2,2,n Z5

B2,2,k,n Z(l+3
2 )+l′+2

B1,2,n Z4

B1,2,k,n Z(l+3
2 )+l′+1

Bn(S)

B2,k,n(S) (S �= D2) 
Prop. 5.2B1,k,n(S) (S / ∈ {D2,Ann,Möb}) 

B1,k,n(Möb) (k �= ∅) 
B1,1,k,n(Ann)

wBn
† wB(λP , λS+ , λS)

(λP , λS+ , λS) ≽ (∅, {n, b},∅)

Prop. 6.2
(λP , λS+ , λS) ≽ (∅, n, b)
(λP , λS+ , λS) ≽ (∅, {n, 1, 1},∅)
(λP , λS+ , λS) ≽ (2, n,∅)
(λP , λS+ , λS) ≽ (∅, n, 1)

w̃Bn
† wB(λP , λS+ , λS)

(λP , λS+ , λS) ≽ (∅, b, n)

Prop. 6.2
(λP , λS+ , λS) ≽ (∅,∅, {n, b})
(λP , λS+ , λS) ≽ (∅, {1, 1}, n)
(λP , λS+ , λS) ≽ (2, i, n), i ⩾ 1
(λP , λS+ , λS) ≽ (∅,∅, {n, 1})

§4.2; in §4.3 we compute matrices (Theorem C) for the second ribbon Lawrence representation (which is 
also the limit of the pro-nilpotent LKB representation) and in §4.4 we prove Proposition D, which implies 
that the second ribbon Lawrence representation may be embedded into a representation over C. Finally, 
the construction of our other pro-nilpotent representations (Theorem E) for surface braid groups and for 
loop braid groups is carried out in §5 and §6 respectively.
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was partially supported by the Institute for Basic Science IBS-R003-D1, by a Rankin-Sneddon Research 
Fellowship of the University of Glasgow and by the ANR Project AlMaRe ANR-19-CE40-0001-01. In par
ticular, the authors were able to make significant progress on the present article thanks to research visits to 
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1. Pro-nilpotent groups and representations

In general, a pro-object is a cofiltered diagram of objects in the appropriate category. In the case of 
nilpotent groups, we will consider just those of a certain form: inverse systems indexed by the natural 
numbers where each morphism is surjective and the groups have increasing nilpotency class:

Definition 1.1. A nilpotent tower of groups Q• is a sequence of surjective group homomorphisms

· · · −→→ Qr −→→ Qr−1 −→→ · · · −→→ Q2

where the nilpotency class of Qr is exactly r − 1.

Example 1.2. For example, if G is a group that is not nilpotent and Γr(G) denotes the r-th term in its lower 
central series, in other words Γ1(G) = G and Γr(G) = [Γr−1(G), G] for r ⩾ 2, then the inverse system

· · · −→→ G/Γr(G) −→→ G/Γr−1(G) −→→ · · · −→→ G/Γ2(G) = Gab (7)

is a nilpotent tower of groups.

Related to Example 1.2, we recall the following definition.

Definition 1.3. The pro-nilpotent completion Ĝnil of a group G is the inverse limit of (7).

Clearly, if G is nilpotent, then Ĝnil ∼ = G.

Remark 1.4. The surjections G ↠ G/Γr(G) induce a morphism G → Ĝnil, which factors as

G −↠ G/Γ∞(G) ↪−→ Ĝnil, (8)

where Γ∞(G) is the residue of the group: Γ∞(G) =
⋂

i⩾1 Γi(G).

Any nilpotent tower of groups Q• induces a sequence of functors

· · · −→ ModZ[Qr] −→ ModZ[Qr−1] −→ · · · (9)

sending a Z[Qr]-module V to V ⊗Z[Qr] Z[Qr−1], where we view Z[Qr−1] as a Z[Qr]-module via the ring 
homomorphism Z[Qr] → Z[Qr−1] induced by the given quotient Qr ↠ Qr−1.

Definition 1.5. A pro-nilpotent representation of a group Γ is a choice of pro-nilpotent tower of groups Q•
together with a sequence of functors

Γ −→ ModZ[Qr] (10)

for r ⩾ 2 that commute up to natural isomorphism with (9). Concretely, this means that we have a Γ
representation Vr over Z[Qr] for each r ⩾ 2 and isomorphisms Vr+1⊗Z[Qr+1]Z[Qr] ∼ = Vr of Γ-representations 
over Z[Qr] for each r ⩾ 2.
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Remark 1.6. The condition in Definition 1.1 that Qr must have nilpotency class equal to r implies that the 
tower of representations involved in a pro-nilpotent representation must increase in complexity as r → ∞.

There is also a weaker version of this notion, where we have only natural transformations rather than 
natural isomorphisms.

Definition 1.7. A weakly pro-nilpotent representation of a group Γ is a choice of pro-nilpotent tower of groups 
Q• together with a Γ-representation Vr over Z[Qr] for each r ⩾ 2 and homomorphisms

Vr+1 ⊗Z[Qr+1] Z[Qr] −→ Vr

of Γ-representations over Z[Qr] for each r ⩾ 2.

1.1. Pro-nilpotent representations vs. representations over inverse limits

Notation 1.8. In general, we denote by limr(−) the inverse limit of an inverse system of objects indexed by 
r. For a nilpotent tower of groups Q•, we denote by Q̂• := limr(Qr) its inverse limit. Thus in Example 1.2
we have Q̂• = Ĝnil.

Any representation of Γ over the group-ring Z[Q̂•] induces a pro-nilpotent representation of Γ over the 
pro-nilpotent tower of groups Q•. However, the converse does not hold. For simplicity, let us fix k ⩾ 1 and 
consider only representations that are free modules of rank k over the ground ring. We are thus comparing 
homomorphisms

Γ −→ GLk(Z[Q̂•]) = GLk(Z[lim
r

(Qr)])

with compatible systems of homomorphisms Γ → GLk(Z[Qr]), in other words homomorphisms

Γ −→ lim
r

(GLk(Z[Qr])).

The question is thus whether the canonical homomorphism

GLk(Z[lim
r

(Qr)]) −→ lim
r

(GLk(Z[Qr])) (11)

is an isomorphism of groups, i.e. whether the endofunctor GLk(Z[−]) preserves limits (of this form). When
ever k ⩾ 2 it fails to be an isomorphism:

Lemma 1.9. Let k ⩾ 2 and Q• = G/Γ•(G) for G equal to the Klein bottle group, i.e. the semi-direct product 
Z⋊ Z for the action Z ↷ Z where 1 ∈ Z acts by inversion. Then (11) is not surjective.

Thus pro-nilpotent representations over a pro-nilpotent tower of groups Q• do not all come from repre
sentations over the group-ring Z[Q̂•] of the inverse limit of Q•.

Proof of Lemma 1.9. Let us take k = 2; the general case k ⩾ 2 will follow by an obvious immediate 
generalisation of the following argument. First note that Γr(G) is the subgroup 2r−1Z of Z ⊆ Z ⋊ Z for 
r ⩾ 2 (this may be computed directly, or one may apply [15, Prop. A.4]), so that

Qr = G/Γr(G) = Z/2r−1Z⋊ Z,
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where the generator 1 ∈ Z acts by inversion. The inverse limit Q̂• = Ĝnil is thus Ẑ2 ⋊ Z, where Ẑ2 is the 
2-adic completion of Z. Recall that elements of Ẑ2 may be written as left-infinite strings · · ·a3a2a1 where 
ai ∈ {0, 1} and n ∈ Z ⊆ Ẑ2 corresponds to its expression in binary, continued to the left by an infinite 
string of 0s. The quotient

Ẑ2 −↠ Z/2r−1Z (12)

truncates an infinite string to its rightmost r − 1 digits. Continuing to write in binary, each quotient

Z/2r−1Z −↠ Z/2r−2Z (13)

removes the left-most digit from a string.
An element of the right-hand side of (11) is a compatible sequence Mr of invertible 2 × 2 matrices over 

the ring of polynomials in one variable t, whose exponents are elements of Z/2r−1Z⋊ Z, where compatible 
means that qr(Mr) = Mr−1, where qr applies (13)⋊ idZ to each exponent of t. An element of the left-hand 
side of (11) is an invertible 2× 2 matrix M over the ring of polynomials in one variable t, whose exponents 
are elements of Ẑ2 ⋊ Z. The map (11) is given by applying (12) ⋊ idZ to each exponent of t in M .

Let H be the subgroup of the right-hand side of (11) consisting of sequences Mr, where each Mr is of 
the form (

1 fr
0 1

)
for fr ∈ Z[Z/2r−1Z ⋊ Z]. Thus H is naturally isomorphic to the underlying additive group of the ring 
limr Z[Z/2r−1Z⋊ Z]. The pre-image (11)−1(H) is the subgroup of matrices M of the form(

1 f
0 1

)

for f ∈ Z[Ẑ2⋊Z]; thus it is naturally isomorphic to the underlying additive group of this ring. We therefore 
just have to exhibit an element that is not in the image of the canonical homomorphism

Z[Ẑ2 ⋊ Z] −→ lim
r

Z[Z/2r−1Z⋊ Z],

in other words a compatible sequence fr of polynomials with exponents in Z/2r−1Z ⋊ Z that cannot be 
obtained by truncation from a polynomial with exponents in Ẑ2⋊Z. For example, we may take the sequence

fr =
r−2 ∑
i=0 

(t10···0⋊0 − 1),

where 0 · · · 0 indicates a string of zeros of length i. This sequence cannot arise as truncations of a single 
polynomial with exponents in Ẑ2⋊Z since there is no upper bound on the length (in binary) of the exponents 
in the polynomials fr. �

For completeness, we briefly consider also the case k = 1 of the homomorphism (11). In this case it fails 
to be an isomorphism even in the simpler setting when Q• is a tower of abelian groups:

Lemma 1.10. Let k = 1 and let Q• be the tower of abelian groups where Qr = Z/pr and the maps Z/pr+1 →
Z/pr are reduction modulo pr for a prime p ⩾ 5. Then the map (11) is not surjective.
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Proof. The inclusion of the trivial units {±1} ×G into the group of units Z[G]× of the integral group ring 
Z[G] induces a commutative square

Z[limr(Qr)]× limr(Z[Qr]×)

{±1} × limr(Qr) limr({±1} ×Qr)

(∗)

∼ = 
(∗∗) (14)

whose top horizontal arrow (∗) is the map (11) for k = 1 that we aim to prove is not surjective. The 
bottom horizontal arrow is an isomorphism because the endofunctor {±1} × − preserves limits (as limits 
commute). The limit group limr(Qr) is the additive group of p-adic integers Ẑp, which is torsion-free abelian, 
hence orderable (see [23]), and hence a unique product group (see [24, §13, Lem. 1.7] for instance). As a 
consequence of [30, Th. 1], the group ring of a unique product group has only trivial units when the base 
ring is an integral domain (see [24, §13.1] for further details), so the left-hand vertical arrow in (14) is an 
isomorphism. The maps (∗) and (∗∗) are therefore identified; we will show that (∗∗) is not surjective by 
constructing a compatible family of non-trivial units in the integral group rings Z[Qr] = Z[Z/pr]. Let us 
write Z/pr = 〈ar | (ar)p

r = 1〉 and set ur := 1 − ar + (ar)2 ∈ Z[Z/pr]. Then ur is a non-trivial unit for 
p ⩾ 5 (it is known as the alternating unit based on ar with parameter 3, and is a unit by [29, Lem. 10.6]). 
The maps of group rings Z[Z/pr+1] → Z[Z/pr] induced by reduction modulo pr send ar+1 to ar and hence 
ur+1 to ur, so this is a compatible family of non-trivial units, in other words an element of limr(Z[Qr]×)
that is not in the image of the right-hand vertical map (∗∗) of (14). It follows that (∗) is not surjective. �
2. NCP and eNCP homomorphisms

As recalled in Example 1.2, the lower central series of a group G is the descending filtration of G defined 
by Γ1(G) = G and Γr+1(G) = [G,Γr(G)]. If Γr(G) = Γr+1(G) for some r (hence Γr(G) = Γr+i(G) for all 
i ⩾ 1) we say that the lower central series of G stops (at Γr). The stopping or non-stopping of the lower 
central series of partitioned braid groups and their relatives has been comprehensively studied in [15]. In 
this section, we introduce an analogue of non-stopping lower central series (a property of groups) for group 
homomorphisms (NCP) and for equivariant group homomorphisms (eNCP).

Definition 2.1. A group homomorphism ϕ : K → G is called nilpotency class preserving (NCP) if, for each 
r ⩾ 1, we have ϕ(Γr(K)) 
⊆ Γr+1(G).

Remark 2.2. If ϕ : K → G is NCP, then both K and G have non-stopping lower central series, i.e., we have 
Γr+1(K) 
= Γr(K) and Γr+1(G) 
= Γr(G) for all r ⩾ 1. We also note that the lower central series of a group 
G is non-stopping if and only if the identity id : G → G is NCP. The notion of NCP is thus the natural 
analogue, for group homomorphisms, of the notion of non-stopping lower central series for groups.

Definition 2.3. For any homomorphism ϕ : K → G, define Qr(ϕ) to be the image of the induced homomor
phism

K/Γr −→ G/Γr.

This is a quotient of K/Γr and a subgroup of G/Γr, so it has nilpotency class at most r − 1.

When K is the kernel of a split surjection of G, the subgroup Qr(ϕ) of G/Γr may alternatively be 
characterised as the kernel of the induced split surjection after applying −/Γr:
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Lemma 2.4. Let G ↠ Γ be a split surjection with kernel K and denote the inclusion by ϕ : K → G. Then 
the subgroup Qr(ϕ) of G/Γr is equal to the kernel of the split surjection G/Γr ↠ Γ/Γr.

Proof. This follows from the sequence of equalities

Qr(ϕ) = im(K/Γr → G/Γr) by definition;

= im(K ↠ K/Γr → G/Γr) since K ↠ K/Γr is surjective;

= im(K → G ↠ G/Γr) as (−) → (−)/Γr is natural, cf. [27, Ex. 2.23];

= ker(G/Γr ↠ Γ/Γr) by [27, Lem. 2.24] with Q(−) = (−)/Γr. �
Lemma 2.5. If ϕ : K → G is NCP, then Qr(ϕ) has nilpotency class exactly r − 1.

Proof. We will prove the contrapositive. Suppose that Qr(ϕ) has nilpotency class at most r − 2. Since 
Qr(ϕ) is the image of the composition K → K/Γr → G/Γr, this assumption implies that the kernel of the 
composed map K → G/Γr contains Γr−1(K). But the map K → G/Γr also factors as K → G → G/Γr, so 
its kernel is ϕ−1(Γr(G)). Thus we have ϕ(Γr−1(K)) ⊆ Γr(G) and so ϕ is not NCP. �

Suppose that we have a commutative square of groups

K G

K ′ G′

ϕ

ϕ′

(15)

where the vertical homomorphisms are surjective.

Lemma 2.6. If ϕ′ is NCP then so is ϕ.

Proof. We will prove the contrapositive. Suppose that ϕ is not NCP, so there exists r ⩾ 1 so that ϕ(Γr(K)) ⊆
Γr+1(G). Denote each of the surjections K ↠ K ′ and G ↠ G′ by π. Then

ϕ′(Γr(K ′)) = ϕ′(π(Γr(K))) = π(ϕ(Γr(K))) ⊆ π(Γr+1(G)) = Γr+1(G′)

so ϕ′ is not NCP. �
The following special case gives a useful criterion for a homomorphism to be NCP:

Corollary 2.7. Let ϕ : K → G be a homomorphism and π : G → G′ a surjective homomorphism onto a group 
G′ whose lower central series does not stop, such that π ◦ ϕ is also surjective. Then ϕ is NCP.

Proof. We may set K ′ = G′ and ϕ′ = id in (15). Remark 2.2 implies that id : G′ → G′ is NCP. �
We will also need an equivariant version of the NCP property. Fix a group Γ and consider the category 

of groups equipped with left Γ-actions and Γ-equivariant group homomorphisms.
First, we define the span of a normal subgroup in this category. Let G be a group equipped with a left 

Γ-action and let N be a normal subgroup of G that is Γ-invariant (for example this holds if Γ acts on G
by inner automorphisms or if N is a characteristic subgroup). There is therefore a well-defined induced left 
Γ-action on the quotient group G/N .
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Definition 2.8. The Γ-span 〈N〉Γ ⊆ G is defined to be the kernel of the quotient of G onto the coinvariants 
(G/N)Γ of the induced Γ-action on G/N , that is, the quotient (G/N)/〈ḡ(γ · ḡ)−1 | ḡ ∈ G/N, γ ∈ Γ〉 where 
〈ḡ(γ · ḡ)−1 | ḡ ∈ G/N, γ ∈ Γ〉 denotes the smallest normal subgroup of G/N containing all elements of the 
form ḡ(γ · ḡ)−1 with ḡ ∈ G/N and γ ∈ Γ.

Warning 2.9. This is not the same as the normal subgroup of G generated by the set of elements {γ ·n | γ ∈
Γ, n ∈ N}. For example, if Γ = G acting on itself by conjugation and N is the trivial subgroup, then the 
normal subgroup generated by {γ · n | γ ∈ Γ, n ∈ N} is trivial whereas 〈N〉Γ is the commutator subgroup 
of G.

Definition 2.10. A Γ-equivariant group homomorphism ϕ : K → G is called equivariantly nilpotency class 
preserving (eNCP) if, for each r ⩾ 1, we have ϕ(Γr(K)) 
⊆ 〈Γr+1(G)〉Γ.

Remark 2.11. This recovers Definition 2.1 when Γ is the trivial group, or more generally when Γ is any 
group acting trivially on G, since in this case 〈N〉Γ = N for all characteristic subgroups N ⊆ G.

The notion of eNCP has a lifting property analogous to Lemma 2.6. Suppose that we have a commutative 
square in the category of groups equipped with left Γ-actions:

K G

K ′ G′

ϕ

ϕ′

(16)

where the vertical homomorphisms are surjective. We first need a technical lemma:

Lemma 2.12. Let π : G → G′ be a Γ-equivariant homomorphism and let N ⊆ G be a characteristic subgroup 
such that π(N) ⊆ G′ is also characteristic. Then π(〈N〉Γ) ⊆ 〈π(N)〉Γ.

Proof. This follows from an elementary diagram chase in the commutative square

G G/N (G/N)Γ

G′ G′/π(N) (G′/π(N))Γ,

in which 〈N〉Γ is the kernel of the composition across the top and 〈π(N)〉Γ is the kernel of the composition 
across the bottom. �
Lemma 2.13. In diagram (16), if ϕ′ is eNCP then so is ϕ.

Proof. As usual, we prove the contrapositive. Suppose that ϕ is not eNCP, so there is some r ⩾ 1 so that 
ϕ(Γr(K)) ⊆ 〈Γr+1(G)〉Γ. We thus have (denoting both of the vertical homomorphisms of (16) by π):

ϕ′(Γr(K ′)) = ϕ′(π(Γr(K))) = π(ϕ(Γr(K)))

⊆ π(〈Γr+1(G)〉Γ)

⊆ 〈π(Γr+1(G))〉Γ = 〈Γr+1(G′)〉Γ

where the inclusion on the bottom row follows from Lemma 2.12. Thus ϕ′ is also not eNCP. �
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Corollary 2.14. Let ϕ : K → G be a Γ-equivariant homomorphism and π : G → G′ a surjective, Γ-invariant 
homomorphism onto a group G′ whose lower central series does not stop, such that π ◦ ϕ is also surjective. 
Then ϕ is eNCP.

Proof. Consider the commutative square (16) with K ′ = G′ equipped with the trivial Γ-action (we may do 
this since π : G → G′ is assumed to be Γ-invariant) and ϕ′ = id. By Lemma 2.13 it suffices to prove that 
id : G′ → G′ is eNCP. By Remark 2.11 this is the same as proving that id : G′ → G′ is NCP, ignoring the 
(trivial) Γ-action. By Remark 2.2 this is the same as proving that the lower central series of G′ does not 
stop, which is part of our hypotheses. �
Remark 2.15. Notice that the only additional hypothesis in Corollary 2.14 compared with Corollary 2.7 is 
that the quotient π : G → G′ is Γ-invariant.

We will be particularly interested in the setting of a split short exact sequence

1 K G Γ 1. (17)

The quotient group Γ acts by left-conjugation on G and on K via the given splitting (i.e. its left action is 
γ · g = s(γ)gs(γ)−1 if s denotes the splitting), so the inclusion ϕ : K → G becomes a Γ-equivariant group 
homomorphism.

Remark 2.16. In this setting, Corollary 2.14 implies that a sufficient criterior for ϕ to be eNCP is the 
existence of a surjection G → G′ onto a group G′ whose lower central series does not stop, such that 
the restriction K ↪→ G → G′ is also surjective and the composition Γ --￫ G → G′ has image contained 
in the centre of G′. In our examples, we will typically have the stronger property that the composition 
Γ --￫ G → G′ is the trivial map, so we will be in the following situation:

1 K G Γ 1

G′.

0
(18)

Let ϕ : K → G be a Γ-equivariant homomorphism. Since the terms of the lower central series are charac
teristic, there is a well-defined induced left Γ-action on K/Γr and on G/Γr, and the induced homomorphism 
K/Γr → G/Γr is Γ-equivariant. The image of this homomorphism, which by Definition 2.3 is Qr(ϕ), thus 
also inherits a well-defined induced left Γ-action.

Definition 2.17. In the above setting, we define:

Qu
r (ϕ) = Qr(ϕ)Γ,

in other words Qu
r (ϕ) is the coinvariants of the induced left Γ-action on Qr(ϕ).

The superscript u stands for ``untwisted'', since the purpose of taking this further quotient of K is to 
ensure that the pro-nilpotent representations that we construct in §3 commute with the module structure 
over the group ring of this quotient. This is in contrast to commuting only up to a ``twist'', which would 
give a weaker notion of representation than the usual one. See also Remark 3.4.

As a first observation, note that Qu
r (ϕ) has nilpotency class at most r − 1, since it is a quotient of 

Qr(ϕ), which has nilpotency class at most r− 1. The following lemma, which is the equivariant analogue of 
Lemma 2.5, is the key technical result of this section.



M. Palmer, A. Soulié / Journal of Pure and Applied Algebra 229 (2025) 107952 13

Lemma 2.18. In the setting of a split short exact sequence (17), if ϕ : K → G is eNCP, then the group Qu
r (ϕ)

has nilpotency class exactly r − 1.

Proof. We prove the contrapositive, so we assume that the nilpotency class of Qu
r(ϕ) is at most r − 2 and 

will show that ϕ is not eNCP. Consider the following commutative diagram of groups with left Γ-actions:

K G

K/Γr Qr(ϕ) G/Γr

Qu
r (ϕ) (G/Γr)Γ

ϕ

(19)

Since Qu
r (ϕ) is a quotient of K and has nilpotency class at most r − 2, the kernel of the quotient must 

contain Γr−1(K):

Γr−1(K) ⊆ ker(K ↠ Qu
r (ϕ)).

By commutativity of (19), this implies that

ϕ(Γr−1(K)) ⊆ ker(G ↠ (G/Γr)Γ).

But the right-hand side is the definition of 〈Γr(G)〉Γ, so we have shown that ϕ is not eNCP. �
Outline of the remaining sections. In §3 we consider the quotients Qu

r(ϕ) of the group K in a split short 
exact sequence (17) and apply Lemma 2.18 to see that they have nilpotency class exactly r, assuming the 
eNCP property. This is the key technical ingredient in our general construction of pro-nilpotent representa
tions. In §4--§6, we then consider specific examples of such split short exact sequences and prove the eNCP 
property in each case using Corollary 2.14 in the setting of Remark 2.16, that is, we produce a quotient 
group G′, fitting into diagram (18), whose lower central series does not stop.

3. The general recipe

Let Γ be a group. We first describe a general recipe for constructing homological representations of Γ, 
before explaining how to augment this to produce pro-nilpotent representations. The idea of the general 
recipe is the same as that of [27, §2], although the details of [27, §2] are significantly more involved, as the 
goal there is to construct representations of a family of groups (encoded in a category), rather than a single 
group.

Homological representations. We suppose that we are given three inputs:

(1) A split short exact sequence:

1 K G Γ 1.ϕ (20)

(2) A diagram of based, path-connected spaces:

X Y Z,i f (21)
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where f is a Serre fibration and i is the inclusion of the fibre, that induces (20) on π1.
(3) A quotient K ↠ Q that is invariant under the left Γ-action on K induced by (20).

Remark 3.1. There is a canonical choice of the input (2), given the input (1). Taking classifying spaces, the 
quotient G ↠ Γ induces a map BG → BΓ, which we may assume, up to based homotopy equivalence, is a 
Serre fibration. Its fibre is then a model for the classifying space BK. Taking classifying spaces is functorial, 
so the section of (20) induces a section for (21).

In many of our examples, the input (2) will indeed be of this canonical form, i.e. the spaces X, Y and Z
that we consider will be aspherical (have vanishing higher homotopy groups). However, not in all cases: in 
§6 we apply our general construction to loop braid groups using certain configuration spaces of points and 
loops in the 3-disc for the spaces X, Y and Z, which are not aspherical.

Lemma 3.2. The three inputs above induce a well-defined representation of Γ over the ring Z[Q] for each 
homological degree i ⩾ 0.

Proof. Composing the quotient π1(X) = K ↠ Q with the left regular representation of Q on its group ring 
Z[Q] (i.e. the representation Q → GL1(Z[Q]) defined by q �→ (q · −) where (q · −) is the left multiplication 
by q), we obtain a rank-1 local system on X defined over Z[Q]. Here, a rank-1 local system on X defined 
over a ring R means a left representation of π1(X) on a right R-module that is free of rank 1; equivalently, 
a (Z[π1(X)], R)-bimodule that is free of rank 1 as a right R-module. Let us denote this local system by LQ. 
If X is a sufficiently nice space so that it admits a universal cover (as it always will be in our examples), this 
local system may equivalently be viewed as a bundle of right Z[Q]-modules over X, constructed as follows: 
the quotient π1(X) = K ↠ Q corresponds to a regular covering XQ → X with deck transformation group 
Q (acting on the right); taking free abelian groups fibrewise turns this into a bundle of right Z[Q]-modules, 
which is the local system LQ.

The fundamental group of the base of any Serre fibration acts (on the left) by homotopy automorphisms 
on its fibre (see for example [28, §2] for the construction, although this is a classical fact). Thus we have a 
left Γ-action

Γ = π1(Z) −→ π0(hAut(X)), (22)

where hAut(X) is the grouplike topological monoid of homotopy automorphisms of X (i.e. it is a monoid 
under composition, which is continuous with respect to the compact-open topology, and the discrete monoid 
π0(hAut(X)) is a group). The assumption that K ↠ Q is Γ-invariant means that the local system LQ on 
X is invariant under the action (22). There is therefore a well-defined induced (left) action on the twisted 
homology of X with local system LQ in any degree i ⩾ 0:

Γ −→ AutZ[Q](Hi(X;LQ)). (23)

This is a representation over Z[Q] since the local system LQ is defined over Z[Q]. More precisely, it is a left 
representation of Γ in the category of right Z[Q]-modules. �

If the space X is locally compact, we may alternatively take twisted Borel-Moore homology in the last 
step of the above proof, to obtain another representation

Γ −→ AutZ[Q](HBM
i (X;LQ)) (24)

of Γ over Z[Q] for each degree i ⩾ 0. We recall that the Borel-Moore homology group HBM
i (X;LQ) may be 

defined as the inverse limit limA∈cpt(X)(Hi(X,X ∖ A;LQ)), where cpt(X) denotes the set of all compact 
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subsets of X partially ordered by inclusion. We also refer the reader to [13, Chap. V] for a detailed intro
duction to Borel-Moore homology. The principal reason why we work with Borel-Moore homology instead 
of ordinary homology is the structural result of Theorem 3.9 that we shall recall below.

Weakly pro-nilpotent homological representations. To construct weakly pro-nilpotent representations of Γ, 
we fix inputs (1) and (2) from above and allow input (3) (a Γ-invariant quotient of K) to vary. More 
precisely, we construct a canonical tower of Γ-invariant quotients of K determined by the split short exact 
sequence (20). Lemma 2.18 will then imply that this tower is pro-nilpotent as long as (20) is eNCP.

The construction is summarised in the following diagram. See [6] for similar diagrams, involving a single 
level of nilpotence, in the setting of surface braid groups.

K G Γ
ϕ

Q∞ G/Γ∞ Γ/Γ∞
Qu

∞

lim(Q•) Ĝnil Γ̂nil
lim(Qu

•)

Qr+1 G/Γr+1 Γ/Γr+1
Qu

r+1

Qr G/Γr Γ/Γr

Qu
r

Q2 Gab Γab

Qu
2

(25)

The top row is the split short exact sequence (20). We first describe the second-to-bottom row, where 
r ⩾ 2. The right-hand side is obtained by applying the functorial construction −/Γr (quotienting a group 
by the r-th term in its lower central series) to the right-hand side of (20). We then define Qr to be the 
kernel of the induced surjection G/Γr ↠ Γ/Γr. By Lemma 2.4, this coincides with the definition of Qr(ϕ)
in Definition 2.3; here we abbreviate it to Qr to avoid cluttering the diagram. There is an induced action 
of Γ on Qr given by projecting Γ onto Γ/Γr, following the section to G/Γr and then acting by conjugation 
on Qr. The quotient Qu

r is defined to be the coinvariants of this action; this coincides with Definition 2.17; 
we are again abbreviating Qu

r (ϕ) to Qu
r .

This describes the second-to-bottom row for any r ⩾ 2. The third-from-bottom row is the same, replacing 
r with r + 1; it has a canonical surjection onto the second-from-bottom row since the lower central series is 
a descending series. The bottom row is simply the r = 2 instance of the second-from-bottom row; note that 
quotienting by Γ2 is the same as abelianisation. In the case r = 2, the Γ-action on Q2 is trivial, since this 
action is given by conjugation in the abelian group G/Γ2 = Gab. Hence in this case Qu

2 = Q2.
This explains the bottom three rows, which in fact represent an infinite tower of 4-term rows indexed by 

integers r ⩾ 2. The third-from-top row is defined by taking inverse limits of these four towers. On the right
hand side this gives us the pro-nilpotent completions of G and of Γ, by Definition 1.3. Taking pro-nilpotent 
completions is functorial, so the homomorphism Ĝnil → Γ̂nil is again a split surjection, as indicated in the 
diagram.
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The second-from-top row is constructed just as the second-from-bottom row, except that we quotient 
by the residue Γ∞, which is the intersection of all finite terms in the lower central series. In general, the 
canonical homomorphism G → Ĝnil of a group to its pro-nilpotent completion factors as the quotient by 
its residue G ↠ G/Γ∞ followed by an injection (see Remark 1.4); this is why we have vertical injections 
G/Γ∞ ↪→ Ĝnil and Γ/Γ∞ ↪→ Γ̂nil in the diagram. The vertical injection Q∞ ↪→ lim(Q•) then follows by 
commutativity. This completes the construction of diagram (25).

For completeness, we mention that the composed vertical morphisms G/Γ∞ → G/Γr are surjective for 
every r (this does not follow from the information given in the diagram). Similarly for the vertical morphisms 
Γ/Γ∞ → Γ/Γr and Q∞ → Qr and Qu

∞ → Qu
r . Finally, we note that the two arrows that are not decorated as 

surjections or injections in the diagram are deliberately so: they are not tautologically injective or surjective 
in general.

Lemma 3.3. Suppose we are given inputs (1) and (2) and assume that ϕ in (20) is eNCP. Then this deter
mines a well-defined weakly pro-nilpotent representation of Γ for each i ⩾ 0.

Proof. Input (1), namely the split short exact sequence (20), induces diagram (25), in particular it induces 
the tower Qu

• of groups in the bottom-left of this diagram. Since ϕ is eNCP, Lemma 2.18 implies that Qu
r

has nilpotency class exactly r − 1. Thus Qu
• is a nilpotent tower of groups in the sense of Definition 1.1.

The quotient K ↠ Qu
r in diagram (25) is Γ-invariant by construction, so we may apply Lemma 3.2 with 

this quotient as input (3) to obtain the representation Vr = Hi(X;LQu
r
) of Γ over Z[Qu

r ].
To complete the construction of a weakly pro-nilpotent representation, we must now construct comparison 

homomorphisms

Vr+1 ⊗Z[Qu
r+1] Z[Qu

r ] −→ Vr (26)

of Γ-representations over Z[Qu
r ]. To do this, first recall that, for any space X, local system L on X defined 

over R and ring homomorphism θ : R → S, there is a canonical homomorphism

Hi(X;L) ⊗R S −→ Hi(X;L ⊗R S) (27)

of S-modules commuting with the action of π0(hAut(X)). This is one of the maps appearing in the univer
sal coefficient theorem, although we only need its existence. If we take R = Z[Qu

r+1] and S = Z[Qu
r ], 

with θ induced by the quotient Qu
r+1 ↠ Qu

r , and set L = LQu
r+1 , then (27) becomes (26) since 

LQu
r+1 ⊗Z[Qu

r+1] Z[Qu
r ] = LQu

r
. It is a homomorphism of Γ-representations since the action of Γ factors 

through π0(hAut(X)). �
If X is locally compact, we may alternatively apply Borel-Moore homology (24) rather than ordinary 

homology (23), in which case we set Vr = HBM
i (X;LQu

r
). We then construct the comparison homomorphisms 

(26) as follows. The canonical homomorphism (27) exists also for relative homology. Quantifying over all 
compact subsets A ⊆ X and taking inverse limits, we obtain:

HBM
i (X;L) ⊗R S = lim 

A∈cpt(X)
(Hi(X,X ∖A;L)) ⊗R S

→ lim 
A∈cpt(X)

(Hi(X,X ∖A;L) ⊗R S)

→ lim 
A∈cpt(X)

(Hi(X,X ∖A;L ⊗R S))

= HBM
i (X;L ⊗R S).

(28)
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The first arrow above is induced by the universal property of limA∈cpt(X)(Hi(X,X ∖ A;L) ⊗R S) as an 
inverse limit (it is not in general an isomorphism since −⊗R S does not commute with inverse limits), while 
the second arrow is the map induced by taking the inverse limit of the homomorphisms analogous to (27)
in relative homology (its failure to be an isomorphism in general is controlled by the universal coefficient 
theorem). Specialising as above, this gives us (26) in the Borel-Moore setting.

Remark 3.4. If, in Lemma 3.3, we make the weaker assumption that ϕ in (20) is NCP, rather than eNCP, 
then we may apply the same construction using the tower of quotients Q• of K instead of Qu

•. However, 
since the quotients K ↠ Qr are not in general Γ-invariant (although their kernels are preserved by the 
Γ-action), we obtain representations Hi(X;LQr

) of Γ that commute with the Z[Qr]-module structure only 
up to a ``twist''.

Lifting to representations over a pro-nilpotent group. As an aside, we observe that, given the same inputs 
as in Lemma 3.3, the weakly pro-nilpotent representation over Qu

• constructed in that lemma may be lifted 
to a representation over Z[lim(Qu

•)].

Lemma 3.5. Suppose we are given inputs (1) and (2) and assume that ϕ in (20) is eNCP. Then this deter
mines a representation of Γ over the integral group ring of the pro-nilpotent group lim(Qu

•), which lifts the 
weakly pro-nilpotent representation of Γ over Qu

• from Lemma 3.3.

Proof. Consider just the top two rows of diagram (25). The quotient K ↠ Qu
∞ is Γ-invariant by construction, 

so Lemma 3.2 constructs a representation V∞ = Hi(X;LQu
∞) of Γ over Z[Qu

∞]. This lifts the representation 
Vr = Hi(X;LQu

r
) of Γ over Z[Qu

r ] in the sense that there are homomorphisms

V∞ ⊗Z[Qu
∞] Z[Qu

r ] −→ Vr, (29)

constructed exactly as in the proof of Lemma 3.3. The homomorphisms (29) are compatible with the 
comparison homomorphisms (26), so the representation V∞ of Γ over Z[Qu

∞] lifts the (weakly) pro-nilpotent 
representation V• of Γ over Qu

• constructed in Lemma 3.3.
This is not yet exactly what we want, which is a representation over Z[lim(Qu

•)]. We cannot construct 
this directly, since the homomorphism K → lim(Qu

•) in diagram (25) is not necessarily surjective. Also, the 
homomorphism Qu

∞ → lim(Qu
•) in diagram (25) is not necessarily injective, so we also cannot simply consider 

V∞ as a representation over Z[lim(Qu
•)] by inclusion of rings. Instead, let us denote by Qu

lim the image of the 
homomorphism Qu

∞ → lim(Qu
•) in diagram (25). The homomorphism K → Qu

lim from diagram (25) is thus 
surjective by construction, so the (weakly) pro-nilpotent representation V• lifts to a representation Vlim of 
Γ over Z[Qu

lim] by a verbatim repeat of the previous paragraph with Qu
∞ replaced by Qu

lim. Since Z[Qu
lim] is 

now a subring of Z[lim(Qu
•)], this finishes the desired construction. �

We note that the above construction goes through equally well if we work with Borel-Moore homology 
instead of ordinary homology.

Remark 3.6. This is in contrast to the general situation of (weakly) pro-nilpotent representations over a 
pro-nilpotent tower of groups vs. representations over the group-ring of the inverse limit of the tower: in §1
(see Lemma 1.9) we observed that a lift does not always exist in general.

Genuine pro-nilpotent homological representations. We now consider conditions on the space X guarantee
ing that the above weakly pro-nilpotent representations are in fact genuine pro-nilpotent representations, 
i.e. the comparison homomorphisms (26) are isomorphisms.
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Lemma 3.7. Let X be a space, L a local system on X over R and θ : R → S a ring homomorphism. Let 
X ′ ⊆ X be a subspace such that the inclusion induces isomorphisms on twisted Borel-Moore homology for 
all local systems on X. Suppose moreover that X ′ is homeomorphic to a disjoint union of copies of Rk for 
fixed k ⩾ 0. Then (28) is an isomorphism.

Proof. Consider the commutative square:

HBM
i (X ′;L) ⊗R S HBM

i (X ′;L ⊗R S)

HBM
i (X;L) ⊗R S HBM

i (X;L ⊗R S).

The vertical maps are isomorphisms by hypothesis. The top horizontal map is an isomorphism since both 
sides are canonically isomorphic to the free S-module generated by the components of X ′. Note that all 
local systems on X ′ are trivial, in other words untwisted, since it has contractible components. Hence the 
bottom horizontal map is also an isomorphism. �

The hypotheses of Lemma 3.7 appear a little ad hoc, but they occur very naturally when the space X is 
a (partitioned) configuration space of points, as we discuss shortly. First, we combine Lemmas 3.3 and 3.7
to prove:

Corollary 3.8. Suppose we are given inputs (1) and (2). Assume that ϕ in (20) is eNCP. Assume also that 
X is locally compact and that there is a subspace X ′ of X, homeomorphic to a disjoint union of copies of Rk

for a fixed k ⩾ 0, such that the inclusion X ′ ↪→ X induces isomorphisms on twisted Borel-Moore homology 
for all local systems on X. Then this determines a well-defined (genuine) pro-nilpotent representation of Γ.

Proof. Since X is locally compact, we may apply the Borel-Moore variant of the construction in Lemma 3.3
to obtain a weakly pro-nilpotent representation (Vr)r⩾2 of Γ with comparison homomorphisms (26) = (28). 
Lemma 3.7 implies that these are isomorphisms, so this is in fact a genuine pro-nilpotent representation. �

In our examples, the space X will typically be a partitioned configuration space

Ck(N) = {(p1, . . . , pk) ∈ Nk | pi 
= pj for i 
= j}/Sk,

where N is a manifold, k = (k1, . . . , kl) is an l-tuple of positive integers summing to k ⩾ 1 and Sk =
Sk1 × · · · ×Skl

, considered as a subgroup of Sk.
In [26, Th. 2.1], we prove the following theorem, which gives sufficient conditions for an inclusion of 

configuration spaces to induce isomorphisms on twisted Borel-Moore homology. It is a generalisation of a 
result originally due to Bigelow [10, Lem. 3.1], and also recovers, as special cases, similar results appearing 
in [1, Lem. 3.3], [3, Th. 6.6] and [12, Th. A(a)].

Theorem 3.9 ([26, Th.   2.1]). Let M be a compact metric space with closed subspaces A ⊆ B ⊆ M , where 
M and B are locally compact. Suppose that there exists a strong deformation retraction h of M onto B, in 
other words a map h : [0, 1] ×M → M satisfying the following two conditions:

• h(t, x) = x whenever t = 0 or x ∈ B,
• h(1, x) ∈ B for all x ∈ M ,

such that moreover the following two additional conditions hold:
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• h(t,−) is non-expanding for all t, i.e. d(x, y) ⩾ d(h(t, x), h(t, y)) for all x, y ∈ M ,
• h(t,−) is a topological self-embedding of M for all t < 1.

Then, for any k = (k1, . . . , kl), the inclusion of configuration spaces

Ck(B ∖A) ↪−→ Ck(M ∖A) (30)

induces isomorphisms on Borel-Moore homology in all degrees and for all local coefficient systems on Ck(M∖

A) that extend to Ck(M).

Corollary 3.10. Let M be a compact manifold with boundary, Λ ⊆ M an embedded finite graph and A ⊆
Λ ∩ ∂M a subspace such that Λ ∖ A is a disjoint union of open intervals. Suppose that there is a strong 
deformation retraction of M onto Λ satisfying the two additional conditions of Theorem 3.9 with respect to 
some metric on M . Then, for any k = (k1, . . . , kl), the space X = Ck(M ∖ A) satisfies the hypotheses of 
Corollary 3.8.

Proof. We may apply Theorem 3.9 and take X ′ = Ck(Λ ∖ A). Since A is contained in ∂M , the inclusion 
Ck(M ∖ A) ⊆ Ck(M) is a homotopy equivalence, so all local coefficient systems on Ck(M ∖ A) extend to 
Ck(M). Moreover, any configuration space on a disjoint union of open intervals is homeomorphic to a disjoint 
union of copies of Rk, where k is the total number of points in a configuration. Thus X admits a subspace 
X ′ with the required properties. Finally, X = Ck(M ∖A) is locally compact since it is a manifold. �
Outlook 3.11. To summarise, in order to construct weakly pro-nilpotent representations of Γ it suffices to 
construct inputs (1) and (2) -- in other words a split fibration sequence (21) whose induced split short exact 
sequence of fundamental groups is (20) -- and to check that the inclusion ϕ : K ↪→ G in (20) is eNCP (this 
is Lemma 3.3). If the space X of (21) is of the form X = Ck(M ∖ A) as in Corollary 3.10, then we obtain 
a genuine pro-nilpotent representation of Γ (by Corollaries 3.8 and 3.10).

In §4--§6 we apply this recipe in many different settings where Γ is either a classical braid group, surface 
braid group or loop braid group. For classical and surface braid groups (§4 and §5) we carry out the full recipe 
– constructing (21), proving that ϕ is eNCP and checking that X has the form described in Corollary 3.10
– and thus obtain genuine pro-nilpotent representations of these groups. On the other hand, for loop braid 
groups (§6) the space X in our construction is not of the right form to apply Corollary 3.10, so for these 
groups we only construct weakly pro-nilpotent representations. The reason is that, in this setting, X is 
either a configuration space involving higher-dimensional objects than just points, or it is a configuration 
space of points in a manifold that does not deformation retract onto a graph as in Corollary 3.10.

4. Classical braid groups

In this section, we prove Theorems A, B and C: we construct the pro-nilpotent LKB representation in 
§4.1, the ribbon-Lawrence representations in §4.2 and we compute explicit matrices for the second ribbon
Lawrence representation, which is also in a sense the ``limit'' of the pro-nilpotent LKB representation, 
in §4.3.

4.1. The pro-nilpotent LKB representation

We apply the general construction of §3 to prove Theorem A.

Proof of Theorem A. Consider the split fibration sequence (cf. [16, Th. 3])

C2(Dn) C2,n(D2) Cn(D2), (31)
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where Dn denotes the disc D2 minus n interior points and Ck( ) for a partition k denotes the partitioned 
configuration space (defined just before Theorem 3.9). By Lemma 3.3, this determines a weakly pro-nilpotent 
representation of Bn = π1(Cn(D2)) as long as the inclusion ϕ in the induced split short exact sequence of 
fundamental groups

1 B2(Dn) B2,n Bn 1,ϕ (32)

is eNCP. By Corollary 2.14 (see also Remark 2.16), it will suffice to construct a quotient π : B2,n ↠ G′

fitting into the diagram

1 B2(Dn) B2,n Bn 1

G′

ϕ

π
0

(33)

where the lower central series of G′ does not stop. We will construct this for G′ = Z2
⋊ S2, whose lower 

central series does not stop by [15, Prop. A.28].
To construct the desired quotient B2,n ↠ Z2

⋊S2, we follow the proof of [15, Prop. 3.12], where we set 
l = 2. It is shown there that the quotient B2,n/Γ∞ is isomorphic to Z × (Z2

⋊ Z), where a generator of 
the last Z factor acts on the Z2 factor by swapping the coordinates. This action has order two, so we may 
project the last Z factor onto Z/2 = S2, and also project away from the first (direct) Z factor, to obtain a 
quotient onto Z2

⋊S2.
As shown in [15, proof of Proposition 3.12], the generator σ1 of B2,n (a half-twist of the first two strands) 

is sent to the generator s of S2 in this quotient and the generator a13 of B2,n (a pure braid where all 
strands are vertical except the first one, which winds once around the third strand) is sent to the element 
(1, 0) ∈ Z2 ⊆ Z2

⋊S2 in this quotient. Since the two elements s and (1, 0) generate Z2
⋊S2 and their pre

images σ1 and a13 lie in the subgroup B2(Dn), it follows that the restriction of the surjection B2,n ↠ Z2
⋊S2

to B2(Dn) is also surjective.
The quotient B2,n ↠ Z2

⋊S2 may be thought of as recording the winding numbers of the two config
uration points in the first block of the partition around the n configuration points in the second block (in 
the Z2 factor) together with the induced permutation of the 2-point block in the base configuration (in the 
S2 factor). From this description it is clear that its composition with the section Bn --￫ B2,n is zero.

We have thus constructed the quotient G′ = Z2
⋊ S2 with the necessary properties, so ϕ is eNCP by 

Corollary 2.14 and Lemma 3.3 implies that (32) induces a weakly pro-nilpotent representation of Bn.
To see that this is a genuine pro-nilpotent representation, we apply Corollary 3.10. Let M be the 2-disc 

with the interiors of n pairwise disjoint closed discs removed, let A be the union of its n inner boundary 
circles and let Λ be the embedded finite graph in M given by the union of A with n−1 arcs passing between 
consecutive boundary circles (see Fig. 1). It is easy to construct an appropriate deformation retraction of 
M onto Λ, so Corollary 3.10 implies that the configuration space X = C2(Dn) ∼ = C2(M ∖ A) satisfies the 
hypotheses of Corollary 3.8, which implies that the weakly pro-nilpotent representation of Bn that we have 
constructed is a (genuine) pro-nilpotent representation.

Finally, we consider the bottom (r = 2) level of this pro-nilpotent representation. This is constructed 
from

1 B2(Dn) B2,n Bn 1

1 Q2 Bab
2,n Bab

n 1.

(34)
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For n ⩾ 2, we have Bab
2,n

∼ = Z3 (see for example [15, Prop. 3.5]) and Bab
n

∼ = Z, so Q2 ∼ = Z2. Moreover, the 
quotient B2(Dn) ↠ Q2 ∼ = Z2 precisely corresponds to the local system L2 from the definition of the LKB 
representation (1); thus the r = 2 level of our pro-nilpotent representation of Bn is the LKB representation. 
This concludes the proof of Theorem A. �
4.2. Ribbon Lawrence representations

Let us consider in more detail the top two rows of diagram (25) in the setting of §4.1:

1 B2(Dn) B2,n Bn 1

1 Q∞ B2,n/Γ∞ Bn/Γ∞ 1.

(35)

For n ⩾ 2, we have Γ2(Bn) = Γ∞(Bn) (by [18] for n ⩾ 5 and [15, Example 2.3] for n ⩾ 2) and so 
Bn/Γ∞ = Bab

n
∼ = Z. For n ⩾ 3, we also have B2,n/Γ∞ ∼ = Z × (Z2

⋊ Z), where, as described above, the 
right-hand Z factor acts on the Z2 factor by powers of the involution interchanging the two coordinates 
[15, Prop. 3.12]. Moreover, from the proof of [15, Prop. 3.12], one sees that, under these identifications, the 
projection B2,n/Γ∞ ↠ Bn/Γ∞ is the projection onto the left-hand Z factor. From this calculation we may 
conclude the following.

• We have Q∞ ∼ = Z2
⋊ Z, where 1 ∈ Z acts on Z2 by swapping the two coordinates.

• The induced Bn-action on Q∞ is trivial, since B2,n/Γ∞ is the direct product of Q∞ and Bn/Γ∞. Hence 
we have Qu

∞ = Q∞.
• For each finite r ⩾ 2, the homomorphism Q∞ → Qr is surjective (cf. the paragraph just before 

Lemma 3.3) and Bn-equivariant (because the Bn-actions on Q∞ and on Qr are both induced by the 
commutative diagram (25)), so it follows from the previous point that the induced Bn-action on Qr is 
also trivial, and so we have Qu

r = Qr.

This establishes the k = 2, n ⩾ 3 case of Theorem B. We next prove Theorem B for all k, n ⩾ 2.

Proof of Theorem B. We first observe that, for any inclusion of surfaces e : S ↪→ T , there is a homomorphism

Bk(S) −→ π1(S) �Bk(T ) := π1(S)k ⋊ Bk(T ), (36)

defined as follows. Choose an ordering 
c = (c1, . . . , ck) of the base configuration c of Ck(S) and an embedded 
disc ι : D2 ↪→ S whose image contains c. Given a loop β ∈ Bk(S) = π1(Ck(S), c), we may lift it uniquely 
to a path (γ1, . . . , γk) in the ordered configuration space Fk(S) starting at 
c. Each path γi in S begins 
and ends in the image of ι, so collapsing ι(D2) to a point and identifying the resulting surface S/ι(D2)
with S, we obtain a collection of loops γ̄i in π1(S). The homomorphism (36) is then defined to send β to 
((γ̄1, . . . , γ̄k), e ◦ β).

Applying (36) in the case (T, S) = (D2,Dn), together with the projection π1(Dn) ∼ = Fn ↠ Z sending 
each generator of a free basis for π1(Dn) to 1 ∈ Z, we obtain a quotient

Bk(Dn) −↠ Z � Bk = RBk (37)

onto the k-th ribbon braid group. Explicitly, a braid β = (γ1, . . . , γk) ∈ Bk(Dn) is sent to the element 
((w1, . . . , wk), β) ∈ Zk

⋊Bk = Z �Bk, where γi is the strand of β starting at ci and wi is the total winding 
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number of the loop γ̄i in Dn/ι(D2) ∼ = Dn. Notice that, in the case where k = 2, we have RB2 = Z�Z = Z2
⋊Z

and in addition the quotient (37) coincides with the quotient onto Q∞ = Z2
⋊Z from diagram (35) if n ⩾ 3

(this follows from the explicit description of the quotient B2,n ↠ B2,n/Γ∞ from the proof of [15, Prop. 3.12]).
The homomorphism (36) is equivariant with respect to the evident action of the group of diffeomorphisms 

of T that send S onto itself. In the case (T, S) = (D2,Dn) this means that the homomorphism

Bk(Dn) −→ π1(Dn) �Bk (38)

is Bn-equivariant, where the Bn-action on Bk is trivial and its action on π1(Dn) ∼ = Fn is the Artin repre
sentation. The projection p : Fn ↠ Z is clearly Bn-invariant, hence so is (p � id) ◦ (38) = (37).

Since the quotient (37) of π1(Ck(Dn)) is Bn-invariant, we may apply twisted Borel-Moore homology to 
obtain an induced Bn-action on the Z[RBk]-module

VR(k) := HBM
k (Ck(Dn);LRBk

),

where LRBk
is the local system on Ck(Dn) corresponding to (37). This is the desired representation RLk

of Theorem B. The k-th Lawrence representation (2) is

Vk = HBM
k (Ck(Dn);Lk),

where Lk is the local system on Ck(Dn) corresponding to the quotient Bk(Dn) ↠ Z2 sending a braid 
β = (γ1, . . . , γk) ∈ Bk(Dn) to (w, b), where w is the total winding number of all strands of the braid β
around the punctures of Dn and b ∈ Bab

k = Z is the abelianisation of β viewed as a braid in D2. Notice that, 
in terms of the explicit description of (37) above, we have w = w1 + · · ·+wk. Hence this quotient factors as

Bk(Dn) RBk = Z � Bk (Z � Bk)ab = Z× Bab
k = Z2.

(37) (∗) (39)

If we use the projection (∗) from (39) to view Z[Z2] as a Z[RBk]-module, we have an isomorphism L2 ∼ = 
LRBk

⊗Z[RBk] Z[Z2], and hence:

VR(k) ⊗Z[RBk] Z[Z2] = HBM
k (Ck(Dn);LRBk

) ⊗Z[RBk] Z[Z2]
∼ = HBM

k (Ck(Dn);LRBk
⊗Z[RBk] Z[Z2])

∼ = HBM
k (Ck(Dn);L2) = Vk = (2),

where the middle isomorphism follows from the fact that HBM
k (Ck(Dn);L), for any rank-1 local system L

over a ring R, is a free R-module; this latter fact follows from Corollary 3.10 exactly as in the proof of 
Theorem A above. Thus we have shown that VR(k) recovers (2) after reducing along the abelianisation of 
RBk. This concludes the proof of Theorem B except for its last statement, which was already explained in 
the paragraph before this proof. �
Remark 4.1. The definition of the homomorphism (36) is inspired by the definition of the homomorphism 
πS of [15, §6.2.1]. Indeed, the latter is the composition of (36) for S = T with the canonical quotient of 
π1(S) �Bk(S) onto π1(S) �Sk.

Remark 4.2. We note that the group RB2 ∼ = Z2
⋊ Z is residually nilpotent but not nilpotent, so its lower 

central series does not stop (cf. [15, Prop. A.10]), which is a necessary condition for inducing a pro-nilpotent 
representation. On the other hand, for k ⩾ 3, the lower central series of RBk stops at Γ2, so RLk does not 
induce a pro-nilpotent representation in this case.
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Fig. 1. The connected, compact, planar surface M with n + 1 boundary components. The subspace A is the union of its n inner 
boundary components; the embedded graph Λ is the union of A with the n − 1 arcs depicted.

4.3. Formulas for the three-variable LKB representation

We now consider in more detail the representation RL2 of Bn on the Z[RB2]-module VR(2). Recall from 
the introduction that we write:

Θ = Z[RB2] = Z[Z2
⋊ Z] = Z〈q±1

1 , q±1
2 , t±1〉/(q1q2 = q2q1, q1t = tq2, q2t = tq1).

As a Θ-module, VR(2) is free of rank 
(
n
2 
)

(we will recall an explicit basis below), so each generator σi of Bn

acts by an 
(
n
2 
)
×
(
n
2 
)

matrix over Θ. Our goal in the remainder of this section is to prove Theorem C, which 
states that this matrix is the one described in Table 1.

Basis. We first describe a basis of VR(k) over Θ for all k ⩾ 1 (we will later come back to the special case 
k = 2). As in the proof of Theorem A above, let M be the 2-disc with the interiors of n pairwise disjoint 
closed discs removed, let A be the union of its n inner boundary circles and let Λ be the embedded finite 
graph in M given by the union of A with n − 1 arcs passing between consecutive boundary circles; see 
Fig. 1.

There is then a strong deformation retraction of M onto B = Λ satisfying the conditions of Theorem 3.9, 
so that theorem implies that the inclusion In := Λ ∖A ↪→ M ∖A ∼ = Dn induces an isomorphism

HBM
k (Ck(In);LRBk

) ∼ = HBM
k (Ck(Dn);LRBk

) = VR(k).

Since In is a disjoint union of open n − 1 intervals, the configuration space Ck(In) is a disjoint union of 
open k-balls indexed by tuples (k1, . . . , kn−1) of non-negative integers summing to k. The path-component 
corresponding to the tuple (k1, . . . , kn−1) naturally identifies with the product of open simplices Δ̊k1 ×· · ·×
Δ̊kn−1 , which is homeomorphic to an open k-ball. In particular, each path-component is simply-connected, 
so the restriction of the local system LRBk

to Ck(In) is trivial. We deduce:

Proposition 4.3. As a module, the representation VR(k) ∼ = HBM
k (Ck(In);LRBk

) has a free basis over Z[RBk]
indexed by tuples (k1, . . . , kn−1) of non-negative integers summing to k. A generator corresponding to this 
tuple is given by the fundamental class of the properly-embedded submanifold L(k1, . . . , kn−1) of Ck(Dn)
equal to the subspace of all configurations where exactly ki points lie on the i-th open interval of In = Λ∖A.

Intersection form. We now note that the subspace C∂
k (Dn) ⊂ Ck(Dn) consisting of configurations that 

intersect the boundary ∂Dn = ∂D2 non-trivially is preserved under the Bn-action. This is in fact precisely 
the boundary of the manifold Ck(Dn). Thus, instead of applying twisted Borel-Moore homology HBM

k to the 
space Ck(Dn) equipped with the (Bn-invariant) local system LRBk

, we may alternatively apply ordinary 
(relative) homology to the pair of spaces (Ck(Dn), C∂

k (Dn)) equipped with the same local system, to obtain 
another Bn-representation

VR(k)∂ := Hk(Ck(Dn), C∂
k (Dn);LRBk

)
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Fig. 2. Vertical closed intervals determining an element of VR(k)∂ . In this case, we have n = 5, k = 12 and the element corresponds 
to the tuple (3, 3, 3, 3).

over Z[RBk]. For each tuple (k1, . . . , kn−1) of non-negative integers summing to k, consider the submanifold 
L(k1, . . . , kn−1)∂ of Ck(Dn) consisting of configurations where exactly one point lies on each vertical closed 
interval from Fig. 2, where there are exactly ki such intervals between the i-th and (i+1)-st inner boundaries 
of M . This is a compact, contractible submanifold (homeomorphic to the k-cube [0, 1]k) whose boundary lies 
in C∂

k (Dn), so it has a fundamental class in VR(k)∂ . These classes are ``dual'' to the basis of Proposition 4.3
with respect to the following bilinear form.

Definition 4.4. The intersection form

〈− ,−〉 : VR(k) ⊗ VR(k)∂ −→ Z[RBk] (40)

is defined by 〈x , y〉 = x∨ ∩ y, where x∨ ∈ Hk(Ck(Dn), C∂
k (Dn);LRBk

) is the Poincaré dual of x and ∩ is 
the relative cap product, taking values in H0(Ck(Dn);LRBk

) ∼ = Z[RBk].

For the fundamental classes described above, we have

〈
[L(k1, . . . , kn−1)] , [L(k′1, . . . , k′n−1)∂ ]

〉
=

{
1 if (k1, . . . , kn−1) = (k′1, . . . , k′n−1)
0 otherwise.

(41)

As a consequence, the elements [L(k1, . . . , kn−1)∂ ] ∈ VR(k)∂ are linearly independent over Z[RBk] and if 
we decompose an element x ∈ VR(k) as a linear combination in the basis [L(k1, . . . , kn−1)], the coefficients 
of this decomposition are 〈x , [L(k1, . . . , kn−1)∂ ]〉.

Remark 4.5. We have elided a small subtlety above, namely that the fundamental class of a submanifold 
determines a homology class only up to the action of a unit of the ground ring, in this case Z[RBk]× =
{±1}×RBk. To resolve the {±1} ambiguity we may choose an orientation of the submanifold and to resolve 
the RBk ambiguity we may choose a path from a point on the submanifold to the basepoint of Ck(Dn)
(two choices of such a path differ by an element of π1(Ck(Dn)), which projects to an element of RBk). We 
assume that we have made such choices above so that (41) holds as written; without fixing these choices we 
can only say that (41) is equal to a unit when (k1, . . . , kn−1) = (k′1, . . . , k′n−1), not necessarily 1. We will 
now make these choices explicit in the case k = 2.

Explicit orientations and paths to the basepoint. We now specialise to the case k = 2. In this case, the 
homology elements under consideration are fundamental classes of embedded surfaces in the 4-manifold 
C2(Dn), and come in two kinds: those with ki = 2 for some i and those with ki = kj = 1 for some i 
= j

(and all other kl = 0). In this case, we will make explicit choices, for each embedded surface in C2(Dn), of 
an orientation and a path to the basepoint. The chosen paths to the basepoint are illustrated in Fig. 3. The 
orientations are determined by chosen orientations of the arcs (also illustrated in Fig. 3), together with the 
paths to the basepoint, as prescribed by the following convention.
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Fig. 3. Chosen paths to the basepoint of C2(Dn) for the embedded surfaces L(k1, . . . , kn−1) (top row) and L(k1, . . . , kn−1)∂ (bottom 
row) for a tuple (k1, . . . , kn−1) of non-negative integers summing to 2. On the left is the case when ki = 2 for some i and on the 
right is the case when ki = kj = 1 for some i ⩾ j. We consider any 2-point configuration contained in the bottom edge of the 
rectangle to be the basepoint: this ambiguity does not matter since this subspace of C2(Dn) is contractible.

Convention 4.6. Let p = (p1, p2) ∈ C2(Dn) be the endpoint of the path to the basepoint that lies on the 
embedded surface in question. We order the two points p1, p2 of this configuration so that, after following 
the path to the basepoint (which is a configuration in the bottom edge of the rectangle), the point p1 ends 
up being to the left of the point p2. It is enough to specify a local orientation of the embedded surface at 
the point p, in other words an ordered pair of linearly independent tangent vectors to the embedded surface 
at this point. The points p1 and p2 each lie on a smooth arc (possibly the same arc, possibly different arcs) 
with a chosen orientation as illustrated in Fig. 3; this determines a non-zero tangent vector vi at pi in Dn

for i = 1, 2. A tangent vector at p in C2(Dn) is a choice of tangent vectors in Dn at each of p1 and p2; for 
example we have (v1, 0) and (0, v2), which are both tangent to the embedded surface. The local orientation at 
p of the embedded surface is then the ordered pair ((v1, 0), (0, v2)). Notice that this convention for choosing 
an orientation of the embedded surface depends not only on the orientations of the arcs involved, but also 
critically on the path to the basepoint: if we introduce a half-twist to this path, the orientation will be 
reversed.

General w-classes and v-classes. We will need to consider homology elements of a slightly more general 
form. Let α be an arc in M whose endpoints lie on A and whose interior α̊ lies in M ∖ A = Dn. The 
fundamental class [C2(α̊)] ∈ HBM

2 (C2(Dn);LRB2) is then well-defined up to a unit; it becomes well-defined 
on the nose, by Convention 4.6, after choosing an orientation of the arc α and a path from some point of 
C2(α̊) to the basepoint of C2(Dn). Similarly, let α1 and α2 be two disjoint arcs of this form and consider 
the subsurface (α̊1 × α̊2)/S2 ⊂ C2(Dn) consisting of configurations with one point in the interior of each 
arc. Choosing orientations of α1 and α2 and a path from some point of (α̊1 × α̊2)/S2 to the basepoint of 
C2(Dn), we have a well-defined fundamental class [(α̊1 × α̊2)/S2] ∈ HBM

2 (C2(Dn);LRB2). We denote these 
elements (w-classes and v-classes respectively) by:

w(α) = [C2(α̊)]

v(α1, α2) = [(α̊1 × α̊2)/S2],

where it is implicit that the arcs are oriented and we have chosen an appropriate path to the basepoint. 
Finally, we may perform the same construction to arcs α1 and α2 that, instead of having their endpoints on 
A ⊂ M , have their endpoints on ∂D2 ⊂ M (and lie entirely in M∖A = Dn); in this case we obtain an element 
v(α1, α2) ∈ H2(C2(Dn), C∂

2 (Dn);LRB2). Clearly all of the elements [L(k1, . . . , kn−1)] and [L(k1, . . . , kn−1)∂ ]
considered above are of this form (in Fig. 3, the top-left element is of the form w(α) and the others are all 
of the form v(α1, α2)).
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The intersection form on w-classes and v-classes. There is an explicit description of the intersection form 
(40) for homology classes of this kind. Let x be either w(α) or v(α1, α2) and let y be v(α′

1, α
′
2) for appropriate 

oriented arcs. Denote by γx, γy the chosen paths to the basepoint for x, y respectively. Assume that α or 
α1 � α2 intersects α′

1 � α′
2 transversely. For each intersection point p ∈ x ∩ y, define a loop �p in C2(Dn)

by following γx from the basepoint to the subsurface x, then following a path in x to the intersection point 
p, then following a path in y to the endpoint of γy and then following γy back to the basepoint. This 
loop induces a permutation of the base configuration of C2(Dn); denote the sign of this permutation by 
sgn(�p). It also determines an element φ(�p) ∈ RB2 via the projection φ : π1(C2(Dn)) ↠ RB2. Finally, 
write p = {p1, p2} and denote by sgn(pi) the sign of the intersection of the oriented arcs at pi ∈ Dn. Then 
we have:

〈x , y〉 =
∑

p∈x∩y

sgn(p1)sgn(p2)sgn(�p)φ(�p) ∈ Z[RB2] = Θ. (42)

See [8, page 475, ten lines above Lemma 2.1] and [12, Appendix B] for an explanation of the signs appearing 
in this formula.

Calculation of the matrices. With this setup, and especially the explicit formula (42) for the intersection 
form, we may now begin the proof of Theorem C.

Proof of Theorem C. Let 1 ⩽ i ⩽ n− 1 and let σi be a diffeomorphism of Dn representing σi ∈ Bn. Using 
the basis [L(k1, . . . , kn−1)] of VR(2), it follows from the discussion above that the entry of the matrix for 
RL2(σi) in the column corresponding to (k1, . . . , kn−1) and the row corresponding to (k′1, . . . , k′n−1) is〈

[σi(L(k1, . . . , kn−1))] , [L(k′1, . . . , k′n−1)∂ ]
〉
∈ Z[RB2] = Θ,

which we may calculate using the formula (42). Let us assume for convenience that 2 ⩽ i ⩽ n− 2 (the edge 
cases i ∈ {1, n− 1} may be dealt with similarly). We order the basis for VR(2) as follows:

• the six basis elements corresponding to the tuple · · ·xyz · · · (where y is in the i-th position) for xyz =
101, 200, 110, 020, 011, 002;

• i − 2 blocks of three basis elements corresponding to the tuple · · · 1 · · ·xyz · · · (where y is in the i-th 
position) for xyz = 100, 010, 001;

• n− i−2 blocks of three basis elements corresponding to the tuple · · ·xyz · · · 1 · · · (where y is in the i-th 
position) for xyz = 100, 010, 001;

• the 
(
n−3

2 
)

basis elements with 000 in the (i− 1)-st, i-th and (i + 1)-st positions, in any order.

Since σi is supported in a punctured subdisc of Dn containing the i-th and (i+1)-st punctures and no other 
punctures, it is easy to see that the matrix RL2(σi) is a block matrix with respect to this partition: in other 
words, it consists of a 6 × 6 block, then n− 4 = (i− 2) + (n− i− 2) separate 3 × 3 blocks, followed by the 
identity 

(
n−3

2 
)
×
(
n−3

2 
)

matrix. It remains to show that these 6×6 and 3×3 blocks are as claimed in Table 1. 
We will explicitly compute three entries of the 6× 6 matrix to explain how to do this; the remaining entries 
follow by exactly the same method.

Let us first compute the intersection〈
[σi(L(· · · 020 · · · ))] , [L(· · · 020 · · · )∂ ]

〉
. (43)

Fig. 4 illustrates the two embedded surfaces σi(L(· · · 020 · · · )) and L(· · · 020 · · · )∂ and their unique inter
section point p. The local signs sgn(p1) and sgn(p2) are both −1. The loop �p may be written as
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Fig. 4. The computation of the intersection (43) = −tq1q2. 

Fig. 5. The computation of the intersection (45) = (t − 1)q1q2. 

�p = θ1,i+1θ2,i+1σ, (44)

where we are writing composition in π1(C2(Dn)) from left to right, σ is the element that swaps the two 
points anticlockwise and θj,l, for j ∈ {1, 2} and l ∈ {1, . . . , n}, is the element where the j-th point loops once 
anticlockwise around the l-th puncture. Its induced permutation of the base configuration is non-trivial, 
so sgn(�p) = −1. The projection φ : π1(C2(Dn)) ↠ RB2 sends σ �→ t, θ1,l �→ q1 and θ2,l �→ q2 for all 
l, so the image of (44) is q1q2t = q1tq1 = tq2q1 = tq1q2. Thus, according to the formula (42), we have 
(43) = (−1)3tq1q2 = −tq1q2, as claimed in Table 1.

Next let us compute the intersection

〈
[σi(L(· · · 011 · · · ))] , [L(· · · 020 · · · )∂ ]

〉
. (45)

Fig. 5 illustrates the two embedded surfaces σi(L(· · · 011 · · · )) and L(· · · 020 · · · )∂ and their two intersection 
points p (the solid dots) and q (the hollow dots). The corresponding two loops may be written as

�p = θ1,i+1θ2,i+1 �q = θ1,i+1θ2,i+1σ

which have signs sgn(�p) = +1 and sgn(�q) = −1. Taking into account also the local signs, we see from the 
formula (42) that

(45) = (−1)(+1)(+1)q1q2 + (−1)(+1)(−1)q1q2t

= −q1q2 + tq1q2

= (t− 1)q1q2,

as claimed in Table 1. As a final example, we compute the intersection

〈
[σi(L(· · · 101 · · · ))] , [L(· · · 110 · · · )∂ ]

〉
. (46)

Fig. 6 illustrates the relevant embedded surfaces and their unique intersection point p. The corresponding 
loop is �p = θ2,i+1, whose image in RB2 is q2 and whose sign is +1. The local signs sgn(p1) and sgn(p2) are 
both +1, so we have (46) = q2, as claimed in Table 1.

All of the remaining entries in Table 1 may be verified similarly to these two examples; this completes 
the proof of Theorem C. �
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Fig. 6. The computation of the intersection (46) = q2. 

Remark 4.7. Table 1 in particular gives formulas for the classical Lawrence-Krammer-Bigelow representation 
when we set q = q1 = q2 (which then commutes with t). We were not able to find explicit formulas for 
the Lawrence-Krammer-Bigelow representation in the literature using the basis that we describe above. 
Formulas, in different bases, may be found in [8, Th. 4.1], [19, §3] and [25, §1], but it is not entirely trivial to 
pass between the different bases. We also note that the 3×3 block matrices in Table 1 are, for obvious reasons, 
the same as the usual matrices of the Burau representation. Analogous formulas over a non-commutative 
ground ring (as is the case of our formulas) have been computed in the context of mapping class groups in 
[12, §7].

Remark 4.8. The ribbon-LKB representation VR(2) is the representation over Z[Q∞] associated to the first 
row (G = B2,n) of Table 2, where in this case Q∞ = RB2. This is generalised by the second row of Table 2, 
where G = B2,k,n for any tuple k of positive integers (the first row corresponds to the empty tuple). In this 
more general setting we also have an explicit description of the group Q∞: see Proposition 5.3 at the end of 
the next section. With sufficient patience, one could generalise the matrices of Table 1 to obtain matrices 
for the Bn-representation over Z[Q∞] associated to G = B2,k,n, with Q∞ as in Proposition 5.3.

Faithfulness. By construction, we have a tower of surjections of Bn-representations

VR(2) −→→ · · · −→→ Vr(2) −→→ Vr−1(2) −→→ · · · −→→ V2(2), (47)

where V•(2) is the pro-nilpotent representation of Bn over Q• from Theorem A and VR(2) is the ribbon-LKB 
representation of Bn over Z[RB2] = Z[Q∞] from Theorems B and C.

Proposition 4.9. Each representation VR(2) and Vr(2) in (47) is faithful.

Proof. As modules, these representations are all free of the same (finite) rank over their respective ground 
rings and the surjections in (47) are induced by surjections of the ground rings. Since V2(2) is faithful, by 
[8,19], it follows that all of the other representations in the tower (47) are also faithful. �
4.4. An embedding into a matrix ring

We first recall a basic fact about embedding Laurent polynomial rings into the field of complex numbers.

Fact 4.10. A ring homomorphism Z[Zn] → C is injective if and only if the image {z1, . . . , zn} of a free 
generating set of Zn is algebraically independent.

Proof. By definition, the subset {z1, . . . , zn} ⊂ C is algebraically independent if and only if the associated 
ring homomorphism Z[Nn] → C is injective. We therefore just have to show that this holds if and only 
if its unique extension to Z[Zn] → C is injective. One direction is trivial; for the other, suppose that 
f ∈ Z[Zn] = Z[t±1

1 , . . . , t±1
n ] is a non-zero polynomial with f(z1, . . . , zn) = 0. For 1 ⩽ i ⩽ n denote by 

ei ∈ Z the lowest exponent of ti appearing in a monomial of f . We then have f(z1, . . . , zn)z−e1
1 · · · z−en

n = 0, 
hence ft−e1

1 · · · t−en
n ∈ Z[Nn] = Z[t1, . . . , tn] is a non-zero polynomial in the kernel of Z[Nn] → C. �
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Let H denote the subgroup of RB2 generated by q1, q2 and t2.

Remark 4.11. The group H is free abelian on {q1, q2, t2} and is an index-2 subgroup of RB2.

Let Ψ denote the ring homomorphism Θ = Z[RB2] → Mat2(C) given on generators by (5).

Lemma 4.12. Under the hypothesis of Proposition D, the restriction of Ψ to Z[H] is injective.

Proof. We first observe that Ψ(t2) = yz · Id. Hence the image of Z[H] under Ψ is contained in the subring 
of diagonal matrices of Mat2(C), which is isomorphic to C ×C. Denote by Ψ̄ : Z[H] → C the composition 
of Ψ|Z[H] : Z[H] → C × C ⊂ Mat2(C) with the projection pr1 : C × C ↠ C onto the first diagonal entry. 
The three free abelian generators q1, q2 and t2 of H are sent under Ψ̄ to the complex numbers w, x and yz
respectively. By hypothesis, these are algebraically independent, so Ψ̄ is injective by Fact 4.10, and hence 
Ψ|Z[H] is injective. �
Proof of Proposition D, i.e. that Ψ is injective. Let κ be an element of ker(Ψ). We may decompose κ as 
λt + μ where λ, μ ∈ Z[H]. We recall from the proof of Lemma 4.12 that Ψ(λ) and Ψ(μ) are diagonal 
matrices that we write with α, β, γ, δ ∈ C

Ψ(λ) =
(
α 0
0 β

)
and Ψ(μ) =

(
γ 0
0 δ

)
. (48)

Hence, by computing the matrix of Ψ(κ), we have

Ψ(κ) =
(

γ αy
βz δ

)
= 0. (49)

Since y and z are non-zero, this implies that Ψ(λ) = Ψ(μ) = 0. We then deduce from Lemma 4.12 that 
λ = μ = 0, whence the result. �
5. Surface braid groups

In this section, we construct the pro-nilpotent representations of Bn and of Bn(S) listed in Table 2, 
assuming throughout that n ⩾ 3. In each case (i.e. row of Table 2), the input is a split fibration sequence

X Y Z,i f (50)

whose induced split short exact sequence of fundamental groups is

1 K G Γ 1ϕ (51)

(i.e. inputs (1) and (2) from the beginning of §3), with Γ and G as in the given row of Table 2. In each 
setting that we consider in this section, the space X is a configuration space of the form Ck(M ∖ A) as 
in Corollary 3.10. Thus, by Corollaries 3.8 and 3.10, the split fibration sequence (50) induces a (genuine) 
pro-nilpotent representation of Γ via the construction of §3 as long as the inclusion ϕ : K ↪→ G in (51)
is eNCP. Recall from Corollary 2.14 and Remark 2.16 that a sufficient criterion to prove this is to find a 
quotient G′ of G = K ⋊ Γ that is surjective when restricted to K and zero when restricted to Γ:
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1 K G Γ 1

G′
0

(52)

and such that the lower central series of G′ does not stop. We will find such a quotient G′ in each case using 
the results of [15].

Proof of Theorem E for classical and surface braid groups. We begin with the case of G = B2,k,n, namely 
the second row of Table 2, which generalises Theorem A (which corresponds to the first row of Table 2). 
Let k = (k1, . . . , kl) be a tuple of integers with ki ⩾ 3 for each 1 ⩽ i ⩽ l. There is a split fibration sequence

C2,k(Dn) C2,k,n(D2) Cn(D2),i f (53)

given by forgetting all blocks of points except for the last block of size n; the section is given by pushing in 
a new block of n points near the boundary. The fundamental group of the middle space is G = B2,k,n. By 
[15, Prop. 3.12], we have

B2,k,n/Γ∞ ∼ = Z(l+2
2 ) × (Z2(l+1)

⋊ Z), (54)

where the generators of the last Z factor act on the Z2(l+1) factor by swapping its coordinates in l+1 pairs. 
We may then quotient further onto Z2(l+1)

⋊Z by killing the Z(l+2
2 ) factor and projecting the Z factor onto 

Z/2 = S2, since it acts by involutions. Finally, we may quotient Z2(l+1) onto Z2 by sending half of the 
generators to (1, 0) and the other half to (0, 1) respecting the involution by which S2 acts. The result is a 
quotient onto G′ = Z2

⋊S2. By [15, Prop. A.28], its lower central series is given by Γi(G′) = 2i−2(δZ) for 
i ⩾ 2, with δZ := {(x,−x) | x ∈ Z} ⩽ Z2. Hence Γi(G′) 
= Γi+1(G′) for all i ⩾ 2 and so the lower central 
series Γ∗(G′) does not stop. It remains to check that this fits into a diagram of the form (52), i.e.:

• that B2,k(Dn) surjects onto G′ and
• that the homomorphism Bn --￫ B2,k,n → G′ is zero.

From the proof of [15, Prop. 3.12] one sees that the standard generator of B2,k(Dn) ⊂ B2,k,n that swaps 
the two points in the first block of the partition is sent to the generator of S2 ⊂ G′. Similarly, one sees 
that the standard generator of B2,k(Dn) ⊂ B2,k,n that fixes all points except for the first one (in the first 
block of 2), which loops once around one of the n punctures, is sent to (1, 0) ∈ Z2 ⊂ G′. These two elements 
generate G′, so we have established the first claim above. For the second claim, one sees from the proof 
of [15, Prop. 3.12] that, under the identification (54), each standard generator of Bn is sent to one of the 

copies of Z in the Z(l+2
2 ) factor, and hence to zero in G′. By Corollary 2.14 (and Remark 2.16) it follows 

that the inclusion ϕ : B2,k(Dn) ↪→ B2,k,n is eNCP. Thus by Corollary 3.8 (and Corollary 3.10) we obtain 
from (53) a (genuine) pro-nilpotent representation of Bn.

All of the other rows of Table 2 concerning classical or surface braid groups may be proven in the same 
way. Recall that S is a surface with non-empty boundary (but it may have infinite type; no additional 
complexity arises if we allow this). Let λ be a tuple of positive integers and consider the split fibration 
sequence

Cλ(Sn) Cλ,n(S) Cn(S),i f (55)
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given by forgetting all blocks of points except for the last block of size n. Here Sn denotes S minus n interior 
points and the section is given by pushing in a new block of n points near the boundary. We may then 
consider the following diagram:

1 Bλ(Sn) Bλ,n(S) Bn(S) 1

Bλ(S),
0

(56)

where the vertical quotient is given by forgetting the last block of strands of size n. Notice that the left
hand diagonal map is clearly surjective: without loss of generality we may assume that the n punctures are 
contained in a collar neighbourhood of S and then every λ-braid on S may be lifted to a λ-braid on Sn by 
pushing it away from this collar neighbourhood. Also, the right-hand diagonal map is obviously zero. Thus, 
by the discussion at the beginning of this section, it suffices to check that the lower central series of the 
group Bλ(S) does not stop. This is the case for:

• B1,1,1,k(D2), by [15, Lem. 3.8];
• B2,2,k(D2), by [15, Cor. 3.15];
• B1,2,k(D2), by [15, Cor. 3.18];
• B2,k(S) for S 
= D2, by [15, Prop. 6.62];
• B1,k(S) for S / ∈ {D2,Ann,Möb}, by [15, Prop. 6.62];
• B1,k(Möb) for k 
= ∅, by [15, Prop. 6.62, Corollary 6.67 and Proposition 6.68];
• B1,1,k(Ann), by [15, Lem. 6.63].

We note that earlier results on the stopping or non-stopping of the lower central series of (pure) surface 
braid groups were obtained in [5,17,4]. These cases correspond precisely to the rows in Table 2 concerning 
classical or surface braid groups (except for the top two rows, which were dealt with above). This completes 
the proof of Theorem E in these cases. �

To finish this section, we describe, for each row of Table 2 concerning classical or surface braid groups, 
the ground ring of the bottom (r = 2) layer of the pro-nilpotent representation that we have constructed. 
This amounts to calculating the abelian group A = Q2, since the ground ring of the bottom layer is Z[Q2]. 
By construction (see diagram (25)), this is the kernel of the (split) surjection Gab ↠ Γab induced by the 
given (split) surjection G ↠ Γ.

Proposition 5.1. In the first (Bn) block of Table 2, the group A is free abelian of rank

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
l+2
2 
)

+ l + 1 when G = B2,k,n (with each ki ⩾ 3)(
l+4
2 
)

+ l′ when G = B1,1,1,k,n(
l+3
2 
)

+ l′ + 2 when G = B2,2,k,n(
l+3
2 
)

+ l′ + 1 when G = B1,2,k,n

where l is the number of blocks of k and l′ is the number of blocks of k of size at least 2.

Proof. In each case, Γ is Bn, whose abelianisation is Z, so A is Gab minus one Z summand. The abeliani
sation Gab in each of the four cases may be read off from [15, Prop. 3.5]. �
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Proposition 5.2. In the second (Bn(S)) block of Table 2, the group A is isomorphic to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1(S)l+1 × Zl′+1 × Z(l+2
2 ) when G = B2,k,n(S) with S planar

H1(S)l+1 × (Z/2)l′+1 when G = B2,k,n(S) with S non-planar
H1(S)l+1 × Zl′ × Z(l+2

2 ) when G = B1,k,n(S) with S planar
H1(S)l+1 × (Z/2)l′ when G = B1,k,n(S) with S non-planar
Zl+1 × (Z/2)l′ when G = B1,k,n(Möb)
Zl+2 × Zl′ × Z(l+3

2 ) when G = B1,1,k,n(Ann)

where l is the number of blocks of k and l′ is the number of blocks of k of size at least 2.

Proof. In each case, we have Gab ∼ = A⊕ Γab, so we may compute A from the abelianisations of Γ = Bn(S)
and of G = Bλ,n(S), which are computed explicitly in [15, Prop. 6.32] and [15, Prop. 6.47] respectively. 
Precisely, if t denotes the number of blocks of λ and t′ denotes the number of blocks of λ of size at least 2, 
the split surjection Gab ↠ Γab is

H1(S)t+1 × Zt′+1 × Z(t+1
2 ) −→→ H1(S) × Z

when S is planar and

H1(S)t+1 × (Z/2)t
′+1 −→→ H1(S) × Z/2

when S is non-planar. The specific computations of the proposition follow from these computations, spe
cialising λ and S as appropriate. �

For the first two rows of the table, we may also compute the ground ring of the limit of the pro-nilpotent 
tower of representations. As we will explain, this essentially amounts to computing the residually nilpotent 
group Q∞. By construction (see diagram (25)), this is the kernel of the (split) surjection G/Γ∞ ↠ Γ/Γ∞
induced by the given (split) surjection G ↠ Γ. In the example in question, we have G = B2,k,n and Γ = Bn, 
for which

B2,k,n/Γ∞ ∼ = Z(l+2
2 ) × (Z2(l+1)

⋊ Z) and Bn/Γ∞ = Bab
n

∼ = Z,

by [15, Prop. 3.12 and Example 2.3]. Thus we have:

1 B2,k(Dn) B2,k,n Bn 1

1 Q∞ Z(l+2
2 ) × (Z2(l+1)

⋊ Z) Z 1.

(57)

From the explicit presentation of B2,k,n/Γ∞ given in the proof of [15, Prop. 3.12], we see that the split 
surjection on the bottom row of (57) is the projection onto one of the copies of Z in the direct Z(l+2

2 ) factor. 
As a consequence, just as we observed at the beginning of §4.2, the induced Bn-action on Q∞ is trivial. This 
means, by definition, that Qu

∞ = Q∞ and thus Qu
• = Q•. The Bn-representation over Z[Q∞] associated to 

the projection B2,k(Dn) ↠ Q∞ may be thought of as the limit of the pro-nilpotent tower of representations 
associated to the tower Q•. This is explained more precisely in Lemma 3.5, but note that the situation in 
this case is simpler, due to the fact that Qu

∞ = Q∞ and Qu
• = Q•. To summarise:
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Proposition 5.3. The inverse limit of the pro-nilpotent representation of Bn corresponding to the second row 
of Table 2 is defined over the group ring Z[Q∞], for

Q∞ = Z(l+2
2 )−1 × (Z2(l+1)

⋊ Z),

where 1 ∈ Z acts on Z2(l+1) by swapping its coordinates in l + 1 pairs.

In the special case k = ∅, corresponding to the first row of Table 2 (and Theorem A), we have l = 0 and 
so Q∞ = Z2

⋊ Z = RB2, as we already observed in this particular case at the beginning of §4.2.

Corollary 5.4. In the second row of Table 2, for r ⩾ 2 we have

Qr = Z(l+2
2 )−1 × ((Z2/2r−2Δ̄)l+1

⋊ Z),

where Δ̄ = (1,−1) ∈ Z2 and 1 ∈ Z acts on each copy of Z2/2r−2Δ̄ by swapping coordinates.

Proof. To obtain Qr, we may start with the bottom row of (57), quotient the middle and right-hand groups 
by Γr and then take the kernel. This uses the fact that quotienting by Γ∞ and then by Γr is the same as 
simply quotienting by Γr. Clearly quotienting by Γr does not affect the right-hand group Z or the direct 
Z(l+2

2 ) factor in the middle group. We therefore just have to show that (Z2(l+1)
⋊Z)/Γr

∼ = (Z2/2r−2Δ̄)l+1
⋊Z. 

This follows from [15, Prop. A.10]. �
6. Loop braid groups

For n ⩾ 1 we may consider the configuration space CnS1(D3) of n-component unlinks in the closed 3-ball 
D3. Formally this is constructed from the space Emb(nS1,D3) of smooth embeddings of nS1 = �n S

1 into 
D3 with the Whitney topology by restricting to the path-component containing the standard unlink and 
taking the quotient by the action of Diff(nS1):

CnS1(D3) = Embunl(nS1,D3)/Diff(nS1).

By the main theorem of Brendle and Hatcher [7, Th. 1], this space deformation retracts onto the subspace 
consisting of all embedded unlinks each of whose components are dilations, rotations and translations of the 
standard embedded circle in D3. This subspace has the advantage of being a finite-dimensional manifold -- 
hence in particular locally compact -- allowing one to apply Borel-Moore homology to it and its variants. We 
will implicitly make this replacement whenever we apply Borel-Moore homology. The fundamental group of 
this space is the n-th extended loop braid group:

w̃Bn = π1(CnS1(D3)).

If we quotient only by the orientation-preserving diffeomorphisms of nS1, we obtain the space of oriented 
n-component unlinks in D3, whose fundamental group in the n-th loop braid group:

C+
nS1(D3) = Embunl(nS1,D3)/Diff+(nS1) wBn = π1(C+

nS1(D3)).

The space C+
nS1(D3) is a 2n-fold covering of CnS1(D3), so wBn is an index-2n subgroup of w̃Bn. In fact, 

there is a split projection w̃Bn ↠ (Z/2)n whose kernel is wBn, given by recording for each component of 
the base configuration whether the given loop of configurations preserves or reverses the orientation of that 
component. More generally, we may consider the space
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Fig. 7. A generating set for the partitioned tripartite welded braid group wB(λP , λS+ , λS). The top row generates w̃Bn and the 
top row without ρα generates wBn.

C(nP , nS+ , nS) = Embunl(nP � (nS+ + nS)S1,D3)/
(
SnP

× Diff+(nS+S
1) × Diff(nSS

1)
)

of configurations of nP points, nS+ oriented circles and nS unoriented circles (forming an unlink) in D3, 
whose fundamental group is by definition the tripartite loop braid group wB(nP , nS+ , nS). As special cases, 
we have

wB(n, 0, 0) = Sn,

wB(0, n, 0) = wBn,

wB(0, 0, n) = w̃Bn.

(58)

Finally, if λP , λS+ , λS are partitions of nP , nS+ , nS respectively, we may also consider the subgroup 
wB(λP , λS+ , λS) ⊆ wB(nP , nS+ , nS) of those loops whose induced permutation of the base configura
tion preserves the given partition. This is the fundamental group of the corresponding covering space 
C(λP , λS+ , λS) of C(nP , nS+ , nS). For more details, see [15, §4.4--§4.6 and §5].

Generators. An explicit generating set for wB(λP , λS+ , λS) is given in [15, Lem. 5.9], which we illustrate 
in Fig. 7. The generators τα and σα involve two points or two circles that are both in the same block of the 
partition λ = λPλS+λS , whereas the generators χαβ involve either two circles that are in different blocks 
of λ or one point and one circle (which are therefore necessarily in different blocks of λ). Assuming that 
the base configuration consists of nP points and nS+ + nS circles arranged linearly on the xy-plane, these 
generators have the following descriptions (where n = nP + nS+ + nS):

• τα (for 1 ⩽ α ⩽ n−1 such that α, α+1 are in the same block of λ) interchanges the α-th and (α+1)-st 
points or circles without either of them passing through the other;

• σα (for nP + 1 ⩽ α ⩽ n − 1 such that α, α + 1 are in the same block of λ) interchanges the α-th and 
(α + 1)-st circles while one passes through the other;

• ρα (for nP + nS+ + 1 ⩽ α ⩽ n) rotates the α-th circle by 180 degrees, reversing its orientation;
• χαβ (for 1 ⩽ α ⩽ n and nP + 1 ⩽ β ⩽ n such that α, β are in different blocks of λ) sends the α-th point 

or circle in a loop passing through the β-th circle.

Specialising as in (58), we obtain generating sets for wBn and w̃Bn involving only the first two (respectively 
three) families of generators τα and σα (and ρα). See Fig. 7 for pictures.

Notation 6.1. Loop braid groups (and their variations) are often also known as welded braid groups, and 
the corresponding notation LB is synonymous with wB. We adopt the slightly dissonant convention of 
using the name loop braid groups, since we use their interpretation as loops of configurations of loops in an 
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essential way, but the notation wB instead of LB, since this is the notation used in the key reference [15] 
for our proofs. We also refer the reader to [14] for a complete introduction to the equivalence between the 
notions of loop braid groups and of welded braid groups.

In this section, we construct the weakly pro-nilpotent representations of the loop braid groups wBn and 
extended loop braid groups w̃Bn listed in Table 2. As in §5, the input in each case is a split fibration 
sequence (50) whose induced split short exact sequence of fundamental groups is the top row of diagram 
(59) below. By Lemma 3.3, this induces a weakly pro-nilpotent representation of Γ via the construction of 
§3 as long as the inclusion ϕ : K ↪→ G is eNCP. By Corollary 2.14 and Remark 2.16, a sufficient criterion 
for this is the existence of a quotient G′ of G = K⋊Γ that is surjective when restricted to K and zero when 
restricted to Γ:

1 K G Γ 1

G′

ϕ

0
(59)

and such that the lower central series of G′ does not stop. As in §5, we will find such a quotient G′ in each 
case using the results of [15].

Proof of Theorem E for loop braid groups. In each case, we have G = wB(λP , λS+ , λS), with the triple of 
partitions (λP , λS+ , λS) containing a certain triple of sub-partitions as specified in Table 2.

For the wBn block of Table 2, we have λS+ = (n, μS+) and the split fibration sequence (50) in each case 
will be

X C(λP , λS+ , λS) C(∅, n,∅),i f

where f forgets all blocks of strands except for a block of size n in λS+ . We choose not to introduce 
additional notation for the fibre X of f , since it will not be needed. The induced split short exact sequence 
of fundamental groups is then

1 K = π1(X) G = wB(λP , λS+ , λS) Γ = wBn 1.ϕ

We first consider the 5-th row of the wBn block of Table 2, where we assume that λS+ contains a block 
of size n and λS contains a block of size 1. Under this assumption, there is a quotient map G ↠ wB(∅, n, 1)
given by forgetting all blocks of strands except for these two. A generating set for the group wB(∅, n, 1) is 
described in [15, Lem. 5.9] (see the beginning of this section and Fig. 7) and consists of:

• n − 1 elements τα for 2 ⩽ α ⩽ n that swap two circles in the block of size n without either passing 
through the other,

• n − 1 elements σα for 2 ⩽ α ⩽ n that swap two circles in the block of size n while one passes through 
the other,

• an element ρ1 that rotates the unoriented circle (in the block of size 1) by 180 degrees about an axis 
lying the plane of the circle,

• n elements χ1α for 2 ⩽ α ⩽ n + 1 where the circle in the block of size 1 follows a loop that passes once 
through the α-th circle in the block of size n,
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• n elements χα1 for 2 ⩽ α ⩽ n + 1 where the circle in the block of size 1 follows a loop that passes once 
around the α-th circle in the block of size n (such that, in another frame of reference, the α-th circle 
passes through the circle from the block of size 1).

For notational convenience, we have numbered the n + 1 circles in the base configuration so that the first 
one corresponds to the block of size 1. The proof of [15, Prop. 5.17] constructs a quotient map

wB(∅, n, 1) −→→ Z⋊ (Z/2)

that sends χα1 �→ (1, 0) for each α, ρ1 �→ (0, 1) and all other generators to (0, 0). The right-hand side is the 
non-trivial semi-direct product of Z with Z/2, where the generator of Z/2 acts on Z by inversion. Composing 
these two quotient maps we obtain a surjection G ↠ G′ := Z⋊ (Z/2). The lower central series of Z⋊ (Z/2)
does not stop by [15, Cor. A.8]. The elements χα1 and ρ1 become trivial under the projection onto wBn, 
so they lie in K. Since their images generate Z ⋊ (Z/2), it follows that the restriction of G ↠ Z ⋊ (Z/2)
to K is surjective. Finally, we have to check that the restriction of G ↠ Z ⋊ (Z/2) to Γ via the section is 
trivial. This follows since the image of Γ under the section is generated by the elements σα and τα, which 
are all sent to (0, 0) in Z⋊ (Z/2).

We next consider the 4-th row of the wBn block of Table 2, where we assume that λS+ contains a block 
of size n and λP contains a block of size 2. Under this assumption, there is a quotient map G ↠ wB(2, n,∅)
given by forgetting all blocks of strands except for these two. By [15, Lem. 5.9] (see also the beginning of 
this section and Fig. 7), a generating set for wB(2, n,∅) consists of:

• elements σα and τα for 3 ⩽ α ⩽ n + 1 as above,
• an element τ1 that swaps the two points,
• n elements χ1α for 3 ⩽ α ⩽ n + 2 where the first point loops through the α-th circle.

The proof of [15, Prop. 5.18] constructs a quotient map

wB(2, n,∅) −→→ Z2
⋊S2

that sends χ1α �→ (1, 0) ∈ Z2, τ1 to the generator of S2 and each σα, τα to the trivial element. Composing 
the two quotient maps we obtain a surjection G ↠ G′ := Z2

⋊S2. The lower central series of Z2
⋊S2 does 

not stop by [15, Cor. A.29]. The elements χ1α and τ1 become trivial under the projection onto wBn, so 
they lie in K. Since their images generate Z2

⋊S2, it follows that the restriction of G ↠ Z2
⋊S2 to K is 

surjective. Finally, the fact that the elements σα and τα are sent to the trivial element in Z2
⋊S2 implies 

that the restriction of G ↠ Z2
⋊S2 to Γ via the section is trivial.

We now consider simultaneously the first three rows of the wBn block of Table 2. There is a quotient map 
G ↠ wB(λP , μS+ , λS) given by forgetting a block of size n in λS+ (remember that we have λS+ = (n, μS+)
by assumption). Its restriction to K ⊂ G is surjective since any loop braid in wB(λP , μS+ , λS) may be 
lifted to a loop braid in G = wB(λP , λS+ , λS) by adding a stationary block of n oriented circles near the 
boundary of D3 and this lift lies in K ⊂ G since it projects to the trivial element of wBn. Its restriction to 
Γ via the section is trivial since Γ ⊂ G consists of braids that are trivial except on the block of circles that is 
forgotten under the projection to wB(λP , μS+ , λS). We therefore only need to verify that the lower central 
series of wB(λP , μS+ , λS) does not stop. By assumption, the tuple of partitions (λP , μS+ , λS) contains either 
(∅, b,∅), (∅,∅, b) or (∅, {1, 1},∅) as a tuple of sub-partitions, where b ∈ {2, 3}. Hence the lower central 
series of wB(λP , μS+ , λS) does not stop by [15, Th. 4.47].

For the w̃Bn block of Table 2, we have λS = (n, μS) and the split fibration sequence (50) in each case 
will be
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X C(λP , λS+ , λS) C(∅,∅, n),i f

where f forgets all blocks of strands except for a block of size n in λS . The induced split short exact sequence 
of fundamental groups is then

1 K = π1(X) G = wB(λP , λS+ , λS) Γ = w̃Bn 1.ϕ

We first consider the 5-th row of the w̃Bn block of Table 2, where we assume that λS contains a block of 
size n and a block of size 1. Under this assumption, there is a quotient map G ↠ wB(∅,∅, {n, 1}) given by 
forgetting all blocks of strands except for these two. A generating set for the group wB(∅,∅, {n, 1}) consists 
of the five families of elements described above for the group wB(∅, n, 1), together with an additional family 
of n elements ρα for 2 ⩽ α ⩽ n+ 1, where ρα rotates the α-th circle by 180 degrees about an axis lying the 
plane of the circle. Similarly to the case of wB(∅, n, 1), the proof of [15, Prop. 4.52] constructs a quotient 
map

wB(∅,∅, {n, 1}) −→→ Z⋊ (Z/2)

that sends χα1 �→ (1, 0) for each α, ρ1 �→ (0, 1) and all other generators to (0, 0). Composing these two 
quotient maps we obtain a surjection G ↠ G′ := Z⋊ (Z/2). The lower central series of Z⋊ (Z/2) does not 
stop by [15, Cor. A.8]. The generators (1, 0) and (0, 1) of Z ⋊ (Z/2) lift to χα1 and ρ1 respectively, which 
lie in K since their projections to w̃Bn are trivial, so the restriction of G ↠ Z⋊ (Z/2) to K is surjective. 
Its restriction to Γ = w̃Bn via the section is trivial since the image of w̃Bn under the section is generated 
by the elements σα, τα and ρα, which are all sent to (0, 0) in Z⋊ (Z/2).

Finally, we consider simultaneously the first four rows of the w̃Bn block of Table 2. The proof in this 
case is very similar to the proof in the case of the first three rows of the wBn block of Table 2. There is 
a quotient map G ↠ wB(λP , λS+ , μS) given by forgetting a block of size n in λS (remember that we have 
λS = (n, μS) by assumption). Its restriction to K ⊂ G is surjective since any loop braid in wB(λP , λS+ , μS)
may be lifted to a loop braid in G = wB(λP , λS+ , λS) by adding a stationary block of n unoriented circles 
near the boundary of D3 and this lift lies in K ⊂ G since it projects to the trivial element of w̃Bn. Its 
restriction to Γ via the section is trivial since Γ ⊂ G consists of braids that are trivial except on the block of 
circles that is forgotten under the projection to wB(λP , λS+ , μS). We therefore only need to verify that the 
lower central series of wB(λP , λS+ , μS) does not stop. By assumption, the tuple of partitions (λP , λS+ , μS)
contains either (∅, b,∅), (∅,∅, b), (∅, {1, 1},∅) or (2, i,∅) with i ⩾ 1 as a tuple of sub-partitions, where 
b ∈ {2, 3}. Then by [15, Th. 4.47] in the first three cases and by [15, Prop. 5.18] in the fourth case the lower 
central series of wB(λP , μS+ , λS) does not stop. �

To finish this section, we describe, for each row of Table 2 concerning wBn or w̃Bn, the ground ring 
of the bottom (r = 2) layer of the weakly pro-nilpotent representation that we have constructed. In other 
words, we calculate the abelian group A = Q2, since the ground ring of the bottom layer is Z[Q2]. By 
construction (see diagram (25)), this is the kernel of the (split) surjection Gab ↠ Γab induced by the given 
(split) surjection G ↠ Γ.

Proposition 6.2. For n ⩾ 2, in the wBn and w̃Bn blocks of Table 2, the group A is isomorphic to

{
ZN−1 × (Z/2)M−1 for Γ = wBn,

ZN−1 × (Z/2)M−2 for Γ = w̃Bn,
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where for � ∈ {P, S+, S} we write l
 for the number of blocks of the partition λ
 and l′
 for the number of 
blocks of the partition λ
 of size at least 2, we set l = lP + lS+ + lS and l′ = l′P + l′S+

+ l′S and we define

N = l′S+
+ lS+(l − 1) and M = l′ + l′S + lSl.

Proof. By [15, Prop. 5.10], we have Gab = wB(λP , λS+ , λS)ab ∼ = ZN × (Z/2)M . The result then follows 
since A is the kernel of the split surjection Gab ↠ Γab and we have Γab ∼ = Z × Z/2 for Γ = wBn and 
Γab ∼ = Z× (Z/2)2 for Γ = w̃Bn. �
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