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 A B S T R A C T

One-stage (implicit) choice set formation models offer a computationally efficient way to model 
how individuals consider alternatives. Among these, the Bounded Choice Model (BCM) stands 
out for its consistent, utility-based cutoffs. However, the BCM is non-differentiable, which 
limits its usefulness: key outputs such as elasticities and standard errors cannot be computed 
analytically. To overcome this, we introduce the Smooth Bounded Choice Model (SBCM). This 
model assumes a new smooth truncated logistic distribution for the error terms and applies a 
smooth approximation to the maximum function used in defining the reference utility. As a 
result, the SBCM is infinitely differentiable, while preserving core features of the BCM, such 
as bounding, continuity, and the ability to collapse to the Multinomial Logit (MNL) model 
under specific conditions. Importantly, the SBCM is not just a smoother version of the BCM. Its 
more flexible distributional assumptions can better capture actual choice behaviour and allow 
for meaningful differences in predicted probabilities. We derive closed-form expressions for 
choice probabilities, gradients, Hessians, elasticities, and standard errors, and present a practical 
estimation method. The SBCM is tested in three case studies: one mode choice and two route 
choice settings (bicycle and public transport). In all cases, it outperforms both the BCM and MNL 
in terms of model fit and interpretability. While the BCM has so far been limited to car route 
choice, we show that the SBCM is widely applicable across various discrete choice contexts.

. Introduction

A crucial step in choice modelling is defining the consideration set from which a decision-maker selects. Modelling consideration 
et formation is, however, both a computational and behavioural challenge.
The computational challenge in many choice contexts (e.g., in route choice, schedule choice...) comes from the vast number of 

ossible alternatives, which are not feasible to generate and/or operate with. In these cases, the typical modelling approach is to 
ample from the universal choice set (Prato, 2009; Pougala et al., 2021) to identify a representative universal choice set. Generating such 
amples is not trivial: they should include many realistic alternatives and eliminate unrealistic ones while keeping enough variability 
o capture decision-makers’ trade-offs. They must include the chosen alternative for model estimation on revealed preference 
ata. Usually, these choice set generation techniques are not based on behavioural assumptions (Thill, 1992; Prato, 2009; Bovy, 
009), which may lead to biased estimates (Frejinger et al., 2009). Additionally, sampling algorithms may generate unrealistic 

∗ Corresponding author.
E-mail address: lauca@dtu.dk (L. Cazor).
vailable online 9 September 2025
755-5345/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.jocm.2025.100574
eceived 4 July 2024; Received in revised form 16 April 2025; Accepted 29 August 2025

https://www.elsevier.com/locate/jocm
https://www.elsevier.com/locate/jocm
https://orcid.org/0000-0002-1017-4317
https://orcid.org/0000-0001-9162-4334
https://orcid.org/0000-0002-6193-9121
https://orcid.org/0000-0001-7901-7021
https://orcid.org/0000-0003-0979-9667
mailto:lauca@dtu.dk
https://doi.org/10.1016/j.jocm.2025.100574
https://doi.org/10.1016/j.jocm.2025.100574
http://creativecommons.org/licenses/by/4.0/


Journal of Choice Modelling 57 (2025) 100574L. Cazor et al.
alternatives (Watling et al., 2015), for example, due to the inconsistency between choice set generation and choice probability 
criteria, which may lead to poor forecasting (Frejinger and Bierlaire, 2010).

The behavioural challenge comes from consideration sets being unobserved. Assuming that individuals choose from the whole 
(representative) universal choice set may lead to biased substitution patterns (Williams and Ortuzar, 1982). To account for this, 
Manski (1977) developed a two-stage framework where the probability of considering any subset of the representative universal 
choice set is modelled by a distribution. However, as the number of subsets grows exponentially with the size of the representative 
universal choice set, this method is not computationally feasible in many real-life choice cases. Many simplifications of this approach 
have thus been developed (e.g., Swait and Ben-Akiva, 1987; Ben-Akiva and Boccara, 1995; Tsoleridis et al., 2023), mainly based on 
heuristics. From the 2000s, a simplified framework combines these two stages by penalising the utility of alternatives that are less 
likely to be considered based on attribute or utility cutoffs. These models are referred to as one-stage or implicit choice set formation 
models (Swait, 2001a; Cascetta and Papola, 2001). Although this framework does not approximate Manski’s (Bierlaire et al., 2010), 
it has the advantage of being computationally tractable. These models have been subject to recent developments and applications 
in the fields of transportation (e.g., Watling et al., 2018; Yao and Bekhor, 2022; Dubey et al., 2022), land use (e.g., Haque et al., 
2019), environmental valuation (e.g., Truong et al., 2015) and marketing (e.g., Swait and Erdem, 2007).

The Bounded Choice Model (BCM, Watling et al., 2018) stands out among one-stage models as the only model that imposes hard, 
pervasive, compensatory, endogenously defined, and continuous cutoffs on alternatives. What this means and why this is attractive 
will be discussed in Section 2.2. The BCM belongs to the class of relative random utility models (Zhang et al., 2004) and assumes 
that individuals do not consider an alternative if it has a deterministic utility much lower than the highest one in the choice set. It 
does so by assuming a truncated logistic distribution for the utility difference random error terms (rather than a logistic distribution 
for the multinomial logit model). The difference between the maximum deterministic utility and the truncation threshold is called 
the bound or cutoff: if an alternative deterministic utility is below this bound, it receives zero probability.

However, the BCM has a drawback because its choice probability function is non-differentiable. This property complicates the 
estimation of parameters, the calculation of standard errors of estimates, and the application of analytical optimisation algorithms. 
For instance, it is not possible to guarantee the convergence and asymptotic normality of the model parameters’ maximum likelihood 
estimator (Norets, 2010).

To address this issue, this paper introduces the Smooth Bounded Choice Model (SBCM), an infinitely differentiable (or smooth1) 
generalisation of the BCM. The SBCM modifies the truncated logistic distribution assumed for the random error terms and uses 
a smooth approximation of the max function to ensure the model’s smoothness. Crucially, the SBCM maintains the BCM’s core 
properties. Using two extra parameters to control for the choice probabilities smoothness, the SBCM can approximate the BCM to 
arbitrary precision. The additional contributions of this paper are:

• Derivation of analytical choice probability gradients and Hessian matrices, providing the tools for calculating standard errors 
of estimates, demand elasticities, and other important metrics.

• Development of a Path-Size corrected SBCM that accounts for overlap in route choice contexts.
• Presentation of an estimation technique that handles the likelihood function’s potential non-concavity and constraints on the 
parameter space.

• Benchmarking and validation through case studies: Comparing the SBCM with the Multinomial Logit (MNL) model and 
the original BCM in three large-scale case studies in Greater Copenhagen, covering mode choice, bicycle route choice, and 
public transport route choice. We also study the SBCM elasticities and conduct experiments on the mutual dependency of the 
smoothing parameters.

The paper is structured as follows. In Section 2, we review the choice modelling literature on the choice set formation problem, 
motivating our focus on the BCM. In Section 3, we introduce the BCM and demonstrate its non-differentiability. In Section 4, we 
present the new SBCM and compare it to MNL and the original BCM in illustrative examples.  We additionally present an extension 
of the SBCM to account for route correlation in route choice cases, developing the Smooth Bounded Path-Size model (SBPS). In 
Section 5, we present a constrained maximum likelihood estimation technique to estimate the model and propose parameterisation 
techniques to speed up the estimation process. In Section 6, we derive formulas for maximum likelihood estimates’ standard errors 
and demand elasticities. In Section 7, we present the three real-life case studies. In Section 8, we conclude the paper by discussing 
the results and their implications. We outline other uses of the model and scope for future research.

2. Theoretical background

In this section, we will present the theoretical background for our work. We will begin in Section 2.1 by categorising and 
discussing the approaches adopted for accounting for choice set formation, highlighting the particular attractiveness of the ‘one-
stage choice set formation’ approach. In Section 2.2, we then review the different models adopting the one-stage choice set formation 
approach and highlight the attractiveness of the BCM amongst these approaches.

1 In the following parts of the paper, we will call a function smooth if it is infinitely differentiable. In general, a smooth function is a function that is 
differentiable a sufficient number of times for the function’s modelling purposes.
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2.1. Modelling choice set formation

Let us denote  the (representative) universal choice set, from which we model the choice probabilities of a decision-maker 𝑛. 
When it comes to modelling choice set formation, approaches can be separated into three main categories:

1. No choice set formation model: In the first category, modellers assume individuals choose from the representative universal 
choice set , and apply a choice probability model P(𝑖|) to determine the probability of choosing each alternative from this 
set. This method is often employed by real-life applications (e.g., Nielsen et al., 2021)

2. Two-stage choice set formation models: In the second category, modellers assume that each decision-maker 𝑛 chooses 
from a subset 𝑛 ⊆  and apply a choice probability model to this subset only (P(𝑖|𝑛)). Each individual’s consideration set is 
unobserved and is treated probabilistically. The most prominent approach in this category is the Manski (1977) framework 
that considers all possible subsets 𝑛 of the representative universal choice set , and relates the probability of choosing 
alternative 𝑖 ∈  to ∑𝑛⊆ P(𝑛)P(𝑖|𝑛) (see, e.g. Swait and Ben-Akiva, 1987; Ben-Akiva and Boccara, 1995; Başar and Bhat, 
2004 for applications and simplifications of this framework).

3. One-stage choice set formation models: In the third category, modellers also assume that individuals choose from a subset 
of the representative universal choice set but that this consideration subset of alternatives 𝑛 is determined implicitly through 
the computation of the choice probabilities from the choice model (e.g., Cascetta and Papola, 2001; Swait, 2001a; Elrod et al., 
2004; Martínez et al., 2009; Paleti, 2015; Truong et al., 2015; Watling et al., 2018 and, more recently, Tan et al., 2024; 
Kitthamkesorn and Chen, 2024). Rather than modelling the choice set formation with two stages, the consideration stage 
penalises the utility/probability of alternatives, often based on constraints such as attribute/utility cutoffs.

The first approach assumes that the decision-maker is perfectly rational and has complete information about all available 
alternatives. This assumption has been widely criticised (starting from Simon (1955)’s work on bounded rationality). Individuals 
often do not consider all the available alternatives because their number is too high or their relative performance is particularly 
bad. Not accounting for this leads to misspecification, unrealistic substitution patterns and bias in parameter estimates (Williams 
and Ortuzar (1982); Frejinger et al. (2009); Bhat (2015)). Ben-Akiva and Lerman (1985) proposes a sampling correction strategy 
in the case the sampling probability of an alternative from the universal choice set is known (see Frejinger et al. (2009), Flötteröd 
and Bierlaire (2013) for path choice applications). These methods, however, rely on the property that any alternative from the 
universal choice set can be selected, which may imply selecting unrealistic alternatives (Frejinger and Bierlaire, 2010) and are thus 
not suitable for prediction. The sampling error correction strategy also assumes that it is possible to compute the probability of 
sampling any alternative from the universal choice set, which is not trivial in most applications.

Approaches in the second category allow the consideration choice set to be determined via behaviourally motivated criteria. 
One would expect the consideration set to be more suitable than the representative set. However, the approach by Manski (1977) 
is computationally expensive, as the number of subsets grows exponentially with the representative universal choice set size. Thus, 
most models based on that framework have never been applied in choice contexts where the universal choice set is large, such as 
route choice modelling. One stage choice set formation models, first theorised by Swait (2001a) and Cascetta and Papola (2001), 
were initially designed to mimic/approximate Manski’s framework. However, Bierlaire et al. (2010) showed that one-stage choice 
set formation models have different properties and cannot approximate Manski’s model, so they should be treated as a standalone 
modelling framework. One-stage choice set formation models retain the behavioural qualities of the two-stage formation models 
while keeping a low computational cost. We will focus on this model type in the following subsection and the remainder of the 
paper.

2.2. One-stage choice set formation models: a review

In this subsection, we explain and present one-stage choice set formation models. Under utility maximisation, if 𝑛 ⊆  is the 
choice set of decision-maker 𝑛, the choice probability of alternative 𝑖 is given by: 

𝑃𝑛(𝑖) = Pr(𝑈𝑖𝑛 ≥ 𝑈𝑗𝑛,∀𝑗 ∈ 𝑛) (1)

where 𝑈𝑗𝑛 = 𝑉𝑗𝑛 + 𝜖𝑗𝑛 is the utility of alternative 𝑗 for decision-maker 𝑛. Assuming the analyst knows 𝑛, it can be described by 
deterministic availability indicators (Bierlaire et al., 2010): 

𝐴𝑖𝑛 =

{

1 if alternative 𝑖 is considered by individual 𝑛
0 otherwise

(2)

The choice model can be re-written: 
𝑃𝑛(𝑖) = Pr(𝑈𝑖𝑛 + ln(𝐴𝑖𝑛) ≥ 𝑈𝑗𝑛 + ln(𝐴𝑗𝑛),∀𝑗 ∈ ) (3)

Indeed, if 𝐴𝑖𝑛 is zero, i.e., the alternative 𝑖 is not available, its 𝑈𝑖𝑛+ln(𝐴𝑖𝑛) will go to minus infinity, and it will have zero probability 
of being the maximising alternative (Bierlaire et al., 2010). To model for the analyst’s lack of knowledge on the actual composition of 
𝑛, Cascetta and Papola (2001) proposed to replace 𝐴𝑖𝑛 by a penalty term 𝜙𝑖𝑛 ∈ [0, 1], which represents the probability that individual 
𝑛 considers alternative 𝑖. Generally, alternative penalties depend on their attributes or utilities passing cutoffs (also referred to as
bounds or thresholds). Studies from the literature present different functional forms for 𝜙𝑖𝑛, with different properties (see Appendix 
A for detailed examples). These properties can be categorised as follows (see Table  1 for examples of references):
3
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Implicit Availability/Perception (IAP), Cascetta and Papola (2001) × ×  
MNL with cutoff penalties, Swait (2001a) ×  
Generalised nonrectangular hyperbola Elrod et al. (2004) × × × ×  
Choice model with screening rules, Gilbride and Allenby (2004)a × × ×  
Constrained-MNL (C-MNL), Martínez et al. (2009) × × ×  
C-MNL estimation, Castro et al. (2013) × × × ×  
High-order C-MNL, Paleti (2015) × × × ×  
Endogenous cutoff model, Truong et al. (2015) × ×  
BCM, Watling et al. (2018) × × × × ×  
Conjunctive BCM, Rasmussen et al. (2024) × × × ×  
Truncated Path choice model, Tan et al. (2024) × × × × ×  
SBCM (this paper) × × × × × ×  
 Gilbride and Allenby (2004) include the possibility for both compensatory and non-compensatory cutoff in their model.

1. Hard/Soft cutoffs: A hard cutoff means that alternatives with attributes/utilities beyond the cutoff receive zero probability 
of being considered. Soft cutoffs penalise alternatives but never assign them zero probability.

2. Pervasive/Non-Pervasive cutoffs: A pervasive (as defined by Elrod et al., 2004) cutoff effect means that alternatives which 
do not invoke the cutoff (i.e., whose utility/attribute value is higher than the lower cutoff value) are still influenced by it. This 
implies that when an alternative is not cut off by the cutoff, it will still be less likely to be considered if its attribute/utility 
value is close to the cutoff value than if it is much higher. This is the case for most models in the literature, with Swait 
(2001a)’s model as a main counter-example.

3. Compensatory/Non-Compensatory cutoffs: Cutoffs can be applied to the overall utility (compensatory) or using some
non-compensatory decision rule (e.g., conjunctions/disjunctions of attributes).

4. Endogenous/Exogenous cutoffs: Cutoffs are endogenous if they depend on attributes of alternatives or can be determined 
through the estimation of model parameters. Exogenous cutoffs are fixed by the analyst independently from attributes of 
alternatives, or for example, stated by the decision-maker in stated preference data.

5. Continuous choice probabilities: The model choice probabilities are continuous with respect to the model parameters 
and attributes. This is the case of most models in the literature, except for Gilbride and Allenby (2004), which makes the 
assumption that the choice probabilities are non-continuous at the cutoff value.

6. Smooth choice probabilities: Some models have a non-differentiable choice probability function at the cutoff value, which 
means the choice probabilities have ‘‘kinks’’ when some attribute reaches the cutoff value. Conversely, some models have 
smooth choice probabilities.

Table  1 displays whether different one-stage choice set formation models have hard or soft cutoffs, pervasive or non-pervasive 
utoffs, compensatory or non-compensatory cutoffs, endogenous or exogenous cutoffs, are continuous or non-continuous, and smooth 
r non-smooth. For each property category, one can argue one side is more attractive than the other.
A hard cutoff can be argued to be more attractive than a soft cutoff as the former assigns strictly zero choice probabilities 

o alternatives violating cutoffs, and the latter only reduces probabilities. This means that hard cutoffs implicitly generate the 
onsideration set of alternatives from the representative universal choice set, removing unrealistic alternatives as defined consistently 
y the choice model. This is desirable from a behavioural point of view, especially when the number of potential unrealistic 
lternatives is vast, e.g., in schedule choice modelling or route choice modelling (Watling et al., 2015). The hard cutoff property is 
lso helpful when comparing ‘‘before’’/‘‘after’’ scenarios (e.g., when exploring the implementation of a policy or discount), as the 
mplicit choice set can change and, therefore, adapt with the change in scenario.
A pervasive cutoff can be argued to be more attractive than a non-pervasive cutoff as with the former, the choice probability of 

n alternative relates to how close it is to the cutoff, i.e. choice probability decreases the closer it gets to the cutoff. This provides 
lear consistency between choice set formation and calculation of the choice probabilities. It is also supported empirically, where 
lrod et al. (2004) found that accounting for the pervasive effect of a cutoff provided a better fit to observed choices.
A compensatory cutoff can be argued to be more attractive than a non-compensatory cutoff, as the former will typically provide 

onsistency between choice set formation and choice probability computation. Most one-stage choice set formation models combine 
on-compensatory cutoffs for the choice set formation with a compensatory choice from the choice set (e.g. utility maximisation). 
orowitz and Louviere (1995) and Swait (2001b) found in an empirical study, however, that the same preferences tend to drive 
he choice set formation and choice stages, and thus when assuming compensatory choice behaviour, it is attractive to impose 
ompensatory cutoffs. The use of non-compensatory cutoffs is also often linked to a large increase in the number of model parameters, 
hich may make their estimation more complex and lead to identification issues (Castro et al., 2013).
An endogenous cutoff can be argued to be more attractive than an exogenous self-reported cutoff as the latter has been known 

o cause what has been termed an ‘endogeneity issue’, where the cutoff is undesirably correlated with the random utility error 
erm (Ding et al., 2012). Respondents often violate their (Moser and Raffaelli, 2014) stated cutoffs, which may lead to poor fit and 
rediction of models that use them. Truong et al. (2015) found in his study that this led to biased parameter estimates. Endogenous 
4
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cutoffs are attractive as they can be estimated by estimating the choice model (Duncan et al., 2022) and may depend on the choice 
situation context. Models with exogenous cutoffs are mainly suitable for stated preference data where respondents state their own 
cutoff value, like in Swait (2001a).

Lastly, it is attractive for any model to have a continuous and smooth choice probability function. Continuity is, for example, 
a crucial requirement for estimating the model with MLE (Duncan et al., 2022), and smoothness is an important property for, 
e.g. evaluating the efficiency of MLE parameter estimates, sensitivity analyses, and efficiently solving equilibrium problems (Castro 
et al., 2013; Tan et al., 2024).

To summarise, one can argue that it is desirable for a one-stage choice set formation model to have hard, pervasive, compensatory, 
and endogenous cutoffs, and for the choice probability function to be continuous and smooth. As seen from Table  1, among all the 
one-stage choice set formation models, a model that satisfies most of these properties is the BCM, which satisfies all properties apart 
from smoothness. Thus, in this paper, we focus on advancing the BCM, where we resolve the smoothness deficiency.

3. The Bounded Choice Model: formulation and non-differentiability

This section presents the Bounded Choice Model (BCM, Watling et al. (2018)) derivation and highlights some of its properties 
and non-differentiability.

3.1. Model derivation

The BCM is derived by assuming that each alternative 𝑖 in the representative or actual universal choice set  is compared to 
a reference alternative 𝑟∗ in terms of utility (𝑈𝑖 = 𝑉𝑖 + 𝜖𝑖, 𝑈𝑟∗ = 𝑉𝑟∗ + 𝜖𝑟∗  where 𝜖𝑖, 𝜖𝑟∗  are random error terms). The distributional 
assumptions are given for the difference of error terms 𝜖𝑟∗ − 𝜖𝑖, which follow a left-truncated Logistic distribution at a threshold 
−𝜙, and with a location parameter 𝜇 = 0 (see Duncan et al. (2022) supplementary material for a detailed derivation of the model’s 
choice probabilities). Its CDF 𝐹𝑇𝐿 is given by:

𝐹𝑇𝐿(𝑥|𝜃, 𝜇, 𝜙) =

⎧

⎪

⎨

⎪

⎩

𝐹𝐿(𝑥|𝜃, 𝜇) − 𝐹𝐿(−𝜙|𝜃, 𝜇)
1 − 𝐹𝐿(−𝜙|𝜃, 𝜇)

if 𝑥 ≥ −𝜙

0 if 0 ≤ 𝑥 < −𝜙
(4)

=
(𝐹𝐿(𝑥|𝜃, 𝜇) − 𝐹𝐿(−𝜙|𝜃, 𝜇))+

1 − 𝐹𝐿(−𝜙|𝜃, 𝜇)
(5)

where (.)+ = max(0, .). 𝐹𝐿(𝑥|𝜃, 𝜇) = 1∕(1 + exp(−𝜃(𝑥− 𝜇))) is the CDF of the Logistic distribution with location parameter 𝜇 and scale 
parameter 𝜃. The BCM choice probability of an alternative 𝑖 versus the reference alternative is given by:

P(choose 𝑖 among {𝑖, 𝑟∗}) = P(𝑈𝑖 ≥ 𝑈𝑟∗ )

= P(𝑉𝑖 + 𝜖𝑖 ≥ 𝑉𝑟∗ + 𝜖𝑟∗ )

= P(𝜖𝑟∗ − 𝜖𝑖 ≤ 𝑉𝑖 − 𝑉𝑟∗ )

= 𝐹𝑇𝐿(𝑉𝑖 − 𝑉𝑟∗ |𝜃, 0, 𝜙)

The BCM choice probabilities are then given by the ratio of odds ratios (see Watling et al. (2018), Duncan et al. (2022) and Tan 
et al. (2024)):

𝑃 BCM𝑖 ∶= P(𝑖|) =

P(choose 𝑖 among {𝑖, 𝑟∗})
1 − P(choose 𝑖 among {𝑖, 𝑟∗})

∑

𝑗∈
P(choose 𝑗 among {𝑗, 𝑟∗})

1 − P(choose 𝑗 among {𝑗, 𝑟∗})

(6)

=
(exp(𝜃(𝑉𝑖 − 𝑉𝑟∗ + 𝜙)) − 1)+

∑

𝑗∈ (exp(𝜃(𝑉𝑗 − 𝑉 ∗
𝑟 + 𝜙)) − 1)+

(7)

Additionally, Watling et al. (2018) and Duncan et al. (2022) set the reference utility as the maximum deterministic utility, 
i.e., 𝑉𝑟∗ = max𝑗∈ 𝑉𝑗 .

3.2. Non-differentiability

The non-differentiability of the BCM is twofold:

• The use of a truncated logistic distribution implies a non-differentiability of the choice probabilities around the bound, 
i.e., when for any alternative 𝑗 ∈ , 𝑉𝑗 reaches 𝑉𝑟∗ − 𝜙.

• The definition of the reference alternative 𝑉𝑟∗ = 𝑉𝑗∗  where 𝑗∗ ∈  is the index of the deterministic utility maximising alternative 
implies a non-differentiability with respect to the alternative attributes and utility function parameters.

We detail these two properties below.
5
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Fig. 1. Logistic and truncated distribution plots, CDF as a dashed line and PDF as a plain line.

Table 2
Example of a choice situation with two alternatives and two attributes.
 𝑇𝑇 𝑇𝐶 
 Alternative 1 1 2  
 Alternative 2 2 1  

3.2.1. Non-differentiability around the truncation threshold
The function (.)+ is non-differentiable at 0, which implies that the CDF 𝐹𝑇𝐿 is non-differentiable at −𝜙. The BCM choice 

probabilities of an alternative versus the reference are thus non-differentiable around the cutoff value (𝑉𝑖−𝑉𝑟∗ = −𝜙). Consequently, 
the BCM choice probabilities are also non-differentiable when any of the 𝑉𝑗 , 𝑗 ∈  reach the cutoff value (𝑉𝑗 = 𝑉𝑟∗ − 𝜙). The 
left-truncated and original logistic distributions are plotted in Fig.  1. We clearly can observe the non-continuity of its PDF and, thus, 
the non-differentiability of its CDF.

3.2.2. Non-differentiability of the reference utility
The max function is non-differentiable, even though all the 𝑉𝑗s are continuous. This non-differentiability happens when the 

index (𝑗∗(𝜶) = argmax𝑗∈ 𝑉𝑗) of the utility-maximising alternative changes. Thus, when deterministic utilities are varied, such as 
taste coefficient parameters being varied during parameter estimation or attributes change in an equilibrium problem, the BCM 
probability relation in Eq.  (7) is non-differentiable. To illustrate this property, let us consider a binary choice situation ( = {1, 2}). 
These alternatives have two attributes: travel time (𝑇𝑇 ) and travel cost (𝑇𝐶). Alternative 1 is fast but expensive; Alternative 2 is 
cheaper but longer. The attribute values are given in Table  2.

Let us assume that a linear function models the deterministic utility of these alternatives, where for 𝑖 ∈ {1, 2}, 𝑉𝑖 = 𝛼𝑇𝑇 𝑇𝑇𝑖−𝑇𝐶𝑖. 
Using the above notations, we have 𝐗 =

(

𝐱1 𝐱2
)⊤ =

(

1 2
2 1

)

. Fig.  2 plots how maximum deterministic utility and the derivate of 
maximum deterministic utility vary as the preference parameter for travel time 𝛼𝑇𝑇  varies. As can be seen, while the max utility 
is continuous, the derivate is not, where there is a jump in the derivative at 𝛼𝑇𝑇 = −1. This corresponds to where the reference 
alternative changes from alternative 1 to alternative 2.

4. The Smooth BCM (SBCM)

In this section, we develop a Smooth Bounded Choice Model (SBCM), which retains the key features of the BCM but has 
an infinitely differentiable choice probability function, namely by addressing the two smoothness issues we demonstrated in the 
previous section. An important property of the SBCM is that it can approximate the BCM at any precision and thus can be seen as a 
generalisation of the model. We first present in Section 4.1 a new bounded support distribution that generalises the truncated logistic 
distribution, with the additional property that it is smooth for any finite value of its added smoothness parameter. This distribution 
is then utilised to derive the SBCM choice probabilities, assuming it is the distribution of the error terms difference between any 
alternative and the reference (Section 4.2). We then present in Section 4.4 an instance of the SBCM, where the reference alternative 
systematic utility is given by a smooth approximation of the maximum utility in the choice set, whose properties are presented in 
Section 4.3.
6
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Fig. 2. Evolution of the reference alternative utility in function of 𝛼𝑇𝑇  on the example from Table  2.

Fig. 3. Plots of the smooth truncated Logistic distribution for 𝜙 = 0.5 and 𝜙 = 3, the other parameters being fixed.

4.1. A smooth bounded support distribution

As shown in Section 3, the BCM is derived from assuming that the difference in utility between alternative 𝑖 ∈  and a reference 
alternative 𝑟∗ follows a truncated logistic distribution. The CDF of the truncated logistic distribution is non-differentiable at the 
bound, which makes the resulting BCM choice probabilities non-differentiable. To resolve this issue, we propose a smooth variant 
of this distribution for the random utility difference: a smooth truncated logistic distribution, which has the following CDF: 

𝐹𝑆 (𝑥|𝜃, 𝜙, 𝛿) =
𝑔𝛿(exp(𝜃(𝑥 + 𝜙)) − 1)

𝑔𝛿(exp(𝜃(𝑥 + 𝜙)) − 1) + 𝑔𝛿(exp(𝜃𝜙) + 1)
, (8)

where 𝜃 > 0 is a scale parameter, 𝜙 > 0 is a bound parameter, and 𝛿 > 0 is the bound smoothing parameter. 𝑔𝛿 is a function given 
by: 

𝑔𝛿(𝑧) =

⎧

⎪

⎨

⎪

⎩

𝑧 exp
(

− 1
𝛿𝑧

)

if 𝑧 > 0

0 otherwise
(9)

As we prove in Appendix  B, this distribution has the following properties:

1. It has bounded support on [−𝜙,+∞), 𝜙 > 0, so that if 𝑋𝑆 follows the distribution, then Pr(𝑋𝑆 ≤ −𝜙) = 0
2. It has a PDF 𝑓𝑆 and CDF 𝐹𝑆 that are infinitely differentiable on R.
3. It has a bound smoothing parameter 𝛿 where the distribution converges in distribution to the truncated logistic distribution 
when 𝛿 tends to +∞.

4. Approximation error: the approximation error of (.)+ by 𝑔𝛿 is bounded by 1∕𝛿. This result implies that the convergence rate 
of this approximation is controlled by the parameter 𝛿

Note also that for any value of 𝛿, the smooth truncated logistic distribution collapses to the logistic distribution when 𝜙 tends to 
+∞, as does the truncated logistic distribution. This is illustrated in Fig.  3, where both the truncated and smooth truncated logistic 
distributions are plotted with truncation thresholds 𝜙 = 0.5 and 𝜙 = 2. In Fig.  4, we plot the PDF of the smooth truncated logistic 
distribution for 𝛿 = 1 and 𝛿 = 15. One can see that 𝛿 has the role of smoothing the PDF around the bound. The larger 𝛿 is, the closer 
the distribution is to the truncated logistic distribution, and the steeper the PDF is around the bound. 𝛿 can be estimated as a model 
parameter through MLE, as we do in Section 7.
7
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Fig. 4. Plots of the smooth truncated Logistic distribution for 𝛿 = 1 and 𝛿 = 15, the other parameters being fixed.

From a behavioural standpoint, the assumption of a continuous PDF is appealing, as it avoids implausible discontinuities in 
the distribution of unobserved preferences. Sharp, deterministic thresholds implied by non-continuous PDFs may not reflect real-
world decision-making, where behaviour typically evolves smoothly in response to attribute changes. Nevertheless, the proposed 
distribution remains flexible enough to accommodate sharply bounded behaviour when appropriate. 

4.2. Derivation of the SBCM

Given the smooth truncated logistic distribution introduced in the previous subsection, we shall derive the SBCM probability 
relation based on this distribution. Assume there is a choice situation with a (representative) universal choice set  = {1,… , 𝑁}. 
Each alternative 𝑖 ∈  has a random utility 𝑈𝑖 = 𝑉𝑖 + 𝜖𝑖. Similarly to the derivation made by Watling et al. (2018) for the BCM, 
we propose that each alternative 𝑖 is compared with an imaginary reference alternative, whose random utility is 𝑈𝑟∗ = 𝑉𝑟∗ + 𝜖𝑟∗ , in 
terms of random utility difference. We assume that the random error terms difference 𝜀𝑖 = 𝜖𝑟∗ − 𝜖𝑖, rather than a truncated logistic 
distribution, follows a smooth truncated logistic distribution at a lower bound −𝜙, for some 𝜙 > 0. Then, the binary probabilities of 
choosing 𝑖 ∈  over the reference alternative is given by:

P(𝑖|{𝑖, 𝑟∗}) = P(𝑉𝑖 + 𝜖𝑖 ≥ 𝑉𝑟∗ + 𝜖𝑟∗ )
= P(𝜖𝑟∗ − 𝜖𝑖 ≤ 𝑉𝑖 − 𝑉𝑟∗ )
= 𝐹𝑆 (𝑉𝑖 − 𝑉𝑟∗ |𝜃, 𝜙, 𝛿)

=
𝑔𝛿(exp(𝜃(𝑉𝑖 − 𝑉𝑟∗ + 𝜙)) − 1)

𝑔𝛿(exp(𝜃(𝑉𝑖 − 𝑉𝑟∗ + 𝜙)) − 1) + 𝑔𝛿(exp(𝜃𝜙) + 1)
The odds ratio for alternative 𝑖 ∈  and the reference alternative 𝑟∗ is then:

𝜂𝑖 =
P(𝑖|{𝑖, 𝑟∗})

1 − P(𝑖|{𝑖, 𝑟∗})

=

𝑔𝛿(exp(𝜃(𝑉𝑖 − 𝑉𝑟∗ + 𝜙)) − 1)
𝑔𝛿(exp(𝜃(𝑉𝑖 − 𝑉𝑟∗ + 𝜙)) − 1) + 𝑔𝛿(exp(𝜃𝜙) + 1)

𝑔𝛿(exp(𝜃𝜙) + 1)
𝑔𝛿(exp(𝜃(𝑉𝑖 − 𝑉𝑟∗ + 𝜙)) − 1) + 𝑔𝛿(exp(𝜃𝜙) + 1)

=
𝑔𝛿(exp(𝜃(𝑉𝑖 − 𝑉𝑟∗ + 𝜙)) − 1)

𝑔𝛿(exp(𝜃𝜙) + 1)

The choice probability of alternative 𝑖 against all the alternatives in the choice set is then given by:
𝑃 SBCM,𝑎𝑏𝑠
𝑖 ∶= P(𝑖|) =

𝜂𝑖
∑

𝑗∈ 𝜂𝑗
(10)

=
𝑔𝛿(exp(𝜃(𝑉𝑖 − 𝑉𝑟∗ + 𝜙)) − 1)

∑

𝑗∈ 𝑔𝛿(exp(𝜃(𝑉𝑗 − 𝑉 ∗
𝑟 + 𝜙)) − 1)

(11)

In addition, Watling et al. (2018) proposed a model for which the bound depends on the reference alternative deterministic utility, 
i.e., 𝜙 = (1 − 𝜑)𝑉𝑟∗ , with 𝜑 > 1, so that the cutoff is relative to the reference utility. This allows the model to eliminate alternatives 
from the choice set based on their utility ratio to the reference alternative rather than their utility difference. We shall see in the 
next subsections that this allows an asymmetry of the probability function and, to some extent, accounts for heteroskedasticity. The 
choice probability of alternative 𝑖 is then given by: 

𝑃 SBCM,𝑟𝑒𝑙
𝑖 ∶= P(𝑖|) =

𝑔𝛿(exp(𝜃(𝑉𝑖 − 𝜑𝑉 ∗
𝑟 )) − 1)

∑

𝑗∈ 𝑔𝛿(exp(𝜃(𝑉𝑗 − 𝜑𝑉 ∗
𝑟 )) − 1)

(12)

One important difference between these model formulations is that the absolute model bounds the difference between utilities. In 
contrast, the relative model bounds the ratio and henceforth needs the utility of every alternative (including the reference alternative) 
to have the same sign.
8
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Fig. 5. Maximum and Boltzmann soft maximum operators, and their derivative with respect to 𝛼𝑇𝑇 : an example for 𝜆 = 2, 𝜆 = 10.

4.3. Definition of the reference utility

The BCM defines the reference utility as the maximum deterministic utility within the choice set, i.e., for a choice set , we have 
that 𝑉𝑟∗ = max𝑗∈ 𝑉𝑗 . As shown in Section 2, since the max function is non-differentiable, so is the BCM choice probability function. 
Here, we address this issue by approximating the maximum with a smooth approximation. There are numerous approximations for 
the maximum function available (e.g., the LogSumExp operator, the p-norm, etc.). However, we sought an approximation with the 
property of never being lower than the actual maximum. This property ensures the SBCM choice probabilities will be defined for 
any relative bound 𝜑 > 1 and absolute bound 𝜙 > 0, which would not be the case if the approximation was smaller than the actual 
maximum. Indeed, if the reference alternative deterministic utility is larger than the maximum one in the choice set, for some value 
𝜑 > 1 or 𝜙 > 0, we may get a 0∕0 ratio in the choice probabilities. The approximation we chose was the Boltzmann operator (Asadi 
and Littman, 2017), which is defined as follows for a vector 𝐱 =

(

𝑥1 ⋯ 𝑥𝑁
)

: 

𝑚𝜆(𝐱) =
∑𝑁

𝑖=1 𝑥𝑖𝑒
𝜆𝑥𝑖

∑𝑁
𝑖=1 𝑒

𝜆𝑥𝑖
(13)

where 𝜆 > 0 is a parameter determining the quality of the approximation: as 𝜆 → +∞, 𝑚𝜆(𝐱) → max(𝐱). We refer to 𝜆 as the
reference utility smoothing parameter. In determining the maximum deterministic utility, 𝜆 also influences the gradient slope when 
the maximum-utility alternative changes. Considering again the example from Fig.  2 and Table  2, Fig.  5 displays also the Boltzmann 
operator and its derivative as 𝛼𝑇𝑇  is varied, with 𝜆 = 2 and 𝜆 = 10. As can be seen, the derivative is continuous around the change 
of the maximum-utility alternative at 𝛼𝑇𝑇 = −1, where the gradient slope (i.e., the second derivative value) is greater for 𝜆 = 10
than 𝜆 = 2. The Boltzmann operator is also always smaller than the actual maximum.

Behavioural interpretation of 𝑚𝜆: While the main purpose of the smoothing operator 𝑚𝜆 is to enable differentiability, it has 
the potential to also capture different behaviours. The smooth maximum can be viewed as the expected value of the vector 𝐱 under 
a softmax weighting scheme:

𝑚𝜆(𝐱) = E𝑝(𝐱) ∶=
𝑁
∑

𝑖=1
𝑥𝑖𝑃𝑖, where 𝑃𝑖 =

𝑒𝜆𝑥𝑖
∑𝑁

𝑗=1 𝑒
𝜆𝑥𝑗

.

From a behavioural standpoint, 𝑚𝜆 can be seen as capturing uncertainty in the decision-makers’ perception of the reference 
alternative’s deterministic utility, expressed as 𝑉𝑟∗ = 𝑚𝜆(𝑽 ) + 𝜖𝑟∗ .

At 𝜆 = 0, the operator reduces to the arithmetic mean of all available alternatives, implying that the decision-maker evaluates 
options relative to an average reference point. In contrast, as 𝜆 → ∞, the operator converges to the maximum value, suggesting that 
the decision-maker adopts the highest-utility alternative as the reference point. As will be described in Section 5, 𝜆 can be estimated 
from observed choice data using a maximum likelihood technique.

Approximation error: We prove in Appendix  D that the approximation error of the function 𝑚𝜆 to the maximum function 
decreases with 𝜆 by a factor 1∕𝜆.

4.4. Proposed SBCM choice probability relation

Following the derivation in Section 4.2, and replacing the max function with the Boltzmann operator, we propose to use the 
approximation 𝑉 = 𝑚 (𝑽 ) where 𝐕 =

(

𝑉 ,… , 𝑉
) is the vector of the deterministic utilities in the choice set as the reference 
9
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Fig. 6. Model collapsing.

alternative systematic utility. Consequently, the absolute (Eq.  (14)) and relative (Eq.  (15)) SBCM choice probability relation we 
propose is as follows for alternative 𝑖 ∈ : 

𝑃 SBCM, abs𝑖 =
𝑔𝛿(exp(𝜃(𝑉𝑖 − 𝑚𝜆(𝐕) + 𝜙) − 1))

∑

𝑗∈ 𝑔𝛿(exp(𝜃(𝑉𝑗 − 𝑚𝜆(𝐕) + 𝜙) − 1))
(14)

𝑃 SBCM, rel𝑖 =
𝑔𝛿(exp(𝜃(𝑉𝑖 − 𝜑𝑚𝜆(𝐕)) − 1))

∑

𝑗∈ 𝑔𝛿(exp(𝜃(𝑉𝑗 − 𝜑𝑚𝜆(𝐕)) − 1))
(15)

where 𝜃 > 0 is the scaling parameter scaling sensitivity to deterministic utility, 𝜑 > 0 is the relative bound parameter determining 
the cutoff on surplus utility (relative to best utility), 𝑔𝛿 is as in Eq.  (9) with 𝛿 > 0, and 𝑚𝜆 is as in Eq.  (13) with 𝜆 > 0. 𝛿 and 𝜆 are 
termed the smoothing parameters, where 𝛿 is the bound smoothing parameter and 𝜆 is the maximum utility smoothing parameter.

The analytical gradients and Hessian matrix of the SBCM choice probabilities have been derived and are presented in Appendix 
C.

Since the smooth truncated logistic distribution collapses to the truncated logistic distribution as 𝛿 → +∞, and the Boltzmann 
operator collapses to the actual maximum as 𝜆 → +∞, the SBCM in Eq.  (15) collapses to the BCM in Eq.  (7) as 𝛿 → +∞ and 
𝜆 → ∞. Moreover, both the BCM and SBCM collapse to MNL as 𝜑 → +∞ (i.e., there is no screening of alternatives). These collapsing 
properties are illustrated in Fig.  6.  The collapsing properties of the SBCM are theoretically advantageous, as they enable formal 
statistical comparisons between the SBCM, BCM, and MNL using tools such as likelihood ratio tests. It is important to note, however, 
that we do not view the SBCM as solely a differentiable approximation of the BCM. Its distributional assumptions extend those of 
the BCM and may more accurately reflect actual choice behaviour.

Fig.  7 shows the SBCM choice probabilities for 𝛿 = 1, compared to the BCM and MNL probabilities with the same relative cost 
bound (for the BCM) and same scale parameter. The probabilities are plotted on a binary case with utilities (𝑉1, 𝑉2), and we plot 
the probability of alternative 2 as a function of 𝑉2, given 𝑉1 is fixed to one. We see that, with this value of 𝛿, the SBCM choice 
probabilities, while having the same bounding properties as the BCM ones, have a smoother S-shape, which resembles the MNL 
choice probabilities. This implies that the choice probabilities of alternatives whose utility is close to the bound are much closer to 
zero for the SBCM than for the BCM.

To illustrate the different properties of the relative and absolute bounding conditions outlined in Section 4, Fig.  8 compares 
the absolute and relative SBCM choice probabilities for 𝛿 = 1, 𝜑 = 1.5 and 𝜙 = 0.5, compared to the MNL ones with the same 
scale parameter. This plot highlights the choice probability asymmetric behaviour. While the two curves overlap for 𝑉2 > 𝑉1, the 
relative bounding leads to a steeper slope of the choice probabilities for 𝑉2 < 𝑉1. For the relative model, the utility band on which 
no alternative is excluded gets larger with larger utility values (e.g., in real life, for longer routes). This is consistent with the 
heteroskedasticity assumption of asymmetric choice models (e.g., the Multinomial Weibit, Castillo et al. (2008)).

In the remaining parts of the paper, we will  mainly focus on the relative version of the SBCM, as it has been the subject of all 
the further developments of the BCM (Duncan et al., 2022; Tan et al., 2024). This version seems more appealing in some cases, 
as datasets usually include ‘‘small-scale decisions’’ (e.g., short trips) and ‘‘large-scale decisions’’ (e.g., long trips) so that a relative 
bounding condition can eliminate alternatives in both these choice situations efficiently, which is the case in the case studies we 
present in Section 7.  However, we do not advocate for choosing a version over another in a general case, as certain cases may be 
better accommodated with an absolute bound and a symmetric probability function, which does not impose restrictions on the sign 
of the utility. It is advised to test both versions of the model specifications and to select the one that represents the data best.

4.5. A Smooth Bounded Path Size model capturing route correlations

In this section, we present a route choice extension of the novel SBCM. Due to the complex overlapping nature of road networks, 
the correlation between routes (i.e. through link-sharing) should be accounted for Florian and Fox (1976) and Cascetta et al. (1996). 
However, the BCM, and thus the SBCM, do not account for route overlap. Extending the BCM to account for such, Duncan et al. 
(2022) developed the Bounded Path Size (BPS) route choice model. The BPS model includes heuristic path size correction terms 
10
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Fig. 7. Comparison of the MNL, relative BCM and SBCM choice probabilities.

Fig. 8. Comparison of the MNL, Relative and Absolute SBCM choice probabilities.

within the BCM probability relation to adjust the probabilities of used routes when links are shared with other used routes. The 
model’s key feature is that it can capture correlations between only the routes with utilities below the bound, i.e., excluding the 
impact of routes with utilities above the bound, and do so continuously. For details on how the BPS model is derived and its 
properties, we direct the reader to Duncan et al. (2022). We shall briefly introduce it and formulate a Smooth BPS (SBPS) model. 
Define 𝐴𝑖 as the set of links constituting route 𝑖 ∈ , where link 𝑎 ∈ 𝐴𝑖 has deterministic utility 𝑣𝑎. The deterministic utility of route 
𝑖 is obtained by summing up the utilities of its constituent links: 𝑉𝑖 =

∑

𝑎∈𝐴𝑖
𝑣𝑎, where 𝐕 is the vector of route utilities. Let ̄ ⊆  be 

the subset of all routes where 𝑉𝑖 ≤ 𝜑max(𝐕). The BPS choice probability relation for route 𝑖 ∈  is:

𝑃 BPS𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝛾BPS𝑖
)𝜂 (exp (𝑉𝑖 − 𝜑max(𝐕)) − 1

)

∑

𝑗∈̄

(

𝛾BPS𝑗

)𝜂
(

exp (𝑉𝑗 − 𝜑max(𝐕)) − 1
)

if 𝑖 ∈ ̄

0 otherwise

where (𝛾BPS𝑖 )𝜂 is the path size correction factor for used route 𝑖 ∈ ̄ (unused routes do not have path size terms). 𝜂 ≥ 0 is the path size 
scaling parameter scaling sensitivity to route distinctiveness, and 𝛾BPS ∈ (0, 1] is the path size term for used route 𝑖 ∈ ̄, calculated 
11
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as follows:

𝛾BPS𝑖 =
∑

𝑎∈𝐴𝑖

𝑣𝑎
𝑉𝑖

(

exp (𝑉𝑖 − 𝜑max(𝐕)) − 1
)

∑

𝑗∈̄
(

exp (𝑉𝑗 − 𝜑max(𝐕)) − 1
)

𝛿𝑎𝑗

where 𝛿𝑎𝑗 = 1 if route 𝑗 uses link 𝑎 and 0 otherwise. 𝛾BPS𝑖  is specified as such so that (a) unused routes with utilities above the 
bound, i.e. routes 𝑗 ∉ ̄, do not contribute to reducing the path size terms of used routes with utilities below the bound, and (b) the 
path size term function is continuous as routes enter and exit the used route set ̄, as utilities cross from below to above the bound 
and vice versa. It is also formulated in terms of summing over 𝑗 ∈ ̄ rather than with (.)+ functions to avoid occurrences of 0/0.

Analogously modifying the BPS model to how we modified the BCM to formulate the SBCM, we also formulate an infinitely 
differentiable SBPS model:

𝑃 SBPS𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝛾SBPS𝑖
)𝜂 𝑔𝛿(exp(𝑉𝑖 − 𝜑𝑚𝜆(𝐕)) − 1)

∑

𝑗∈̄

(

𝛾SBPS𝑗

)𝜂
𝑔𝛿(exp(𝑉𝑗 − 𝜑𝑚𝜆(𝐕)) − 1)

if 𝑖 ∈ ̄

0 otherwise

where 𝛾SBPS𝑖  is the Smooth Bounded Path-Size correction term, calculated as follows: 

𝛾SBPS𝑖 =
∑

𝑎∈𝐴𝑖

𝑣𝑎
𝑉𝑖

𝑔𝛿(exp(𝑉𝑖 − 𝜑𝑚𝜆(𝐕)) − 1)
∑

𝑗∈̄ 𝑔𝛿(exp(𝑉𝑗 − 𝜑𝑚𝜆(𝐕)) − 1)𝛿𝑎𝑗
(16)

where 𝑔𝛿 is given by Eq.  (9). This weight formulation allows choice probabilities to remain infinitely differentiable when adding 
the Path-Size correction. 

5. Parameter estimation approach

In this section, we discuss the estimation of the SBCM parameters from observed choice data. The different parameters to be 
estimated can be stored in a vector 𝜷 = (𝜶, 𝜃, 𝜑, 𝛿, 𝜆) ∈ R𝐾+3, where 𝐾 is the number of attributes included in the utility function. 
𝜶 ∈ R𝐾−1

+  are the normalised cost function parameters, 𝜃 is the scale parameter, which should be constrained as positive if utility 
maximisation is the expected behaviour, or negative if cost minimisation is expected. 𝜑 > 1 is the relative utility/cost bound 
parameter, 𝛿 > 0 is the bound smoothing parameter and 𝜆 > 0 is the maximum utility smoothing parameter.

5.1. Estimation technique

Let us assume that we observe 𝑁 choices. An observation 𝑛 ∈ {1, .., 𝑁} has a choice set 𝑛, and the index of the chosen alternative 
is given by 𝑖𝑛 ∈ 𝑛. To estimate the SBCM model and its special cases, we adopt the modified Maximum Likelihood Estimation 
(MLE) procedure originally proposed in Duncan et al. (2022) for the Bounded Path-Size model. Since for certain specifications of 
the parameters, a chosen route under the SBCM may receive a zero choice probability, the likelihood function can be zero. As 
discussed in Duncan et al. (2022) though, the optimal parameters will always lie in the parameter subspace, leading to a non-zero 
likelihood. If 𝜶 parameterises the utility functions 𝑉𝑖(𝜶), the valid parameter subspace for observation 𝑛 is given by:

𝛩𝑛 =
{

(𝜶, 𝜑, 𝜆), 𝑉𝑖𝑛 ≥ 𝜑−1𝑚𝜆(𝐕)
}

If the model parameters belong to this space, it means that the observed chosen alternative is given a non-zero choice probability 
(i.e. is not cut-off by the relative utility bound). The valid parameter subspace for the likelihood function is given by the intersection 
of the valid subspaces for all the observations, i.e.:

𝛩 =
𝑁
⋂

𝑛=1
𝛩𝑛 =

{

(𝜶, 𝜑, 𝜆),∀𝑛 ∈ {1, .., 𝑁}, 𝑉𝑖𝑛 ≥ 𝜑−1𝑚𝜆(𝐕)
}

This ensures that the model cannot assign zero probability to any chosen alternative. Continuity of the likelihood function 
is guaranteed over the constrained parameter subspace. To ensure during maximum likelihood estimation that the estimated 
parameters remain in 𝛩, we defined the following log-likelihood function. If 𝜷 is the vector containing all the model parameters: 

𝐿𝐿(𝜷) =
𝑁
∑

𝑛=1
log𝑃 SBCM𝑖𝑛

(𝜷) ⋅ 1(𝜶,𝜑,𝜆)∈𝛩𝑛
− 𝐶 ⋅ 1(𝜶,𝜑,𝜆)∉𝛩𝑛

(17)

where 𝐶 is a large penalising constant (in the following case studies, we take 𝐶 = 999) that ensures that the optimum cannot 
be found outside 𝛩. 1(𝜶,𝜑,𝜆)∈𝛩𝑛

 is the indicator function, that is 1 if and only if the set of parameters is in the subspace 𝛩𝑛. This 
formulation ensures the tuple (𝜶, 𝜑, 𝜆) remains in the domain 𝛩 when using maximisation algorithms. In this paper, we optimise the 
log-likelihood using the L-BFGS-B algorithm, using the Python programming language along with the NumPy and SciPy packages. 
A potential issue is that the SBCM log-likelihood function is not guaranteed to be concave. MLE solutions are thus not guaranteed 
to be unique according to standard proofs. That is not to say, though, that MLE solutions are or cannot be unique. In Section 7, 
we explore the uniqueness of MLE solutions numerically by re-conducting MLE with several different randomly generated initial 
conditions. The solutions found are always the same, suggesting uniqueness, and mirroring similar findings in Duncan et al. (2022) 
for the Bounded Path-Size model.
12
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5.2. Initialisation

When estimating the model parameters, it is important to make sure that the initial conditions are within 𝛩, as they may 
otherwise remain stuck outside 𝛩. To do so, we used random initialisation for all the model parameters other than the bound, 
drawing from a standard normal distribution. Then, we calculated the minimum value of the bound so that the utility parameters 
belong to 𝛩:

𝜑min = max
𝑛∈{1,…,𝑁}

𝑐𝑖𝑛
min𝑗∈𝑛 𝑐𝑗

Then, we draw a random value of 𝜑0 from a left-truncated random distribution on (𝜑min,+∞). In our paper, we chose to use a 
shifted exponential distribution with scale parameter 1: 𝜑0 ∼ Exp(1) + 𝜑min.

5.3. Reparameterisation techniques

It is well-known that a constrained optimisation problem is more complex to solve than an unconstrained one and requires more 
advanced and, usually, less efficient algorithms (Nocedal and Wright, 2006). However, the current model formulation imposes 
constraints on parameter values. To avoid issues with parameter constraints in the log-likelihood estimation, we parameterise the 
model following the work of Lipovetsky (2009). This transformation allows parameters to remain unconstrained in estimation while 
ensuring they stay within a reasonable range. We define the reparametrisations as follows:

𝜃 = exp(𝜃) (18)

𝜑 = 1 + exp(𝜑̃) (19)

𝜆 = exp(𝜆̃) (20)

𝛿 = exp(𝛿) (21)

where 𝜑̃, 𝜃, 𝜆̃ and 𝛿 are the unconstrained parameters. These transformations prevent 𝛿 and 𝜆 from reaching arbitrarily large values, 
improving numerical stability. Similarly, constraints on utility or cost function parameters can be enforced by setting 𝜶 = exp(𝜶̃)
which ensures all elements of 𝜶 remain positive or negative, depending on the needed sign restriction. With these transformations, 
the MLE procedure estimates parameters in the unconstrained space: 𝜷̃ =

(

𝜶̃, 𝜃, 𝜑̃, 𝛿, 𝜆̃
)

= 𝛷−1(𝜷), where the transformation function 
is defined as 

𝛷(𝜷) = (exp(𝜶), exp(𝜃), 1 + exp(𝜑), exp(𝛿), exp(𝜆)) (22)

5.4. Parameter interpretation and significance tests

Interpreting estimated parameters requires applying the inverse transformation to recover 𝜷 from 𝜷̃. Similarly, standard errors 
must be adjusted accordingly. Following Daly et al. (2012), the covariance of the transformed parameters is given by:

Cov(𝜷) = Cov(𝛷(𝜷̃)) = 𝛷′(𝜷̃)⊤Cov(𝜷̃)𝛷′(𝜷̃)

where Cov(𝜷̃) is the Asymptotic Variance-Covariance matrix of the estimated parameter 𝜷̃ and 𝛷′ is the Jacobian matrix of 𝛷. Given 
the definition in Eq.  (22), the Jacobian simplifies to

𝛷′(𝜷̃) = (exp(𝜶), exp(𝜃), exp(𝜑), exp(𝛿), exp(𝜆))

For two parameters 𝛽𝑖, 𝛽𝑗 ∈ 𝜷, their covariance follows

Cov(𝛽𝑖, 𝛽𝑗 ) = 𝑒𝛽𝑖𝑒𝛽𝑗Cov(𝛽𝑖, 𝛽𝑗 )

When conducting significance tests, it is important to note that while utility function parameters and scale parameters are 
typically compared to zero, the parameters 𝜑, 𝛿 and 𝜆 should be statistically compared to +∞. This can be done by comparing 
their inverse to zero. Using Daly et al. (2012), the variance of an inverse parameter is given by 

Cov(1∕𝛽𝑖, 1∕𝛽𝑗 ) =
Cov(𝛽𝑖, 𝛽𝑗 )

𝛽2𝑖 𝛽
2
𝑗

(23)

Applying this to the t-test, we observe that the test statistic for comparing a parameter to zero is equivalent to the test against 
infinity: 1∕𝛽

√ = 1∕𝛽
√ = 𝛽

√
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6. Advantages of the SBCM over the BCM

In this section, we detail some advantages of SBCM smoothness. The list is non-exhaustive and depends on what the model is 
used for. Two major advantages of the smoothness property are the ability to analyse the efficiency of estimates analytically and 
the elasticities of demand to attributes.

We can derive the likelihood function gradients and Hessian matrix of a MLE on observed choices. Suppose we observe 𝑁 choice 
situations for which the choice probability of the chosen alternative is given by 𝑃𝑛. In that case, we define the log-likelihood function 
as (𝜷) = ∑𝑁

𝑛=1 ln𝑃𝑛(𝜷). By linearity of differentiation, we then have:

∇𝜷(𝜷) =
𝑁
∑

𝑛=1
∇𝜷 ln𝑃𝑛(𝜷)

∇2
𝜷(𝜷) =

𝑁
∑

𝑛=1
∇2
𝜷 ln𝑃𝑛(𝜷)

6.1. Efficiency of estimators

First, one of the regularity conditions for the asymptotic normality of ML estimates is that the Likelihood function is differentiable. 
Consequently, the non-differentiable property of the standard BCM means that asymptotic normality is not guaranteed. The SBCM, 
on the other hand, is smooth, and asymptotic normality is guaranteed.

Second, when performing MLE on a sample of observations, one desired output is the efficiency of these estimates. The Cramer–
Rao theorem (Harald Cramer, 1946; Radhakrishna Rao, 1945) gives a lower bound for the variance–covariance matrix of the true 
model parameters. It states if 𝜷𝑡 are the true parameters and if the model is correctly specified, then the asymptotic variance of the 
MLE estimated parameters 𝜷̂ is given by:

Var(𝜷̂) = −E
[

∇2
𝜷(𝜷𝑡)

]−1
≈ −E

[

∇2
𝜷(𝜷̂)

]−1

=

( 𝑁
∑

𝑛=1
∇2
𝜷E

[

ln𝑃𝑛(𝜷̂)
]

)−1

=

( 𝑁
∑

𝑛=1
∇2
𝜷 ln𝑃𝑛(𝜷̂)

)−1

A MLE estimator attains this lower bound if the sample size 𝑁 tends to infinity. Thus, the new SBCM allows computing the 
Cramer–Rao bound at the model estimates, i.e., to get their asymptotic variance–covariance (AVC) matrix and their standard errors, 
on which statistical tests can be performed. Usually, the t-test is performed to assess the significance of the maximum likelihood 
estimate. For an estimated parameter 𝛽, the t-statistic t-stat(𝛽) is given by 𝛽∕𝑠𝑒(𝛽), where 𝑠𝑒(𝛽) =

√

Var(𝛽). These t-statistics are 
compared to the critical values (often 95%) of the 𝑇 (𝑁𝑜𝑏𝑠, 0.975), where 𝑇  is the t-distribution inverse CDF, 𝑁𝑜𝑏𝑠 is the number of 
observations used for estimation (for any model with more than 1000 observations, this value is similar to the one of the normal 
distribution, i.e., 1.96).

6.2. Elasticities

Compiling the probability gradients also allows for the computing of elasticities. Elasticities measure the sensitivity of one 
quantity to another (when both quantities are dependent). Choice modellers often calculate the elasticities of the choice probabilities 
of an alternative 𝑖 from a choice set  to one attribute of this alternative (or another). These elasticities output the responsiveness 
of demand or market shares to a change in one attribute. Elasticities are defined as the marginal change of an alternative’s choice 
probabilities as a function of the marginal change of an attribute of this alternative (or of another alternative for cross elasticities). 
The disaggregate direct point elasticities can be calculated as: 

𝐸𝑃𝑖
𝑥𝑖𝑘 =

𝜕𝑃𝑖
𝜕𝑥𝑖𝑘

𝑥𝑖𝑘
𝑃𝑖

=
𝜕 ln𝑃𝑖
𝜕𝑥𝑖𝑘

𝑥𝑖𝑘 (24)

where 𝑃𝑖 is the probability of alternative 𝑖 ∈  and 𝑥𝑖𝑘 is its 𝑘th attribute. Similarly, disaggregate cross point elasticities are calculated 
as follows: 

𝐸𝑃𝑖
𝑥𝑗𝑘 =

𝜕𝑃𝑖
𝜕𝑥𝑗𝑘

𝑥𝑗𝑘
𝑃𝑖

(25)

where 𝑗 ∈  is another alternative. Let us define the function 𝑓𝑖, for any 𝑖 ∈ , as: 
𝑓𝑖(𝐗|𝜽, 𝜑, 𝜆) = exp(𝜽⊤𝐱𝑖 − 𝜑𝑚𝜆(𝐗|𝜃)) − 1 (26)

We have:
𝜕 ln𝑃𝑖
𝜕𝑥

= 1
𝑔 (𝑓 )

𝜕𝑔𝛿(𝑓𝑖)
𝜕𝑥

− 1
∑

𝑔 (𝑓 )

∑ 𝜕𝑔𝛿(𝑓𝑗 )
𝜕𝑥
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where the partial derivative of the probability numerator to the attribute 𝑥𝑖𝑘 can be computed with the following chain rule. 
𝜕𝑔𝛿(𝑓𝑖)
𝜕𝑥𝑖𝑘

=
𝜕𝑔𝛿
𝜕𝑓𝑖

𝜕𝑓𝑖
𝜕𝑥𝑖𝑘

(27)

with 𝜕𝑔𝛿∕𝜕𝑓𝑖 being given by Eq.  (52) of Appendix  C,
𝜕𝑓𝑖
𝜕𝑥𝑖𝑘

= 𝜽𝑘 − 𝜑
𝑚𝜆
𝜕𝑥𝑖𝑘

(28)

𝜕𝑚𝜆
𝜕𝑥𝑖𝑘

= 𝜽𝑘
exp(𝜆𝜽𝐱𝑖)

∑

𝑗 exp(𝜆𝜽𝐱𝑗 )
(

1 + 𝜆(𝜽𝐱𝑖 − 𝑚𝜆(𝐗|𝜽))
)

(29)

The elasticities can then be computed by combining the equations above. For a series of observed choices, 𝑛 ∈ {1,… , 𝑁}, we call 
𝑃𝑛(𝑖) the probability of alternative 𝑖 ∈ 𝑛 for choice situation 𝑛. The predicted share of alternative 𝑖, which we will call 𝑆(𝑖), is given 
by its average choice probability, i.e., 𝑆(𝑖) = 1

𝑁
∑𝑁

𝑛=1 𝑃𝑛(𝑖). We define the aggregate point elasticity of alternative 𝑖 with respect to 
attribute 𝑘 as the share elasticity with respect to this attribute 𝐸𝑆(𝑖)

𝑥𝑖𝑘 :

𝐸𝑆(𝑖)
𝑥𝑖𝑘

=
𝜕𝑆(𝑖)
𝜕𝑥𝑖𝑘

𝑥𝑖𝑘
𝑆(𝑖)

(30)

=
𝑁
∑

𝑛=1
𝐸𝑃𝑛(𝑖)
𝑥𝑛𝑖𝑘

𝑃𝑛(𝑖)
∑𝑁

𝑝=1 𝑃𝑝(𝑖)
(31)

This share elasticity represents how much the predicted share of alternative 𝑖 within the observed choice situations will change if 
the value of the attribute 𝑘 changes.

7. Case studies

In this section, we use MLE to estimate the SBCM in three transport case studies: a mode choice case (Section 7.1), a bicycle 
route choice case (Section 7.2), and a public transport mode/route choice case (Section 7.3). For all case studies, we shall compare 
the SBCM to the standard BCM and MNL models regarding goodness-of-fit to the data, interpretation of the results, and evaluate 
estimate efficiency. For the mode choice case study, we shall also analyse the estimation of the smoothing parameters of the SBCM 
and evaluate aggregate elasticities of parameters. For the bicycle route choice case study, we extend the SBCM to account for route 
overlap smoothly and investigate how this affects estimation results.

It is worth noting that, in all case studies, the SBCM specification with an absolute bound was also estimated. However, it was 
consistently outperformed by the relative bound specification and was therefore excluded from the reported estimation results. Two 
main factors may explain this superior performance. First, the relative bound is more effective in mode and route choice contexts, 
as it excludes alternatives based on utility ratios rather than absolute differences, making it better suited to both short and long 
origin–destination movements. Second, the relative specification incorporates asymmetric choice probabilities, which often better 
reflect actual choice behaviour due to factors such as loss aversion (e.g., Chikaraishi and Nakayama, 2016; Fosgerau and Bierlaire, 
2009; Brathwaite and Walker, 2018).

7.1. Mode choice in the Greater Copenhagen Area

The first case study is a mode choice model in the Greater Copenhagen Area. The dataset has been extracted from the Danish 
National Travel Survey and contains 21,270 mode choice observations collected between 2009 and 2019. The universal choice set 
of mode alternatives was assumed to be the car, Public Transport (PT), cycling, and walking. However, as we explore through 
estimation of the SBCM, some of these alternatives are unused in some situations.

7.1.1. Model specification
The estimated models use the following utility specifications, inspired from the Başaran et al. (2025) case study:

𝑉𝑐𝑎𝑟 = 𝛼GTT,𝑐𝑎𝑟 × GTT𝑐𝑎𝑟
𝑉𝑃𝑇 = ASC𝑃𝑇 + 𝛼GTT,𝑃 𝑇 × GTT𝑃𝑇 + 𝛼𝑎𝑐𝑐 × Acc + 𝛼𝑒𝑔𝑟 × Egr
𝑉𝑐𝑦𝑐𝑙𝑒 = ASC𝑐𝑦𝑐𝑙𝑒 + 𝛼GTT,𝑐𝑦𝑐𝑙𝑒 × GTT𝑐𝑦𝑐𝑙𝑒
𝑉𝑤𝑎𝑙𝑘 = ASC𝑤𝑎𝑙𝑘 + 𝛼GTT,𝑤𝑎𝑙𝑘 × GTT𝑤𝑎𝑙𝑘

ASC are the Alternative Specific Constants, Acc and Egr are the Access and Egress times to the public transport stops, calculated 
using the methodology from Anderson (2013). The Generalised Travel Time (GTT) variables are calculated as follows for each mode:

GTT𝑐𝑎𝑟 = TT𝑐𝑎𝑟,𝑓𝑟𝑒𝑒 + 𝛼𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 × TT𝑐𝑎𝑟,𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 + TC𝑐𝑎𝑟∕𝑉 𝑂𝑇

GTT𝑃𝑇 = TT𝑖𝑛𝑣 + 𝛼𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 × N𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 + 𝛼𝑤𝑎𝑖𝑡 ×WaitT + 𝛼𝑤𝑎𝑙𝑘 ×WalkT + TC𝑃𝑇 ∕𝑉 𝑂𝑇

GTT𝑐𝑦𝑐𝑙𝑒 = TT𝑐𝑦𝑐𝑙𝑒,𝑓𝑟𝑒𝑒 + 𝛼𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 × TT𝑐𝑦𝑐𝑙𝑒,𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑
GTT𝑤𝑎𝑙𝑘 = TT𝑤𝑎𝑙𝑘
15
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Table 3
Variables and constants descriptions.
 Variables Description Constants Value  
 TT𝑐𝑎𝑟,𝑓𝑟𝑒𝑒 Car travel time under free flow conditions 𝛼𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 1.5  
 TT𝑐𝑎𝑟,𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 Car travel time under congested conditions VOT 92 DKK/h 
 TC𝑐𝑎𝑟 Car travel cost (car distance times 1.477DKK/km) 𝛼𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 9  
 TT𝑖𝑛𝑣 Public transport in-vehicle time 𝛼𝑤𝑎𝑖𝑡 1.5  
 N𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 Public transport number of transfers 𝛼𝑤𝑎𝑙𝑘 1.5  
 WaitT Public transport transfer waiting time  
 WalkT Public transport transfer walking time  
 TC𝑃𝑇 Public transport travel cost  
 TT𝑐𝑦𝑐𝑙𝑒,𝑓𝑟𝑒𝑒 Cycling travel time under free flow conditions  
 TT𝑐𝑦𝑐𝑙𝑒,𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 Cycling travel time under congested conditions  
 TT𝑤𝑎𝑙𝑘 Walking travel time  

Table 4
Model estimates, with t-statistics given in brackets. All parameters except the starred one are significant at the 0.01 
level for the MNL and the SBCM.
 MNL BCM SBCM𝜆→∞ SBCM  
 Cost parameters (𝜶)  
 Alternative specific constants  
  Car – – – –  
  Public transport 1.279 (17.31) 0.8363 0.6052 (9.175) 0.6083 (9.192)  
  Cycling 0.318 (5.681) 0.0162 −0.1512 (−4.450) −0.1386 (−4.284) 
  Walk 1.052 (3.671) −0.7499 −0.8133 (−8.993) −0.8034 (−4.766) 
 Generalised travel time  
  Car 0.0899 (33.19) 0.0619 0.0574 (21.59) 0.0566 (21.05)  
  Public transport 0.0197 (17.06) 0.0162 0.0174 (19.36) 0.0171 (18.33)  
  Cycling 0.1009 (43.90) 0.0852 0.0864 (41.78) 0.0851 (39.71)  
  Walk 0.0916 (14.04) 0.1034 0.1010 (31.66) 0.1020 (22.85)  
 Public transport variables  
  Access time 0.0972 (15.04) 0.0781 0.0790 (14.93) 0.0790 (14.64)  
  Egress time 0.0828 (16.17) 0.0652 0.0667 (15.66) 0.0661 (15–24)  
 Scale (𝜃) −1a −1a −1a −1a  
 Relative bound parameter (𝜑) – 4.369 5.812 (39.62) 6.675 (11.71)  
 Bound smoothing parameter (𝛿) – – 0.3714 (2.780) 0.1314 (1.953)  
 Maximum utility smoothing parameter (𝜆) – – – 4.0274 (5.699)  
 Final LL −11,096.8 −10,782.7 −10,764.9 −10,754.7  
 BIC 22,232.9 21,609.3 21,578.8 21,562.7  
 Adj. 𝜌2 0.579 0.591 0.592 0.592  
 Number of parameters 9 10 11 12  
 Alternatives cut by bound 0% 28.7% 22.8% 19.4%  
a The scale parameter is fixed to −1.

Table  3 gives the variable and fixed coefficient description and values. The values for 𝛼𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 is extracted from Nielsen et al. 
(2021), while the values for 𝛼𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 , 𝛼𝑤𝑎𝑖𝑡, 𝛼𝑤𝑎𝑙𝑘 are extracted from Hallberg et al. (2021). The car travel cost per kilometre and the 
Value of Time are extracted from the Danish transport ministry,2 which were also used in Başaran et al. (2025).

Additionally, availability constraints have been added for car and bicycle trips, for which the respondent must possess a car with 
a driving license and a bicycle, respectively.

7.1.2. Results
The estimation results are given in Table  4, where we estimate MNL, the BCM, the SBCM with a free 𝛿 parameter and fixed 

𝜆 parameter set to infinity (SBCM𝜆→∞), and the SBCM with free 𝛿 and 𝜆 parameters. Below, we analyse different aspects of the 
estimation results. As the utility functions are not normalised, the scale parameter 𝜃 is not estimated (i.e., fixed to −1) for every 
model.

Model fit: Since the different models have different numbers of parameters to estimate, model fit is assessed according to the 
Bayesian Information Criterion (BIC) penalised likelihood criteria and Adjusted 𝜌2. As can be seen, the BCM provides a considerably 
better fit to the data than MNL due to the cutting-off of mode alternatives (see below). Interestingly, the SBCM provides a marginally 
better fit to the data than the BCM, even when considering the number of parameters, with SBCM with free 𝛿 and 𝜆 parameters 
providing the best fit. We attribute this to the smoothness of the SBCM around the bound and reference utility.

2 TERESA; https://www.cta.man.dtu.dk/modelbibliotek/teresa.
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Fig. 9. Ratio of the maximum deterministic utility and the smoothened one.

Table 5
Percentage of available alternatives cut out by each model bound.
 Car trips Public transport trips Cycling trips Walking trips 
 BCM 0% 16.8% 8.67% 77.2%  
 SBCM𝜆→∞ 0% 7.44% 2.08% 71.1%  
 SBCM 0% 3.17% 0.306% 64.7%  

Model behavioural interpretation: All the model estimates make intuitive sense regarding the signs (see, e.g., Prato et al. (2017), 
for an analogous case study in the Copenhagen area). It is interesting to note that, according to every model, the public transport 
generalised travel time parameter is much less negative than the other modes, which may be linked to the inclusion of the access 
and egress times, as they are evaluated much more negatively than the GTT. Public Transport has the most negative ASC for every 
model, implying an inherent disutility of taking public transport.

The parameter 𝜆 is estimated to be around 4.02, implying that the reference alternative deterministic utility is slightly lower 
than the maximum deterministic utility in the choice set. Fig.  9 plots the histogram of the ratio max(𝐕)∕𝑚𝜆(𝐕) over the observed 
choices. As can be seen, most of them are close to 1 (meaning there is almost no approximation error). There are a few observation 
with slight deviations, which mostly happens for short trips.

Interestingly, the SBCM with 𝜆 → ∞ estimates a larger bound parameter than the BCM. This is likely due to the low 𝛿 parameter 
that creates the smooth shape, as highlighted in Fig.  7. Furthermore, the SBCM with a free 𝜆 parameter estimates a larger bound 
parameter than with 𝜆 → ∞, which is likely due to the much lower bound smoothing parameter (𝛿) estimated for this model, 
meaning an even smoother model around the bounds. The consequence is that, across all choice situations, fewer alternatives are 
cut by the bound for SBCM than the BCM, i.e. 19.4 to 22.8% rather than 28.7%. Table  5 displays for each model the proportion 
of alternatives cut out by the bounds for each mode. As shown, the cut-offs are mainly composed of walking trips, which are often 
too long to be considered an alternative by travellers. Notably, both models cut off fewer cycling trips than public transport trips, 
implying that a larger proportion of trips in the Copenhagen area are considered feasible by bicycle than by public transport.

Table  6 shows the average attributes of the alternatives for each of the modes when that mode is cut off by the SBCM bound. 
These results suggest that the walk and bicycle alternatives are mainly cut off because the walking and cycling travel times are very 
long, rather than the car and public transport times being quick. We also observed that when the cycling alternative was cut off, so 
was the walking alternative, which makes sense as cycling is always quicker than walking, and the routes are similar. Interestingly, 
there were no cases where the cycling and public transport alternatives were cut off, implying that the bad performance of cycling 
and public transport are not correlated. As shown in Table  6, cut-off cycling alternatives are mainly overlong, while cut-off public 
transport alternatives are short trips in poorly connected areas. In these cases, it can, in generalised travel time, be five times faster 
to cycle, ten times faster to drive, and also faster to walk.

Estimates efficiency: The SBCM’s differentiability allows us to calculate the t-statistics of estimated parameters, which evaluate 
estimate efficiency. These t-statistics are provided in Table  4 in brackets next to each parameter, calculated analytically using 
the Hessian matrix from Appendix  C. As can be seen, the t-statistics are all over 1.96, meaning that every estimated parameter 
is statistically significant. It is a great advantage of the SBCM over the BCM that one obtains such information.
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Table 6
Average attributes when an alternative is cut off by the SBCM bound.
 Cut-off mode GTT𝑐𝑎𝑟 GTT𝑝𝑢𝑏 Acc Egr GTT𝑐𝑦𝑐𝑙𝑒 TT𝑤𝑎𝑙𝑘  
 Public transport 7.46 60.49 9.74 12.11 16.33 50.66  
 Bicycle 32.48 146.2 7.92 9.72 143.1 401.4  
 Walk 20.87 73.07 7.83 9.45 53.00 156.57 

Table 7
Aggregate point elasticities output by the MNL. The bold cells present direct elasticities, and the other 
ones are cross-elasticities.
 Mode GTT𝑐𝑎𝑟 GTT𝑝𝑢𝑏 Acc Egr GTT𝑐𝑦𝑐𝑙𝑒 GTT𝑤𝑎𝑙𝑘 
 Car −0.323 0.140 0.065 0.063 0.176 0.011  
 Public transport 0.628 −0.588 −0.311 −0.297 0.521 0.045  
 Cycle 0.269 0.206 0.132 0.122 −1.086 0.060  
 Walk 0.160 0.224 0.194 0.182 0.558 −3.490 

Table 8
Aggregate point elasticities output by the SBCM. The bold cells present direct elasticities, and the 
other ones are cross-elasticities.
 Mode GTT𝑐𝑎𝑟 GTT𝑝𝑢𝑏 Acc Egr GTT𝑐𝑦𝑐𝑙𝑒 GTT𝑤𝑎𝑙𝑘 
 Car −0.413 0.137 0.061 0.058 0.250 0.0031  
 Public transport 0.633 −0.579 −0.292 −0.273 0.497 0.070  
 Cycle 0.554 0.206 0.126 0.114 −1.375 0.115  
 Walk 0.201 0.222 0.180 0.164 1.668 −4.531 

Aggregate elasticities: The differentiability of the SBCM allows us to calculate aggregate elasticities. For instance, we can calculate 
how much, on average, an increase in Public Transport in-vehicle time will affect the choice probabilities of all the transport modes 
(and thus the predicted modal share). The aggregate elasticities use the point elasticities formulas from Eqs. (24), (25) and (27) for 
the SBCM. Elasticities from the MNL model are given in Table  7, and the SBCM elasticities are given in Table  8.

The two models output similar aggregate point elasticities, which make sense in size and magnitude. We can see, for instance, that 
relative changes in Generalised Travel Time (GTT) affect the choice probabilities of slow modes (cycling and walking) particularly. 
For instance, the SBCM outputs that a minor relative increase by a factor 𝛥 > 1 of the bicycle GTT will decrease the bicycle market 
share by 1.375𝛥 %, while increasing the modal share of all the other modes (+1.668𝛥 % for Walking, +0.497𝛥 % for Public Transport, 
and +0.250𝛥% for Car).

Some interesting differences can be found between MNL and SBCM elasticities. For instance, the elasticity of car probabilities 
to walking travel time is around four times smaller for the SBCM than MNL. This is because for most choice situations (11,700 out 
of 12,363 car choices, i.e. 94.6%), when the car is the chosen mode, walking was excluded from the consideration set. Hence, a 
marginal increase or decrease in walk travel time has zero impact on the car choice probabilities. This difference suggests that MNL 
overestimates the impact of walking travel time on car choice probabilities. We also observe that a marginal increase in cycling 
travel time has a much greater impact on the walking predicted share according to the SBCM (elasticity of 1.668) than the MNL 
(elasticity of 0.558), suggesting a large substitution of cycling trips to walking trips. Further analysis showed that observations that 
led to this massive increase in elasticities are the ones for which the car was not an available mode and for which public transport 
was not an attractive option compared to cycling. This suggests that a change in cycling travel time has a much larger impact on 
the walk modal share in these situations than MNL outputs and, thus, a larger predicted impact on behavioural change in the case 
of a pro-cycling policy.

7.1.3 Influence of the smoothing parameters
Here we analyse the estimation of the smoothing parameters of the SBCM, i.e. the bound smoothing parameter 𝛿, and the 

maximum utility smoothing parameter 𝜆. To do this, we estimate the SBCM for different fixed values of 𝛿, and then for different 
fixed values of 𝜆.
Influence of the bound smoothing parameter 𝛿: We observed in the case study (Table  4) that including the bound smoothing parameter 
increased the bound parameter estimate 𝜑. This intuitively makes sense, as smoothing the choice probabilities around this bound also 
decreases the likelihood of choices whose relative utility is close to this bound. To test for the influence of 𝛿 on the estimated bound 
𝜑 and the smooth maximum parameter 𝜆, we estimated several SBCM𝛿=𝛿0  with different fixed values for the smoothness parameter 
𝛿 = 𝛿0 from 0.01 to 30, and observed how the bound parameter estimate, maximum utility smoothing parameter estimate, and model 
fit evolved. Fig.  10(a) plots how the relative bound parameter estimate 𝜑 and maximum utility smoothing parameter estimate 𝜆
vary for different fixed settings of the bound smoothing parameter 𝛿. Fig.  10(b) plots the log-likelihood value. We observe that 
the estimated bound 𝜑 decreases with increasing 𝛿0, and collapses to the BCM relative bound. This was expected as the BCM is 
equivalent to SBCM𝛿→∞. We similarly see an increase in model fit until reaching the estimated 𝛿 = 0.371 from Table  4, and then 
a decrease that tends to the BCM final likelihood. We also observed that increasing the bound smoothing parameter increased the 
estimated maximum utility smoothing parameter 𝜆.
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Fig. 10. Influence of a fixed bound smoothing parameter 𝛿 on the other estimated parameters.

Fig. 11. Influence of a fixed maximum utility smoothing parameter 𝜆 on the other estimated parameters.

Influence of the maximum utility smoothing parameter 𝜆: The maximum utility smoothing parameter 𝜆 influences the goodness of the 
approximation of the max operator by the Boltzmann operator 𝑚𝜆. At the SBCM estimated parameter value (𝜆 = 4.0274), the goodness 
of that approximation varies between observations. In general, observations with larger magnitudes of utility (i.e., long trips) get 
better approximations than short trips, and the relative error varies between 10−12% and 10%. In general, as the Boltzmann operator 
underestimates the maximum, we would expect that a lower value of 𝜆 would also decrease the bound, as the reference alternative 
utilities are underestimated. To test for the influence of 𝛿 on the estimated bound parameter 𝜑 and the maximum utility smoothing 
parameter 𝜆, we estimated SBCM𝜆=𝜆0  several times with different fixed values for the smoothness parameter 𝜆 = 𝜆0 from 0.01 to 
50 and observed how the estimated bound and model fit evolved. Fig.  11(a) plots how the relative bound parameter estimate 𝜑
and bound smoothing parameter estimate 𝛿 vary for different fixed settings of the relative utility smoothing parameter 𝜆. Fig.  11(b) 
plots the log-likelihood value. We observe that the interaction between 𝜆 and the estimated 𝛿, and hence with the estimated bound, 
is not monotonous. We see an increase of the bound and a decrease of 𝛿 up to a critical value around 𝜆0 = 2, and a reverse trend 
for larger 𝜆0 values. This interaction is thus complex and hard to interpret.

7.2 Bicycle route choice in the Greater Copenhagen area

The second case study models cyclists’ route choices in the Copenhagen Metropolitan area.

7.2.1 The data
The case utilised a large-scale crowd-sourced data set of bicycle GPS trajectories received from Hövding. The original dataset 

covers the entire Greater Copenhagen Area (see Fig.  12) in the period from the 16th September 2019 until 31st May 2021. For a 
detailed description of the data, the bicycle network, and the algorithms applied for data processing, we refer to Łukawska et al. 
(2023). The final dataset for model estimation consists of a subset of this dataset containing 4134 trips made by 4134 cyclists.

The cyclable network can be modelled as a directed graph 𝐺 = (𝐵,𝐴) where 𝐴 is the set of links and 𝐵 is the set of nodes. The 
network size is large, with |𝐵| = 420,973 and |𝐴| = 324,492. The network data was collected from Open Street Map (OSM3). The 
attributes of link 𝑎 ∈ 𝐴 are as follows:

• 𝐿𝑎 (km): Link length
• 𝐸𝑎 (m): Link elevation gain when steepness > 3.5%
• No𝑎 (km): Link length without bike infrastructure

3 www.openstreetmap.org.
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Fig. 12. Heatmaps of anonymised GPS trajectories from Hövding.

• 𝑆𝑎 (km): Link length on a non-asphalt surface (i.e. gravel, cobblestones)
• 𝑊𝑎 (km): Link length on wrong ways (cycling against traffic).

These attributes are stored in a travel utility attribute vector 𝐓𝑎 = (𝐿𝑎, 𝐸𝑎,No𝑎, 𝑆𝑎,𝑊𝑎). For a route 𝑖 using a set of links 𝐴𝑖 ⊆ 𝐴, 
these attributes are link-additive, so that the vector of travel cost attributes of route 𝑖 is defined as 𝐱𝑖 =

∑

𝑎∈𝐴𝑖
𝐓𝑎.

7.2.2 Choice set generation
Due to the extensive case size, it was not feasible to enumerate the universal set of routes between Origin and Destination (OD). 

Thus, as discussed in the introduction, we generated a representative universal choice set using practically motivated criteria. This 
choice set generation algorithm used a stochastic simulation approach (Nielsen, 2004; Bovy and Fiorenzo-Catalano, 2007), drawing 
a large number (10,000) of routes from the network between each OD based on randomly simulated link lengths. These lengths 
were Normally distributed around the actual lengths, i.e., for each 𝑎 ∈ 𝐸, we drew a new value 𝐿̂𝑎 ∼  (𝐿𝑎, 𝜎𝐿𝑎), where 𝜎 is a 
dispersion parameter around the initial length. In this study, we used a value of 𝜎 = 0.5. These routes were then filtered using a 
local optimality criterion (Abraham et al., 2013; Fischer, 2020), defined as the minimum length of a subpath that is not the shortest 
path. This criterion constrains the presence of small detours on routes and their mutual overlap. Fig.  13 shows the distribution of 
the relative deviation in utility (utility/max(utility)) of the generated and observed routes. As can be seen, a large proportion of the 
observations took the best route, and the maximum relative deviation in utility from the observations was around −1.1, meaning 
that the worst observation had a utility 1.1 times worse than the best alternative. In contrast, many routes were generated with a 
relative deviation in utility smaller than −1.1, suggesting that many of the generated routes in the representative universal choice 
sets may be cut off.

7.2.3 Results
Here we present the results from estimating the MNL, BCM, SBCM, BPS, and SBPS models, each with different parameters. For 

all models, there is a set of attribute parameters to estimate: 𝛼 = (−1, 𝛼𝐸 , 𝛼No, 𝛼𝑆 , 𝛼𝑊 ), such that the linear utility function for a route 
𝑖 ∈  is 𝑉𝑖 = 𝜶⊤𝐱𝑖, where 𝐱𝑖 is the previously defined vector of attributes of route 𝑖 defined in Section 7.2.1. Note that the utilities 
are normalised to the Length attribute, meaning that the other parameters can be seen as marginal rates of substitution to Length 
(usually referred to a Value-of-distance space, see, e.g., Łukawska et al. (2024)). The other parameters are as follows:

• For all models, there is a scale parameter 𝜃, which refers to the scale parameter of the Logistic (MNL), truncated logistic (BCM, 
BPS), and smooth truncated logistic (SBCM, SBPS) distributions.

• For the BCM, SBCM, BPS, and SBPS models, there is a relative utility bound parameter 𝜑, which is linked to the trun-
cation/cutoff value 𝛹 of each choice set  (𝛹 = 𝜑max𝑗∈ (𝑉𝑗 ) for the BCM, BPS, and 𝛹 = 𝜑𝑚𝜆(𝐕) for the SBCM and 
SBPS).

• For SBCM and SBPS, there is a bound smoothing parameter 𝛿 to shape the smooth truncated logistic distribution (the larger 
𝛿, the smoother the distribution).
20



Journal of Choice Modelling 57 (2025) 100574L. Cazor et al.
Fig. 13. Relative costs distribution of the generated choice set and observed routes, using the MNL estimates from Table  9.

Table 9
Uncorrected model estimates. The t-statistic (i.e. the coefficient divided by its standard error) is given in brackets for each 
doubly-differentiable model. For these models, all the parameters are significant at the 0.01 level.
 Model MNL BCM SBCM𝜆→∞ SBCM  
 Utility parameters (𝜶)  
  Length −1a −1a −1a −1a  
  Elevation gain −0.0037 (2.031) 0.0846 −0.0044 (3.894) −0.0044 (3.863) 
  No Bike infrastructure −0.1808 (16.11) 4.302 −0.1652 (18.38) −0.1678 (18.45) 
  Non-smooth surface −0.1936 (43.81) 4.326 −0.1857 (49.72) −0.1856 (49.64) 
  Wrong way −0.3319 (40.15) 7.875 −0.3386 (45.77) −0.3407 (45.93) 
 Scale (𝜃) 28.54 (64.40) 25.46 23.17 (52.47) 22.81 (51.63)  
 Relative bound parameter (𝜑) – 1.110 1.1535 (208.1) 1.1522 (213.3)  
 Bound smoothing parameter (𝛿) – – 0.1496 (5.078) 0.1347 (5.230)  
 Maximum utility smoothing parameter (𝜆) – – – 4.586 (6.711)  
 Final LL −11,075.6 −10,777.8 −10,705.3 −10,702.6  
 BIC 22,169.3 21,577.7 21,435.9 21,434.2  
 Adj. 𝜌2 0.5135 0.5265 0.5296 0.5297  
 N params 5 6 7 8  
 Routes cut by bound 0% 66.6% 49.0% 48.8%  
a The parameter associated with Length is set to −1.

• For SBCM and SBPS, there is a maximum utility smoothing parameter 𝜆 controlling the quality of the smooth approximation 
of the max function for the reference utility.

• For BPS and SBPS, there is a Path-Size scaling parameter 𝜂 that influences the weight of the Path-Size correction in penalising 
the utility function.

Tables  9 and 10 displays the model parameter estimates. For the smooth models, we present two versions: one for which 𝜆 is fixed 
to an arbitrarily large value (models referred to as SBCM𝜆→∞ and SBPS𝜆→∞), and one for which 𝜆 is freely estimated via MLE. Table 
9 also displays t-statistics (where possible) and the percentage of routes cut by the bound.

All estimated parameters are significant, with the bound being, by far, the most significant parameter. Every bounded model 
allocates zero probabilities to between 49% and 67% of the choice set, which means that according to these models, around half 
of the generated routes in the choice sets are not even considered by cyclists due to their too-high generalised cost.4 This is most 
likely the main reason bounded models perform better than the MNL, as the MNL must allocate a non-zero probability to all those 
routes. The SBCM also outperforms the standard BCM in terms of fit. The SBCM relative cost bound is estimated higher, probably 
because of the smoothness of the probability function (there is no fast increase of the choice probabilities around the bound). 
Still, this smoothness seems to represent choice behaviour better. Finally, accounting for the inherent correlation between routes 
with the BPS and SBPS models leads to large improvements in model fit. This justifies why accounting for the correlation between 
routes is crucial when modelling their choice probabilities. The estimation of 𝜆, while leading to significant parameters and a small 
log-likelihood improvement, does not provide further behavioural insights. The goodness of the approximation of the max function 

4 This percentage is highly dependant on the choice set generation method. For instance, methods that generate routes with a higher variance or number of 
draws (for stochastic methods) or with different deterministic criteria may be more prone to contain many unrealistic alternatives that the bound would cut out.
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Table 10
Path-Size corrected model estimates. The t-statistic (i.e. the coefficient divided by its standard error) 
is given in brackets for each doubly-differentiable model. For these models, all the parameters are 
significant at the 0.01 level.
 Model BPS SBPS𝜆→∞ SBPS  
 Cost parameters (𝜶)  
  Length −1* −1* −1*  
  Elevation gain −0.0036 −0.0038 (4.172) −0.0038 (1.990) 
  No Bike infrastructure −0.1592 −0.1476 (18.99) −0.1491 (18.86) 
  Non-smooth surface −0.1531 −0.1503 (48.43) −0.1498 (47.30) 
  Wrong way −0.2670 −0.2617 (44.12) −0.2623 (43.21) 
 Scale (𝜃) 14.71 14.495 (53.15) 14.396 (50.71)  
 Path-Size coefficient (𝜂) 1.643 1.632 (42.41) 1.629 (42.13)  
 Bound (𝜑) 1.105 1.123 (249.7) 1.123 (224.2)  
 Bound smoothing parameter (𝛿) – 1.093 (3.612) 0.894 (3.173)  
 Maximum utility smoothing parameter (𝜆) – – 8.110 (3.814)  
 Final LL −9910.1 −9882.5 −9880.4  
 BIC 19,845.2 19,793.9 19,793.4  
 Adj. 𝜌2 0.5646 0.5657 0.5658  
 N params 7 8 9  
 Routes cut by bound 65.8% 55.7% 54.7%  

varies: for short trips (less than 1 km), there is a significant difference between the max(𝐕) and 𝑚𝜆(𝐕) (up to 15%), while for longer 
trips, the difference is negligible (down to 10−15%).

Figs.  14(a) and 14(b) show how the choice probabilities look in a binary case of two alternatives 1 and 2 with respective 
deterministic utilities 𝑉1, 𝑉2 with the model estimates from Table  9. We plotted the MNL, BCM, and SBCM choice probabilities as a 
function of the cost of Alternative 2, given that Alternative 1’s cost is fixed.

In Fig.  14(a), 𝑉1 = 1. This plot shows that there is a slight asymmetry on how the BCM and SBCM choice probabilities evolve with 
𝑉2 (in the sense that P(2|𝑉2 = 𝑉1 − 𝛥) ≠ P(1|𝑉2 = 𝑉1 + 𝛥) for 0 < 𝛥 < (𝜑 − 1)𝑉1). Moreover, the low smoothness parameter 𝛿 = 0.149
makes the choice probabilities get faster to zero for the SBCM than for the BCM. While the SBCM has a lower scale parameter than 
the MNL and BCM, its choice probabilities have the steepest slope for 𝑉2, because of the distributional assumptions of the model. In 
Fig.  14(b), 𝑉1 = 2. In this case, the relative utility bound 𝜑 is located much further away from 𝑉1, so the choice probabilities have 
a sigmoid-resembling shape (with different slopes given by the different estimated scales for each model).

In Fig.  15, we plot the distribution of the error terms difference 𝜀𝑖 for the different estimated models in Table  9, assuming a 
reference utility being equal to −1. This plot shows the difference between the distributions for short trips. The bound is slightly 
larger for the SBCM than the BCM, which makes sense with the previous case study experiments.

7.3 Public transport route choice in Copenhagen

In the third case study, we estimated the MNL, BCM, and SBCM as route choice models, but in this case, they were based on the 
Greater Copenhagen Region’s large-scale multimodal public transport network.

7.3.1 Data
We use a multimodal public transport dataset. A thorough presentation of this dataset can be found in Nielsen et al. (2021). 

Anderson (2013) collected the 4810 observed routes as part of the Danish National Travel Survey. These observations are separated 
into two subsets: work-related trips (2553 observations) and leisure trips (2257 observations), and separate models were estimated 
for these two datasets. The representative universal choice set was generated using a Doubly-Stochastic method (Nielsen, 2004). 
The dataset contains the travel time in each transport mode: bus, commuter train (S-train), Metro, Regional and intercity train, and 
local train. It also contains transfer components (number of transfers, waiting time and walking time), access and egress time, and 
highest headway in the trip. The model does not include the Path-Size correction term, as Nielsen et al. (2021) did not find it a 
significant explanatory variable.

7.3.2 Results
We estimated a MNL, a BCM and a SBCM for both trip purposes. Preliminary results showed that the reference alternative 

smoothness parameter 𝜆 was estimated to +∞. Thus, we fixed it to a large number (𝜆 = 100) and estimated the model SBCM𝜆=100
where 𝜆 is a hyperparameter. Similarly to the bicycle route choice case study, the utilities have been scaled to Bus In-vehicle time, 
which implies that the other cost parameters translate the relative sensitivity to attributes to Bus In-Vehicle time. Table  11 gives 
the model estimation results. The t-statistics for each smooth model (the MNL and the SBCM) were calculated analytically using 
the likelihood Hessian matrix. The SBCM, for instance, outputs that the decision-makers are, on average, willing to trade 1 min of 
S-train for 0.7385 min of Bus without a change in utility.

The model estimates make sense in magnitude and sign, corroborating with Nielsen et al. (2021). Similarly to the previous 
case studies, the BCM relative utility bound improves the model fit significantly. However, in this case study, neither of the two 
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Fig. 14. (a) Binary choice probability of alternative 1 according to the MNL, BCM and SBCM estimates parameters, with the utility of alternative 
1, 𝑉1 fixed to 1. (b) As for (a) but with 𝑉1 fixed to 2.
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Fig. 15. Distribution plots for the model estimated parameters, assuming that the reference deterministic utility is -1.

Table 11
Model results for Work and Leisure trips, the t-statistics are given in brackets. The smoothness parameters 𝛿 are both insignificant at the .05 
level. All the other parameters are significant at the .001 level.
 Trip purpose Work Leisure

 Model MNL BCM SBCM𝜆=100 MNL BCM SBCM𝜆=100  
 Cost parameters (𝜽)  
 In-vehicle time  
 Bus −1* −1* −1* −1* −1* −1*  
 Metro −0.3897 (6.81) −0.3820 −0.3826 (6.96) −0.3834 (5.00) −0.3322 −0.3481 (5.72)  
 Reg. and intercity train −0.8868 (22.10) −0.8848 −0.8813 (21.65) −0.8826 (17.52) −0.9641 −0.9660 (17.44) 
 S-Train −0.7478 (30.70) −0.7414 −0.7385 (30.36) −0.7393 (24.86) −0.7173 −0.7175 (27.05) 
 Local train −0.9056 (12.60) −0.9104 −0.9130 (12.09) −0.9116 (6.38) −0.7925 −0.7944 (5.65)  
 Transfer components  
 Nb of transfers −8.2194 (25.38) −8.0394 −7.9844 (24.24) −7.9935 (23.17) −8.3266 −8.2231 (23.65) 
 Transfer walk time −0.6767 (8.33) −0.6606 −0.6606 (7.18) −0.6607 (7.66) −0.7216 −0.7176 (8.03)  
 Transfer wait time −0.1542 (5.16) −0.1555 −0.1571 (5.13) −0.1554 (4.64) −0.1494 −0.1520 (4.87)  
 Other components  
 Access time −1.6567 (26.60) −1.6362 −1.6333 (26.16) −1.6312 (19.07) −1.7260 −1.7235 (19.20) 
 Egress time −1.4705 (19.89) −1.4556 −1.4540 (20.45) −1.4548 (17.79) −1.4694 −1.4593 (19.34) 
 Trip highest headway −0.4716 (9.66) −0.4813 −0.4825 (10.28) −0.4822 (9.16) −0.4314 −0.4353 (3.79)  
 Scale (𝜃) 0.3534 (37.06) 0.3372 0.3272 (30.59) 0.3358 (33.77) 0.3045 0.2994 (29.37)  
 Bound (𝜑) – 1.526 1.686 (17.89) – 1.533 1.722 (28.06)  
 Smoothness parameter (𝛿) – – 0.1738 (0.9592) – – 0.1730 (1.873)  
 Final LL −2391 −2373 −2371 −2623 −2579 −2573  
 BIC 4868 4840 4844 −5331 5251 5239  
 Adj. 𝜌2 0.804 0.805 0.806 0.745 0.749 0.751  
 N params 11 12 13 11 12 12  
 Routes cut by bound 0% 90.2% 86.7% 0% 88.9% 85.5%  

introduced smoothness parameters was found to be significant, even though the parameter 𝛿 slightly improves the model fit in the 
Leisure case. This implies that the shape of the BCM choice probabilities is more suited to explain the route choices made by this 
dataset’s decision-makers. The presence of the two smoothness parameters is still important, as it allows the choice probabilities 
differentiability. However, as a model hyperparameter, the smoothness parameter 𝛿 could also be fixed to a large positive number. 
Interestingly, the bounds cut off between 85% and 90% of the generated routes, implying that a large part of the sampled routes from 
the universal choice set were unrealistic. The BCM and SBCM estimates are very similar, with a slightly higher estimated relative 
cost bound for the smooth version (as also found with the Hövding dataset). This difference may be attributed to the smoothness of 
the probability function, as choice probabilities increase less fast than for the BCM around the bound. As we saw for the Hövding 
dataset, the SBCM significantly improves the model fit to the data.
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8 Discussion

8.1 Summary of contributions

In this paper, we have advanced the field of one-stage choice set formation models, which provide a behavioural and 
computational advantage over no-choice set formation and two-stage choice set formation models. For reasons discussed in the 
paper, the BCM (Watling et al., 2018) is a particularly attractive one-stage choice set formation model as it imposes hard, pervasive, 
compensatory, endogenous, and continuous cutoffs upon alternatives to determine implicit consideration choice sets consistent with 
the choice probabilities.

However, as demonstrated in the paper, the BCM is not differentiable. We have, therefore, developed the Smooth BCM (SBCM) 
to address this shortcoming. By relying on a new smooth bounded-support distribution for the random error terms and smoothly 
approximating the reference utility, the closed-form SBCM choice probabilities are infinitely differentiable (smooth). The core 
features of the BCM are preserved. For example, the MNL model can be approximated as the bound tends to infinity, and 
the bounding criterion is the same: alternatives receive zero probability if their utility violates the bound. The SBCM can also 
approximate the original BCM to arbitrary precision under a specific setting of the hyperparameters. The smoothness property of the 
SBCM guarantees the asymptotic normality of maximum likelihood parameter estimates and facilitates the calculation of likelihood 
gradients, the AVC matrix of the estimates, confidence intervals, and elasticities.

In choice contexts such as route choice, where there is considerable correlation between alternatives, this correlation should be 
accounted for Florian and Fox (1976). However, the BCM and SBCM do not account for correlation. Extending the BCM to account 
for such in the path choice context, Duncan et al. (2022) recently developed the Bounded Path Size (BPS) route choice model, which 
includes path size correction terms within the BCM probability relation to capture route correlation. In this paper, we have modified 
the BPS model analogously to how we modified the BCM to formulate the SBCM to formulate a smooth SBPS model.

Subsequently, we presented a MLE technique for the SBCM model. We proposed parameterisation techniques for the model 
parameters to avoid using box constraints on the parameter values and speed up the convergence of the estimation procedure. Since 
the SBCM log-likelihood function is not guaranteed to be concave, we explored the uniqueness of MLE solutions numerically, solving 
with different randomly generated initial conditions. No cases of multiple solutions were found.

To explore these features, we estimated the SBCM on three large datasets of observed choice behaviour from the Greater 
Copenhagen area: a mode choice dataset, a bicycle route choice dataset, and a public transport dataset. We calculated standard errors 
and marginal rates of substitution for the parameter estimates using the analytical gradient. Additionally, we calculated aggregate 
point elasticities for the mode choice case study and analysed the alternatives excluded by the model bound. Benchmarked against 
the MNL, the SBCM provided plausible results and considerably better fit the data in all the case studies. These fit improvements 
outweighed the additional parameters in all but one case, in which the BIC increased. We hypothesise that the smoother shape of 
the probability function is more suited to model choice behaviour. Upon the bicycle route choice application, we found that the 
SBPS model considerably outperformed both the MNL and the SBCM, highlighting the importance of accounting for correlation and 
unrealistic routes in generated choice sets.

An estimated bound implicitly identifies the alternatives individuals do not consider by giving them zero probability. This helps 
interpret an individual’s consideration set. Interestingly, the number of excluded alternatives was high in the route choice case 
studies. This suggests that the stochastic choice set generation method generated many unrealistic alternatives to which the MNL 
cannot allocate zero probability. Failing to do so may have led to biased predictions, especially in large-scale case studies. Excluding 
unrealistic alternatives also affects the calculation of policy-related indicators, like elasticities, as these excluded alternatives do 
not influence their calculation. For instance, the SBCM suggested that the substitution between walking and using the car was 
overestimated by the MNL, as, in most cases, walking was not a realistic alternative when the car was chosen. Conversely, the 
substitution between walking and cycling was underestimated.

8.2 Conclusion

In conclusion, we believe the SBCM is a promising model. First, its closed-form probabilities, analytical gradients, and Hessian 
matrices make it easy to estimate, notably for large choice sets. This is not the case for every one-stage choice set formation model, 
which often requires advanced estimation techniques, such as solving fixed point problems or using Bayesian inference. In our case 
studies, the SBCM provides a much better fit to the data than the MNL model, likely because unrealistic alternatives are assigned 
zero probabilities and thus do not influence the model estimates. Secondly, the SBCM allows for a richer interpretation of the model 
estimates than the MNL for the analysis of zero-probability alternatives from the representative universal choice set and the BCM 
due to the possibility of analytical calculation of standard errors and elasticities. Furthermore, while the BCM has yet only been 
applied to car route choice, we have now shown its suitability to different choice situations.

8.3 Future research

There are several directions for future research. Firstly, it is possible to incorporate the SBCM smoothing techniques in the 
Conjunctive BCM (Rasmussen et al., 2024) and also in an analogous Disjunctive BCM that could be based on previous work on 
disjunctive models (Cazor et al., 2024). This would allow for comparing different decision rules in one-stage choice set formation. 
A method for assessing which choice set formation assumption from the literature is the most suitable depending on the case study 
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could also be developed. This could be done either by comparing information criteria such as the BIC, or the model predictive ability 
on out-of-sample datasets.

Several other extensions of the SBCM could also enhance its versatility. For instance, a Nested SBCM for non-route choice contexts 
could be developed to relax the Independence of Irrelevant Alternatives (IIA) property and allow for correlation between alternatives. 
Another example could be to account for taste or bound heterogeneity by mixing some parameters with a discrete or continuous 
distribution.

Another stream of research could work further on the estimation procedure. A concern with the SBCM is its sensitivity to outliers, 
i.e., chosen alternatives that have a relative high utility compared to the best-performing alternative. During estimation, the bound 
is set to ensure that no observed alternative is entirely cut off (i.e., it always retains some likelihood). However, in out-of-sample 
validation, new outliers may emerge, potentially leading to poor overall model performance due to zero likelihood assignments. 
Alternative objective functions that are less sensitive to zero probabilities could be used for model assessment and possibly parameter 
estimation. Another approach involves systematically identifying outliers to better understand their impact. Cut-off issues may also 
arise due to insufficient heterogeneity in observed choice behaviour, highlighting the importance of ensuring that the estimation 
dataset is representative of the population. A possible solution could be to incorporate taste heterogeneity or bound heterogeneity, 
such as individual-specific bounds, or mixing parameters with a random distribution (McFadden and Train, 2000). This would allow 
for greater flexibility in capturing variation across decision-makers, potentially improving both estimation robustness and predictive 
performance.
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Appendix A. One-stage choice set formation models: a review

In this first Appendix, we explain and present one-stage choice set formation models. Under utility maximisation, if 𝑛 ⊆  is 
the decision-maker 𝑛 choice set, the choice probability of alternative 𝑖 is given by: 

𝑃𝑛(𝑖) = Pr(𝑈𝑖𝑛 ≥ 𝑈𝑗𝑛,∀𝑗 ∈ 𝑛) (32)

where 𝑈𝑗𝑛 = 𝑉𝑗𝑛 + 𝜖𝑖𝑛 is the utility of alternative 𝑗 for decision-maker 𝑛. Assuming the analyst knows 𝑛, it can be described by 
deterministic availability indicators (Bierlaire et al., 2010): 

𝐴𝑖𝑛 =

{

1 if alternative 𝑖 is considered by individual 𝑛
0 otherwise

(33)

The choice model can be re-written: 
𝑃𝑛(𝑖) = Pr(𝑈𝑖𝑛 + ln(𝐴𝑖𝑛) ≥ 𝑈𝑗𝑛 + ln(𝐴𝑗𝑛),∀𝑗 ∈ ) (34)

To model for the analyst’s lack of knowledge on the actual composition of 𝑛, Cascetta and Papola (2001) proposed to replace 𝐴𝑖𝑛 by a 
penalty term 𝜙𝑖𝑛 ∈ [0, 1], which represents the probability that individual 𝑛 considers alternative 𝑖. Several models from the literature 
explored different functional forms for the penalty term.  This framework is analogous to the modelling framework presented by 
Brathwaite and Walker (2018), where the utility is transformed with a function 𝑆 before calculating the choice probabilities using 
a logit formula. While several models below could be included within their framework, using 𝑆(𝑉𝑖𝑛) = 𝑉𝑖𝑛 + ln(𝜙𝑖𝑛), Brathwaite and 
Walker (2018) make the assumption that the function 𝑆 of an alternative does not depend on the attributes of other alternatives 
(i.e., maintain the Independence of Irrelevant Alternatives, or IIA assumption). This is not the case of some of the presented models, 
such as the BCM (Watling et al., 2018), the SBCM (this paper), and the Conjunctive BCM (Rasmussen et al., 2024).
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A.1. Swait (2001b) choice set formation model

First, Swait (2001b) model imposes cutoffs 𝛹𝑘 to the attributes 𝑘, meaning that if an alternative attribute 𝑥𝑖𝑛𝑘 fails to pass a cutoff 
value, its utility will be penalised. According to this model, the utility can be rewritten as a sum of subutilities for each attribute 𝑘, 
i.e., 𝑉𝑖𝑛 =

∑

𝑘 𝑉𝑖𝑛𝑘, where 𝑉𝑖𝑛𝑘 is defined by:
𝑉𝑖𝑛𝑘 = 𝜃𝑘𝑥𝑖𝑛𝑘 + 𝛾𝑘 max(0, 𝛹𝑘 − 𝑥𝑖𝑛𝑘)

which can also be expressed as: 

𝑉𝑖𝑛𝑘 =

{

𝜃𝑘𝑥𝑖𝑛𝑘 if 𝑥𝑖𝑛𝑘 ≥ 𝛹𝑘

(𝜃𝑘 − 𝛾𝑘)𝑥𝑖𝑛𝑘 + 𝛾𝑘𝛹𝑘 otherwise
(35)

𝛾𝑘 > 0 is a penalty coefficient. 𝛾𝑘 = +∞ represents a pure conjunctive behaviour (i.e., if an attribute does not meet the cutoff, 
the choice probabilities become zero). This utility can be rewritten 𝑉𝑖𝑛𝑘 = 𝜃𝑘𝑥𝑖𝑛𝑘 + ln𝜙𝑖𝑛𝑘, where 𝜙𝑖𝑛𝑘 = exp(𝛾𝑘 max(0, 𝛹𝑘 − 𝑥𝑖𝑛𝑘)). The 
total penalty for an alternative 𝑖 is thus equal to 𝜙𝑖𝑛 =

∏𝐾
𝑘=1 𝜙𝑖𝑛𝑘. A similar penalty can be given for upper attribute cutoffs.

A.2. The Constrained Multinomial Logit (CMNL) model

The CMNL (Martínez et al., 2009) is presented as a smooth version of Swait’s model. It is noted that Paleti (2015) extended this 
model to better approximate Manski (1977)’s framework. The CMNL imposes upper and lower cutoffs on the attribute value (noted 
𝑎𝑘 and 𝑏𝑘), using a slightly different definition for 𝜙𝑖𝑛: 𝜙𝑖𝑛 =

∏𝐾
𝑘=1 𝜙

𝐿
𝑖𝑛𝑘𝜙

𝑈
𝑖𝑛𝑘, where:

𝜙𝑈
𝑖𝑛𝑘 = 1

1 + 𝑒𝜔𝑘(𝑥𝑖𝑛𝑘−𝑎𝑘+𝜌𝑘)

𝜙𝐿
𝑖𝑛𝑘 = 1

1 + 𝑒𝜔𝑘(𝑏𝑘−𝑥𝑖𝑛𝑘+𝜌𝑘)

𝜔𝑘 is a scale parameter and 𝜌𝑘 is a location parameter.
Attribute cutoffs are considered soft : as 𝜙𝑖𝑛 cannot be zero, a violation of the cutoff penalises the choice probability but cannot 

lead to a zero probability. This property may be problematic for some applications (e.g., route choice), where eliminating alternatives 
with certainty simplifies the choice set generation task. To our knowledge, two models have been developed that allocate zero 
probability to alternatives that do not meet a cutoff value.

A.3. Elrod et al. (2004) choice set formation model

Elrod et al. (2004) develops a ‘‘pervasive conjunctive + linear model’’ using a general nonrectangular hyperbola (GNH) value 
function. The word ‘‘pervasive’’ means that if an alternative is close to the cutoff value, it will also be penalised (in a continuous 
and differentiable way). According to the GNH model, the deterministic utility 𝑉𝑖𝑛 =

∑

𝑘 𝑉𝑖𝑛𝑘, where 𝑉𝑖𝑛𝑘 is defined by: 

𝑉𝑖𝑛𝑘 =

{ −𝛾𝑘
𝑥𝑖𝑛𝑘−𝛹𝑘

+ 𝜃𝑘𝑥𝑖𝑛𝑘 if 𝑥𝑖𝑛𝑘 ≥ 𝛹𝑘

−∞ otherwise
(36)

It follows that the GNH model penalty can be written as 𝜙𝑖𝑛 =
∏𝐾

𝑘=1 𝜙𝑖𝑛𝑘, where 𝜙𝑖𝑛𝑘 = exp
(

−𝛾𝑘
𝑥𝑖𝑛𝑘−𝛹𝑘

)

.

A.4. The Bounded Choice Model (BCM)

The BCM (Watling et al., 2018; Duncan et al., 2022) assumes that the (representative) universal choice set may contain unrealistic 
alternatives with large costs/utilities, following empirical observations from Watling et al. (2015), and that these never enter 
individuals’ consideration sets. This model assumes that individuals consider an alternative if its utility or cost is within some 
bound of an imaginary reference alternative. It allocates zero probability alternatives by assuming that the difference of error terms 
between the utility of any alternative and one of the reference alternatives follows a truncated logistic distribution rather than a 
logistic distribution for the MNL. Its choice probabilities are defined as: 

𝑃 BCM𝑖𝑛 =

(

exp(𝜃(𝑉𝑖𝑛 − 𝛹𝑛)) − 1
)

+
∑

𝑗∈
(

exp(𝜃(𝑉𝑗𝑛 − 𝛹𝑛)) − 1
)

+

(37)

where 𝛹𝑛 is a cutoff value for the overall utility. Watling et al. (2018) defined this cutoff endogenously by assuming that it is related 
to the best-performing alternative in the choice set (i.e., 𝛹𝑛 = 𝜑max𝑗∈ 𝑉𝑗𝑛, 𝜑 > 1 for a relative model, or 𝛹𝑛 = max𝑗∈ 𝑉𝑗𝑛+𝛿, 𝛿 > 0, for 
an absolute model). It is possible to show that the BCM is equivalent to a one-stage formation model whose modified deterministic 
utility 𝑉𝑖𝑛 is given by: 

𝑉𝑖𝑛 =

{

ln(1 − 𝑒𝜃(𝑉𝑖𝑛−𝛹𝑛)) + 𝜃𝑉𝑖𝑛 if 𝑉𝑖𝑛 ≥ 𝛹𝑛

−∞ otherwise
(38)
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Fig. 16. Penalties for violating a lower bound for the different one-stage formation models.

The different penalties are plotted in Fig.  16. This figure showcases the different penalty properties. Firstly, we can see that 
Swait (2001a) and Martínez et al. (2009)’s CMNL penalties are ‘‘soft’’, i.e., that they never allocate zero probability to an alternative, 
regardless of how badly an attribute performs. Conversely, the GNH and BCM penalties can be considered ‘‘hard’’. Secondly, we 
observe that the CMNL, GNH and BCM penalties are ‘‘pervasive’’, meaning that alternatives whose attribute values are close to the 
cutoff are more penalised than those far. The above-mentioned properties are summarised in Table  1.

Appendix B. Proofs of the properties of the smooth truncated logistic distribution

Property 1. The smooth truncated logistic distribution has bounded support on [−𝜙,+∞)

Proof.  For 𝑥 < −𝜙, exp(𝜃(𝑥 + 𝜙)) − 1 < 0, so 𝑔𝛿(exp(𝜃(𝑥 + 𝜙)) − 1) = 0. As 𝑔𝛿(exp(𝜃𝜙) − 1) > 0, we have that 𝐹𝑆 (𝑥|𝜃, 𝜙, 𝛿) = 0 □

Property 2. The CDF of the smooth truncated logistic distribution is infinitely differentiable on R.

Proof.  It is sufficient to prove that 𝐹𝑆 is infinitely differentiable at the breakpoint 𝑥 = −𝜙, which is equivalent to proving the 
infinite differentiability of the function 𝑔𝛿 at the breakpoint 𝑥 = 0. For 𝑛 > 1, we note 𝑔(𝑛)𝛿  the 𝑛th order derivative of 𝑔𝛿 . We can 
prove by induction that there exists a polynomial 𝑃𝑛 of degree 2𝑛, so that: 

𝑔(𝑛)𝛿 (𝑧) =

⎧

⎪

⎨

⎪

⎩

𝑃𝑛

(

1
𝑧

)

exp
(

− 1
𝛿𝑧

)

if 𝑧 > 0

0 otherwise
(39)

As, for any integer 𝑘, the function 𝑧𝑘 exp(−𝑧) tends to 0 when 𝑧 tends to +∞, it follows that, for any polynomial 𝑃 , 𝑃 (𝑧) exp(−𝑧) tends 
to 0 when 𝑥 tends to +∞, or equivalently, that 𝑃

(

1
𝑧

)

exp
(

− 1
𝛿𝑧

)

 tends to 0 when 𝑧 tends to 0. This ensures the continuity of the 
𝑔(𝑛)𝛿 (𝑧) at the breakpoint.

Consequently, 𝐹𝑆 is infinity differentiable as a composition, sum, and ratio (which never equates zero) of infinitely differentiable 
functions. □

Property 3. The smooth truncated logistic distribution collapses to the truncated logistic distribution as 𝛿 = +∞.

Proof.  First, we will prove that the 𝑔𝛿 functions uniformly converge to (.)+ when 𝛿 → +∞. We have that ‖(.)+ − 𝑔𝛿‖∞ =
max𝑧>0(𝑧(1−exp(−1∕𝛿𝑧))), as the function is positive. The function 𝑧 → 𝑧(1−exp(−1∕𝛿𝑧)) is increasing, so max𝑧>0(𝑧(1−exp(−1∕𝛿𝑧))) =
lim𝑧→+∞ 𝑧(1 − exp(−1∕𝛿𝑧)). This limit can be calculated thanks to the l’Hopital’s rule:

lim
𝑧→+∞

𝑧(1 − exp(−1∕𝛿𝑧)) = lim
𝑧→+∞

1 − exp(−1∕𝛿𝑧)
1

(40)
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=L’Hopital lim
𝑧→+∞

− exp(−1∕𝛿𝑧)
𝛿𝑧2
−1
𝑧2

(41)

= lim
𝑧→+∞

1
𝛿
exp(−1∕𝛿𝑧) (42)

= 1
𝛿

(43)

Hence, ‖(.)+ − 𝑔𝛿‖∞ = 1∕𝛿 ←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝛿→+∞

0, meaning that 𝑔𝛿 uniformly converges to (.)+ when 𝛿 → +∞. This property implies that the 
∞ truncated Logistic distribution, when 𝛿 → +∞, uniformly converges to the following distribution: 

lim
𝛿→+∞

𝐹𝑆 (𝑥|𝜃, 𝜙, 𝛿) =
(exp(𝜃(𝑥 + 𝜙)) − 1)+

(exp(𝜃(𝑥 + 𝜙)) − 1)+ + (exp(𝜃𝜙) + 1)+
(44)

For 𝑥 > −𝜙, we have that (exp(𝜃(𝑥+𝜙))−1)+ = exp(𝜃(𝑥+𝜙))−1 and (exp(𝜃𝜙)+1)+ = exp(𝜃𝜙)+1, so that (exp(𝜃(𝑥+𝜙))−1)++(exp(𝜃𝜙)+1)+ =
exp(𝜃(𝑥+𝜙)) + exp(𝜃𝜙). For 𝑥 ≤ −𝜙, we have that (exp(𝜃(𝑥+𝜙)) − 1)+ = 0, which implies that lim𝛿→+∞ 𝐹𝑆 (𝑥|𝜃, 𝜙, 𝛿) = 0. Thus, we can 
rewrite the limit as follows:

lim
𝛿→+∞

𝐹𝑆 (𝑥|𝜃, 𝜙, 𝛿) =
(exp(𝜃(𝑥 + 𝜙)) − 1)+

exp(𝜃(𝑥 + 𝜙)) + exp(𝜃𝜙)
(45)

= 𝐹𝑇𝐿(𝑥|𝜃, 𝜇 = 0, 𝜙) (46)

which is the CDF of the truncated logistic distribution at −𝜙. □

Appendix C. SBCM gradients and Hessian matrix

This section defines the gradients and Hessian matrices of the choice probabilities logarithm with respect to the model parameters. 
Let us assume we observe a choice situation with a choice set , for which the S-BCM choice probabilities are called 𝑃𝑖(𝜷), for all 
𝑖 ∈ . 𝜷 = (𝜽, 𝜑, 𝛿, 𝜆) ∈ R𝐾+3 is a vector of attributes for which the probabilities are defined, i.e. for 𝜑 > 1, 𝛿 > 0, 𝜆 > 0. To avoid 
overloading notation, in this section, we define 𝜽 ∈ R𝐾 as the vector of utility-function parameters (i.e., 𝑉𝑖 = 𝜽⊤𝐱𝑖). No element of 
𝜽 is set to one, which means that this vector contains the scale parameter 𝜃 of the smooth truncated logistic distribution.

To calculate the log-probabilities gradient (also called the score) and Hessian matrix, we want to calculate the following 
quantities: 𝜕 ln𝑃𝑖𝜕𝜽 , 𝜕 ln𝑃𝑖𝜕𝜑 , 𝜕 ln𝑃𝑖𝜕𝛿 , 𝜕 ln𝑃𝑖𝜕𝜆 , as well as the double derivatives given in the Hessian matrix below. The log probabilities gradient 
(a vector of size 𝐾 + 3) and Hessian (a matrix of size (𝐾 + 3) × (𝐾 + 3)) are defined as:

∇𝜷 ln𝑃𝑖 =
𝜕 ln𝑃𝑖
𝜕𝜷

=
(

𝜕 ln𝑃𝑖
𝜕𝜽

𝜕 ln𝑃𝑖
𝜕𝜑

𝜕 ln𝑃𝑖
𝜕𝛿

𝜕 ln𝑃𝑖
𝜕𝜆

)

∇2
𝜷 ln𝑃𝑖 =

𝜕2 ln𝑃𝑖

𝜕𝜷𝜕𝜷⊤ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕2 ln𝑃𝑖
𝜕𝜽𝜕𝜽⊤

(

𝜕2 ln𝑃𝑖
𝜕𝜽𝜕𝜑

)⊤ (

𝜕2 ln𝑃𝑖
𝜕𝜽𝜕𝛿

)⊤ (

𝜕2 ln𝑃𝑖
𝜕𝜽𝜕𝜆

)⊤

𝜕2 ln𝑃𝑖
𝜕𝜽𝜕𝜑

𝜕2 ln𝑃𝑖
𝜕𝜑2

𝜕2 ln𝑃𝑖
𝜕𝜑𝜕𝛿

𝜕2 ln𝑃𝑖
𝜕𝜑𝜕𝜆

𝜕2 ln𝑃𝑖
𝜕𝜽𝜕𝛿

𝜕2 ln𝑃𝑖
𝜕𝛿𝜕𝜑

𝜕2 ln𝑃𝑖
𝜕𝛿2

𝜕2 ln𝑃𝑖
𝜕𝛿𝜕𝜆

𝜕2 ln𝑃𝑖
𝜕𝜽𝜕𝜆

𝜕2 ln𝑃𝑖
𝜕𝜆𝜕𝜑

𝜕2 ln𝑃𝑖
𝜕𝜆𝜕𝛿

𝜕2 ln𝑃𝑖
𝜕𝜆2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Let us define the function 𝑓𝑖, for any 𝑖 ∈ , as: 

𝑓𝑖(𝐗|𝜽, 𝜑, 𝜆) = exp(𝜽⊤𝐱𝑖 − 𝜑𝑚𝜆(𝐗|𝜃)) − 1 (47)

here, we assume a linear relationship between the model attributes and the cost function. We have that ln𝑃𝑖 = ln 𝑔𝛿(𝑓𝑖) −
ln
(

∑

𝑗∈ 𝑔𝛿(𝑓𝑗 )
)

. The log-probabilities gradients and Hessians with respect to 𝜷 can be expressed with the 𝑔𝛿(𝑓𝑖),∈  gradients 
and Hessians as follows: 

𝜕 ln𝑃𝑖
𝜕𝜷

= 1
𝑔𝛿(𝑓𝑖)

𝜕𝑔𝛿(𝑓𝑖)
𝜕𝜷

− 1
∑

𝑗∈ 𝑔𝛿(𝑓𝑗 )

∑

𝑗∈

𝜕𝑔𝛿(𝑓𝑗 )
𝜕𝜷

(48)

𝜕2 ln𝑃𝑖

𝜕𝜷𝜕𝜷⊤ =
𝑔𝛿(𝑓𝑖)

𝜕2𝑔𝛿 (𝑓𝑖)
𝜕𝜷𝜕𝜷⊤

−
(

𝜕𝑔𝛿 (𝑓𝑖)
𝜕𝜷

)

⋅
(

𝜕𝑔𝛿 (𝑓𝑖)
𝜕𝜷

)⊤

𝑔𝛿(𝑓𝑖)2
−

(

∑

𝑗∈ 𝑔𝛿(𝑓𝑗 )
)

(

∑

𝑗∈
𝜕2𝑔𝛿 (𝑓𝑗 )
𝜕𝜷𝜕𝜷⊤

)

−
(

∑

𝑗∈
𝜕𝑔𝛿 (𝑓𝑗 )

𝜕𝜷

)

⋅
(

∑

𝑗∈
𝜕𝑔𝛿 (𝑓𝑗 )

𝜕𝜷

)⊤

(

∑

𝑗∈ 𝑔𝛿(𝑓𝑗 )
)2

(49)

The partial derivatives of 𝑔𝛿 can be calculated using the chain rule:
𝜕𝑔𝛿 =

𝜕𝑔𝛿 𝜕𝑓𝑖 (50)
29

𝜕𝜷 𝜕𝑓𝑖 𝜕𝜷
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𝜕2𝑔𝛿
𝜕𝜷𝜕𝜷⊤ =

𝜕2𝑔𝛿
𝜕𝑓 2

𝑖

(

𝜕𝑓𝑖
𝜕𝜷

)2
+

𝜕2𝑓𝑖
𝜕𝜷𝜕𝜷⊤

𝜕𝑔𝛿
𝜕𝑓𝑖

(51)

The first and second-order derivatives of 𝑔𝛿 are given by:

𝜕𝑔𝛿
𝜕𝑧

=

⎧

⎪

⎨

⎪

⎩

(

1 + 1
𝛿𝑧

)

exp
(

− 1
𝛿𝑧

)

if 𝑧 > 0

0 otherwise
(52)

𝜕2𝑔𝛿
𝜕𝑧2

=

⎧

⎪

⎨

⎪

⎩

1
𝛿2𝑧3

exp
(

− 1
𝛿𝑧

)

if 𝑧 > 0

0 otherwise
(53)

𝜕𝑔𝛿
𝜕𝛿

=

⎧

⎪

⎨

⎪

⎩

1
𝛿2

exp
(

− 1
𝛿𝑧

)

if 𝑧 > 0

0 otherwise
(54)

𝜕2𝑔𝛿
𝜕𝛿2

=

⎧

⎪

⎨

⎪

⎩

(

− 2
𝛿3

+ 1
𝛿4𝑧

)

exp
(

− 1
𝛿𝑧

)

if 𝑧 > 0

0 otherwise
(55)

𝜕2𝑔𝛿
𝜕𝛿𝜕𝑧

=

⎧

⎪

⎨

⎪

⎩

1
𝛿3𝑧2

exp
(

− 1
𝛿𝑧

)

if 𝑧 > 0

0 otherwise
(56)

𝑓𝑖 has the following partial derivatives:
𝜕𝑓𝑖
𝜕𝜽

=
(

𝐱𝑖 − 𝜑
𝜕𝑚𝜆
𝜕𝜽

)

exp(𝜽⊤𝐱𝑖 − 𝜑𝑚𝜆(𝐗|𝜽)) (57)

𝜕𝑓𝑖
𝜕𝜑

= −𝑚𝜆(𝐗|𝜽) exp(𝜽⊤𝐱𝑖 − 𝜑𝑚𝜆(𝐗|𝜽)) (58)

𝜕2𝑓𝑖
𝜕𝜽𝜕𝜽⊤

=

[

(

𝐱𝑖 − 𝜑
𝜕𝑚𝜆
𝜕𝜽

)(

𝐱𝑖 − 𝜑
𝜕𝑚𝜆
𝜕𝜽

)⊤
− 𝜑

𝜕2𝑚𝜆

𝜕𝜽𝜕𝜽⊤

]

exp(𝜽⊤𝐱𝑖 − 𝜑𝑚𝜆(𝐗|𝜽)) (59)

𝜕2𝑓𝑖
𝜕𝜑2

= 𝑚2
𝜆(𝐗|𝜽) exp(𝜽

⊤𝐱𝑖 − 𝜑𝑚𝜆(𝐗|𝜽)) (60)

𝜕2𝑓𝑖
𝜕𝜽𝜕𝜑

= −
[

𝑚𝜆(𝐗|𝜽)
(

𝐱𝑖 − 𝜑
𝜕𝑚𝜆
𝜕𝜽

)

+
𝜕𝑚𝜆
𝜕𝜽

]

exp(𝜽⊤𝐱𝑖 − 𝜑𝑚𝜆(𝐗|𝜽)) (61)

For a vector 𝐮 = (𝑢1 ⋯ 𝑢𝑁 ). The partial derivatives of 𝑚𝜆(𝐮) with respect to the vector components are given by:
𝜕𝑚𝜆
𝜕𝑢𝑖

=
exp(𝜆𝑢𝑖)

∑

𝑘 exp(𝜆𝑢𝑘)
(

1 + 𝜆(𝑢𝑖 − 𝑚𝜆(𝐮))
)

(62)

𝜕2𝑚𝜆
𝜕𝑢𝑖𝜕𝑢𝑗

= 𝜆
exp(𝜆𝑢𝑖)

∑

𝑘 exp(𝜆𝑢𝑘)

[(

𝛿𝑖𝑗 −
exp(𝜆𝑢𝑗 )

∑

𝑘 exp(𝜆𝑢𝑘)

)

(1 + 𝜆(𝑢𝑖 − 𝑚𝜆(𝐮))) +
(

𝛿𝑖𝑗 −
𝜕𝑚𝜆
𝜕𝑢𝑗

)]

(63)

We can then calculate the derivative of 𝑚𝜆 with respect to 𝜽 by using the chain rule and setting 𝐮 = 𝜽⊤𝐗, for instance, using,
𝜕𝑚𝜆
𝜕𝜽

=
𝜕𝑚𝜆
𝜕𝒖

𝜕𝐮
𝜕𝜽

= 𝐗
𝜕𝑚𝜆
𝜕𝒖

𝜕2𝑚𝜆

𝜕𝜽𝜕𝜽⊤
=

𝜕2𝑚𝜆

𝜕𝒖𝜕𝒖⊤
( 𝜕𝐮
𝜕𝜽

)2
+

𝜕𝑚𝜆
𝜕𝒖

𝜕2𝐮
𝜕𝜽𝜕𝜽⊤

Let us write 𝑚𝜆(𝐮) = E𝑝(𝐮), being the expectation of 𝐮 with respect to the Softmax weighting 𝐩 =
(

𝑒𝜆𝑢𝑖
∑

𝑗 𝑒
𝜆𝑢𝑗

)

𝑗∈{1,…,𝑁}
. Finally, we 

have the following partial derivatives for 𝑚𝜆.
𝜕𝑚𝜆
𝜕𝜆

= Var𝑝(𝐮) (64)

𝜕2𝑚𝜆

𝜕𝜆2
= Var𝑝(𝐮2) (65)

where Var𝑝(𝐮) = E𝑝(𝐮2) − E𝑝(𝐮)2 Finally, we have the cross derivatives that are given by
𝜕2𝑚𝜆
𝜕𝜆𝜕𝐮

=
𝜕Var𝑝(𝐮)

𝜕𝐮
(66)

= 2
[

diag(𝐩)𝐮 − (𝐩⊤𝐮)𝐩
]

(67)
30
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Combining all the above equations allows for deriving the choice probabilities and their logarithm, the analytical gradients, and 
Hessian matrices with respect to the model attributes and parameters. In the following sections, we will present a few applications 
of these analytical gradients and Hessians. 

Appendix D. Boltzmann approximation error

Let 𝐱 =
(

𝑥1,… , 𝑥𝑁
)

, we want to give an upper bound on the Boltzmann operator approximation error 𝜖 = |max(𝐱) − 𝑚𝜆(𝐱)|. We 
assume, without loss of generality, that 𝐱 is ordered so that 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑁 . The approximation error is given by:

𝜖(𝜆) = 𝑥𝑁 −
𝑁
∑

𝑖=1
𝑥𝑖

𝑒𝜆𝑥𝑖
∑𝑁

𝑗=1 𝑒
𝜆𝑥𝑗

=
𝑁
∑

𝑖=1
(𝑥𝑁 − 𝑥𝑖)

𝑒𝜆(𝑥𝑖−𝑥𝑁 )

1 +
∑𝑁−1

𝑗=1 𝑒𝜆(𝑥𝑗−𝑥𝑁 )

Let us define 𝜖(𝛾) = 𝜖(1∕𝜆), we can give the following Taylor approximation of the error 𝜖:

𝜖(𝛾) = 𝜖(0) + 𝛾 𝜕𝜖
𝜕𝛾

|

|

|𝛾=0
+ 𝑜(𝛾)

𝜖(𝛾 = 0) = 𝜖(𝜆 = +∞) = 0 as the true maximum is obtained for infinite 𝜆. Moreover, the partial derivative is given by the LogSum: 
𝜕𝜖
𝜕𝛾 = log

(

∑𝑁
𝑖=1 𝑒

(𝑥𝑖−𝑥𝑁 )∕𝛾
)

. This implies that, when 𝜆 goes to infinity:

𝜖(𝜆) = 1
𝜆
log

( 𝑁
∑

𝑖=1
𝑒𝜆(𝑥𝑖−𝑥𝑁 )

)

+ 𝑜
( 1
𝜆

)

Given that 𝑒𝜆(𝑥𝑖−𝑥𝑁 ) ≤ 1 for all 𝑖, we have the following approximation error: 

𝜖(𝜆) = 1
𝜆
log (𝑁) + 𝑜

( 1
𝜆

)

= 𝑂
( 1
𝜆

)

(68)
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