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Abstract

One-stage (implicit) choice set formation models offer a computationally efficient way to
model how individuals consider alternatives. Among these, the Bounded Choice Model
(BCM) stands out for its consistent, utility-based cutoffs. However, the BCM is non-
differentiable, which limits its usefulness: key outputs such as elasticities and standard er-
rors cannot be computed analytically. To overcome this, we introduce the Smooth Bounded
Choice Model (SBCM). This model assumes a new smooth truncated logistic distribution
for the error terms and applies a smooth approximation to the maximum function used in
deőning the reference utility. As a result, the SBCM is inőnitely differentiable, while pre-
serving core features of the BCM, such as bounding, continuity, and the ability to collapse
to the Multinomial Logit (MNL) model under speciőc conditions. Importantly, the SBCM
is not just a smoother version of the BCM. Its more ŕexible distributional assumptions
can better capture actual choice behaviour and allow for meaningful differences in predicted
probabilities. We derive closed-form expressions for choice probabilities, gradients, Hessians,
elasticities, and standard errors, and present a practical estimation method. The SBCM is
tested in three case studies: one mode choice and two route choice settings (bicycle and
public transport). In all cases, it outperforms both the BCM and MNL in terms of model
őt and interpretability. While the BCM has so far been limited to car route choice, we show
that the SBCM is widely applicable across various discrete choice contexts.

Keywords: Smooth Bounded Choice Model, One-stage choice set formation, estimate effi-
ciency, elasticities, mode choice, route choice.

Highlights

• Critical literature review on the one-stage choice set formation models

• Demonstration of the non-differentiability of the Bounded Choice Model (BCM)

• Development of a new inőnitely-differentiable Smooth BCM (SBCM)

• SBCM estimation and evaluation in one mode and two route choice large-scale case studies

• Exploration of behavioural insights with analytical elasticities and excluded alternatives
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1 Introduction

A crucial step in choice modelling is deőning the consideration set from which a decision-maker
selects. Modelling consideration set formation is, however, both a computational and behavioural
challenge.

The computational challenge in many choice contexts (e.g., in route choice, schedule choice...)
comes from the vast number of possible alternatives, which are not feasible to generate and/or
operate with. In these cases, the typical modelling approach is to sample from the universal
choice set (Pougala et al., 2021; Prato, 2009) to identify a representative universal choice set.
Generating such samples is not trivial: they should include many realistic alternatives and
eliminate unrealistic ones while keeping enough variability to capture decision-makers’ trade-
offs. They must include the chosen alternative for model estimation on revealed preference
data. Usually, these choice set generation techniques are not based on behavioural assumptions
(Bovy, 2009; Prato, 2009; Thill, 1992), which may lead to biased estimates (Frejinger et al.,
2009). Additionally, sampling algorithms may generate unrealistic alternatives (Watling et al.,
2015), for example, due to the inconsistency between choice set generation and choice probability
criteria, which may lead to poor forecasting (Frejinger and Bierlaire, 2010).

The behavioural challenge comes from consideration sets being unobserved. Assuming that
individuals choose from the whole (representative) universal choice set may lead to biased sub-
stitution patterns (Williams and Ortuzar, 1982). To account for this, Manski (1977) developed
a two-stage framework where the probability of considering any subset of the representative
universal choice set is modelled by a distribution. However, as the number of subsets grows
exponentially with the size of the representative universal choice set, this method is not com-
putationally feasible in many real-life choice cases. Many simpliőcations of this approach have
thus been developed (e.g., Ben-Akiva and Boccara, 1995; Swait and Ben-Akiva, 1987; Tsoleridis
et al., 2023), mainly based on heuristics. From the 2000s, a simpliőed framework combines these
two stages by penalizing the utility of alternatives that are less likely to be considered based
on attribute or utility cutoffs. These models are referred to as one-stage or implicit choice set
formation models (Cascetta and Papola, 2001; Swait, 2001a). Although this framework does
not approximate Manski’s (Bierlaire et al., 2010), it has the advantage of being computationally
tractable. These models have been subject to recent developments and applications in the őelds
of transportation (e.g., Dubey et al., 2022; Watling et al., 2018; Yao and Bekhor, 2022), land
use (e.g., Haque et al., 2019), environmental valuation (e.g., Truong et al., 2015) and marketing
(e.g., Swait and Erdem, 2007).

The Bounded Choice Model (BCM, Watling et al., 2018) stands out among one-stage mod-
els as the only model that imposes hard, pervasive, compensatory, endogenously deőned, and
continuous cutoffs on alternatives. What this means and why this is attractive will be discussed
in Section 2.2. The BCM belongs to the class of relative random utility models (Zhang et al.,
2004) and assumes that individuals do not consider an alternative if it has a deterministic utility
much lower than the highest one in the choice set. It does so by assuming a truncated logistic
distribution for the utility difference random error terms (rather than a logistic distribution for
the multinomial logit model). The difference between the maximum deterministic utility and
the truncation threshold is called the bound or cutoff: if an alternative deterministic utility is
below this bound, it receives zero probability.

However, the BCM has a drawback because its choice probability function is non-differentiable.
This property complicates the estimation of parameters, the calculation of standard errors of
estimates, and the application of analytical optimization algorithms. For instance, it is not pos-
sible to guarantee the convergence and asymptotic normality of the model parameters’ maximum
likelihood estimator (Norets, 2010).

To address this issue, this paper introduces the Smooth Bounded Choice Model (SBCM),

2



an inőnitely differentiable (or smooth1) generalization of the BCM. The SBCM modiőes the
truncated logistic distribution assumed for the random error terms and uses a smooth approxi-
mation of the max function to ensure the model’s smoothness. Crucially, the SBCM maintains
the BCM’s core properties. Using two extra parameters to control for the choice probabili-
ties smoothness, the SBCM can approximate the BCM to arbitrary precision. The additional
contributions of this paper are:

• Derivation of analytical choice probability gradients and Hessian matrices, providing the
tools for calculating standard errors of estimates, demand elasticities, and other important
metrics.

• Development of a Path-Size corrected SBCM that accounts for overlap in route choice
contexts.

• Presentation of an estimation technique that handles the likelihood function’s potential
non-concavity and constraints on the parameter space.

• Benchmarking and validation through case studies: Comparing the SBCM with the Multi-
nomial Logit (MNL) model and the original BCM in three large-scale case studies in
Greater Copenhagen, covering mode choice, bicycle route choice, and public transport
route choice. We also study the SBCM elasticities and conduct experiments on the mutual
dependency of the smoothing parameters.

The paper is structured as follows. In section 2, we review the choice modelling literature on
the choice set formation problem, motivating our focus on the BCM. In section 3, we introduce
the BCM and demonstrate its non-differentiability. In section 4, we present the new SBCM and
compare it to MNL and the original BCM in illustrative examples. We additionally present an
extension of the SBCM to account for route correlation in route choice cases, developing the
Smooth Bounded Path-Size model (SBPS). In section 5, we present a constrained maximum
likelihood estimation technique to estimate the model and propose parameterization techniques
to speed up the estimation process. In section 6, we derive formulas for maximum likelihood
estimates’ standard errors and demand elasticities. In section 7, we present the three real-life
case studies. In section 8, we conclude the paper by discussing the results and their implications.
We outline other uses of the model and scope for future research.

2 Theoretical Background

In this section, we will present the theoretical background for our work. We will begin in
Section 2.1 by categorising and discussing the approaches adopted for accounting for choice
set formation, highlighting the particular attractiveness of the ’one-stage choice set formation’
approach. In Section 2.2, we then review the different models adopting the one-stage choice set
formation approach and highlight the attractiveness of the BCM amongst these approaches.

2.1 Modelling choice set formation

Let us denote C the (representative) universal choice set, from which we model the choice prob-
abilities of a decision-maker n. When it comes to modelling choice set formation, approaches
can be separated into three main categories:

1In the following parts of the paper, we will call a function smooth if it is inőnitely differentiable. In general,
a smooth function is a function that is differentiable a sufficient number of times for the function’s modelling
purposes.
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1. No choice set formation model: In the őrst category, modellers assume individuals
choose from the representative universal choice set C, and apply a choice probability model
P(i|C) to determine the probability of choosing each alternative from this set. This method
is often employed by real-life applications (e.g., Nielsen et al., 2021)

2. Two-stage choice set formation models: In the second category, modellers assume
that each decision-maker n chooses from a subset Cn ⊆ C and apply a choice probability
model to this subset only (P(i|Cn)). Each individual’s consideration set is unobserved and
is treated probabilistically. The most prominent approach in this category is the Manski
(1977) framework that considers all possible subsets Cn of the representative universal
choice set C, and relates the probability of choosing alternative i ∈ C to

∑

Cn⊆C P(Cn)P(i|Cn)
(see, e.g. Başar and Bhat, 2004; Ben-Akiva and Boccara, 1995; Swait and Ben-Akiva, 1987
for applications and simpliőcations of this framework).

3. One-stage choice set formation models: In the third category, modellers also assume
that individuals choose from a subset of the representative universal choice set but that this
consideration subset of alternatives Cn is determined implicitly through the computation
of the choice probabilities from the choice model (e.g., Cascetta and Papola, 2001; Elrod
et al., 2004; Martínez et al., 2009; Paleti, 2015; Swait, 2001a; Truong et al., 2015; Watling
et al., 2018 and, more recently, Kitthamkesorn and Chen, 2024; Tan et al., 2024). Rather
than modelling the choice set formation with two stages, the consideration stage penalises
the utility/probability of alternatives, often based on constraints such as attribute/utility
cutoffs.

The őrst approach assumes that the decision-maker is perfectly rational and has complete
information about all available alternatives. This assumption has been widely criticised (start-
ing from Simon (1955)’s work on bounded rationality). Individuals often do not consider all the
available alternatives because their number is too high or their relative performance is particu-
larly bad. Not accounting for this leads to misspeciőcation, unrealistic substitution patterns and
bias in parameter estimates (Williams and Ortuzar (1982); Frejinger et al. (2009); Bhat (2015)).
Ben-Akiva and Lerman (1985) proposes a sampling correction strategy in the case the sampling
probability of an alternative from the universal choice set is known (see Flötteröd and Bierlaire
(2013); Frejinger et al. (2009) for path choice applications). These methods, however, rely on
the property that any alternative from the universal choice set can be selected, which may imply
selecting unrealistic alternatives (Frejinger and Bierlaire, 2010) and are thus not suitable for
prediction. The sampling error correction strategy also assumes that it is possible to compute
the probability of sampling any alternative from the universal choice set, which is not trivial in
most applications.

Approaches in the second category allow the consideration choice set to be determined via
behaviourally motivated criteria. One would expect the consideration set to be more suitable
than the representative set. However, the approach by Manski (1977) is computationally expen-
sive, as the number of subsets grows exponentially with the representative universal choice set
size. Thus, most models based on that framework have never been applied in choice contexts
where the universal choice set is large, such as route choice modelling. One stage choice set for-
mation models, őrst theorised by Swait (2001a) and Cascetta and Papola (2001), were initially
designed to mimic/approximate Manski’s framework. However, Bierlaire et al. (2010) showed
that one-stage choice set formation models have different properties and cannot approximate
Manski’s model, so they should be treated as a standalone modelling framework. One-stage
choice set formation models retain the behavioural qualities of the two-stage formation mod-
els while keeping a low computational cost. We will focus on this model type in the following
subsection and the remainder of the paper.

4



2.2 One-stage choice set formation models: a review

In this subsection, we explain and present one-stage choice set formation models. Under utility
maximization, if Cn ⊆ C is the choice set of decision-maker n, the choice probability of alternative
i is given by:

Pn(i) = Pr(Uin ≥ Ujn, ∀j ∈ Cn) (1)

where Ujn = Vjn + ϵjn is the utility of alternative j for decision-maker n. Assuming the analyst
knows Cn, it can be described by deterministic availability indicators (Bierlaire et al., 2010):

Ain =

{

1 if alternative i is considered by individual n

0 otherwise
(2)

The choice model can be re-written:

Pn(i) = Pr(Uin + ln(Ain) ≥ Ujn + ln(Ajn), ∀j ∈ C) (3)

Indeed, if Ain is zero, i.e., the alternative i is not available, its Uin + ln(Ain) will go to minus
inőnity, and it will have zero probability of being the maximizing alternative (Bierlaire et al.,
2010). To model for the analyst’s lack of knowledge on the actual composition of Cn, Cascetta
and Papola (2001) proposed to replace Ain by a penalty term ϕin ∈ [0, 1], which represents the
probability that individual n considers alternative i. Generally, alternative penalties depend on
their attributes or utilities passing cutoffs (also referred to as bounds or thresholds). Studies from
the literature present different functional forms for ϕin, with different properties (see Appendix A
for detailed examples). These properties can be categorised as follows (see Table 1 for examples
of references):

1. Hard/Soft cutoffs: A hard cutoff means that alternatives with attributes/utilities be-
yond the cutoff receive zero probability of being considered. Soft cutoffs penalise alterna-
tives but never assign them zero probability.

2. Pervasive/Non-Pervasive cutoffs: A pervasive (as deőned by Elrod et al., 2004) cutoff
effect means that alternatives which do not invoke the cutoff (i.e., whose utility/attribute
value is higher than the lower cutoff value) are still inŕuenced by it. This implies that when
an alternative is not cut off by the cutoff, it will still be less likely to be considered if its
attribute/utility value is close to the cutoff value than if it is much higher. This is the case
for most models in the literature, with Swait (2001a)’s model as a main counter-example.

3. Compensatory/Non-Compensatory cutoffs: Cutoffs can be applied to the over-
all utility (compensatory) or using some non-compensatory decision rule (e.g., conjunc-
tions/disjunctions of attributes).

4. Endogenous/Exogenous cutoffs: Cutoffs are endogenous if they depend on attributes
of alternatives or can be determined through the estimation of model parameters. Exoge-
nous cutoffs are őxed by the analyst independently from attributes of alternatives, or for
example, stated by the decision-maker in stated preference data.

5. Continuous choice probabilities: The model choice probabilities are continuous with
respect to the model parameters and attributes. This is the case of most models in the
literature, except for Gilbride and Allenby (2004), which makes the assumption that the
choice probabilities are non-continuous at the cutoff value.

6. Smooth choice probabilities: Some models have a non-differentiable choice probability
function at the cutoff value, which means the choice probabilities have "kinks" when
some attribute reaches the cutoff value. Conversely, some models have smooth choice
probabilities.
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Implicit Availability/Perception (IAP), Cascetta and Papola (2001) × ×

MNL with cutoff penalties, Swait (2001a) ×

Generalised Nonrectangular Hyperbola Elrod et al. (2004) × × × ×

Choice model with screening rules, Gilbride and Allenby (2004)2 × × ×

Constrained-MNL (C-MNL), Martínez et al. (2009) × × ×

C-MNL estimation, Castro et al. (2013) × × × ×

High-order C-MNL, Paleti (2015) × × × ×

Endogenous cutoff model, Truong et al. (2015) × ×

BCM, Watling et al. (2018) × × × × ×

Conjunctive BCM, Rasmussen et al. (2024) × × × ×

Truncated Path Choice Model, Tan et al. (2024) × × × × ×

SBCM (this paper) × × × × × ×

Table 1: Key properties of one-stage choice set formation models with references

Table 1 displays whether different one-stage choice set formation models have hard or soft
cutoffs, pervasive or non-pervasive cutoffs, compensatory or non-compensatory cutoffs, endoge-
nous or exogenous cutoffs, are continuous or non-continuous, and smooth or non-smooth. For
each property category, one can argue one side is more attractive than the other.

A hard cutoff can be argued to be more attractive than a soft cutoff as the former assigns
strictly zero choice probabilities to alternatives violating cutoffs, and the latter only reduces
probabilities. This means that hard cutoffs implicitly generate the consideration set of alterna-
tives from the representative universal choice set, removing unrealistic alternatives as deőned
consistently by the choice model. This is desirable from a behavioural point of view, especially
when the number of potential unrealistic alternatives is vast, e.g., in schedule choice modelling
or route choice modelling (Watling et al., 2015). The hard cutoff property is also helpful when
comparing "before"/"after" scenarios (e.g., when exploring the implementation of a policy or
discount), as the implicit choice set can change and, therefore, adapt with the change in scenario.

A pervasive cutoff can be argued to be more attractive than a non-pervasive cutoff as with
the former, the choice probability of an alternative relates to how close it is to the cutoff, i.e.
choice probability decreases the closer it gets to the cutoff. This provides clear consistency
between choice set formation and calculation of the choice probabilities. It is also supported
empirically, where Elrod et al. (2004) found that accounting for the pervasive effect of a cutoff
provided a better őt to observed choices.

A compensatory cutoff can be argued to be more attractive than a non-compensatory cutoff,
as the former will typically provide consistency between choice set formation and choice prob-
ability computation. Most one-stage choice set formation models combine non-compensatory
cutoffs for the choice set formation with a compensatory choice from the choice set (e.g. utility
maximization). Horowitz and Louviere (1995) and Swait (2001b) found in an empirical study,
however, that the same preferences tend to drive the choice set formation and choice stages,

2Gilbride and Allenby (2004) include the possibility for both compensatory and non-compensatory cutoff in
their model
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and thus when assuming compensatory choice behaviour, it is attractive to impose compen-
satory cutoffs. The use of non-compensatory cutoffs is also often linked to a large increase in
the number of model parameters, which may make their estimation more complex and lead to
identiőcation issues (Castro et al., 2013).

An endogenous cutoff can be argued to be more attractive than an exogenous self-reported
cutoff as the latter has been known to cause what has been termed an ’endogeneity issue’,
where the cutoff is undesirably correlated with the random utility error term (Ding et al., 2012).
Respondents often violate their (Moser and Raffaelli, 2014) stated cutoffs, which may lead to
poor őt and prediction of models that use them. Truong et al. (2015) found in his study that this
led to biased parameter estimates. Endogenous cutoffs are attractive as they can be estimated
by estimating the choice model (Duncan et al., 2022) and may depend on the choice situation
context. Models with exogenous cutoffs are mainly suitable for stated preference data where
respondents state their own cutoff value, like in Swait (2001a).

Lastly, it is attractive for any model to have a continuous and smooth choice probability
function. Continuity is, for example, a crucial requirement for estimating the model with MLE
(Duncan et al., 2022), and smoothness is an important property for, e.g. evaluating the efficiency
of MLE parameter estimates, sensitivity analyses, and efficiently solving equilibrium problems
(Castro et al., 2013; Tan et al., 2024).

To summarise, one can argue that it is desirable for a one-stage choice set formation model
to have hard, pervasive, compensatory, and endogenous cutoffs, and for the choice probability
function to be continuous and smooth. As seen from Table 1, among all the one-stage choice set
formation models, a model that satisőes most of these properties is the BCM, which satisőes all
properties apart from smoothness. Thus, in this paper, we focus on advancing the BCM, where
we resolve the smoothness deőciency.

3 The Bounded Choice Model: formulation and non-differentiability

This section presents the Bounded Choice Model (BCM, Watling et al. (2018)) derivation and
highlights some of its properties and non-differentiability.

3.1 Model derivation

The BCM is derived by assuming that each alternative i in the representative or actual universal
choice set C is compared to a reference alternative r∗ in terms of utility (Ui = Vi + ϵi, Ur∗ =
Vr∗ + ϵr∗ where ϵi, ϵr∗ are random error terms). The distributional assumptions are given for
the difference of error terms ϵr∗ − ϵi, which follow a left-truncated Logistic distribution at a
threshold −ϕ, and with a location parameter µ = 0 (see Duncan et al. (2022) supplementary
material for a detailed derivation of the model’s choice probabilities). Its CDF FTL is given by:

FTL(x|θ, µ, ϕ) =







FL(x|θ, µ)− FL(−ϕ|θ, µ)
1− FL(−ϕ|θ, µ) if x ≥ −ϕ

0 if 0 ≤ x < −ϕ
(4)

=
(FL(x|θ, µ)− FL(−ϕ|θ, µ))+

1− FL(−ϕ|θ, µ) (5)

where (.)+ = max(0, .). FL(x|θ, µ) = 1/(1 + exp(−θ(x − µ))) is the CDF of the Logistic
distribution with location parameter µ and scale parameter θ. The BCM choice probability of
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an alternative i versus the reference alternative is given by:

P(choose i among {i, r∗}) = P(Ui ≥ Ur∗)

= P(Vi + ϵi ≥ Vr∗ + ϵr∗)

= P(ϵr∗ − ϵi ≤ Vi − Vr∗)

= FTL(Vi − Vr∗ |θ, 0, ϕ)

The BCM choice probabilities are then given by the ratio of odds ratios (see Duncan et al.
(2022); Tan et al. (2024); Watling et al. (2018)):

PBCM
i := P(i|C) =

P(choose i among {i, r∗})
1− P(choose i among {i, r∗})

∑

j∈C

P(choose j among {j, r∗})
1− P(choose j among {j, r∗})

(6)

=
(exp(θ(Vi − Vr∗ + ϕ))− 1)+
∑

j∈C

(exp(θ(Vj − Vr∗ + ϕ))− 1)+
(7)

Additionally, Watling et al. (2018) and Duncan et al. (2022) set the reference utility as the
maximum deterministic utility, i.e., Vr∗ = max

j∈C
Vj .

3.2 Non-differentiability

The non-differentiability of the BCM is twofold:

• The use of a truncated logistic distribution implies a non-differentiability of the choice
probabilities around the bound, i.e., when for any alternative j ∈ C, Vj reaches Vr∗ − ϕ.

• The deőnition of the reference alternative Vr∗ = Vj∗ where j∗ ∈ C is the index of the
deterministic utility maximizing alternative implies a non-differentiability with respect to
the alternative attributes and utility function parameters.

We detail these two properties below.

3.2.1 Non-differentiability around the truncation threshold

The function (.)+ is non-differentiable at 0, which implies that the CDF FTL is non-differentiable
at −ϕ. The BCM choice probabilities of an alternative versus the reference are thus non-
differentiable around the cutoff value (Vi−Vr∗ = −ϕ). Consequently, the BCM choice probabil-
ities are also non-differentiable when any of the Vj , j ∈ C reach the cutoff value (Vj = Vr∗ − ϕ).
The left-truncated and original logistic distributions are plotted in Figure 1. We clearly can
observe the non-continuity of its PDF and, thus, the non-differentiability of its CDF.

3.2.2 Non-differentiability of the reference utility

The max function is non-differentiable, even though all the Vjs are continuous. This non-
differentiability happens when the index (j∗(α) = argmax

j∈C
Vj) of the utility-maximizing alterna-

tive changes. Thus, when deterministic utilities are varied, such as taste coefficient parameters
being varied during parameter estimation or attributes change in an equilibrium problem, the
BCM probability relation in Equation 7 is non-differentiable. To illustrate this property, let us
consider a binary choice situation (C = {1, 2}). These alternatives have two attributes: travel
time (TT ) and travel cost (TC). Alternative 1 is fast but expensive; Alternative 2 is cheaper
but longer. The attribute values are given in Table 2.
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Figure 1: Logistic and Truncated distribution plots, CDF as a dashed line and PDF as a plain
line

TT TC

Alternative 1 1 2
Alternative 2 2 1

Table 2: Example of a choice situation with two alternatives and two attributes

Let us assume that a linear function models the deterministic utility of these alternatives,
where for i ∈ {1, 2}, Vi = αTTTTi − TCi. Using the above notations, we have X = (x1 x2)

⊤ =
(

1 2
2 1

)

. Figure 2 plots how maximum deterministic utility and the derivate of maximum

deterministic utility vary as the preference parameter for travel time αTT varies. As can be
seen, while the max utility is continuous, the derivate is not, where there is a jump in the
derivative at αTT = −1. This corresponds to where the reference alternative changes from
alternative 1 to alternative 2.

4 3 2 1 0
αTT

6

4

2

0

2

max(V1, V2)

max(V1, V2)/ αTT

Figure 2: Evolution of the reference alternative utility in function of αTT on the example from
Table 2.
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4 The Smooth BCM (SBCM)

In this section, we develop a Smooth Bounded Choice Model (SBCM), which retains the key
features of the BCM but has an inőnitely differentiable choice probability function, namely by
addressing the two smoothness issues we demonstrated in the previous section. An important
property of the SBCM is that it can approximate the BCM at any precision and thus can be
seen as a generalisation of the model. We őrst present in Section 4.1 a new bounded support
distribution that generalises the truncated logistic distribution, with the additional property
that it is smooth for any őnite value of its added smoothness parameter. This distribution is
then utilised to derive the SBCM choice probabilities, assuming it is the distribution of the
error terms difference between any alternative and the reference (Section 4.2). We then present
in Section 4.4 an instance of the SBCM, where the reference alternative systematic utility is
given by a smooth approximation of the maximum utility in the choice set, whose properties are
presented in Section 4.3.

4.1 A smooth bounded support distribution

As shown in Section 3, the BCM is derived from assuming that the difference in utility between
alternative i ∈ C and a reference alternative r∗ follows a truncated logistic distribution.The CDF
of the truncated logistic distribution is non-differentiable at the bound, which makes the resulting
BCM choice probabilities non-differentiable. To resolve this issue, we propose a smooth variant
of this distribution for the random utility difference: a smooth truncated logistic distribution,
which has the following CDF:

FS(x|θ, ϕ, δ) =
gδ(exp(θ(x+ ϕ))− 1)

gδ(exp(θ(x+ ϕ))− 1) + gδ(exp(θϕ) + 1)
, (8)

where θ > 0 is a scale parameter, ϕ > 0 is a bound parameter, and δ > 0 is the bound smoothing
parameter. gδ is a function given by:

gδ(z) =

{

z exp
(

− 1
δz

)

if z > 0

0 otherwise
(9)

As we prove in Appendix B, this distribution has the following properties:

1. It has bounded support on [−ϕ,+∞), ϕ > 0, so that if XS follows the distribution, then
Pr(XS ≤ −ϕ) = 0

2. It has a PDF fS and CDF FS that are inőnitely differentiable on R.

3. It has a bound smoothing parameter δ where the distribution converges in distribution to
the truncated logistic distribution when δ tends to +∞.

4. Approximation error: the approximation error of (.)+ by gδ is bounded by 1/δ. This re-
sult implies that the convergence rate of this approximation is controlled by the parameter
δ

Note also that for any value of δ, the smooth truncated logistic distribution collapses to the
logistic distribution when ϕ tends to +∞, as does the truncated logistic distribution. This is
illustrated in Figure 3, where both the truncated and smooth truncated logistic distributions
are plotted with truncation thresholds ϕ = 0.5 and ϕ = 2. In Figure 4, we plot the PDF of
the smooth truncated logistic distribution for δ = 1 and δ = 15. One can see that δ has the
role of smoothing the PDF around the bound. The larger δ is, the closer the distribution is
to the truncated logistic distribution, and the steeper the PDF is around the bound. δ can be
estimated as a model parameter through MLE, as we do in Section 7.
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Figure 3: Plots of the smooth truncated Logistic distribution for ϕ = 0.5 and ϕ = 3, the other parameters being őxed
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Figure 4: Plots of the smooth truncated Logistic distribution for δ = 1 and δ = 15, the other parameters being őxed
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From a behavioural standpoint, the assumption of a continuous PDF is appealing, as it
avoids implausible discontinuities in the distribution of unobserved preferences. Sharp, deter-
ministic thresholds implied by non-continuous PDFs may not reŕect real-world decision-making,
where behaviour typically evolves smoothly in response to attribute changes. Nevertheless, the
proposed distribution remains ŕexible enough to accommodate sharply bounded behaviour when
appropriate.

4.2 Derivation of the SBCM

Given the smooth truncated logistic distribution introduced in the previous subsection, we shall
derive the SBCM probability relation based on this distribution. Assume there is a choice
situation with a (representative) universal choice set C = {1, ..., N}. Each alternative i ∈ C has
a random utility Ui = Vi + ϵi. Similarly to the derivation made by Watling et al. (2018) for the
BCM, we propose that each alternative i is compared with an imaginary reference alternative,
whose random utility is Ur∗ = Vr∗ + ϵr∗ , in terms of random utility difference. We assume that
the random error terms difference εi = ϵr∗ − ϵi, rather than a truncated logistic distribution,
follows a smooth truncated logistic distribution at a lower bound −ϕ, for some ϕ > 0. Then,
the binary probabilities of choosing i ∈ C over the reference alternative is given by:

P(i|{i, r∗}) = P(Vi + ϵi ≥ Vr∗ + ϵr∗)

= P(ϵr∗ − ϵi ≤ Vi − Vr∗)

= FS(Vi − Vr∗ |θ, ϕ, δ)

=
gδ(exp(θ(Vi − Vr∗ + ϕ))− 1)

gδ(exp(θ(Vi − Vr∗ + ϕ))− 1) + gδ(exp(θϕ) + 1)

The odds ratio for alternative i ∈ C and the reference alternative r∗ is then:

ηi =
P(i|{i, r∗})

1− P(i|{i, r∗})

=

gδ(exp(θ(Vi − Vr∗ + ϕ))− 1)

gδ(exp(θ(Vi − Vr∗ + ϕ))− 1) + gδ(exp(θϕ) + 1)

gδ(exp(θϕ) + 1)

gδ(exp(θ(Vi − Vr∗ + ϕ))− 1) + gδ(exp(θϕ) + 1)

=
gδ(exp(θ(Vi − Vr∗ + ϕ))− 1)

gδ(exp(θϕ) + 1)

The choice probability of alternative i against all the alternatives in the choice set is then
given by:

P SBCM,abs
i := P(i|C) = ηi

∑

j∈C

ηj
(10)

=
gδ(exp(θ(Vi − Vr∗ + ϕ))− 1)
∑

j∈C

gδ(exp(θ(Vj − Vr∗ + ϕ))− 1)
(11)

In addition, Watling et al. (2018) proposed a model for which the bound depends on the reference
alternative deterministic utility, i.e., ϕ = (1−φ)Vr∗ , with φ > 1, so that the cutoff is relative to
the reference utility. This allows the model to eliminate alternatives from the choice set based
on their utility ratio to the reference alternative rather than their utility difference. We shall see
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in the next subsections that this allows an asymmetry of the probability function and, to some
extent, accounts for heteroskedasticity. The choice probability of alternative i is then given by:

P SBCM,rel
i := P(i|C) = gδ(exp(θ(Vi − φVr∗))− 1)

∑

j∈C

gδ(exp(θ(Vj − φVr∗))− 1)
(12)

One important difference between these model formulations is that the absolute model
bounds the difference between utilities. In contrast, the relative model bounds the ratio and
henceforth needs the utility of every alternative (including the reference alternative) to have the
same sign.

4.3 Deőnition of the reference utility

The BCM deőnes the reference utility as the maximum deterministic utility within the choice set,
i.e., for a choice set C, we have that Vr∗ = max

j∈C
Vj . As shown in Section 2, since the max function

is non-differentiable, so is the BCM choice probability function. Here, we address this issue by
approximating the maximum with a smooth approximation. There are numerous approximations
for the maximum function available (e.g., the LogSumExp operator, the p-norm, etc.). However,
we sought an approximation with the property of never being lower than the actual maximum.
This property ensures the SBCM choice probabilities will be deőned for any relative bound
φ > 1 and absolute bound ϕ > 0, which would not be the case if the approximation was smaller
than the actual maximum. Indeed, if the reference alternative deterministic utility is larger than
the maximum one in the choice set, for some value φ > 1 or ϕ > 0, we may get a 0/0 ratio in
the choice probabilities. The approximation we chose was the Boltzmann operator (Asadi and
Littman, 2017), which is deőned as follows for a vector x = (x1 · · ·xN ):

mλ(x) =

N
∑

i=1
xie

λxi

N
∑

i=1
eλxi

(13)

where λ > 0 is a parameter determining the quality of the approximation: as λ → +∞,
mλ(x) → max(x). We refer to λ as the reference utility smoothing parameter. In determining
the maximum deterministic utility, λ also inŕuences the gradient slope when the maximum-
utility alternative changes. Considering again the example from Figure 2 and Table 2, Figure
5 displays also the the Boltzmann operator and its derivative as αTT is varied, with λ = 2 and
λ = 10. As can be seen, the derivative is continuous around the change of the maximum-utility
alternative at αTT = −1, where the gradient slope (i.e., the second derivative value) is greater
for λ = 10 than λ = 2. The Boltzmann operator is also always smaller than the actual maximum.

Behavioural interpretation of mλ: While the main purpose of the smoothing operator
mλ is to enable differentiability, it has the potential to also capture different behaviours. The
smooth maximum can be viewed as the expected value of the vector x under a softmax weighting
scheme:

mλ(x) = Ep(x) :=
N
∑

i=1

xiPi, where Pi =
eλxi

∑N
j=1 e

λxj

.

From a behavioural standpoint, mλ can be seen as capturing uncertainty in the decision-makers’
perception of the reference alternative’s deterministic utility, expressed as Vr∗ = mλ(V ) + ϵr∗ .

At λ = 0, the operator reduces to the arithmetic mean of all available alternatives, implying
that the decision-maker evaluates options relative to an average reference point. In contrast,
as λ → ∞, the operator converges to the maximum value, suggesting that the decision-maker
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adopts the highest-utility alternative as the reference point. As will be described in Section 5,
λ can be estimated from observed choice data using a maximum likelihood technique.

Approximation error: We prove in Appendix D that the approximation error of the
function mλ to the maximum function decreases with λ by a factor 1/λ.

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
αTT
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3

2

1
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1

2

max(V1, V2)

m2(V1, V2)

m10(V1, V2)

max(V1, V2)/ αTT

m2(V1, V2)/ αTT

m10(V1, V2)/ αTT

Figure 5: Maximum and Boltzmann soft maximum operators, and their derivative with respect
to αTT : an example for λ = 2, λ = 10

4.4 Proposed SBCM choice probability relation

Following the derivation in Section 4.2, and replacing the max function with the Boltzmann
operator, we propose to use the approximation Vr∗ = mλ(V ) where V = (V1, ..., VN ) is the
vector of the deterministic utilities in the choice set as the reference alternative systematic
utility. Consequently, the absolute (Equation 14) and relative (Equation 15) SBCM choice
probability relation we propose is as follows for alternative i ∈ C:

P SBCM, abs
i =

gδ(exp(θ(Vi −mλ(V) + ϕ)− 1)
∑

j∈C

gδ(exp(θ(Vj −mλ(V) + ϕ)− 1)
(14)

P SBCM, rel
i =

gδ(exp(θ(Vi − φmλ(V))− 1)
∑

j∈C

gδ(exp(θ(Vj − φmλ(V))− 1)
(15)

where θ > 0 is the scaling parameter scaling sensitivity to deterministic utility, φ > 0 is the
relative bound parameter determining the cutoff on surplus utility (relative to best utility), gδ
is as in Equation 9 with δ > 0, and mλ is as in Equation 13 with λ > 0. δ and λ are termed
the smoothing parameters, where δ is the bound smoothing parameter and λ is the maximum
utility smoothing parameter.

The analytical gradients and Hessian matrix of the SBCM choice probabilities have been
derived and are presented in Appendix C.

Since the smooth truncated logistic distribution collapses to the truncated logistic distribu-
tion as δ → +∞, and the Boltzmann operator collapses to the actual maximum as λ → +∞, the
SBCM in Equation 15 collapses to the BCM in Equation 7 as δ → +∞ and λ → ∞. Moreover,
both the BCM and SBCM collapse to MNL as φ → +∞ (i.e., there is no screening of alterna-
tives). These collapsing properties are illustrated in Figure 6. The collapsing properties of the
SBCM are theoretically advantageous, as they enable formal statistical comparisons between
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the SBCM, BCM, and MNL using tools such as likelihood ratio tests. It is important to note,
however, that we do not view the SBCM as solely a differentiable approximation of the BCM.
Its distributional assumptions extend those of the BCM and may more accurately reŕect actual
choice behaviour.

MNL

BCM

SBCM

Figure 6: Model collapsing

Figure 7 shows the SBCM choice probabilities for δ = 1, compared to the BCM and MNL
probabilities with the same relative cost bound (for the BCM) and same scale parameter. The
probabilities are plotted on a binary case with utilities (V1, V2), and we plot the probability of
alternative 2 as a function of V2, given V1 is őxed to one. We see that, with this value of δ, the
SBCM choice probabilities, while having the same bounding properties as the BCM ones, have
a smoother S-shape, which resembles the MNL choice probabilities. This implies that the choice
probabilities of alternatives whose utility is close to the bound are much closer to zero for the
SBCM than for the BCM.
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Figure 7: Comparison of the MNL, relative BCM and SBCM choice probabilities

To illustrate the different properties of the relative and absolute bounding conditions outlined
in section 4, Figure 8 compares the absolute and relative SBCM choice probabilities for δ = 1,
φ = 1.5 and ϕ = 0.5, compared to the MNL ones with the same scale parameter. This plot
highlights the choice probability asymmetric behaviour. While the two curves overlap for V2 >
V1, the relative bounding leads to a steeper slope of the choice probabilities for V2 < V1. For
the relative model, the utility band on which no alternative is excluded gets larger with larger
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utility values (e.g., in real life, for longer routes). This is consistent with the heteroskedasticity
assumption of asymmetric choice models (e.g., the Multinomial Weibit, Castillo et al. (2008)).

In the remaining parts of the paper, we will mainly focus on the relative version of the
SBCM, as it has been the subject of all the further developments of the BCM (Duncan et al.,
2022; Tan et al., 2024). This version seems more appealing in some cases, as datasets usually
include "small-scale decisions" (e.g., short trips) and "large-scale decisions" (e.g., long trips)
so that a relative bounding condition can eliminate alternatives in both these choice situations
efficiently, which is the case in the case studies we present in Section 7. However, we do not
advocate for choosing a version over another in a general case, as certain cases may be better
accommodated with an absolute bound and a symmetric probability function, which does not
impose restrictions on the sign of the utility. It is advised to test both versions of the model
speciőcations and to select the one that represents the data best.
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Figure 8: Comparison of the MNL, Relative and Absolute SBCM choice probabilities

4.5 A Smooth Bounded Path Size model capturing route correlations

In this section, we present a route choice extension of the novel SBCM. Due to the complex
overlapping nature of road networks, the correlation between routes (i.e. through link-sharing)
should be accounted for (Cascetta et al., 1996; Florian and Fox, 1976). However, the BCM, and
thus the SBCM, do not account for route overlap. Extending the BCM to account for such,
Duncan et al. (2022) developed the Bounded Path Size (BPS) route choice model. The BPS
model includes heuristic path size correction terms within the BCM probability relation to adjust
the probabilities of used routes when links are shared with other used routes. The model’s key
feature is that it can capture correlations between only the routes with utilities below the bound,
i.e., excluding the impact of routes with utilities above the bound, and do so continuously. For
details on how the BPS model is derived and its properties, we direct the reader to Duncan et al.
(2022). We shall brieŕy introduce it and formulate a Smooth BPS (SBPS) model. Deőne Ai

as the set of links constituting route i ∈ C, where link a ∈ Ai has deterministic utility va. The
deterministic utility of route i is obtained by summing up the utilities of its constituent links:
Vi =

∑

a∈Ai

va, where V is the vector of route utilities. Let C̄ ⊆ C be the subset of all routes where
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Vi ≤ φmax(V). The BPS choice probability relation for route i ∈ C is:

PBPS
i =



















(

γBPS
i

)η
(exp (Vi − φmax(V))− 1)

∑

j∈C̄

(

γBPS
j

)η
(exp (Vj − φmax(V))− 1)

if i ∈ C̄

0 otherwise

where (γBPS
i )η is the path size correction factor for used route i ∈ C̄ (unused routes do

not have path size terms). η ≥ 0 is the path size scaling parameter scaling sensitivity to route
distinctiveness, and γBPS

i ∈ (0, 1] is the path size term for used route i ∈ C̄, calculated as follows:

γBPS
i =

∑

a∈Ai

va
Vi

(exp (Vi − φmax(V))− 1)
∑

j∈C̄ (exp (Vj − φmax(V))− 1) δaj

where δaj = 1 if route j uses link a and 0 otherwise. γBPS
i is speciőed as such so that a)

unused routes with utilities above the bound, i.e. routes j /∈ C̄, do not contribute to reducing
the path size terms of used routes with utilities below the bound, and b) the path size term
function is continuous as routes enter and exit the used route set C̄, as utilities cross from below
to above the bound and vice versa. It is also formulated in terms of summing over j ∈ C̄ rather
than with (.)+ functions to avoid occurrences of 0/0.

Analogously modifying the BPS model to how we modiőed the BCM to formulate the SBCM,
we also formulate an inőnitely differentiable SBPS model:

P SBPS
i =



















(

γSBPS
i

)η
gδ(exp(Vi − φmλ(V))− 1)

∑

j∈C̄

(

γSBPS
j

)η
gδ(exp(Vj − φmλ(V))− 1)

if i ∈ C̄

0 otherwise

where γSBPS
i is the Smooth Bounded Path-Size correction term, calculated as follows:

γSBPS
i =

∑

a∈Ai

va
Vi

gδ(exp(Vi − φmλ(V))− 1)
∑

j∈C̄ gδ(exp(Vj − φmλ(V))− 1)δaj
(16)

where gδ is given by Equation 9. This weight formulation allows choice probabilities to remain
inőnitely differentiable when adding the Path-Size correction.

5 Parameter estimation approach

In this section, we discuss the estimation of the SBCM parameters from observed choice data.
The different parameters to be estimated can be stored in a vector β = (α, θ, φ, δ, λ) ∈ R

K+3,
where K is the number of attributes included in the utility function. α ∈ R

K−1
+ are the nor-

malised cost function parameters, θ is the scale parameter, which should be constrained as
positive if utility maximization is the expected behaviour, or negative if cost minimization is
expected. φ > 1 is the relative utility/cost bound parameter, δ > 0 is the bound smoothing
parameter and λ > 0 is the maximum utility smoothing parameter.

5.1 Estimation technique

Let us assume that we observe N choices. An observation n ∈ {1, .., N} has a choice set Cn,
and the index of the chosen alternative is given by in ∈ Cn. To estimate the SBCM model
and its special cases, we adopt the modiőed Maximum Likelihood Estimation (MLE) procedure
originally proposed in Duncan et al. (2022) for the Bounded Path-Size model. Since for certain
speciőcations of the parameters, a chosen route under the SBCM may receive a zero choice
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probability, the likelihood function can be zero. As discussed in Duncan et al. (2022) though, the
optimal parameters will always lie in the parameter subspace, leading to a non-zero likelihood.
If α parameterises the utility functions Vi(α), the valid parameter subspace for observation n is
given by:

Θn =
{

(α, φ, λ), Vin ≥ φ−1mλ(V)
}

If the model parameters belong to this space, it means that the observed chosen alternative is
given a non-zero choice probability (i.e. is not cut-off by the relative utility bound). The valid
parameter subspace for the likelihood function is given by the intersection of the valid subspaces
for all the observations, i.e.:

Θ =
N
⋂

n=1

Θn =
{

(α, φ, λ), ∀n ∈ {1, .., N}, Vin ≥ φ−1mλ(V)
}

This ensures that the model cannot assign zero probability to any chosen alternative. Continuity
of the likelihood function is guaranteed over the constrained parameter subspace. To ensure
during maximum likelihood estimation that the estimated parameters remain in Θ, we deőned
the following log-likelihood function. If β is the vector containing all the model parameters:

LL(β) =
N
∑

n=1

logP SBCM
in (β) · ✶(α,φ,λ)∈Θn

− C · ✶(α,φ,λ)/∈Θn
(17)

where C is a large penalising constant (in the following case studies, we take C = 999) that
ensures that the optimum cannot be found outside Θ. ✶(α,φ,λ)∈Θn

is the indicator function, that
is 1 if and only if the set of parameters is in the subspace Θn. This formulation ensures the
tuple (α, φ, λ) remains in the domain Θ when using maximization algorithms. In this paper,
we optimise the log-likelihood using the L-BFGS-B algorithm, using the Python programming
language along with the NumPy and SciPy packages. A potential issue is that the SBCM log-
likelihood function is not guaranteed to be concave. MLE solutions are thus not guaranteed to
be unique according to standard proofs. That is not to say, though, that MLE solutions are
or cannot be unique. In Section 7, we explore the uniqueness of MLE solutions numerically by
re-conducting MLE with several different randomly generated initial conditions. The solutions
found are always the same, suggesting uniqueness, and mirroring similar őndings in Duncan
et al. (2022) for the Bounded Path-Size model.

5.2 Initialization

When estimating the model parameters, it is important to make sure that the initial conditions
are within Θ, as they may otherwise remain stuck outside Θ. To do so, we used random
initialization for all the model parameters other than the bound, drawing from a standard
normal distribution. Then, we calculated the minimum value of the bound so that the utility
parameters belong to Θ:

φmin = max
n∈{1,...,N}

cin
min
j∈Cn

cj

Then, we draw a random value of φ0 from a left-truncated random distribution on (φmin,+∞).
In our paper, we chose to use a shifted exponential distribution with scale parameter 1: φ0 ∼
Exp(1) + φmin.

5.3 Reparameterisation technqiues

It is well-known that a constrained optimisation problem is more complex to solve than an
unconstrained one and requires more advanced and, usually, less efficient algorithms (Nocedal
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and Wright, 2006). However, the current model formulation imposes constraints on parameter
values. To avoid issues with parameter constraints in the log-likelihood estimation, we parame-
terise the model following the work of Lipovetsky (2009). This transformation allows parameters
to remain unconstrained in estimation while ensuring they stay within a reasonable range. We
deőne the reparametrizations as follows:

θ = exp(θ̃) (18)

φ = 1 + exp(φ̃) (19)

λ = exp(λ̃) (20)

δ = exp(δ̃) (21)

where φ̃, θ̃, λ̃ and δ̃ are the unconstrained parameters. These transformations prevent δ and
λ from reaching arbitrarily large values, improving numerical stability. Similarly, constraints
on utility or cost function parameters can be enforced by setting α = exp(α̃) which ensures
all elements of α remain positive or negative, depending on the needed sign restriction. With
these transformations, the MLE procedure estimates parameters in the unconstrained space:

β̃ =
(

α̃, θ̃, φ̃, δ̃, λ̃
)

= Φ−1(β), where the transformation function is deőned as

Φ(β) = (exp(α), exp(θ), 1 + exp(φ), exp(δ), exp(λ)) (22)

5.4 Parameter interpretation and signiőcance tests

Interpreting estimated parameters requires applying the inverse transformation to recover β

from β̃. Similarly, standard errors must be adjusted accordingly. Following Daly et al. (2012),
the covariance of the transformed parameters is given by:

Cov(β) = Cov(Φ(β̃)) = Φ
′

(β̃)⊤Cov(β̃)Φ
′

(β̃)

where Cov(β̃) is the Asymptotic Variance-Covariance matrix of the estimated parameter β̃ and
Φ

′

is the Jacobian matrix of Φ. Given the deőnition in Equation 22, the Jacobian simpliőes to

Φ
′

(β̃) = (exp(α), exp(θ), exp(φ), exp(δ), exp(λ))

For two parameters βi, βj ∈ β, their covariance follows

Cov(βi, βj) = eβ̃ieβ̃jCov(β̃i, β̃j)

When conducting signiőcance tests, it is important to note that while utility function pa-
rameters and scale parameters are typically compared to zero, the parameters φ, δ and λ should
be statistically compared to +∞. This can be done by comparing their inverse to zero. Using
Daly et al. (2012), the variance of an inverse parameter is given by

Cov(1/βi, 1/βj) =
Cov(βi, βj)

β2
i β

2
j

(23)

Applying this to the t-test, we observe that the test statistic for comparing a parameter to zero
is equivalent to the test against inőnity: 1/β√

Var(1/β)
= 1/β

1/β2
√

Var(β)
= β√

Var(β)

19



6 Advantages of the SBCM over the BCM

In this section, we detail some advantages of SBCM smoothness. The list is non-exhaustive and
depends on what the model is used for. Two major advantages of the smoothness property are
the ability to analyse the efficiency of estimates analytically and the elasticities of demand to
attributes.

We can derive the likelihood function gradients and Hessian matrix of a MLE on ob-
served choices. Suppose we observe N choice situations for which the choice probability of
the chosen alternative is given by Pn. In that case, we deőne the log-likelihood function as

L(β) =
N
∑

n=1
lnPn(β). By linearity of differentiation, we then have:

∇βL(β) =
N
∑

n=1

∇β lnPn(β)

∇2
βL(β) =

N
∑

n=1

∇2
β lnPn(β)

6.1 Efficiency of estimators

First, one of the regularity conditions for the asymptotic normality of ML estimates is that
the Likelihood function is differentiable. Consequently, the non-differentiable property of the
standard BCM means that asymptotic normality is not guaranteed. The SBCM, on the other
hand, is smooth, and asymptotic normality is guaranteed.

Second, when performing MLE on a sample of observations, one desired output is the effi-
ciency of these estimates. The Cramer-Rao theorem (Harald Cramer, 1946; Radhakrishna Rao,
1945) gives a lower bound for the variance-covariance matrix of the true model parameters. It
states if βt are the true parameters and if the model is correctly speciőed, then the asymptotic
variance of the MLE estimated parameters β̂ is given by:

Var(β̂) = −E
[

∇2
βL(βt)

]−1 ≈ −E

[

∇2
βL(β̂)

]−1

=

(

N
∑

n=1

∇2
βE

[

lnPn(β̂)
]

)−1

=

(

N
∑

n=1

∇2
β lnPn(β̂)

)−1

A MLE estimator attains this lower bound if the sample size N tends to inőnity. Thus, the
new SBCM allows computing the Cramer-Rao bound at the model estimates, i.e., to get their
asymptotic variance-covariance (AVC) matrix and their standard errors, on which statistical tests
can be performed. Usually, the t-test is performed to assess the signiőcance of the maximum
likelihood estimate. For an estimated parameter β̂, the t-statistic t-stat(β̂) is given by β̂/se(β̂),

where se(β̂) =

√

Var(β̂). These t-statistics are compared to the critical values (often 95%) of

the T (Nobs, 0.975), where T is the t-distribution inverse CDF, Nobs is the number of observations
used for estimation (for any model with more than 1000 observations, this value is similar to
the one of the normal distribution, i.e., 1.96).

6.2 Elasticities

Compiling the probability gradients also allows for the computing of elasticities. Elasticities
measure the sensitivity of one quantity to another (when both quantities are dependent). Choice
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modellers often calculate the elasticities of the choice probabilities of an alternative i from a
choice set C to one attribute of this alternative (or another). These elasticities output the
responsiveness of demand or market shares to a change in one attribute. Elasticities are deőned
as the marginal change of an alternative’s choice probabilities as a function of the marginal
change of an attribute of this alternative (or of another alternative for cross elasticities). The
disaggregate direct point elasticities can be calculated as:

EPi
xik

=
∂Pi

∂xik

xik
Pi

=
∂ lnPi

∂xik
xik (24)

where Pi is the probability of alternative i ∈ C and xik is its kth attribute. Similarly, disaggregate
cross point elasticities are calculated as follows:

EPi
xjk

=
∂Pi

∂xjk

xjk
Pi

(25)

where j ∈ C is another alternative. Let’s deőne the function fi, for any i ∈ C, as:

fi(X|θ, φ, λ) = exp(θ⊤xi − φmλ(X|θ))− 1 (26)

We have:

∂ lnPi

∂xik
=

1

gδ(fi)

∂gδ(fi)

∂xik
− 1
∑

j∈C

gδ(fj)

∑

j∈C

∂gδ(fj)

∂xik

where the partial derivative of the probability numerator to the attribute xik can be computed
with the following chain rule.

∂gδ(fi)

∂xik
=

∂gδ
∂fi

∂fi
∂xik

(27)

with ∂gδ/∂fi being given by Equation 52 of Appendix C,

∂fi
∂xik

= θk − φ
mλ

∂xik
(28)

∂mλ

∂xik
= θk

exp(λθxi)
∑

j exp(λθxj)
(1 + λ(θxi −mλ(X|θ))) (29)

The elasticities can then be computed by combining the equations above. For a series of observed
choices, n ∈ {1, ..., N}, we call Pn(i) the probability of alternative i ∈ Cn for choice situation
n. The predicted share of alternative i, which we will call S(i), is given by its average choice

probability, i.e., S(i) = 1
N

N
∑

n=1
Pn(i). We deőne the aggregate point elasticity of alternative i

with respect to attribute k as the share elasticity with respect to this attribute E
S(i)
xik

:

ES(i)
xik

=
∂S(i)

∂xik

xik
S(i)

(30)

=

N
∑

n=1

EPn(i)
xnik

Pn(i)
N
∑

p=1
Pp(i)

(31)

This share elasticity represents how much the predicted share of alternative i within the observed
choice situations will change if the value of the attribute k changes.
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7 Case studies

In this section, we use MLE to estimate the SBCM in three transport case studies: a mode choice
case (Section 7.1), a bicycle route choice case (Section 7.2), and a public transport mode/route
choice case (Section 7.3). For all case studies, we shall compare the SBCM to the standard
BCM and MNL models regarding goodness-of-őt to the data, interpretation of the results, and
evaluate estimate efficiency. For the mode choice case study, we shall also analyse the estimation
of the smoothing parameters of the SBCM and evaluate aggregate elasticities of parameters. For
the bicycle route choice case study, we extend the SBCM to account for route overlap smoothly
and investigate how this affects estimation results.

It is worth noting that, in all case studies, the SBCM speciőcation with an absolute bound was
also estimated. However, it was consistently outperformed by the relative bound speciőcation
and was therefore excluded from the reported estimation results. Two main factors may explain
this superior performance. First, the relative bound is more effective in mode and route choice
contexts, as it excludes alternatives based on utility ratios rather than absolute differences,
making it better suited to both short and long origin-destination movements. Second, the
relative speciőcation incorporates asymmetric choice probabilities, which often better reŕect
actual choice behaviour due to factors such as loss aversion (e.g., Brathwaite and Walker, 2018;
Chikaraishi and Nakayama, 2016; Fosgerau and Bierlaire, 2009).

7.1 Mode choice in the Greater Copenhagen Area

The őrst case study is a mode choice model in the Greater Copenhagen Area. The dataset
has been extracted from the Danish National Travel Survey and contains 21,270 mode choice
observations collected between 2009 and 2019. The universal choice set of mode alternatives was
assumed to be the car, Public Transport (PT), cycling, and walking. However, as we explore
through estimation of the SBCM, some of these alternatives are unused in some situations.

7.1.1 Model speciőcation

The estimated models use the following utility speciőcations, inspired from the Başaran et al.
(2025) case study:

Vcar = αGTT,car × GTTcar

VPT = ASCPT + αGTT,PT × GTTPT + αacc × Acc + αegr × Egr

Vcycle = ASCcycle + αGTT,cycle × GTTcycle

Vwalk = ASCwalk + αGTT,walk × GTTwalk

ASC are the Alternative Speciőc Constants, Acc and Egr are the Access and Egress times
to the public transport stops, calculated using the methodology from Anderson (2013). The
Generalised Travel Time (GTT) variables are calculated as follows for each mode:

GTTcar = TTcar,free + αcongested × TTcar,congested + TCcar/V OT

GTTPT = TTinv + αtransfers × Ntransfers + αwait × WaitT + αwalk × WalkT + TCPT /V OT

GTTcycle = TTcycle,free + αcongested × TTcycle,congested

GTTwalk = TTwalk

Table 3 gives the variable and őxed coefficient description and values. The values for
αtransfers is extracted from Nielsen et al. (2021), while the values for αcongested, αwait, αwalk

are extracted from Hallberg et al. (2021). The car travel cost per kilometre and the Value of
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Time are extracted from the Danish transport ministry3, which were also used in Başaran et al.
(2025).

Variables Description Constants Value

TTcar,free Car travel time under free ŕow conditions αcongested 1.5
TTcar,congested Car travel time under congested conditions VOT 92 DKK/hour
TCcar Car travel cost (car distance times 1.477DKK/km) αtransfers 9
TTinv Public transport in-vehicle time αwait 1.5
Ntransfers Public transport number of transfers αwalk 1.5
WaitT Public transport transfer waiting time
WalkT Public transport transfer walking time
TCPT Public transport travel cost
TTcycle,free Cycling travel time under free ŕow conditions
TTcycle,congested Cycling travel time under congested conditions
TTwalk Walking travel time

Table 3: Variables and constants descriptions

Additionally, availability constraints have been added for car and bicycle trips, for which the
respondent must possess a car with a driving license and a bicycle, respectively.

7.1.2 Results

MNL BCM SBCMλ→∞ SBCM

Cost parameters (α)

Alternative Speciőc Constants

Car - - - -
Public Transport 1.279 (17.31) 0.8363 0.6052 (9.175) 0.6083 (9.192)
Cycling 0.318 (5.681) 0.0162 -0.1512 (-4.450) -0.1386 (-4.284)
Walk 1.052 (3.671) -0.7499 -0.8133 (-8.993) -0.8034 (-4.766)

Generalised Travel Time

Car 0.0899 (33.19) 0.0619 0.0574 (21.59) 0.0566 (21.05)
Public Transport 0.0197 (17.06) 0.0162 0.0174 (19.36) 0.0171 (18.33)
Cycling 0.1009 (43.90) 0.0852 0.0864 (41.78) 0.0851 (39.71)
Walk 0.0916 (14.04) 0.1034 0.1010 (31.66) 0.1020 (22.85)

Public Transport variables

Access Time 0.0972 (15.04) 0.0781 0.0790 (14.93) 0.0790 (14.64)
Egress Time 0.0828 (16.17) 0.0652 0.0667 (15.66) 0.0661 (15-24)

Scale (θ) -1* -1* -1* -1*
Relative bound parameter (φ) - 4.369 5.812 (39.62) 6.675 (11.71)
Bound smoothing parameter (δ) - - 0.3714 (2.780) 0.1314 (1.953)
Maximum utility smoothing parameter (λ) - - - 4.0274 (5.699)

Final LL -11,096.8 -10,782.7 -10,764.9 -10,754.7

BIC 22,232.9 21,609.3 21,578.8 21,562.7

Adj. ρ2 0.579 0.591 0.592 0.592

Number of parameters 9 10 11 12

Alternatives cut by bound 0% 28.7% 22.8% 19.4%

Table 4: Model estimates, with t-statistics given in brackets. All parameters except the starred
one are signiőcant at the 0.01 level for the MNL and the SBCM. *The scale parameter is őxed
to -1.

The estimation results are given in Table 4, where we estimate MNL, the BCM, the SBCM

3TERESA; https://www.cta.man.dtu.dk/modelbibliotek/teresa
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Figure 9: Ratio of the maximum deterministic utility and the smoothened one

with a free δ parameter and őxed λ parameter set to inőnity (SBCMλ→∞), and the SBCM with
free δ and λ parameters. Below, we analyse different aspects of the estimation results. As the
utility functions are not normalised, the scale parameter θ is not estimated (i.e., őxed to -1) for
every model.

Model őt: Since the different models have different numbers of parameters to estimate, model
őt is assessed according to the Bayesian Information Criterion (BIC) penalised likelihood criteria
and Adjusted ρ2. As can be seen, the BCM provides a considerably better őt to the data
than MNL due to the cutting-off of mode alternatives (see below). Interestingly, the SBCM
provides a marginally better őt to the data than the BCM, even when considering the number
of parameters, with SBCM with free δ and λ parameters providing the best őt. We attribute
this to the smoothness of the SBCM around the bound and reference utility.

Model behavioural interpretation: All the model estimates make intuitive sense regarding
the signs (see, e.g., Prato et al. (2017), for an analogous case study in the Copenhagen area). It
is interesting to note that, according to every model, the public transport generalised travel time
parameter is much less negative than the other modes, which may be linked to the inclusion of
the access and egress times, as they are evaluated much more negatively than the GTT. Public
Transport has the most negative ASC for every model, implying an inherent disutility of taking
public transport.

The parameter λ is estimated to be around 4.02, implying that the reference alternative
deterministic utility is slightly lower than the maximum deterministic utility in the choice set.
Figure 9 plots the histogram of the ratio max(V)/mλ(V) over the observed choices. As can be
seen, most of them are close to 1 (meaning there is almost no approximation error). There are
a few observation with slight deviations, which mostly happens for short trips.

Interestingly, the SBCM with λ → ∞ estimates a larger bound parameter than the BCM.
This is likely due to the low δ parameter that creates the smooth shape, as highlighted in Figure
7. Furthermore, the SBCM with a free λ parameter estimates a larger bound parameter than
with λ → ∞, which is likely due to the much lower bound smoothing parameter (δ) estimated
for this model, meaning an even smoother model around the bounds. The consequence is that,
across all choice situations, fewer alternatives are cut by the bound for SBCM than the BCM, i.e.
19.4 to 22.8% rather than 28.7%. Table 5 displays for each model the proportion of alternatives
cut out by the bounds for each mode. As shown, the cut-offs are mainly composed of walking
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trips, which are often too long to be considered an alternative by travellers. Notably, both
models cut off fewer cycling trips than public transport trips, implying that a larger proportion
of trips in the Copenhagen area are considered feasible by bicycle than by public transport.

Car trips Public Transport trips Cycling trips Walking trips

BCM 0% 16.8% 8.67% 77.2%
SBCMλ→∞ 0% 7.44% 2.08% 71.1%
SBCM 0% 3.17% 0.306% 64.7%

Table 5: Percentage of available alternatives cut out by each model bound

Table 6 shows the average attributes of the alternatives for each of the modes when that
mode is cut off by the SBCM bound. These results suggest that the walk and bicycle alternatives
are mainly cut off because the walking and cycling travel times are very long, rather than the
car and public transport times being quick. We also observed that when the cycling alternative
was cut off, so was the walking alternative, which makes sense as cycling is always quicker than
walking, and the routes are similar. Interestingly, there were no cases where the cycling and
public transport alternatives were cut off, implying that the bad performance of cycling and
public transport are not correlated. As shown in Table 6, cut-off cycling alternatives are mainly
overlong, while cut-off public transport alternatives are short trips in poorly connected areas.
In these cases, it can, in generalised travel time, be őve times faster to cycle, ten times faster to
drive, and also faster to walk.

Cut-off mode GTTcar GTTpub Acc Egr GTTcycle TTwalk

Public Transport 7.46 60.49 9.74 12.11 16.33 50.66
Bicycle 32.48 146.2 7.92 9.72 143.1 401.4
Walk 20.87 73.07 7.83 9.45 53.00 156.57

Table 6: Average attributes when an alternative is cut off by the SBCM bound

Estimates efficiency: The SBCM’s differentiability allows us to calculate the t-statistics of
estimated parameters, which evaluate estimate efficiency. These t-statistics are provided in
Table 4 in brackets next to each parameter, calculated analytically using the Hessian matrix
from Appendix C. As can be seen, the t-statistics are all over 1.96, meaning that every estimated
parameter is statistically signiőcant. It is a great advantage of the SBCM over the BCM that
one obtains such information.

Aggregate elasticities: The differentiability of the SBCM allows us to calculate aggregate
elasticities. For instance, we can calculate how much, on average, an increase in Public Trans-
port in-vehicle time will affect the choice probabilities of all the transport modes (and thus the
predicted modal share). The aggregate elasticities use the point elasticities formulas from Equa-
tions (24), (25) and (27) for the SBCM. Elasticities from the MNL model are given in Table 7,
and the SBCM elasticities are given in Table 8.

The two models output similar aggregate point elasticities, which make sense in size and
magnitude. We can see, for instance, that relative changes in Generalised Travel Time (GTT)
affect the choice probabilities of slow modes (cycling and walking) particularly. For instance,
the SBCM outputs that a minor relative increase by a factor ∆ > 1 of the bicycle GTT will
decrease the bicycle market share by 1.375∆ %, while increasing the modal share of all the other
modes (+ 1.668∆ % for Walking, +0.497∆ % for Public Transport, and +0.250∆% for Car).

Some interesting differences can be found between MNL and SBCM elasticities. For instance,
the elasticity of car probabilities to walking travel time is around four times smaller for the
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Mode GTTcar GTTpub Acc Egr GTTcycle GTTwalk

Car -0.323 0.140 0.065 0.063 0.176 0.011
Public Transport 0.628 -0.588 -0.311 -0.297 0.521 0.045
Cycle 0.269 0.206 0.132 0.122 -1.086 0.060
Walk 0.160 0.224 0.194 0.182 0.558 -3.490

Table 7: Aggregate point elasticities output by the MNL. The bold cells present direct elasticities,
and the other ones are cross-elasticities

Mode GTTcar GTTpub Acc Egr GTTcycle GTTwalk

Car -0.413 0.137 0.061 0.058 0.250 0.0031
Public Transport 0.633 -0.579 -0.292 -0.273 0.497 0.070
Cycle 0.554 0.206 0.126 0.114 -1.375 0.115
Walk 0.201 0.222 0.180 0.164 1.668 -4.531

Table 8: Aggregate point elasticities output by the SBCM. The bold cells present direct elastic-
ities, and the other ones are cross-elasticities

SBCM than MNL. This is because for most choice situations (11,700 out of 12,363 car choices,
i.e. 94.6%), when the car is the chosen mode, walking was excluded from the consideration set.
Hence, a marginal increase or decrease in walk travel time has zero impact on the car choice
probabilities. This difference suggests that MNL overestimates the impact of walking travel time
on car choice probabilities. We also observe that a marginal increase in cycling travel time has a
much greater impact on the walking predicted share according to the SBCM (elasticity of 1.668)
than the MNL (elasticity of 0.558), suggesting a large substitution of cycling trips to walking
trips. Further analysis showed that observations that led to this massive increase in elasticities
are the ones for which the car was not an available mode and for which public transport was
not an attractive option compared to cycling. This suggests that a change in cycling travel time
has a much larger impact on the walk modal share in these situations than MNL outputs and,
thus, a larger predicted impact on behavioural change in the case of a pro-cycling policy.

7.1.3 Inŕuence of the smoothing parameters

Here we analyse the estimation of the smoothing parameters of the SBCM, i.e. the bound
smoothing parameter δ, and the maximum utility smoothing parameter λ. To do this, we
estimate the SBCM for different őxed values of δ, and then for different őxed values of λ.

Inŕuence of the bound smoothing parameter δ: We observed in the case study (Table
4) that including the bound smoothing parameter increased the bound parameter estimate
φ. This intuitively makes sense, as smoothing the choice probabilities around this bound also
decreases the likelihood of choices whose relative utility is close to this bound. To test for the
inŕuence of δ on the estimated bound φ and the smooth maximum parameter λ, we estimated
several SBCMδ=δ0 with different őxed values for the smoothness parameter δ = δ0 from 0.01
to 30, and observed how the bound parameter estimate, maximum utility smoothing parameter
estimate, and model őt evolved. Figure 10(a) plots how the relative bound parameter estimate
φ and maximum utility smoothing parameter estimate λ vary for different őxed settings of the
bound smoothing parameter δ. Figure 10(b) plots the log-likelihood value. We observe that the
estimated bound φ decreases with increasing δ0, and collapses to the BCM relative bound. This
was expected as the BCM is equivalent to SBCMδ→∞. We similarly see an increase in model őt
until reaching the estimated δ = 0.371 from Table 4, and then a decrease that tends to the BCM
őnal likelihood. We also observed that increasing the bound smoothing parameter increased the
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estimated maximum utility smoothing parameter λ.

Inŕuence of the maximum utility smoothing parameter λ: The maximum utility smooth-
ing parameter λ inŕuences the goodness of the approximation of the max operator by the Boltz-
mann operator mλ. At the SBCM estimated parameter value (λ = 4.0274), the goodness of that
approximation varies between observations. In general, observations with larger magnitudes of
utility (i.e., long trips) get better approximations than short trips, and the relative error varies
between 10−12% and 10%. In general, as the Boltzmann operator underestimates the maximum,
we would expect that a lower value of λ would also decrease the bound, as the reference alterna-
tive utilities are underestimated. To test for the inŕuence of δ on the estimated bound parameter
φ and the maximum utility smoothing parameter λ, we estimated SBCMλ=λ0

several times with
different őxed values for the smoothness parameter λ = λ0 from 0.01 to 50 and observed how the
estimated bound and model őt evolved. Figure 11(a) plots how the relative bound parameter
estimate φ and bound smoothing parameter estimate δ vary for different őxed settings of the
relative utility smoothing parameter λ. Figure 11(b) plots the log-likelihood value. We observe
that the interaction between λ and the estimated δ, and hence with the estimated bound, is not
monotonous. We see an increase of the bound and a decrease of δ up to a critical value around
λ0 = 2, and a reverse trend for larger λ0 values. This interaction is thus complex and hard to
interpret.
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7.2 Bicycle route choice in the Greater Copenhagen Area

The second case study models cyclists’ route choices in the Copenhagen Metropolitan area.

7.2.1 The Data

The case utilised a large-scale crowd-sourced data set of bicycle GPS trajectories received from
Hövding. The original dataset covers the entire Greater Copenhagen Area (see Figure 12) in the
period from the 16th September 2019 until 31st May 2021. For a detailed description of the data,
the bicycle network, and the algorithms applied for data processing, we refer to Łukawska et al.
(2023). The őnal dataset for model estimation consists of a subset of this dataset containing
4,134 trips made by 4,134 cyclists.

Figure 12: Heatmaps of anonymised GPS trajectories from Hövding

The cyclable network can be modelled as a directed graph G = (B,A) where A is the set of
links and B is the set of nodes. The network size is large, with |B| = 420, 973 and |A| = 324, 492.
The network data was collected from Open Street Map (OSM4). The attributes of link a ∈ A
are as follows:

• La (km): Link length

• Ea (m): Link elevation gain when steepness > 3.5%

• Noa (km): Link length without bike infrastructure

• Sa (km): Link length on a non-asphalt surface (i.e. gravel, cobblestones)

• Wa (km): Link length on wrong ways (cycling against traffic).

These attributes are stored in a travel utility attribute vector Ta = (La, Ea,Noa, Sa,Wa). For a
route i using a set of links Ai ⊆ A, these attributes are link-additive, so that the vector of travel
cost attributes of route i is deőned as xi =

∑

a∈Ai

Ta.

4www.openstreetmap.org
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7.2.2 Choice set generation

Due to the extensive case size, it was not feasible to enumerate the universal set of routes
between Origin and Destination (OD). Thus, as discussed in the introduction, we generated a
representative universal choice set using practically motivated criteria. This choice set generation
algorithm used a stochastic simulation approach (Bovy and Fiorenzo-Catalano, 2007; Nielsen,
2004), drawing a large number (10,000) of routes from the network between each OD based on
randomly simulated link lengths. These lengths were Normally distributed around the actual
lengths, i.e., for each a ∈ E, we drew a new value L̂a ∼ N (La, σLa), where σ is a dispersion
parameter around the initial length. In this study, we used a value of σ = 0.5. These routes were
then őltered using a local optimality criterion (Abraham et al., 2013; Fischer, 2020), deőned as
the minimum length of a subpath that is not the shortest path. This criterion constrains the
presence of small detours on routes and their mutual overlap. Figure 13 shows the distribution
of the relative deviation in utility (utility/max(utility)) of the generated and observed routes.
As can be seen, a large proportion of the observations took the best route, and the maximum
relative deviation in utility from the observations was around -1.1, meaning that the worst
observation had a utility 1.1 times worse than the best alternative. In contrast, many routes
were generated with a relative deviation in utility smaller than -1.1, suggesting that many of
the generated routes in the representative universal choice sets may be cut off.
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Figure 13: Relative costs distribution of the generated choice set and observed routes, using the
MNL estimates from Table 9.

7.2.3 Results

Here we present the results from estimating the MNL, BCM, SBCM, BPS, and SBPS models,
each with different parameters. For all models, there is a set of attribute parameters to estimate:
α = (−1, αE , αNo, αS , αW ), such that the linear utility function for a route i ∈ C is Vi = α⊤xi,
where xi is the previously deőned vector of attributes of route i deőned in Section 7.2.1. Note
that the utilities are normalised to the Length attribute, meaning that the other parameters
can be seen as marginal rates of substitution to Length (usually referred to a Value-of-distance
space, see, e.g., Łukawska et al. (2024)). The other parameters are as follows:

• For all models, there is a scale parameter θ, which refers to the scale parameter of the
Logistic (MNL), truncated logistic (BCM, BPS), and smooth truncated logistic (SBCM,
SBPS) distributions.

• For the BCM, SBCM, BPS, and SBPS models, there is a relative utility bound parameter φ,
which is linked to the truncation/cutoff value ΨC of each choice set C (ΨC = φmaxj∈C(Vj)
for the BCM, BPS, and ΨC = φmλ(V) for the SBCM and SBPS).
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• For SBCM and SBPS, there is a bound smoothing parameter δ to shape the smooth
truncated logistic distribution (the larger δ, the smoother the distribution).

• For SBCM and SBPS, there is a maximum utility smoothing parameter λ controlling the
quality of the smooth approximation of the max function for the reference utility.

• For BPS and SBPS, there is a Path-Size scaling parameter η that inŕuences the weight of
the Path-Size correction in penalizing the utility function.

Tables 9 and 10 displays the model parameter estimates. For the smooth models, we present two
versions: one for which λ is őxed to an arbitrarily large value (models referred to as SBCMλ→∞

and SBPSλ→∞), and one for which λ is freely estimated via MLE. Table 9 also displays t-statistics
(where possible) and the percentage of routes cut by the bound.

Model MNL BCM SBCMλ→∞ SBCM

Utility parameters (α)

Length -1* -1* -1* -1*
Elevation gain -0.0037 (2.031) 0.0846 -0.0044 (3.894) -0.0044 (3.863)
No Bike infrastructure -0.1808 (16.11) 4.302 -0.1652 (18.38) -0.1678 (18.45)
Non-smooth surface -0.1936 (43.81) 4.326 -0.1857 (49.72) -0.1856 (49.64)
Wrong way -0.3319 (40.15) 7.875 -0.3386 (45.77) -0.3407 (45.93)

Scale (θ) 28.54 (64.40) 25.46 23.17 (52.47) 22.81 (51.63)
Relative bound parameter (φ) - 1.110 1.1535 (208.1) 1.1522 (213.3)
Bound smoothing parameter (δ) - - 0.1496 (5.078) 0.1347 (5.230)
Maximum utility smoothing parameter (λ) - - - 4.586 (6.711)

Final LL -11,075.6 -10,777.8 -10,705.3 -10,702.6
BIC 22,169.3 21,577.7 21,435.9 21,434.2
Adj. ρ2 0.5135 0.5265 0.5296 0.5297
N params 5 6 7 8
Routes cut by bound 0% 66.6% 49.0% 48.8%

Table 9: Uncorrected model estimates. *The parameter associated with Length is set to -1.
The t-statistic (i.e. the coefficient divided by its standard error) is given in brackets for each
doubly-differentiable model. For these models, all the parameters are signiőcant at the 0.01
level.

All estimated parameters are signiőcant, with the bound being, by far, the most signiőcant
parameter. Every bounded model allocates zero probabilities to between 49% and 67% of the
choice set, which means that according to these models, around half of the generated routes in
the choice sets are not even considered by cyclists due to their too-high generalized cost5. This
is most likely the main reason bounded models perform better than the MNL, as the MNL must
allocate a non-zero probability to all those routes. The SBCM also outperforms the standard
BCM in terms of őt. The SBCM relative cost bound is estimated higher, probably because of
the smoothness of the probability function (there is no fast increase of the choice probabilities
around the bound). Still, this smoothness seems to represent choice behaviour better. Finally,
accounting for the inherent correlation between routes with the BPS and SBPS models leads
to large improvements in model őt. This justiőes why accounting for the correlation between
routes is crucial when modelling their choice probabilities. The estimation of λ, while leading
to signiőcant parameters and a small log-likelihood improvement, does not provide further be-
havioural insights. The goodness of the approximation of the max function varies: for short

5This percentage is highly dependant on the choice set generation method. For instance, methods that generate
routes with a higher variance or number of draws (for stochastic methods) or with different deterministic criteria
may be more prone to contain many unrealistic alternatives that the bound would cut out.
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Model BPS SBPSλ→∞ SBPS

Cost parameters (α)

Length -1* -1* -1*
Elevation gain -0.0036 -0.0038 (4.172) -0.0038 (1.990)
No Bike infrastructure -0.1592 -0.1476 (18.99) -0.1491 (18.86)
Non-smooth surface -0.1531 -0.1503 (48.43) -0.1498 (47.30)
Wrong way -0.2670 -0.2617 (44.12) -0.2623 (43.21)

Scale (θ) 14.71 14.495 (53.15) 14.396 (50.71)
Path-Size coefficient (η) 1.643 1.632 (42.41) 1.629 (42.13)
Bound (φ) 1.105 1.123 (249.7) 1.123 (224.2)
Bound smoothing parameter (δ) - 1.093 (3.612) 0.894 (3.173)
Maximum utility smoothing parameter (λ) - - 8.110 (3.814)

Final LL -9,910.1 -9,882.5 -9,880.4

BIC 19,845.2 19,793.9 19,793.4

Adj. ρ2 0.5646 0.5657 0.5658

N params 7 8 9

Routes cut by bound 65.8% 55.7% 54.7%

Table 10: Path-Size corrected model estimates. The t-statistic (i.e. the coefficient divided by
its standard error) is given in brackets for each doubly-differentiable model. For these models,
all the parameters are signiőcant at the 0.01 level.

trips (less than 1km), there is a signiőcant difference between the max(V) and mλ(V) (up to
15%), while for longer trips, the difference is negligible (down to 10−15%).

Figures 14a and 14b show how the choice probabilities look in a binary case of two alternatives
1 and 2 with respective deterministic utilities V1, V2 with the model estimates from Table 9. We
plotted the MNL, BCM, and SBCM choice probabilities as a function of the cost of Alternative
2, given that Alternative 1’s cost is őxed.

In Figure 14a, V1 = 1. This plot shows that there is a slight asymmetry on how the BCM and
SBCM choice probabilities evolve with V2 (in the sense that P(2|V2 = V1−∆) ̸= P(1|V2 = V1+∆)
for 0 < ∆ < (φ − 1)V1). Moreover, the low smoothness parameter δ = 0.149 makes the choice
probabilities get faster to zero for the SBCM than for the BCM. While the SBCM has a lower
scale parameter than the MNL and BCM, its choice probabilities have the steepest slope for V2,
because of the distributional assumptions of the model. In Figure 14b, V1 = 2. In this case, the
relative utility bound φ is located much further away from V1, so the choice probabilities have a
sigmoid-resembling shape (with different slopes given by the different estimated scales for each
model).

In Figure 15, we plot the distribution of the error terms difference εi for the different esti-
mated models in Table 9, assuming a reference utility being equal to -1. This plot shows the
difference between the distributions for short trips. The bound is slightly larger for the SBCM
than the BCM, which makes sense with the previous case study experiments.
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Figure 14: (a) Binary choice probability of alternative 1 according to the MNL, BCM and SBCM
estimates parameters, with the utility of alternative 1, V1 őxed to 1. (b) As for (a) but with V1

őxed to 2.

7.3 Public Transport route choice in Copenhagen

In the third case study, we estimated the MNL, BCM, and SBCM as route choice models, but
in this case, they were based on the Greater Copenhagen Region’s large-scale multimodal public
transport network.
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Figure 15: Distribution plots for the model estimated parameters, assuming that the reference
deterministic utility is -1

7.3.1 Data

We use a multimodal public transport dataset. A thorough presentation of this dataset can be
found in Nielsen et al. (2021). Anderson (2013) collected the 4,810 observed routes as part of
the Danish National Travel Survey. These observations are separated into two subsets: work-
related trips (2,553 observations) and leisure trips (2,257 observations), and separate models
were estimated for these two datasets. The representative universal choice set was generated
using a Doubly-Stochastic method (Nielsen, 2004). The dataset contains the travel time in
each transport mode: bus, commuter train (S-train), Metro, Regional and intercity train, and
local train. It also contains transfer components (number of transfers, waiting time and walking
time), access and egress time, and highest headway in the trip. The model does not include
the Path-Size correction term, as Nielsen et al. (2021) did not őnd it a signiőcant explanatory
variable.

7.3.2 Results

We estimated a MNL, a BCM and a SBCM for both trip purposes. Preliminary results showed
that the reference alternative smoothness parameter λ was estimated to +∞. Thus, we őxed it
to a large number (λ = 100) and estimated the model SBCMλ=100 where λ is a hyperparameter.
Similarly to the bicycle route choice case study, the utilities have been scaled to Bus In-vehicle
time, which implies that the other cost parameters translate the relative sensitivity to attributes
to Bus In-Vehicle time. Table 11 gives the model estimation results. The t-statistics for each
smooth model (the MNL and the SBCM) were calculated analytically using the likelihood Hes-
sian matrix. The SBCM, for instance, outputs that the decision-makers are, on average, willing
to trade 1 minute of S-train for 0.7385 minutes of Bus without a change in utility.

The model estimates make sense in magnitude and sign, corroborating with Nielsen et al.
(2021). Similarly to the previous case studies, the BCM relative utility bound improves the
model őt signiőcantly. However, in this case study, neither of the two introduced smoothness
parameters was found to be signiőcant, even though the parameter δ slightly improves the model
őt in the Leisure case. This implies that the shape of the BCM choice probabilities is more suited
to explain the route choices made by this dataset’s decision-makers. The presence of the two
smoothness parameters is still important, as it allows the choice probabilities differentiability.
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Trip purpose Work Leisure

Model MNL BCM SBCMλ=100 MNL BCM SBCMλ=100

Cost parameters (θ)

In-vehicle time
Bus -1* -1* -1* -1* -1* -1*
Metro -0.3897 (6.81) -0.3820 -0.3826 (6.96) - 0.3834 (5.00) -0.3322 -0.3481 (5.72)
Reg. and Intercity train -0.8868 (22.10) -0.8848 -0.8813 (21.65) -0.8826 (17.52) -0.9641 -0.9660 (17.44)
S-Train -0.7478 (30.70) -0.7414 -0.7385 (30.36) -0.7393 (24.86) -0.7173 -0.7175 (27.05)
Local train -0.9056 (12.60) -0.9104 -0.9130 (12.09) -0.9116 (6.38) -0.7925 -0.7944 (5.65)

Transfer components
Nb of Transfers -8.2194 (25.38) -8.0394 -7.9844 (24.24) -7.9935 (23.17) -8.3266 -8.2231 (23.65)
Transfer walk time -0.6767 (8.33) -0.6606 -0.6606 (7.18) -0.6607 (7.66) -0.7216 -0.7176 (8.03)
Transfer wait time -0.1542 (5.16) -0.1555 -0.1571 (5.13) -0.1554 (4.64) -0.1494 -0.1520 (4.87)

Other components
Access time -1.6567 (26.60) -1.6362 -1.6333 (26.16) -1.6312 (19.07) -1.7260 -1.7235 (19.20)
Egress time -1.4705 (19.89) -1.4556 -1.4540 (20.45) -1.4548 (17.79) -1.4694 -1.4593 (19.34)
Trip highest headway -0.4716 (9.66) -0.4813 -0.4825 (10.28) -0.4822 (9.16) -0.4314 -0.4353 (3.79)

Scale (θ) 0.3534 (37.06) 0.3372 0.3272 (30.59) 0.3358 (33.77) 0.3045 0.2994 (29.37)
Bound (φ) - 1.526 1.686 (17.89) - 1.533 1.722 (28.06)
Smoothness parameter (δ) - - 0.1738 (0.9592) - - 0.1730 (1.873)

Final LL -2,391 -2,373 -2,371 -2,623 -2,579 -2,573
BIC 4,868 4,840 4,844 -5,331 5,251 5,239
Adj. ρ2 0.804 0.805 0.806 0.745 0.749 0.751
N params 11 12 13 11 12 12
Routes cut by bound 0% 90.2% 86.7% 0% 88.9% 85.5%

Table 11: Model results for Work and Leisure trips, the t-statistics are given in brackets. The
smoothness parameters δ are both insigniőcant at the .05 level. All the other parameters are
signiőcant at the .001 level

However, as a model hyperparameter, the smoothness parameter δ could also be őxed to a large
positive number. Interestingly, the bounds cut off between 85% and 90% of the generated routes,
implying that a large part of the sampled routes from the universal choice set were unrealistic.
The BCM and SBCM estimates are very similar, with a slightly higher estimated relative cost
bound for the smooth version (as also found with the Hövding dataset). This difference may
be attributed to the smoothness of the probability function, as choice probabilities increase less
fast than for the BCM around the bound. As we saw for the Hövding dataset, the SBCM
signiőcantly improves the model őt to the data.

8 Discussion

8.1 Summary of contributions

In this paper, we have advanced the őeld of one-stage choice set formation models, which pro-
vide a behavioural and computational advantage over no-choice set formation and two-stage
choice set formation models. For reasons discussed in the paper, the BCM (Watling et al.,
2018) is a particularly attractive one-stage choice set formation model as it imposes hard, perva-
sive, compensatory, endogenous, and continuous cutoffs upon alternatives to determine implicit
consideration choice sets consistent with the choice probabilities.

However, as demonstrated in the paper, the BCM is not differentiable. We have, therefore,
developed the Smooth BCM (SBCM) to address this shortcoming. By relying on a new smooth
bounded-support distribution for the random error terms and smoothly approximating the ref-
erence utility, the closed-form SBCM choice probabilities are inőnitely differentiable (smooth).
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The core features of the BCM are preserved. For example, the MNL model can be approximated
as the bound tends to inőnity, and the bounding criterion is the same: alternatives receive zero
probability if their utility violates the bound. The SBCM can also approximate the original
BCM to arbitrary precision under a speciőc setting of the hyperparameters. The smoothness
property of the SBCM guarantees the asymptotic normality of maximum likelihood parameter
estimates and facilitates the calculation of likelihood gradients, the AVC matrix of the estimates,
conődence intervals, and elasticities.

In choice contexts such as route choice, where there is considerable correlation between
alternatives, this correlation should be accounted for (Florian and Fox, 1976). However, the
BCM and SBCM do not account for correlation. Extending the BCM to account for such in the
path choice context, Duncan et al. (2022) recently developed the Bounded Path Size (BPS) route
choice model, which includes path size correction terms within the BCM probability relation to
capture route correlation. In this paper, we have modiőed the BPS model analogously to how
we modiőed the BCM to formulate the SBCM to formulate a smooth SBPS model.

Subsequently, we presented a MLE technique for the SBCM model. We proposed parame-
terisation techniques for the model parameters to avoid using box constraints on the parameter
values and speed up the convergence of the estimation procedure. Since the SBCM log-likelihood
function is not guaranteed to be concave, we explored the uniqueness of MLE solutions numeri-
cally, solving with different randomly generated initial conditions. No cases of multiple solutions
were found.

To explore these features, we estimated the SBCM on three large datasets of observed choice
behaviour from the Greater Copenhagen area: a mode choice dataset, a bicycle route choice
dataset, and a public transport dataset. We calculated standard errors and marginal rates of
substitution for the parameter estimates using the analytical gradient. Additionally, we calcu-
lated aggregate point elasticities for the mode choice case study and analysed the alternatives
excluded by the model bound. Benchmarked against the MNL, the SBCM provided plausible
results and considerably better őt the data in all the case studies. These őt improvements
outweighed the additional parameters in all but one case, in which the BIC increased. We hy-
pothesise that the smoother shape of the probability function is more suited to model choice
behaviour. Upon the bicycle route choice application, we found that the SBPS model consid-
erably outperformed both the MNL and the SBCM, highlighting the importance of accounting
for correlation and unrealistic routes in generated choice sets.

An estimated bound implicitly identiőes the alternatives individuals do not consider by giving
them zero probability. This helps interpret an individual’s consideration set. Interestingly,
the number of excluded alternatives was high in the route choice case studies. This suggests
that the stochastic choice set generation method generated many unrealistic alternatives to
which the MNL cannot allocate zero probability. Failing to do so may have led to biased
predictions, especially in large-scale case studies. Excluding unrealistic alternatives also affects
the calculation of policy-related indicators, like elasticities, as these excluded alternatives do not
inŕuence their calculation. For instance, the SBCM suggested that the substitution between
walking and using the car was overestimated by the MNL, as, in most cases, walking was not a
realistic alternative when the car was chosen. Conversely, the substitution between walking and
cycling was underestimated.

8.2 Conclusion

In conclusion, we believe the SBCM is a promising model. First, its closed-form probabilities,
analytical gradients, and Hessian matrices make it easy to estimate, notably for large choice sets.
This is not the case for every one-stage choice set formation model, which often requires advanced
estimation techniques, such as solving őxed point problems or using Bayesian inference. In our
case studies, the SBCM provides a much better őt to the data than the MNL model, likely
because unrealistic alternatives are assigned zero probabilities and thus do not inŕuence the

36



model estimates. Secondly, the SBCM allows for a richer interpretation of the model estimates
than the MNL for the analysis of zero-probability alternatives from the representative universal
choice set and the BCM due to the possibility of analytical calculation of standard errors and
elasticities. Furthermore, while the BCM has yet only been applied to car route choice, we have
now shown its suitability to different choice situations.

8.3 Future research

There are several directions for future research. Firstly, it is possible to incorporate the SBCM
smoothing techniques in the Conjunctive BCM (Rasmussen et al., 2024) and also in an analogous
Disjunctive BCM that could be based on previous work on disjunctive models (Cazor et al.,
2024). This would allow for comparing different decision rules in one-stage choice set formation.
A method for assessing which choice set formation assumption from the literature is the most
suitable depending on the case study could also be developed. This could be done either by
comparing information criteria such as the BIC, or the model predictive ability on out-of-sample
datasets.

Several other extensions of the SBCM could also enhance its versatility. For instance, a
Nested SBCM for non-route choice contexts could be developed to relax the Independence of
Irrelevant Alternatives (IIA) property and allow for correlation between alternatives. Another
example could be to account for taste or bound heterogeneity by mixing some parameters with
a discrete or continuous distribution.

Another stream of research could work further on the estimation procedure. A concern with
the SBCM is its sensitivity to outliers, i.e., chosen alternatives that have a relative high utility
compared to the best-performing alternative. During estimation, the bound is set to ensure
that no observed alternative is entirely cut off (i.e., it always retains some likelihood). How-
ever, in out-of-sample validation, new outliers may emerge, potentially leading to poor overall
model performance due to zero likelihood assignments. Alternative objective functions that are
less sensitive to zero probabilities could be used for model assessment and possibly parameter
estimation. Another approach involves systematically identifying outliers to better understand
their impact. Cut-off issues may also arise due to insufficient heterogeneity in observed choice
behaviour, highlighting the importance of ensuring that the estimation dataset is representative
of the population. A possible solution could be to incorporate taste heterogeneity or bound
heterogeneity, such as individual-speciőc bounds, or mixing parameters with a random distribu-
tion (McFadden and Train, 2000). This would allow for greater ŕexibility in capturing variation
across decision-makers, potentially improving both estimation robustness and predictive perfor-
mance.
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Appendix A One-stage choice set formation models: a review

In this őrst Appendix, we explain and present one-stage choice set formation models. Under
utility maximization, if Cn ⊆ C is the decision-maker n choice set, the choice probability of
alternative i is given by:

Pn(i) = Pr(Uin ≥ Ujn, ∀j ∈ Cn) (32)

where Ujn = Vjn + ϵin is the utility of alternative j for decision-maker n. Assuming the analyst
knows Cn, it can be described by deterministic availability indicators: (Bierlaire et al., 2010):

Ain =

{

1 if alternative i is considered by individual n

0 otherwise
(33)

The choice model can be re-written:

Pn(i) = Pr(Uin + ln(Ain) ≥ Ujn + ln(Ajn), ∀j ∈ C) (34)

To model for the analyst’s lack of knowledge on the actual composition of Cn, Cascetta and
Papola (2001) proposed to replace Ain by a penalty term ϕin ∈ [0, 1], which represents the
probability that individual n considers alternative i. Several models from the literature explored
different functional forms for the penalty term. This framework is analogous to the modelling
framework presented by Brathwaite and Walker (2018), where the utility is transformed with a
function S before calculating the choice probabilities using a logit formula. While several models
below could be included within their framework, using S(Vin) = Vin + ln(ϕin), Brathwaite and
Walker (2018) make the assumption that the function S of an alternative does not depend on
the attributes of other alternatives (i.e., maintain the Independence of Irrelevant Alternatives,
or IIA assumption). This is not the case of some of the presented models, such as the BCM
(Watling et al., 2018), the SBCM (this paper), and the Conjunctive BCM (Rasmussen et al.,
2024).

A.1 Swait (2001b) choice set formation model

First, Swait (2001b) model imposes cutoffs Ψk to the attributes k, meaning that if an alternative
attribute xink fails to pass a cutoff value, its utility will be penalised. According to this model,
the utility can be rewritten as a sum of subutilities for each attribute k, i.e., Vin =

∑

k Vink,
where Vink is deőned by:

Vink = θkxink + γk max(0,Ψk − xink)

which can also be expressed as:

Vink =

{

θkxink if xink ≥ Ψk

(θk − γk)xink + γkΨk otherwise
(35)

γk > 0 is a penalty coefficient. γk = +∞ represents a pure conjunctive behaviour (i.e., if
an attribute does not meet the cutoff, the choice probabilities become zero). This utility can be
rewritten Vink = θkxink + lnϕink, where ϕink = exp(γk max(0,Ψk − xink)). The total penalty

for an alternative i is thus equal to ϕin =
K
∏

k=1

ϕink. A similar penalty can be given for upper

attribute cutoffs.
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A.2 The Constrained Multinomial Logit (CMNL) model

The CMNL (Martínez et al., 2009) is presented as a smooth version of Swait’s model. It is noted
that Paleti (2015) extended this model to better approximate Manski (1977)’s framework. The
CMNL imposes upper and lower cutoffs on the attribute value (noted ak and bk), using a slightly

different deőnition for ϕin: ϕin =
K
∏

k=1

ϕL
inkϕ

U
ink, where:

ϕU
ink =

1

1 + eωk(xink−ak+ρk)

ϕL
ink =

1

1 + eωk(bk−xink+ρk)

ωk is a scale parameter and ρk is a location parameter.
Attribute cutoffs are considered soft : as ϕin cannot be zero, a violation of the cutoff penalises

the choice probability but cannot lead to a zero probability. This property may be problematic
for some applications (e.g., route choice), where eliminating alternatives with certainty simpliőes
the choice set generation task. To our knowledge, two models have been developed that allocate
zero probability to alternatives that do not meet a cutoff value.

A.3 Elrod et al. (2004) choice set formation model

Elrod et al., 2004 develops a "pervasive conjunctive + linear model" using a general nonrect-
angular hyperbola (GNH) value function. The word "pervasive" means that if an alternative
is close to the cutoff value, it will also be penalised (in a continuous and differentiable way).
According to the GNH model, the deterministic utility Vin =

∑

k Vink, where Vink is deőned by:

Vink =

{

−γk
xink−Ψk

+ θkxink if xink ≥ Ψk

−∞ otherwise
(36)

It follows that the GNH model penalty can be written as ϕin =
K
∏

k=1

ϕink, where ϕink =

exp
(

−γk
xink−Ψk

)

.

A.4 The Bounded Choice Model (BCM)

The BCM (Duncan et al., 2022; Watling et al., 2018) assumes that the (representative) universal
choice set may contain unrealistic alternatives with large costs/utilities, following empirical
observations from Watling et al. (2015), and that these never enter individuals’ consideration
sets. This model assumes that individuals consider an alternative if its utility or cost is within
some bound of an imaginary reference alternative. It allocates zero probability alternatives by
assuming that the difference of error terms between the utility of any alternative and one of the
reference alternatives follows a truncated logistic distribution rather than a logistic distribution
for the MNL. Its choice probabilities are deőned as:

PBCM
in =

(exp(θ(Vin −Ψn))− 1)+
∑

j∈C

(exp(θ(Vjn −Ψn))− 1)+
(37)

where Ψn is a cutoff value for the overall utility. Watling et al., 2018 deőned this cutoff
endogenously by assuming that it is related to the best-performing alternative in the choice set
(i.e., Ψn = φmax

j∈C
Vjn, φ > 1 for a relative model, or Ψn = max

j∈C
Vjn + δ, δ > 0, for an absolute

39



model). It is possible to show that the BCM is equivalent to a one-stage formation model whose
modiőed deterministic utility Ṽin is given by:

Ṽin =

{

ln(1− eθ(Vin−Ψn)) + θVin if Vin ≥ Ψn

−∞ otherwise
(38)

The different penalties are plotted in Figure 16. This őgure showcases the different penalty
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Figure 16: Penalties for violating a lower bound for the different one-stage formation models

properties. Firstly, we can see that Swait (2001a) and Martínez et al. (2009)’s CMNL penalties
are "soft", i.e., that they never allocate zero probability to an alternative, regardless of how
badly an attribute performs. Conversely, the GNH and BCM penalties can be considered "hard".
Secondly, we observe that the CMNL, GNH and BCM penalties are "pervasive", meaning that
alternatives whose attribute values are close to the cutoff are more penalised than those far. The
above-mentioned properties are summarised in Table 1.

Appendix B Proofs of the properties of the Smooth Truncated
Logistic distribution

Property 1: The smooth truncated logistic distribution has bounded support on [−ϕ,+∞)

Proof. For x < −ϕ, exp(θ(x+ϕ))−1 < 0, so gδ(exp(θ(x+ϕ))−1) = 0. As gδ(exp(θϕ)−1) > 0,
we have that FS(x|θ, ϕ, δ) = 0

Property 2: The CDF of the smooth truncated logistic distribution is inőnitely differen-
tiable on R.

Proof. It is sufficient to prove that FS is inőnitely differentiable at the breakpoint x = −ϕ,
which is equivalent to proving the inőnite differentiability of the function gδ at the breakpoint

x = 0. For n > 1, we note g
(n)
δ the nth order derivative of gδ. We can prove by induction that

there exists a polynomial Pn of degree 2n, so that:

g
(n)
δ (z) =

{

Pn

(

1
z

)

exp
(

− 1
δz

)

if z > 0

0 otherwise
(39)
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As, for any integer k, the function zk exp(−z) tends to 0 when z tends to +∞, it follows
that, for any polynomial P, P (z) exp(−z) tends to 0 when x tends to +∞, or equivalently, that

P
(

1
z

)

exp
(

− 1
δz

)

tends to 0 when z tends to 0. This ensures the continuity of the g
(n)
δ (z) at the

breakpoint.
Consequently, FS is inőnity differentiable as a composition, sum, and ratio (which never equates
zero) of inőnitely differentiable functions.

Property 3: The smooth truncated logistic distribution collapses to the truncated logistic
distribution as δ = +∞.

Proof. First, we will prove that the gδ functions uniformly converge to (.)+ when δ → +∞. We
have that ∥(.)+ − gδ∥∞ = max

z>0
(z(1 − exp(−1/δz))), as the function is positive. The function

z → z(1 − exp(−1/δz)) is increasing, so max
z>0

(z(1 − exp(−1/δz))) = lim
z→+∞

z(1 − exp(−1/δz)).

This limit can be calculated thanks to the l’Hopital’s rule:

lim
z→+∞

z(1− exp(−1/δz)) = lim
z→+∞

1− exp(−1/δz)
1
z

(40)

=L’Hopital lim
z→+∞

− exp(−1/δz)
δz2

−1
z2

(41)

= lim
z→+∞

1

δ
exp(−1/δz) (42)

=
1

δ
(43)

Hence, ∥(.)+ − gδ∥∞ = 1/δ −−−−→
δ→+∞

0, meaning that gδ uniformly converges to (.)+ when

δ → +∞. This property implies that the C∞ truncated Logistic distribution, when δ → +∞,
uniformly converges to the following distribution:

lim
δ→+∞

FS(x|θ, ϕ, δ) =
(exp(θ(x+ ϕ))− 1)+

(exp(θ(x+ ϕ))− 1)+ + (exp(θϕ) + 1)+
(44)

For x > −ϕ, we have that (exp(θ(x + ϕ)) − 1)+ = exp(θ(x + ϕ)) − 1 and (exp(θϕ) + 1)+ =
exp(θϕ) + 1, so that (exp(θ(x + ϕ)) − 1)+ + (exp(θϕ) + 1)+ = exp(θ(x + ϕ)) + exp(θϕ). For
x ≤ −ϕ, we have that (exp(θ(x + ϕ)) − 1)+ = 0, which implies that lim

δ→+∞
FS(x|θ, ϕ, δ) = 0.

Thus, we can rewrite the limit as follows:

lim
δ→+∞

FS(x|θ, ϕ, δ) =
(exp(θ(x+ ϕ))− 1)+

exp(θ(x+ ϕ)) + exp(θϕ)
(45)

= FTL(x|θ, µ = 0, ϕ) (46)

which is the CDF of the truncated logistic distribution at −ϕ.

Appendix C SBCM Gradients and Hessian matrix

This section deőnes the gradients and Hessian matrices of the choice probabilities logarithm with
respect to the model parameters. Let’s assume we observe a choice situation with a choice set C,
for which the S-BCM choice probabilities are called Pi(β), for all i ∈ C. β = (θ, φ, δ, λ) ∈ R

K+3

is a vector of attributes for which the probabilities are deőned, i.e. for φ > 1, δ > 0, λ > 0. To
avoid overloading notation, in this section, we deőne θ ∈ R

K as the vector of utility-function
parameters (i.e., Vi = θ⊤xi). No element of θ is set to one, which means that this vector contains
the scale parameter θ of the smooth truncated logistic distribution.
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To calculate the log-probabilities gradient (also called the score) and Hessian matrix, we want
to calculate the following quantities: ∂ lnPi

∂θ , ∂ lnPi

∂φ , ∂ lnPi

∂δ , ∂ lnPi

∂λ , as well as the double derivatives
given in the Hessian matrix below. The log probabilities gradient (a vector of size K + 3) and
Hessian (a matrix of size (K + 3)× (K + 3)) are deőned as:

∇β lnPi =
∂ lnPi

∂β
=

(

∂ lnPi

∂θ

∂ lnPi

∂φ

∂ lnPi

∂δ

∂ lnPi

∂λ

)

∇2
β lnPi =

∂2 lnPi

∂β∂β⊤
=















∂2 lnPi

∂θ∂θ⊤

(

∂2 lnPi

∂θ∂φ

)⊤ (

∂2 lnPi

∂θ∂δ

)⊤ (

∂2 lnPi

∂θ∂λ

)⊤

∂2 lnPi

∂θ∂φ
∂2 lnPi

∂φ2

∂2 lnPi

∂φ∂δ
∂2 lnPi

∂φ∂λ
∂2 lnPi

∂θ∂δ
∂2 lnPi

∂δ∂φ
∂2 lnPi

∂δ2
∂2 lnPi

∂δ∂λ
∂2 lnPi

∂θ∂λ
∂2 lnPi

∂λ∂φ
∂2 lnPi

∂λ∂δ
∂2 lnPi

∂λ2















Let’s deőne the function fi, for any i ∈ C, as:

fi(X|θ, φ, λ) = exp(θ⊤xi − φmλ(X|θ))− 1 (47)

here, we assume a linear relationship between the model attributes and the cost function. We

have that lnPi = ln gδ(fi)− ln

(

∑

j∈C

gδ(fj)

)

. The log-probabilities gradients and Hessians with

respect to β can be expressed with the gδ(fi),∈ C gradients and Hessians as follows:

∂ lnPi

∂β
=

1

gδ(fi)

∂gδ(fi)

∂β
− 1
∑

j∈C

gδ(fj)

∑

j∈C

∂gδ(fj)

∂β
(48)

∂2 lnPi

∂β∂β⊤
=
gδ(fi)

∂2gδ(fi)
∂β∂β⊤

−
(

∂gδ(fi)
∂β

)

·
(

∂gδ(fi)
∂β

)⊤

gδ(fi)2
−

(

∑

j∈C

gδ(fj)

)(

∑

j∈C

∂2gδ(fj)

∂β∂β⊤

)

−
(

∑

j∈C

∂gδ(fj)
∂β

)

·
(

∑

j∈C

∂gδ(fj)
∂β

)⊤

(

∑

j∈C

gδ(fj)

)2 (49)

The partial derivatives of gδ can be calculated using the chain rule:

∂gδ
∂β

=
∂gδ
∂fi

∂fi
∂β

(50)

∂2gδ
∂β∂β⊤

=
∂2gδ
∂f2

i

(

∂fi
∂β

)2

+
∂2fi

∂β∂β⊤

∂gδ
∂fi

(51)
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The őrst and second-order derivatives of gδ are given by:

∂gδ
∂z

=

{

(

1 + 1
δz

)

exp
(

− 1
δz

)

if z > 0

0 otherwise
(52)

∂2gδ
∂z2

=

{

1
δ2z3

exp
(

− 1
δz

)

if z > 0

0 otherwise
(53)

∂gδ
∂δ

=

{

1
δ2

exp
(

− 1
δz

)

if z > 0

0 otherwise
(54)

∂2gδ
∂δ2

=

{

(

− 2
δ3

+ 1
δ4z

)

exp
(

− 1
δz

)

if z > 0

0 otherwise
(55)

∂2gδ
∂δ∂z

=

{

1
δ3z2

exp
(

− 1
δz

)

if z > 0

0 otherwise
(56)

fi has the following partial derivatives:

∂fi
∂θ

=

(

xi − φ
∂mλ

∂θ

)

exp(θ⊤xi − φmλ(X|θ)) (57)

∂fi
∂φ

= −mλ(X|θ) exp(θ⊤xi − φmλ(X|θ)) (58)

∂2fi
∂θ∂θ⊤

=

[

(

xi − φ
∂mλ

∂θ

)(

xi − φ
∂mλ

∂θ

)⊤

− φ
∂2mλ

∂θ∂θ⊤

]

exp(θ⊤xi − φmλ(X|θ)) (59)

∂2fi
∂φ2

= m2
λ(X|θ) exp(θ⊤xi − φmλ(X|θ)) (60)

∂2fi
∂θ∂φ

= −
[

mλ(X|θ)
(

xi − φ
∂mλ

∂θ

)

+
∂mλ

∂θ

]

exp(θ⊤xi − φmλ(X|θ)) (61)

For a vector u = (u1 · · ·uN ). The partial derivatives of mλ(u) with respect to the vector
components are given by:

∂mλ

∂ui
=

exp(λui)
∑

k exp(λuk)
(1 + λ(ui −mλ(u))) (62)

∂2mλ

∂ui∂uj
= λ

exp(λui)
∑

k exp(λuk)

[(

δij −
exp(λuj)

∑

k exp(λuk)

)

(1 + λ(ui −mλ(u))) +

(

δij −
∂mλ

∂uj

)]

(63)

We can then calculate the derivative of mλ with respect to θ by using the chain rule and setting
u = θ⊤X, for instance, using,

∂mλ

∂θ
=

∂mλ

∂u

∂u

∂θ
= X

∂mλ

∂u

∂2mλ

∂θ∂θ⊤
=

∂2mλ

∂u∂u⊤

(

∂u

∂θ

)2

+
∂mλ

∂u

∂2u

∂θ∂θ⊤

Let us write mλ(u) = Ep(u), being the expectation of u with respect to the Softmax weighting

p =

(

eλui
∑

j e
λuj

)

j∈{1,...,N}

. Finally, we have the following partial derivatives for mλ.

∂mλ

∂λ
= Varp(u) (64)

∂2mλ

∂λ2
= Varp(u

2) (65)
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Where Varp(u) = Ep(u
2)− Ep(u)

2 Finally, we have the cross derivatives that are given by

∂2mλ

∂λ∂u
=

∂Varp(u)

∂u
(66)

= 2
[

diag(p)u− (p⊤u)p
]

(67)

Combining all the above equations allows for deriving the choice probabilities and their
logarithm, the analytical gradients, and Hessian matrices with respect to the model attributes
and parameters. In the following sections, we will present a few applications of these analytical
gradients and Hessians.

Appendix D Boltzmann approximation error

Let x = (x1, ..., xN ), we want to give an upper bound on the Boltzmann operator approximation
error ϵ = |max(x) − mλ(x)|. We assume, without loss of generality, that x is ordered so that
x1 ≤ x2 ≤ · · · ≤ xN . The approximation error is given by:

ϵ(λ) = xN −
N
∑

i=1

xi
eλxi

N
∑

j=1
eλxj

=

N
∑

i=1

(xN − xi)
eλ(xi−xN )

1 +
N−1
∑

j=1
eλ(xj−xN )

Let us deőne ϵ̄(γ) = ϵ(1/λ), we can give the following Taylor approximation of the error ϵ:

ϵ̄(γ) = ϵ̄(0) + γ
∂ϵ̄

∂γ

∣

∣

∣

γ=0
+ o(γ)

ϵ(γ = 0) = ϵ(λ = +∞) = 0 as the true maximum is obtained for inőnite λ. Moreover, the

partial derivative is given by the LogSum: ∂ϵ̄
∂γ = log

(

N
∑

i=1
e(xi−xN )/γ

)

. This implies that, when

λ goes to inőnity:

ϵ(λ) =
1

λ
log

(

N
∑

i=1

eλ(xi−xN )

)

+ o

(

1

λ

)

Given that eλ(xi−xN ) ≤ 1 for all i, we have the following approximation error:

ϵ(λ) =
1

λ
log (N) + o

(

1

λ

)

= O

(

1

λ

)

(68)
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