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ABSTRACT
In order to explore the effects of climate change on atmospheric
convection and the water cycle, we develop and analyse an exten-
sion of the Rainy-Bénard model, which is itself a moist version of
the Rayleigh-Bénard model of dry convection. Including moisture
changes the character of the convection, with condensation provid-
ing a source of buoyancy via latent heating and the systemexhibiting
moist conditional instability. A range of idealised climate change sce-
narios are constructed by appropriate choice of both the radiative
cooling rate and the surface temperature, and these scenarios are
investigated over a wide range of surface relative humidity values.
We impose moist-pseudoadiabatic conditions at the top boundary,
which allow the temperature and specific humidity values to vary at
the top boundary in response to convection. The model is analysed
across the different climate change scenarios space by examining
diagnostics of the model’s basic state, and its stability, with Convec-
tive Available Potential Energy (CAPE) calculations and a linear stabil-
ity analysis. We use the linear stability results to identify new param-
eters relevant for this moist convective system, and to understand
how the linear instability responds to the climate parameters. In par-
ticular,wedefine the “Rainy number” as a scaled ratio of positive-area
CAPE and diffusion parameters. An alternative radiative-based Rainy
number also is shown to describe the parameter space, especially
for problems relating to changes in flux conditions. The Rainy num-
ber acts like the traditional Rayleigh number for dry Rayleigh-Bénard
convection, and provides a novel theoretical tool for understand-
ing how the dynamics and scales of moist convection and hence
precipitation will change under climate change. The linear analysis
predicts an intensification of the hydrological cycle under climate
change. The model set up and linear analysis provide a basis for
future investigation into the non-linear dynamics of (idealised)moist
convection.
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1. Introduction

The Rainy-Bénard model (Vallis et al. 2019) is a moist extension of dry Rayleigh-Bénard
convection. The Rainy-Bénard model is deliberately idealised, capturing some essential

CONTACT G. N. Dritschel mmgnd@leeds.ac.uk

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is anOpenAccess article distributed under the terms of the Creative CommonsAttribution License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited. The terms
on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/03091929.2025.2556358&domain=pdf&date_stamp=2025-10-28
https://orcid.org/0009-0000-9563-3801
https://orcid.org/0000-0003-0205-7716
mailto:mmgnd@leeds.ac.uk
http://creativecommons.org/licenses/by/4.0/


2 G. N. DRITSCHEL ET AL.

ingredients of moist convection: (moist) conditional instability, latent heat release by con-
densation, energy andmoisture budget constraints, and, a Clausius-Clapeyron relationship
for the saturation vapor pressure with temperature; but missing more complex processes,
such as liquid water or ice phases, or interactive radiative cooling schemes. The connec-
tion of Rainy-Bénard convection to classical Rayleigh-Bénard convection provides a suite
of mathematical techniques that can be used to investigate the moist convective system.
We aim to improve the theoretical understanding of moist convection, and convective
rainfall in a changing climate, through the detailed analysis of a minimal model of moist
convection.

The changes in atmospheric deep convection, and the character of its associated rain-
fall, are uncertain in future climate (O’Gorman 2015). Moist convection is a key source of
uncertainty in climate model simulations, due to its small scale processes, and its feedback
on large scale climate processes, such as theHadley circulation (Tomassini and Yang 2022).
Understanding changes in the intensity, structure and organisation of moist convection
under climate change are key for improving climatemodel projections, which are pertinent
tools for protecting vulnerable communities in the future. How moist convection changes
under climate change is therefore a critically-important problem in climate research.

Changes in deep convection have been investigated using a range of approaches. One
approach involves the use of ensemble data from global-scale General Circulation Mod-
els (GCMs), with energy and moisture budgets used to examine future rainfall change
(Held and Soden 2006, Seager et al. 2010, Byrne and O’Gorman 2015). However there is a
large uncertainty inmodelled convective rainfall over the tropics, due to coarse resolutions
(∼50 km) which require subgrid-scale convective parametrisations (O’Gorman 2015).
With the development of exascale computing, there have been significant advances inGCM
resolution, with kilometre-scale (k-scale) models now being able to explicitly resolve con-
vection on global domains (Schär et al. 2020). Recently such models have been used in
the study of rainfall change (Cheng et al. 2022). However moist biases have been found in
studies of global convection-permitting models (CPMs), potentially due to these models
not capturing key convective processes such as turbulence (Tomassini et al. 2023). Initial
k-scale studies indicate that there still remain gaps in our understanding of atmospheric
moist convection, some of which can be investigated using idealised studies which can
resolve turbulence (Guichard and Couvreux 2017).

An alternative to global-scale modelling involves using CRMs (Cloud Resolving Mod-
els) or LES (Large Eddy Simulations) to resolve explicitly convective clouds, and their
associated transient motions on smaller domains. Both GCMs and CRMs are dynamically
based on an approximation of the Navier-Stokes equations, called the “primitive equa-
tions” (Phillips 1966), CRMs typically have higher resolutions (10m–1 km) than GCMs.
Although CRMs can marginally resolve convection, complexity arises in these models
by the choice of the parametrisations used for the subgrid-scale (i) turbulent motions,
(ii) microphysical processes, and (iii) radiative processes (Guichard and Couvreux 2017).
The inherent complexity of GCMs, CRMs and LES makes understanding the dynamics
of moist convection challenging, which has lead to a renewed interest in understanding
these dynamics from a fluid dynamics point of view, using idealised models, such as the
Rainy-Bénard model (Vallis et al. 2019, Oishi and Brown 2024, Agasthya et al. 2025).

The Rainy-Bénard model was introduced in Vallis et al. (2019) as an idealised model
of moist convection. Vallis et al. (2019) derived the model equations, and explored the
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model’s behaviour, through a brief linear analysis, and some non-linear simulation results.
To further the understanding of the Rainy-Bénard model, Oishi and Brown (2024) con-
ducted a detailed linear analysis, examining the basic state, onset of convection, eigenvalue
spectra and eigenvector structure, all for a range of different model parameters. Agasthya
et al. (2025) extended the Rainy-Bénard model to include a constant radiative cooling
rate. Inspired by the study of Robe and Emanuel (1996), they presented a set of non-
linear simulation results for different radiative cooling rates, examining different moist
convective scalings with the radiative cooling rate (such as the mass flux). They found
that the Rainy-Bénardmodel produces similar moist convective scalings as those observed
in more complex CRMs, highlighting the model’s relevance to the study of atmospheric
moist convection. The simplicity of the Rainy-Bénard model makes a detailed mathemati-
cal approach for understanding moist convection possible (Oishi and Brown 2024), which
is unavailable to more complex models of moist atmospheric convection.

In the present paper, we aim first to document well-posed (idealised) climate change
scenarios in Rainy-Bénard convection. The scenarios are constructed to relate to the radia-
tive convective equilibrium experiments conducted inWing et al. (2018). To study climate
change we extend the Rainy-Bénard model by adding a constant radiative cooling term, as
in Agasthya et al. (2025). By careful choice of both the radiative cooling rate and the surface
temperature, we set up a range of climate change scenarios. We impose moist pseudoadi-
abatic boundary conditions at the top boundary, which gives the temperature and specific
humidity freedom to adjust. We use a detailed linear analysis, similar to that of Oishi and
Brown (2024), to understandhow the fundamental (linear) behaviour of themodel changes
with the climate parameters. The simplicity of the model, the radiation term and uniform
boundary conditions therein allow us to establish a theoretical framework required for a
conceptual approach to the climate change problem, based on fundamental principles of
fluid dynamics. In particular, wewill link awider range ofmoist, radiatively cooled regimes,
to understand the underlying mathematical behaviour of our climate change scenarios.

Convection is in general characterised by highly non-linear behaviour. However, linear
theory has been used to understand the non-linear regimes of classical dry Rayleigh-
Beńard convection (Christopher et al. 2023), and therefore, we perform a linear analysis of
the (moist) Rainy-Bénard model to gain an initial insight of the behaviour underpinning
the non-linear regimes of the model. The study by Agasthya et al. (2025) used non-linear
simulations of radiatively cooled Rainy-Bénard convection, finding similar scalings to
those found in previous CRM studies, indicating that the Rainy-Bénard model can pro-
vide relevant results despite its simplicity. A linear analysis of the Rainy-Beńard model has
been conducted in theOishi and Brown (2024) study, which examined the convective onset
(critical Rayleigh number), convective instability and moist internal gravity waves for the
Rainy-Beńard model. We present a similar linear analysis here, however we use alterna-
tive boundary conditions and include a radiative cooling term as required for a climate
change study. We also conduct a more detailed analytical treatment of the basic state solu-
tion, use a different approach to solving the linear stability eigenvalue problem, provide a
different dispersion relationship for the (linear) internal gravity waves, and use conditional
instability and moisture diagnostics to interpret the results.

In dryRayleigh-Beńard convection, some insight into the non-linear problem for higher
Rayleigh numbers can be obtained from studying criticality. Malkus (1981) argues that
dry convection acts to modify mean states to marginality, underlining the importance
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of understanding such states. However, at higher Rayleigh numbers, turbulence acts not
only to modify the mean state but also to cascade energy to smaller scales (Marston and
Tobias 2023). The linear results presented in this paper provide the basis for a future inves-
tigation into the non-linear behaviour of moist convection under climate change, as has
been successfully demonstrated for the “dry” classical Rayleigh-Beńard problemovermany
years (Chandrasekhar 1961, Malkus 1981, Yano 2023).

The paper starts with setting up the Rainy-Bénardmodel for a climate change study, dis-
cussing boundary conditions, radiative cooling, different non-dimensionalisations and key
parameters (section 2). The analytical basic state solution is calculated across the climate
parameter space, then some key diagnostics are presented (section 3). We then analyse the
stability of the basic state and its dependence on the climate parameters, using (i) CAPE
calculations and (ii) a linear stability analysis (section 4). The main findings and future
research involving non-linear simulations are discussed in the conclusion (section 5).

2. Model set up for climate-forcing simulations

We use a radiatively extended Rainy-Benard model for this study. The Rainy-Bénard
model is a moist extension of the Rayleigh-Bénard model, which uses the Boussinesq
approximation. The moist extension is imposed by adding additional equations to the dry
model for the specific humidity (q) and saturated specific humidity (qs), which are cou-
pled to the buoyancy equation through a condensation term. As in Vallis et al. (2019), we
consider the perturbation temperature, δT = T − T0 about a constant reference tempera-
ture T0 = 300K. The potential temperature is given by θ = θ0 + δθ = T − gz/cp (where
θ0 = T0 = 300K), and the buoyancy is given by b = gδθ/θ0. The buoyancy equation
differs from dry Rayleigh-Bénard convection in the inclusion of a condensation term,
C ≡ γ (q − qs)H(q − qs)/τ (Vallis et al. 2019), and has been extended here for climate
study with a constant radiative cooling term, gr/θ0, where r is the radiative cooling rate.
Condensation also provides a sink in the specific humidity equation. The inclusion of a
constant radiative cooling term in the buoyancy equation gives the same model equations
as those inAgasthya et al. (2025), but different boundary conditions are applied. Themodel
set up differs from Oishi and Brown (2024) and Vallis et al. (2019) both in the inclusion of
radiative cooling, and in the choice of the boundary conditions. The Boussinesq, radiative
moist convective system is given by,

Du
Dt

= −∇φ + bk + ν∇2u, (1)

Db
Dt

= γ
q − qs

τ
H(q − qs) + κ∇2b − g

θ0
r, (2)

Dq
Dt

= −q − qs
τ

H(q − qs) + κq∇2q, (3)

δT = θ0

g
b − g

cp
z, (4)

qs = q0eαδT , (5)

∇ · u = 0. (6)
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As in Vallis et al. (2019), γ = gL/(cpθ0) and α = L/(RvT2
0) − cp/(RdT0), where L is the

latent heat of condensation, cp is the specific heat capacity of air at constant pressure, Rd is
the gas constant for dry air, and, Rv is the gas constant for water vapor. Equation (5) is the
Clausius-Clapeyron relation (5), linearised about T0. The model has simple microphysics:
no liquidwater or ice phases are included, and condensation is idealised as a relaxation pro-
cess.We note that an alternative approach for formulating themultiphasemoist convective
system could be pursued by building on the work by Busse and Schubert (1971). Radiation
is also idealised as a constant cooling rate, r, which provides a first-order approxima-
tion of the radiative cooling in the atmosphere (Jeevanjee and Fueglistaler 2020, Agasthya
et al. 2025). The simplicity of the radiative cooling and microphysics makes a detailed
fundamental analysis of the model possible.

2.1. Boundary conditions

We set up idealised climate change scenarios by careful choice of the boundary conditions,
as well as the radiative cooling rate. We take the surface boundary conditions to be

b(0) = g
Tsurf/θ0, q(0) = RHsurf qs(0) = RHsurf q0eα
Tsurf , u(0) = 0. (7)

We impose a surface temperature of T = T0 + 
Tsurf and a surface relative humidity,
where the relative humidity is defined as RH ≡ q/qs. We use equation (4) to define b(0),
and equation (5) to define q(0). We also use idealised no-slip boundary conditions, at both
boundaries (as in Vallis et al. 2019).

We use a simple “explicit” approach to change the surface temperature; we keep the ref-
erence temperature and potential temperature constant (T0 = θ0 = 300K), modifying the
temperature perturbation at the surface (δT(0) = 
Tsurf) to change the surface tempera-
ture.We discuss an alternative “implicit” approach for imposing the surface temperature in
Appendix A, which involves changing the surface temperature by modifying the reference
temperature and potential temperature directly (T0 = θ0 = 300K + 
Tsurf, which in turn
modifies the values of the parameters q0,α & γ ), whilst keeping δT(0) = 0. The explicit
approach is easier to interpret and implement than the implicit method (see Appendix A),
whilst still capturing the key aspects associated with altering the surface temperature, and
therefore we use the explicit method in the rest of the analysis.

The top of the domain represents the tropopause. We use moist pseudoadiabatic
boundary conditions at the top boundary, which can be expressed as,

dm
dz

(H) = db
dz

(H) + γ
dq
dz

(H) = 0, q(H) = qs(H), u(H) = 0. (8)

Note that m = b + γ q is the moist static energy of the model, and the moist pseudoadia-
bat is defined as a profile for which dm/dz = 0 and q = qs (Vallis et al. 2019). Imposing
moist pseudoadiabatic boundary conditions allows the temperature andmoisture to adjust
to moist convection. In Vallis et al. (2019), Oishi and Brown (2024) and Agasthya et
al. (2025), both T(H) and q(H) were fixed, so there was no possibility to adjust the
upper levels to a convectively controlled profile, and the stratification leads to an unre-
alistic downward heat flux. In the real atmosphere, the diffusive fluxes of buoyancy and
humidity (κ ∂b/∂z, κq ∂q/∂z) are small at the tropopause, and the profile is close to the
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moist pseudoadiabat, especially in the tropics. The top boundary conditions are consis-
tent with atmospheric conditions at the tropopause, and they additionally allow convective
adjustment of the profiles.

2.2. Idealised climate change scenarios

We set up the control climate to be an atmosphere with surface temperature T(0) = 300K,
and a constant radiative cooling rate of r = 1.5 K/day. Idealised climate change scenarios
are set up by careful choice of both the radiative cooling rate and the surface temperature.
We consider three distinct values of the surface temperature, and for each of these sur-
face temperatures, consider three different radiative cooling rates, corresponding to eight
scenarios differing from the control climate:

(
Tsurf, r) where 
Tsurf ∈ {0, 5, 10}K, r ∈ {1.5, 3, 6}K/day.

For each pair of surface temperature and radiative cooling, (
Tsurf, r), we consider a wide
range of values for the surface relative humidity (RHsurf ∈ [0.20, 0.99]). To define the cli-
mate change scenarios, we impose larger surface temperatures than the control climate
(
Tsurf = 5or10K). The radiative cooling rate of the atmosphere is sensitive to the value
of the surface temperature, relative humidity, and the lapse rate of the atmosphere (Jee-
vanjee and Fueglistaler 2020, Hartmann et al. 2022), and hence we consider a range of
different combinations of surface temperature and radiative cooling rates in our different
climate change scenarios. Typically, larger surface temperatures are associated with larger
radiative cooling rates (e.g. Figure 4 of Jeevanjee and Fueglistaler 2020), and so we define
our “typical” climate change scenario as moving from the control climate to a climate with
T(0) = 310K (
Tsurf = 10K) and r = 3K/day, with the surface relative humidity held
constant.

2.3. Dry adiabatic buoyancy non-dimensionalisation

Following Appendix 7.1 in Vallis et al. (2019), we use a “buoyancy based non-
dimensionalisation”.We cannot use the classical Rayleigh-Bénard temperature scale [T] =
T(0) − T(H), since T(H) is free to adjust to moist convection under our moist pseudoa-
diabtic boundary conditions specified in section 2.1. The temperature scale is instead set
by the dry adiabatic temperature difference, [T] = Td(0) − Td(H) = gH/cp ∼ 100K.

We use equation (4) to set the buoyancy scale to be proportional to the temperature
scale, [B] = g[T]/θ0 ∼ 3.3ms−2. The length scale is defined to be height of the domain,
[L] = H ∼ 10 km, and we define the timescale using [t] = ([L]/[b])1/2 ∼ 55 s. We scale
the specific humidity by [q] = q0 ∼ 3.8 × 10−3 which is lower than its real value (see
Appendix D), to ensure that the fluxes of buoyancy and humidity are small at the top
boundary. The velocity scale is set by [U] = [L]/[t] ∼ 180ms−1 and the pressure scale
by [φ] = [U]2 ∼ 3.3 × 105 Pa. The non-dimensional system is then given by,

Dû
Dt̂

= −∇̂φ̂ + b̂k +
(
Pr
Ra

) 1
2 ∇̂2û, (9)
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Db̂
Dt̂

= γ̂
q̂ − q̂s

τ̂
H(q̂ − q̂s) + 1

(PrRa)
1
2
∇̂2b̂ − r̂, (10)

Dq̂
Dt̂

= − q̂ − q̂s
τ̂

H(q̂ − q̂s) + Sm
(PrRa)

1
2
∇̂2q̂, (11)

∇̂ · û = 0, (12)

ˆδT = b̂ − ẑ, (13)

q̂s = eα̂ ˆδT . (14)

Here we have the non-dimensional parameters

Pr = ν

κ
, Ra = g2H4

θ0cpνκ
, γ̂ = γ q0θ0cp

g2H
, τ̂ = τg

(cpθ0)1/2
(15)

r̂ = (c3pθ0)1/2r
g2H

, Sm = κq

κ
, α̂ = gHα

cp
, b̂surf = cp
Tsurf

gH
. (16)

We take Pr = Sm = 1, γ̂ = 0.25, α̂ = 6.0 and τ̂ = 0.05 (corresponding to a condensa-
tional timescale of τ ∼ 1s, which is small to keep the supersaturation low). We vary the
parameters r̂, b̂surf and Ra. Note that r̂ = 1 × 10−5 for a typical atmospheric cooling rate
of 1.5 Kday−1, and b̂surf = 0.05 for a surface temperature 5K warmer than the reference
temperature (T0 = 300K). For molecular values of κ and ν, Ra ∼ 1023.

The dry adiabatic temperature and buoyancy scales used in this non-dimensionalisation
do not reflect changes in stability caused by changes in the temperature profile via changes
in surface temperature, surface moisture, or ultimately, radiative cooling. Therefore Ra in
this non-dimensionalisation is only sensitive to changes in κ or ν. However, the dry adi-
abatic buoyancy non-dimensionalisation simplifies the form of the equations, and allows
easy implementation of the climate change scenario, and we therefore employ the dry adi-
abatic buoyancy non-dimensionalisation in the rest of the analysis in this paper. Note that
we drop the hats on the parameters for the rest of the analysis.

2.4. Integral constraints: energy andmoisture budgets

By integrating the moisture and buoyancy equations over the atmospheric column, we can
obtain integral constraints on the model. This approach is well understood in climate sci-
ence and is one basis for analysing future rainfall patterns (Held and Soden 2006, Byrne
and O’Gorman 2015). We consider these constraints for equilibrium, in which ∂/∂t = 0.
Using equation (11), we can write the water budget (column integratedmoisture equation)
as, ∫ 1

0

(
Ra−1/2∇2q − ∇ · (uq)

)
dz =

∫
q>qs

q − qs
τ

dz ≡ P, (17)

where we have defined the precipitation term (P) to be the column integral of the moisture
sink associated with condensation, with condensation defined as,

C ≡ γ
q − qs

τ
H(q − qs).
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Similarly, the energy budget (column integrated buoyancy equation) can be written as,

r −
∫ 1

0

(
Ra−1/2∇2b − ∇ · (ub)

)
dz = γ

∫
q>qs

q − qs
τ

dz = γP. (18)

It is common in climate change studies to separate the horizontal and vertical components
of the budgets. We define the (diffusive) evaporation as,

E ≡ −Ra−1/2
(

∂q
∂z

∣∣∣∣
z=0

− ∂q
∂z

∣∣∣∣
z=1

)
,

i.e. the sum of the moisture source at the bottom boundary, and the moisture sink at the
top boundary, due to diffusion. We also define the (diffusive) sensible heat flux as,

Fsh ≡ −Ra−1/2
(

∂T
∂z

∣∣∣∣
z=0

− ∂T
∂z

∣∣∣∣
z=1

)
= −Ra−1/2

(
∂b
∂z

∣∣∣∣
z=0

− ∂b
∂z

∣∣∣∣
z=1

)
.

Equations (17) & (18) can then be written as,

P = E +
∫ 1

0

(
Ra−1/2∇2

hq − ∇h · (uq)
)
dz, (19)

γP = r − Fsh −
∫ 1

0

(
Ra−1/2∇2

hb − ∇h · (ub)
)
dz. (20)

By integrating equations (19)& (20) in the horizontal, and applying the divergence theorem
and periodic horizontal boundary conditions, the domain averaged budgets simplify to

P = E, (21)

r = γP + Fsh, (22)

where · denotes the horizontal average of a quantity. The simplified water budget implies
that the precipitation (moisture sink) is balanced by the evaporation (moisture source from
diffusion), whilst the energy budget implies that the radiative cooling is balanced by the
sumof heating associatedwith the precipitation (γP) and the sensible heat flux (heat source
from diffusion). Assuming the fluxes of buoyancy and moisture are small at the top of
the domain (relative to the surface fluxes), the energy budget (approximately) relates the
radiative cooling to the surface fluxes:

r ≈ γEsurf + Fssh, (23)

Where Esurf = −Ra−1/2∂q/∂z(z = 0) is the surface evaporation, and Fssh = −Ra−1/2

∂T/∂z(z = 0) is the surface sensible heat flux.
Note that, as Ra → ∞, E, Fsh → 0, so equation (21) ⇒ P → 0, and the simplified

energy budget equation (22) becomes inconsistent unless r → 0 as Ra → ∞, indicating
that (steady) equilibrium cannot exist in this limit.
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2.5. Moist stability

To understand the moist stability of the atmosphere, it is typical in atmospheric science
and meteorology to use a parcel argument (Vallis 2017). Consider a moist parcel of air.
In the absence of diffusion, radiative cooling and condensation, the moist static energy of
the parcel is conserved (Dm/Dt = 0). If the parcel of air is unsaturated (q < qs), we rise
the parcel along the dry adiabat (where db/dz = 0, so b is conserved) also conserving the
humidity of the parcel (equation (11) for q < qs and no diffusion), until the parcel becomes
saturated at the (parcel) lifting condensation level (LCL), where q = qs. We then rise the
now saturated parcel along the moist pseudoadiabat, wherem is conserved and q = qs(T).
The moist pseudoadiabatic buoyancy and temperature profiles of the atmospheric parcel
(and the moist adiabatic lapse rate, �m = −dTm/dz) can be determined by solving the
equationm = b(T) + γ q(T) = m(0) as a function of height.

We define the buoyancy and temperature of parcel using bp and Tp respectively, and
that of the environment with bE and TE. In the absence of diffusion, an environmental
profile can be defined as absolutely unstable, if the parcel satisfies Tp ≥ TE ⇒ bp ≥ bE at
each height, z. In this case, the air parcel would be more buoyant (warmer) than its envi-
ronment everywhere, and so would rise (or convect) freely. If instead the parcel is less
buoyant (cooler) than its environment up to a height z = LFC < H, and more buoyant
(warmer) than its environment for LFC ≤ z ≤ LNB, we can describe the atmosphere as
conditionally unstable: for the parcel to convect freely (up to z = LNB, the level of neutral
buoyancy, which is defined to be above the LFC), the parcel must be lifted (through turbu-
lent or mechanical lifting) to the level of free convection (LFC). If the parcel is less buoyant
(cooler) than its environment (Tp ≤ TE ⇒ bp ≤ bE) at all heights z, the environment is
absolutely stable. Note that conditional stability of a profile is no longer a local measure,
because finite amplitude displacements may be needed to rise a parcel above its LFC in
order to release energy.1 An example of a conditionally unstable (basic state) environment
is shown in figure 1.

To quantify the conditional instability of the environment, we use Convective Available
Potential Energy (CAPE). Figure 1 shows a schematic of how CAPE is calculated. The area
of the orange region in figure 1 is the convective inhibition (CIN), where the parcel is less
buoyant than its environment. Above the LFC, the area of the blue region is the positive
CAPE (pCAPE), where the parcel is more buoyant than its environment. We addition-
ally define (net) CAPE = ∫ H

0 (bp − bBS)dz = pCAPE − CIN. The positive CAPE can be
thought of as the total amount of energy that can be released (by convection) in the sys-
tem, and according to the parcel argument, positive CAPE is a necessary condition for the
system to be able to release energy. However it does not tell us about convective onset in
the system, i.e. when the system will overcome diffusion, which is determined by a linear
stability analysis.

Several alternatives to CAPE for quantifying conditional instability have been proposed
in the literature (Randall and Wang 1992, Tailleux and Grandpeix 2004, Yano et al. 2005).
For example, Yano et al. (2005) introduces potential energy convertibility (PEC) as “a
further generalisation of CAPE”. PEC builds on the cloud work function introduced in
Arakawa and Schubert (1974). The calculation of PEC ismore involved than that of CAPE,
as it requires a general profile of vertical velocity. For the stability of the basic state consid-
ered in this paper, u = w = 0 and so PEC cannot be defined and therefore cannot be used
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Figure 1. CAPE calculation schematic. The black line shows the basic state (BS) buoyancy curve, with
the grey dashed line marking the basic state LCL. The red line marks the buoyancy profile of a parcel (P),
the dashed cyan line marks the LCL of the parcel, and the dashed magenta line corresponds to the LFC,
where the buoyancy of the parcel and the basic state are equal. Note that the LNB, where the buoyancy
of the parcel and the basic state become equal again, is higher than the domain height. The area of the
blue shaded region is the positive CAPE, and the area of the orange shaded region gives the CIN. (Colour
online).

to quantify the conditional instability in our system. Tailleux andGrandpeix (2004) discuss
the idea of moist available energy (MAE) which is reliant on defining an appropriate refer-
ence state for the system which minimises the enthalpy of the system. MAE is complex to
compute, and does not have an obvious equivalent energy barrier like CIN in the compu-
tation of CAPE. Although CAPE has its limitations, it does measure conditional instability
without reference to a velocity profile, and is usedwidely in the climate community, includ-
ing in idealised modelling studies (Muller et al. 2011, Singh and O’Gorman 2013, Muller
and Takayabu 2020), so we retain it here.

In dry Rayleigh-Bénard convection, the system is dry unstable (db/dz < 0) assuming
the top plate is cooler than the bottom plate (T1 < T0). It is typical to quantify the dry
instability by the temperature difference across the domain; we show inAppendix B that the
temperature difference is proportional to CAPE in the dry system. Just as the dry Rayleigh
number is a ratio of dry instability (quantified by the temperature difference across the
domain) to the diffusion in the model, we argue that a Rayleigh number for the moist
system should represent a measure of the conditional instability to the diffusion in the
model.

2.6. Non-dimensionalisations for conditionally unstable atmospheres

The buoyancy non-dimensionalisation introduced in Vallis et al. (2019) scales buoyancy
with [B] = g
T/cp, where 
T = T(0) − T(H). The boundary conditions on tempera-
ture (or buoyancy) and humidity were fixed at both the top and bottom boundaries in
the Vallis et al. (2019) study, so the temperature difference can be chosen independently
of the humidity, as an external parameter. The temperature difference associated with
our conditionally unstable (basic state) environments is always stable to dry air motion
(db/dz > 0orb(H) > b(0)). Therefore this measure of buoyancy relates to the stabilising
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effects of warming of air as it descends with constant b. It has no dependence on the mois-
ture in the system, and therefore it does not capture any changes in instability associated
with variations in moist convective conditions. In the conditionally unstable system, insta-
bilities are instead driven by the buoyancy of saturated air parcels rising above their LFC.
We present two different scalings for [B] (and [L]) which are more appropriate for (moist)
conditionally unstable atmospheres.

2.6.1. Bretherton non-dimensionalisation
Bretherton (1988) introduced a moist Rayleigh number that captures some effects of con-
ditional instability. Though his model differs from the Rainy-Bénard model (see Brether-
ton 1987 for further details), the moist Rayleigh number can be simply calculated for our
system. Bretherton (1988) defined the moist Rayleigh number as,

Ram = N2
m = H4(� − N2

d)

π4ν2

Where N2
d = (bE(H) − bE(0))/H is the Brunt-Vaisala frequency of the environment, and

� ≈ (bp(H) − bp(0))/H is “the buoyancy generation per unit rise due to latent heating”
in “the (saturated) adiabatic ascent of a moist air parcel”. Note that the moist Rayleigh
number is identified as an eigenvalue in Bretherton (1987), however it is not an eigen-
value of the current system. The Bretherton (1988) study uses the conditions N2

d > 0 ⇒
bE(H) > bE(0) and � > N2

d ⇒ bp(H) > bE(H) to define a conditionally unstable atmo-
sphere. For our model, we can define the moist “Bretherton” Rayleigh number (Ram) by
setting [L] = H, [B] = bp(H) − be(H), [t] = √

[L]/[B], which leads to the expression,

Ram = H3(bp(H) − bE(H))

κν
. (24)

The expression of Ram given in equation (24) captures the ratio of conditional instability
(quantified by the buoyancy difference between a parcel and its environment at z = H) to
diffusion. However, the simple buoyancy scale ([B] = bp(H) − bE(H)) does not account
for the curvature of the environmental and buoyancy profiles as shown in figure 1. For this
reason, we here introduce a non-dimensionalisation based on the pCAPE of the environ-
ment, which provides an alternative (more accurate) measure of the conditional instability
of the environment.

2.6.2. pCAPE non-dimensionalisation
For a given set of boundary conditions, we first calculate the parcel buoyancy (or temper-
ature) profile. Based on the environmental buoyancy (or temperature) profile, we can then
calculate the pCAPE of the environment, which we use as a scale for the kinetic energy in
the model, so that [U] ∼ √

pCAPE. Assuming that bp ≥ be for LFC ≤ z ≤ LNB, we take
the (CAPE) length scale to be [L] = LNB − LFC, which determines the buoyancy scale
([B] ∼ [U]2/[L]) and timescale ([t] ∼ [U]/[L]) for the system. Note that for the environ-
ment shown in figure 1, we set LNB = H, i.e. the domain height. The scales associated with
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this non-dimensionalisation are:

[U] = √
pCAPE, [B] = pCAPE

LNB − LFC
, [L] = LNB − LFC, [t] = LNB − LFC√

pCAPE
.

(25)
Additionally, we set the pressure scale to be [�] = [U]2 = pCAPE. The non-dimensional
momentum equation is then given by,

Du
Dt

= −∇φ + bk +
(
Pr
Ry

) 1
2 ∇2u, (26)

where,

Ry ≡ pCAPE × (LNB − LFC)2

νκ
(27)

is the “Rainy” number, which is a moist version of the Rayleigh number.
The Rainy number represents the ratio of the destabilising effect of conditional instabil-

ity (quantified by CAPE) to the stabilising effect of diffusion in the model, and therefore
more faithfully corresponds to the role of Rayleigh number in dry classical Rayleigh-
Bénard convection. The Bretherton (1987) study identified a moist Rayleigh number of
a similar form (measuring conditional instability against diffusion) as an eigenvalue of
their moist convective system, which further supports the suitability of a Rainy number
constructed using the above quantification. Figure 2 shows the critical “classical” Rayleigh
number, the critical moist Bretherton Rayleigh number, the critical Rainy number and the
critical radiative Rainy number across the (bsurf, r) parameter space, as calculated by a lin-
ear stability analysis. Note that the linear stability analysis is discussed in detail in section 4.
The Rainy number variesmuch less than the “classical” (dry) critical Rayleigh number over
the parameter space, as a result of including a measure of moist instability in the definition
of the Rainy number. Additionally, the Rainy number varies less than the moist “Brether-
ton” Rayleigh number across the parameter space as a result of choosing CAPE (instead of
bp(H) − bE(H)) to quantify conditional instability. The results in figure 2 therefore show
that Ry is more useful than Rad and Ram in categorising the behaviour of the moist condi-
tionally unstable system.We need to know the basic state to be able to compute CAPE and
hence Ry, however calculating CAPE is routine in meteorology and climate studies.

We derive the radiative Rainy number (shown in the lower right panel) in Appendix C,
by using the surface flux of moist static energy as an alternative measure of conditional
instability in the system. By quantifying the surface flux ofm, the radiative Rainy number
becomes relevant for climate studies focussed on the response of moist convection to dif-
ferent surface fluxes. The CAPE based Rainy number given by equation (27) can be used
to understand the water cycle intensification under climate change (observed previously
in Kendon et al. (2019)).

3. Basic state analysis

To understand the behaviour of the model (under the dry adiabatic buoyancy non-
dimensionalisation) with the boundary conditions specified in section 2.1, a natural
starting point is to calculate the basic state. Pauluis and Schumacher (2010) examine steady
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Figure 2. Critical dry Rayleigh number (top left), moist “Bretherton” Rayleigh number (top right), Rainy
number (bottom left) and radiative Rainy Number (bottom right), as a function of the surface tempera-
ture and radiative cooling rate. The surface relative humidity is kept fixed at RHsurf = 0.6. The classical
dry Rayleigh number shows variation of a factor of ∼ 10 at criticality over the parameter space, while
the moist “Bretherton” Rayleigh number varies by a factor of ∼ 2.75, the radiative Rainy number varies
by a factor of∼ 2.03 and the Rainy number varies by a factor of∼ 1.75. (Colour online)

state solutions to their simple model of moist convection, and in both Vallis et al. (2019)
and Oishi and Brown (2024) a “drizzle solution” of no motion is found for fixed tempera-
ture conditions, and saturated upper and lower boundary conditions. Here, the problem is
similar to that of Vallis et al. (2019) and Oishi and Brown (2024), although the analysis is
conducted for the idealised climate change set up of the Rainy-Bénard model with radia-
tion and moist pseudoadiabatic upper boundary conditions (outlined in section 2.1), and
moreover the solution is here found analytically (as in Oishi and Brown 2024). Once the
basic state solution is known, the stability of the system can be understood by calculating
CAPE and the linear stability of the system (from the basic state).

The basic state we find is a z-dependent state of no motion (u = 0), which is time-
independent (∂/∂t = 0). For the boundary conditions outlined in section 2.1, the basic
state solution consists of a lower unsaturated region with an upper saturated region.
Dropping the hats, the basic state equations (for Pr = Sm = 1) are given by

dφ
dz

= b, (28)
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d2b
dz2

= Ra1/2
(

−γ
q − qs

τ
H(q − qs) + r

)
, (29)

d2q
dz2

= Ra1/2
q − qs

τ
H(q − qs), (30)

qs = eα(b−z). (31)

We can combine the buoyancy and specific humidity ODEs to obtain the moist static
energy equation,

d2(b + γ q)
dz2

= d2m
dz2

= Ra1/2r.

Upon applying the boundary conditions in section 2.1, the buoyancy can be related to
specific humidity throughout the domain by

m ≡ b + γ q = msurf + Rz2/2 − Rz, (32)

where R ≡ Ra1/2r. It follows that (31) can be written as

qs(q, z) = exp
(
α(−γ q + msurf + Rz2/2 − (R + 1)z)

)
. (33)

The basic state solution can be determined by solving (30), where qs(q, z) is given by (33).
Due to the non-linear Heaviside functionH, (30) must be solved separately in the unsatu-
rated and saturated regions. These solutions are matched at the lifting condensation level
(LCL) where z = zs and q∗ = q(zs) = qs(zs). The matching conditions used at the LCL are
continuity of b, q, and their first derivatives.

Since ε ≡ τ/Ra1/2 is small, we use an asymptotic approach for this analysis (expanding
q = q0 + εq1 + · · · ). In the unsaturated region, we solve

d2q
dz2

= 0 ⇒ d2q0
dz2

+ ε
d2q1
dz2

≈ 0. (34)

In the saturated region,

d2q
dz2

= q − qs
ε

⇒ q0 = qs(q0) & q1 = d2q0/dz2

1 + αγ q0
, (35)

where we have used a first order Taylor expansion about q0. TheO(ε) term is required to
balance the diffusion of the O(1) solution. Note that the leading order solution has zero
condensation and hence precipitation (C(z) = 0 ⇒ P = 0), since q = qs for z ≥ zs, and so
we also need to consider theO(ε) terms for thewater budget equation (21) to be consistent.
The analytical, asymptotic, basic state solution is given by q = q0 + εq1 + · · · , where

q0(z) =
⎧⎨
⎩qsurf +

(
q∗−qsurf

zs

)
z, if z < zs

1
αγ W

(
αγ exp

{
α(msurf + R

2 z
2 − (R + 1)z)

})
, if z ≥ zs

and,

q1(z) =
⎧⎨
⎩
0, if z < zs

αq0(z)
(1+αγ q0(z))2

(
R + α

{
Rz−(R+1)
1+αγ q0(z)

}2)
, if z ≥ zs.



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 15

Figure 3. Analytical basic state solution profiles for RHsurf = 0.6, bsurf = 0.05 and r = 1 × 10−5. The
unsaturated part of the solution is given by the dashed lines, and the saturated part is given by the solid
lines. The numerical condensation profile (Cerf ) for a smooth approximation ofH is also shown. (Colour
online)

HereW is the Lambert-W function (the implicit solution ofW(x) exp(W(x)) = x for any
x). Note that the leading order solution above is the same as the analytical basic state solu-
tion presented in Oishi and Brown (2024); they find that the analytical (leading order)
solution is close to the numerical solution of the NLBVP, provided the steepness of the
smooth Heaviside approximation is large enough (see their figure 6). The higher order
solution given by q(z) = q0(z) + εq1(z) above produces a non-zero condensation term,
which generally matches well when compared to the numerical NLBVP solution (where
H(f ) = 1

2 (1 + erf(kf )) with k = 103) as shown in figure 3.
The difference between the numerical and analytical basic state solutions is shown in

figure 4, varying the Heaviside steepness (k) and resolution (nz). The discrepancy between
the analytical and numerical solutions generally decreases with increasing k and nz, how-
ever the difference becomes nearly independent of the steepness and resolution, provided
that they are large enough (k ≥ 1 × 104, nz ≥ 512). Note that there is always a difference
between the numerical and analytical solutions, due to the continuous and discontinuous
forms of H used respectively (illustrated by the condensation profile in figure 3). We see
that the moist pseudoadiabtic upper boundary conditions only hold to leading order: for
the q(1) = qs(1) condition to hold in the O(ε) solution, we require a boundary layer of
O(ε3/2), which is evident in the numerical profile of condensation in figure 3 and the right
panel of figure 4.

Profiles of all other quantities can be deduced once q(z) is known, by additionally using
the solution m(z) from equation (32). The profiles are shown for a specific set of climate
parameters in figure 3. Each of the profiles in figure 3 show a lower unsaturated region
(where q < qs or RH<1), matched onto a saturated upper region (where q ≥ qs or RH ≥
1), apart from the discontinuous condensation profile. Note that the basic state solution is
saturated aloft, which differs from the real atmosphere, which is unsteady and nonlinear,
but close to the moist pseudoadiabat with some conditional instability present. Figure 4
confirms how the upper profile is close to the moist pseudoadiabat, in contrast with Vallis
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Figure 4. The difference between the analytical (qa) and numerical (qn) basic state solutions as a func-
tion of the Heaviside steepness (left), and, the vertical resolution (right). The dotted red line marks the
LCL. Note that nz = 512 and k = 1 × 105 unless otherwise stated. (Colour online)

et al. (2019), Agasthya et al. (2025) and Oishi and Brown (2024) where the fixed upper
temperature condition prevents this adjustment.

3.1. Parameter sensitivity of the basic state conditional instability

In this section, we analyse the sensitivity of the conditional instability of basic state environ-
ments to the climate parameters, by analysing buoyancy profiles and several diagnostics.
We first illustrate the parameter dependence of the conditional instability by computing
buoyancy profiles of both the basic state and a lifted surface parcel for different parameter
values in figure 5.

The top left panel of figure 5 shows how the surface temperature affects the conditional
instability in the basic state environment. By comparing the (cooler) blue and (warmer) red
profiles, we find that increasing the surface temperature (by∼ 10K, as inWing et al. 2018)
causes the LFC to increase, the CIN to increase and the pCAPE to decrease. We find that
the changes in the conditional instability associated with increasing the surface temper-
ature behave monotonically, at least for the range of parameters considered in our study.
The reduction in conditional instability with increasing surface temperature is due to the
increased curvature of both the parcel and basic state buoyancy profiles, as a result of the
presence of more moisture in the system associated with warmer surface temperatures.

The effect of surface relative humidity on the conditional instability is shown in the top
right panel of figure 5.We find that changing the surface relative humidity from20% to 99%
causes a significant decrease in the LFC and CIN, relative to the small increase in pCAPE.
Note that in the limit RHsurf → 0, the LFC → 0 if the environment is dry unstable (as it
would be for the basic state with dry adiabatic BCs at the top boundary), indicating that the
dependence of the conditional instability (LFC, CIN and pCAPE) on the surface relative
humidity does not behave monotonically.

The effect of increasing the radiative cooling and Rayleigh number on the conditional
instability is illustrated by the bottom panels of figure 5. Since the (dashed) parcel profile
is independent of both r & Ra, changes in conditional stability are due to changes in the
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Figure 5. Parcel (dashed) and basic state (solid) profiles for varying: surface temperature (top left),
surface relative humidity (top right), radiative cooling rate (bottom left) and Rayleigh number (bot-
tom right). Unless otherwise stated (in the plot legend), the set of parameter values used are bsurf =
0.05, RHsurf = 0.6, r = 10−5 & Ra = 106. (Colour online)

Figure 6. Conditional instability diagnostics (for the basic state) as a function of the surface relative
humidity. The different line colours represent different values of surface temperature increase, and the
different line styles represent different radiative cooling rates. The Rayleigh number is held fixed at Ra =
106. (Colour online)
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basic state solution. Increases in r and Ra have the same (monotonic) effect on conditional
instability: they both cause a decrease in the LFC, increase in the CIN and a significant
increase in the pCAPE, relative to the changes in pCAPE caused by changing bsurf orRHsurf.

3.1.1. Conditional instability andmoisture diagnostics
To examine how the basic state changes under climate change (increasing both r & bsurf),
we can compute both conditional instability diagnostics (pCAPE, CIN, LFC & Ry), and
moist diagnostics (P,zs). We consider the effects of the typical climate change scenario,
and alternative climate change scenarios, on the system, by computing conditional insta-
bility and moisture diagnostics with the surface relative humidity, for a fixed set of surface
temperatures and radiative cooling values, and additionally fixed Ra = 106. We plot the
diagnostics against surface relative humidity since the conditional instability diagnostics
have a non-monotonic relationship with RHsurf, but vary monotonically with bsurf, r & Ra.

The analysis in section 2.6 showed that the Rainy number is a useful parameter to under-
stand the behaviour of the basic state environment: if Ry = pCAPE × (1 − LFC)2 × Ra
increases, we expect increased levels of (moist conditional) instability in our system. The
Rainy number is shown in the bottom right panel of figure 6. In general we see that
Ry increases with RHsurf (for fixed r and bsurf). For varying RHsurf, changes in Ry are
dominated by changes in the LFC rather than changes in pCAPE. The kink in Ry along
the black dotted line (as RHsurf → 0) indicates the transition from a moist conditionally
unstable atmosphere (where LFC, CIN > 0), to a (dry) absolutely unstable atmosphere
(bp ≥ bE ∀z ∈ [0, 1] ⇒ LFC, CIN = 0). We find that increasing bsurf (with RHsurf and r
fixed) causes Ry to decrease, as a result of both the LFC increasing and the pCAPE decreas-
ing. Similarly, Ry increases with r (assuming bsurf and RHsurf remain fixed), as a result
of both the LFC decreasing and the pCAPE increasing with increasing radiative cooling.
Figure 7 shows how the moisture in the basic state changes under climate change, char-
acterised by precipitation term (P, defined in section 2.4) and the LCL (zs) of the basic
state: P increases in response to increases in all of the climate parameters (r, bsurf & RHsurf),
however zs decreases with increasing r andRHsurf, but increases with increasing bsurf. Con-
sidering both figures 6 & 7 together, it follows that the r is the most important parameter
(for fixedRa) in affecting the degree of stability in themodel (characterised byRy), however
bsurf and RHsurf are key parameters for affecting the amount of moisture is in the system,
since changes in r does not affect the value of P or zs nearly as much as changes in RHsurf
or bsurf.

The response of the moist instability in the system to different climate change scenarios
can be considered by examining the response of Ry to an increase in both the radiative
cooling rate and the surface temperature, together. Recall that the typical climate change
scenario involves increasing both r from 1 × 10−5 to 2 × 10−5 and bsurf from 0.0 to 0.1,
assuming that RHsurf remains constant. In figures 6 and 7, the typical climate change sce-
nario therefore involves going from the black solid line to the red dashed line, keeping the
surface relative humidity fixed. Under the typical climate change scenario, figure 6 shows
that Ry increases, and figure 7 shows P and zs also increase (for the basic state). Both P and
zs increase indicating that climate change causes increased levels of moist instability (in
the basic state). Under the typical climate change scenario, the increased moist instability
is dominated by effect of r on Ry, whereas the increased levels of moisture are primar-
ily associated with the effect of bsurf on P. The basic state analysis therefore indicates that



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 19

Figure 7. Basic state moisture diagnostics (precipitation, P, and the LCL, zs) as a function of the surface
relative humidity. The different line colours represent different values of surface temperature increase,
and the different line styles represent different radiative cooling rates. The Rayleigh number is held fixed
at Ra = 106. (Colour online)

there will be more intense moist convection under climate change, due to increased moist
instability and precipitation (over a smaller vertical region) in the basic state environment.

4. Linear stability analysis

Analysis of linear stability can been used to provide initial insight into numerical (non-
linear) simulations. In the textbook Chandrasekhar (1961), linear stability is analysed for
dry classical Rayleigh-Bénard convection, to find the critical Rayleigh number and the cor-
responding wavenumber. For Rayleigh numbers greater than the critical Rayleigh number,
convection sets in. Vallis et al. (2019) found that for Rayleigh numbers that are just slightly
greater than critical Rayleigh number, a series of steady convective updraughts are pro-
duced in the non-linear simulations. For dry Rayleigh-Bénard convection, as the Rayleigh
number is increased the regime of convection shifts from conductive (Ra < Rac) to steady
(for Ra > Rac), to periodic, before becoming turbulent (see Waleffe et al. 2015). Finding
the critical Rayleigh number (which varies with the parameters) allows one to compare
non-linear simulations for different parameter values by running these simulations at the
same supercriticality (e.g. 5 × Rac). The critical wavenumber also provides an initial indi-
cation of how the width of the plumesmay respond to change in the parameters. Therefore,
we perform a linear stability analysis for the Rainy-Bénard model here.

We set up the eigenvalue problem by perturbing the basic state, q = q̄ + q′, and assum-
ing the linear wave ansatz, q′ = q̂(z)ei(kxx+kyy−σ t). The model equations can be reduced to
the eigenvalue problem,

−iσ û = −ikxφ̂ + 1
Ra1/2

(
d2

dz2
− k2

)
û, (36)

−iσ v̂ = −ikyφ̂ + 1
Ra1/2

(
d2

dz2
− k2

)
v̂, (37)

−iσ ŵ = −dφ̂
dz

+ m̂ − γ q̂ + 1
Ra1/2

(
d2

dz2
− k2

)
ŵ, (38)
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−iσ m̂ = −ŵ
dm̄
dz

+ 1
Ra1/2

(
d2

dz2
− k2

)
m̂, (39)

−iσ q̂ = −ŵ
dq̄
dz

− (1 + αγ q̄s)q̂ − αq̄sm̂
τ

{H(q̄ − q̄s) + (q̄ − q̄s) dH(q̄ − q̄s)
}

+ 1
Ra1/2

(
d2

dz2
− k2

)
q̂, (40)

−dŵ
dz

= ikxû + ikyv̂, (41)

with boundary conditions

m̂(0) = 0, q̂(0) = 0, û(0) = 0, (42)

ˆdm
dz

(1) = 0,
{
1 + αγ q̄s(1)

}
q̂(1) − αq̄s(1)m̂(1) = 0, û(1) = 0. (43)

Note that k2 ≡ k2x + k2y , and, a first order Taylor expansion is used to express q′
s ≈ αq̄sb′. In

this formulation, we have replaced b′ = m′ − γ q′ in order to implement the upper moist
pseudoadiabatic boundary conditions. The second boundary condition in equation (43)
is equivalent to q = qs. We solve the eigenvalue problem numerically using the Dedalus
framework (Burns et al. 2020).

The eigenvalue problem given by equations (36)–(43) is for a smooth approximation
of the Heaviside function, which allows H to be Taylor expanded (about q̄ = q̄s). We
approximateH(f ) = 1

2 (1 + erf(kf )) with k = 103 so that, dH(f ) = k√
π
e−(kf )2 . Oishi and

Brown (2024) argued that q̄ − q̄s is the same order of magnitude (or smaller) as the pertur-
bations in the vicinity of the LCL, and therefore that terms involving (q̄ − q̄s) dH(q̄ − q̄s)
are nonlinear and should be neglected. This assertion only considers the leading order solu-
tion, for which q̄ = q̄s in saturated regions. However for the higher order solution found in
section 3, q̄ − q̄s ∼ O(ε) is finite and non-zero in the upper saturated region (as shown by
C(z) in figure 3). Therefore the dH term is also finite and non-zero, and independent of the
amplitude of the perturbation considered. Nevertheless, the linear stability results (spectra,
eigenvectors, etc.) presented in Oishi and Brown (2024) are broadly similar to those shown
in the present study, since the dH term is relatively small. We argue that including the dH
term is required for a consistent calculation of the onset of convection, when comparing
with non-linear simulations which use a smooth approximation of the Heaviside function.

To compute the critical Rayleigh number (Rac), we first calculate the basic state for
smoothH (numerically) for a given Rayleigh number (Ra). The numerical basic state solu-
tion is obtained by usingDedalus to solve the non-linear boundary value problem (given by
equations (28)–(31), and a smooth Heaviside function), with theO(ε) accurate analytical
solution used as an initial guess (to speed up convergence). We then solve the eigenvalue
problem for a range of wavenumbers, k =

√
k2x + k2y , and determine kmax whichmaximises

the growth rate (�(σ )). We adjust Ra iteratively, and repeat the above method, until the
absolute value of the maximum growth rate is less than a tolerance, which we take to be
10−8. The pair (Ra, kmax) which satisfies these conditions determines the critical Rayleigh
number, Rac, and the critical wavenumber, kc.
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Figure 8. Eigenvalue spectra at criticality Ra = Rac, k = kc . The blue dots show damped oscillatory
modes, and the black dots show purely decayingmodes. The results are shown for the parameter values:
RHsurf = 0.6, bsurf = 0.05 and r = 1 × 10−5 and Ra = Rac = 7.80 × 105. (Colour online)

An example of the eigenvalue spectra for an unsaturated atmosphere (RHsurf < 1) at
criticality is shown in figure 8. The maximum growing mode (yellow dot) has zero growth
rate and frequency. Note that the damped oscillatory modes are only present for unsatu-
rated cases: in the saturated limit (RHsurf = 1), there are no decaying oscillatorymodes, i.e.
all eigenvalues have zero frequency, indicating that the damped waves associated with the
decaying oscillatory mode can only exist in the lower unsaturated region of the domain.
The waves associated with the damped oscillatory mode are associated with dry gravity
waves, and we derive an approximate form for their dispersion relationship in section 4.2.

4.1. Action of the linear perturbation

In this section we examine the structure of the eigenvectors, the perturbations and their
impact on the basic state, in terms of their effect on moisture and conditional instabil-
ity. We compute the eigenvectors and perturbations corresponding to the fastest growing
mode, at criticality (Ra = Rac & k = kc). Note that we define a (real) perturbation quantity,
associated with an eigenvector, as for example w′ = �(ŵ(z)eikx).

Figure 9 shows the vertical structure of the normalised eigenvectors. The eigenvectors
are normalised such that max(wr) = 5 × 10−4 with wi = bi = qi = ur = 0. The eigen-
vector represents the perturbation in an updraft region (since max(w′) > 0). We can
consider the perturbation in a subsiding region (where max(w′) < 0), by multiplying the
eigenvectors in figure 9 by a factor of −1.

The structure of the b̂ and q̂ eigenvectors in figure 9 reveals that the linear perturbation
causes a moistening of updraft regions, and makes the updrafts more buoyant (b′ > 0 for
z > zs). Assuming x = 0 ⇒ w′ = ŵ, b′ = b̂, q′ = q̂, etc., the relative humidity is given
by RH = q/qs ≈ (q̄ + q′)/(q̄s(1 + αb′)) ⇒ RH′ ≈ (q′ − αq̄b′)/q̄s. Below zs, b′ < 0 and
q′ > 0 ⇒ RH′ > 0, so the linear perturbation moistens the updrafts in the lower (unsatu-
rated) region. Computation of the perturbation relative humidity reveals that RH′ ≥ 0 for
z ≥ zs too, i.e. q′ ≥ αq̄b′ despite increase in qs due towarming. However the increase inRH
is much larger in the lower unsaturated region than it is in the upper saturated region, as
a result of the small condensational timescale causing q′ ≈ αq̄sb′ (in the saturated region),
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Figure 9. An example of normalised eigenvectors at criticality, Ra = Rac & k = kc , associated with the
fastest growingmode. Note that the solid and dotted lines represent the real and imaginary parts of the
eigenvectors, respectively. The left panel shows the imaginary part of u, and the real part ofw. The right
panel shows the (real) b, γ q andm eigenvectors. The dashed lines mark the basic state LCL (zs, red) and
the LFC (blue). Note that the normalisation is such that wi = bi = qi = ur = 0, so u is π/(2kc) out of
phase with w, b, q & m, where kc is the critical wavenumber. The results are shown for the parameter
values: RHsurf = 0.6, bsurf = 0.05 and r = 1 × 10−5 and Ra = Rac = 7.80 × 105. (Colour online)

where q̄s is decaying exponentially with height. The moistening effect of the linear pertur-
bation in updraft regions results in increased levels of condensation, and a decrease in zs
in updraft regions. The linear perturbation has the opposite effect in subsiding regions,
causing a drying effect which reduces the levels of condensation and increases zs.

To assess the effect of the linear perturbation on the conditional stability, we examine
the structure of the perturbation b′. The parcel buoyancy profile remains the same, how-
ever the buoyancy profile of the environment changes with the linear perturbation. The b̂
eigenvector in figure 9 shows the effect of the linear perturbation in an updraft region. For
z < zs, b′ = b̂ < 0, so that the linear perturbation is making the environment less buoy-
ant. Recalling figure 1, this reduces the CIN in the lower region, and causes the LFC (where
bp = bE) to decrease. There is a small vertical region above the LFC for which b′ < 0, and
so the pCAPE in the region is increasing. However, above zs, the linear perturbationmakes
the environment more buoyant since b′ > 0 here, which reduces the pCAPE. Therefore,
the linear perturbation acts in updraft regions by making the lower levels more unstable
by reducing the CIN, LFC and increasing the pCAPE in a small vertical region just above
the LFC, however, it has a stabilising influence on the upper levels, causing a reduction in
the overall pCAPE. The effect of the linear perturbation on the subsiding regions is oppo-
site to that in the updraft regions: the linear perturbation acts by stabilising the lower levels
up to just above the LFC, and destabilises the upper levels.

The modal structure of the perturbation quantities over one wavelength is exhibited in
figure 10. Note that the eigenvectors are normalised with max(wr) = 2 × 10−3 to keep the
perturbations small, relative to the basic state solution (to be consistent with figure 11). The
arrows show the circulation from themoister updraft regions to the drier subsiding regions.
The perturbations b′ & q′ show sharp changes in gradient around the saturation point, zs
(also shown in figure 9). Note for this set of parameter values, in the updraft regions, there
is a small region where w′ < 0 close to the surface, although the magnitude of w′ is small
compared to max(w′) in the column. Figure 10 shows that w′, b′ & q′ are all in phase, with
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Figure 10. The real parts of the buoyancy and specific humidity perturbation quantities at criticality.
The perturbation quantities are calculated using f ′(x, z) = f̂ (z)eikcx , where f̂ (z) denotes the eigenvector
of the quantity f. The velocity is shown by the black arrows. The results are shown for the parameter
values: RHsurf = 0.6, bsurf = 0.05 and r = 1 × 10−5 and Ra = Rac = 7.80 × 105. (Colour online)

the circulation from the moister updraft regions to the drier subsiding regions associated
with u′ being π/(2kc) out of phase with w′ as expected.

Figure 11 shows the condensation field over one wavelength, produced by adding the
enlarged linear perturbation (shown in figure 10) to the basic state.We take b = b̄ + b′, q =
q̄ + q′ and compute C = γ (q − qs)H(q − qs), where qs = eα(b−z). We choose the pertur-
bations to be relatively small for illustration (b′ � b̄), so that the b and q fields do not show
visible changes. However the linear perturbation causes a visible change in the condensa-
tion field. The panels in figure 11 show two pockets around the LCL, where condensation
has been most greatly enhanced by the moistening effect of the linear perturbation in
updraft regions.

The results in figures 9, 10 & 11 indicate that the linear perturbation causes instability to
occur in the updraft regions around the LCL, by consuming pCAPE in the upper regions
(z ≥ zs),moistening the overall column and reducing the lower level inhibition by reducing
theCIN and the LFC. It further increases pCAPE in a small vertical region between the LFC
and the LCL. The moistening causes the largest increase in condensation around the LCL
of the environment, indicating that the instability stems from this region of the domain.

4.2. Approximate dispersion relationship for highest frequencymodes

The eigenvalue spectra shown in figure 8 revealed the presence of damped oscillatory
modes. Oishi and Brown (2024) assumed that the oscillatory modes are dry Boussinesq
internal gravity waves, and examined the associated eigenvector structure of the modes
to obtain an estimate for the moisture modified internal gravity waves. We also assume
the waves are dry internal gravity waves, but use a different vertical wavenumber estimate
motivated by the structure of the b and q eigenvectors.
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Figure 11. condensation field C = γ (q − qs)H(q − qs)/τ , shown over one horizontal wavelength.
The top panel shows C for the full vertical domain, and the bottom panel shows a zoom of C around the
LCL of the environment, where the impact of the linear instability on the basic state is most pronounced.
The cyan andmagenta linemark the LCL and LFC of the environment respectively (with the dashed lines
marking the basic state values). The black arrows show the velocity (u,w). The results are shown for
the parameter values: RHsurf = 0.6, bsurf = 0.05 and r = 1 × 10−5 and Ra = Rac = 7.80 × 105. (Colour
online)

Figure 12. An example of the normalised eigenvectors at criticality, Ra = Rac & k = kc , associatedwith
the highest frequencymode. Note that the solid and dotted lines represent the real and imaginary parts
of the eigenvectors, respectively. The left panel shows the u and w eigenvectors, whilst the right panel
shows the b, γ q and m eigenvectors. The dashed lines mark the basic state LCL (zs, red) and the LFC
(blue). The results are shown for the parameter values: RHsurf = 0.6, bsurf = 0.05 and r = 1 × 10−5 and
Ra = Rac = 7.80 × 105. (Colour online)

The highest frequency normalised eigenvectors are shown in figure 12. The buoyancy
and humidity eigenvectors are trapped below the LCL, in the unsaturated region of the
domain. The imaginary part shown by the dotted lines corresponds to a tilt of the modal
structure.
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Recall that the dispersion relationship for Boussinesq internal gravity waves is given by,

ωr = Nbkx√
k2x + k2z

.

We obtain an approximate dispersion relationship for ωr by estimatingNb and kz. We esti-
mate the Brunt–Väisälä frequency by Nb = ∂b/∂z(z = 0), where b is the full buoyancy
field. In Oishi and Brown (2024), the vertical wavenumber was specified by the full domain
height (Lz = 1), i.e. kz = 2π/Lz. However, the structure of the b & q eigenvectors exhibit
one peak (half of a wave) confined to the unsaturated region (0 ≤ z ≤ zs), which moti-
vates the choice of a vertical wavenumber of kz = π/zs for the moist system. We write the
approximate dispersion relationship for the moisture modified internal gravity waves as,

ωr ≈ ∂b/∂z|z=0 kc√
k2c + (π/zs)2

(44)

Note that, in the non-linear system, internal gravity waves cause triggering of convection
and are themselves generated by convective plumes (Vallis et al. 2019). We examine the
approximate relationship across the parameter space in the following section.

4.3. Parameter dependence of the linear perturbation

To investigate how the values of the climate parameters change the action of the linear
perturbation (at criticality) on the system, we examine changes in the critical parameters,
the action on conditional instability, and in the structure of the buoyancy and moisture
fluxes, as parameters are varied.

We first look at how the values of the critical Rayleigh number, Rainy number and
wavenumber change with the parameters. Figure 13 shows Rac, Ryc, kc and max(ωr) as a
function of the surface relative humidity, for various different surface temperature increases
and radiative cooling rates. Recall that the value of Ra only reflects the value of diffusion
in our system; it cannot change according to changes in moist stability, and so it funda-
mentally fails to capture the moist convective behaviour. The critical Rainy number varies
much less than the Rayleigh number across the climate parameter space, as a consequence
of the incorporating a quantification of moist stability in its definition: Rac varies by a fac-
tor of ∼ 8.0 across all of the parameter values, whereas Ryc varies by a factor of ∼ 2.1. The
Rainy number captures the ratio of conditional instability (quantified by pCAPE and its
associated length scale) to diffusion, and it therefore follows that the Rainy number is the
more useful parameter for describing the state of the moist system.

Recall figure 2, which also shows the critical dry Rayleigh and critical Rainy numbers (in
the first column), but across the surface temperature – radiative cooling parameter space.
We consider larger radiative cooling rates in figure 2 than in figure 13 to get a better pic-
ture of the sensitivity to the radiative cooling rate. The critical Rayleigh numbers found
in Vallis et al. (2019) and Oishi and Brown (2024) are smaller than those found here, due
to a combination of factors: our temperature scale is two times larger than theirs, we have
flux psuedoadiabatic upper boundary conditions unlike their fixed boundary conditions,
and we additionally have a radiative cooling term. The results in figure 2 show that the
critical dry Rayleigh number is more sensitive to the radiative cooling rate than the sur-
face temperature, indicating that the cooling rate is primarily responsible for driving the
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Figure 13. Critical Rayleigh (top left), Rainy (top right) and wavenumber (bottom left), and the highest
frequency (bottomright) as functionsof the surface relativehumidity. Thedifferent line colours represent
different surface temperature increases, and the different line styles represent different radiative cooling
rates. The idealised climate change scenario involves going from the black solid line to the red dashed
line, keeping the surface relative humidity fixed. (Colour online)

instability in the system. The reason for the variation can be seen by recalling the buoy-
ancy profiles in figure 5: the profiles are shown for the end values across the parameter
space, and we can see that the increase in CAPE associated with increasing the radiative
cooling rate (from r = 1 × 10−5 to r = 1 × 10−4) is far greater than the decrease in CAPE
and increase in CIN associated with increasing the surface temperature (from bsurf = 0 to
bsurf = 0.1). Again, the results of figure 2 show that the critical Rainy number varies much
less than the critical Rayleigh number across this cut of the surface temperature – radiative
cooling parameter space.

For the typical idealised climate change scenario (comparing the black solid line to the
dashed red line, for fixed RHsurf) we see an increase in Ryc in figure 13. The critical Rainy
number increases as a result of increased moisture levels (associated with warmer sur-
face temperatures): both the parcel and (basic state) environment profiles become warmer,
increasing curvature of the moist pseudoadiabat, and result in an increase in CIN (and
the LFC – see figure 5). With increased levels of inhibition, pCAPE must be higher for the
system to become unstable, and so Ryc increases under climate change. The increased lev-
els of inhibition and the higher levels of available potential energy point to an intensified
water cycle, characterised by stronger (w2/2 ∼ pCAPE) more intermittent (higher CIN)
convection. It is worth noting that Ryc is independent of bsurf and r in the saturated limit,
however Rac varies significantly, indicating that pCAPE∼ 1/Rac as RHsurf → 1 (since the
LFC → 0).

The critical wavenumber provides information about the width of the linear modes (i.e.
updraft and subsiding regions).Note that thewidth of the updraft and subsiding regions are
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Figure 14. Dispersion relationship for the highest frequency mode (left), and the highest frequency
mode calculated by solving the eigenvalue problem (right). The curves are all calculated at criticality
(Ra = Rac). The different line colours represent different surface temperature increases, and the differ-
ent line styles represent different radiative cooling rates. The idealised climate change scenario involves
going from the black solid line to the red dashed line, keeping the surface relative humidity fixed. (Colour
online)

necessarily equal in the linear analysis, however this is not typically observed in non-linear
simulations (Agasthya et al. 2025). The linear theory does provide an initial indication of
how we may expect convective plume widths to scale with the climate parameters. Exam-
ining the bottom left panel of figure 13, we see that under the climate change scenario, if
RHsurf > 0.6, kc decreases and the updraft and subsiding regions get wider. However, if
RHsurf < 0.6, we see the opposite effect, with the updraft and subsiding regions becoming
narrower.

Recall that the waves associated with the damped maximum frequency mode are
damped (linear) dry internal gravity waves. The bottom right panel of figure 13 shows the
(maximum) frequency associated with the dry internal gravity waves, as a function of the
parameters. We see that under a typical climate change scenario (going from black solid
to red dashed line, with RHsurf fixed), the maximum frequency increases, which is associ-
ated with an increase in the triggering of convection. However, the triggering is reduced
by increased CIN levels in the lower unsaturated region of the domain under climate
change. In section 4.2, we derived an estimate for the frequency of thesemoisture modified
internal gravity waves. That approximate dispersion relationship is shown against the cal-
culated maximum frequency values in figure 14. We see a qualitative agreement between
the approximate and actual values of themaximum frequency. The approximatemaximum
frequency does tend towards zero in the saturated limit, and also captures the decrease in
frequency as RHsurf → 0.20. There are discrepancies in the position and magnitude of the
peak between the approximate and actual values of the maximum frequency. Note that the
dispersion relationship is the best fit for the lines with bsurf = 0, in which domain mois-
ture is at a minimum (relative to the other curves). The moisture modified internal gravity
waves are responsible for triggering convection in the non-linear system (Vallis et al. 2019),
and so understanding how their frequency changes under climate change gives us some
initial insight into how we may expect the non-linear behaviour to respond.

We could regard the (most unstable) linear mode as large scale on a global domain, and
consider how it would effect the conditional instability of embedded storms. The effect of
the linear perturbation on the conditional instability is shown by looking at the structure
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Figure 15. Buoyancy eigenvectors at criticality, plotted for varying: surface temperature (top left), sur-
face relative humidity (top right), and radiative cooling (bottom). Dashed linesmark the LFCs and dotted
linesmark the LCLs of the different environments. The eigenvectors are normalised such thatmax(wr) =
5 × 10−4 andwi = 0. (Colour online)

of the buoyancy eigenvectors in figure 15. Since the parcel profile is not influenced by b̂, the
vertical regionswhere b̂ < 0 cool the environment and result in a reduction of inhibition (if
bp < bE) or increase in instability (if bp > bE) in the region. Similarly, the vertical regions
where b̂ > 0 cause the environment to warm, which causes an increase in inhibition or a
decrease in instability in that region. The buoyancy eigenvectors shown in figure 15 rep-
resent the linear perturbation updraft regions. The action of the linear perturbation in an
updraft region on the conditional instability remains the same, for each of the different
parameter values: b̂ < 0 in the lower region, which extends to just below zs (and just above
the LFC). There is a reduction in the pCAPE in the upper region where b̂ > 0, and a sharp
change in the gradient of b̂ (and q̂) just above zs.

The buoyancy and moisture fluxes can be used to give an initial indication of the non-
linear transport of buoyancy andmoisture. Figure 16 shows how the horizontally averaged
vertical transport of the buoyancy perturbation (ŵb̂ ∼ 〈w′b′〉) changes with the climate
parameters. Apart from the RHsurf = 0.974 case, all of the buoyancy fluxes w′b′ display a
similar structure: they have a negative peak of flux in the lower region, which occurs just
below the LFC and a larger positive peak in the upper region. The height of the positive
peak is dependent on zs, such that if zs increases, we expect the height of the positive flux
to increase with it. The nearly saturated RHsurf = 0.974 case does not exhibit a significant
region of negative flux, which we conjecture is a result of the CIN being close to zero in this
region. The perturbation moisture flux is shown in figure 17. Again, the nearly saturated
case shows different behaviour than the rest of the parameter values displayed. The general
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behaviour of the moisture flux shows the peak moisture flux occurs around the LFC and
below zs, with a second smaller peak occurring in the upper saturated region. The bsurf =
0.1 & RHsurf = 0.2 cases show a small region close to the surface where the moisture flux
towards the surface, which is caused by w′ < 0 in this region due to the higher levels of
CIN in these two cases. Note that the linear perturbation for the nearly saturated RHsurf =
0.974 case shows a different behaviour to the other cases, with the peaks in the moisture
and buoyancy fluxes no longer occurring around the LFC, but around the middle of the
domain. Examining the Ryc panel of figure 13, we see that the critical Rainy number is
almost independent of the surface temperature and radiative cooling rate for the nearly
saturated regimes, which is a result of low levels of CIN and the LCL causing a different
action of the linear perturbation.

5. Discussion

We have presented a detailed analysis of a simple framework for studying changes in moist
convection under climate change. The Rainy-Beńard model is set up for climate forcing
simulations, by adding a constant radiative cooling term to the buoyancy equation, and
choosing appropriate boundary conditions: at the bottom boundary we impose the relative
humidity and surface temperature, and at the top boundary we impose moist pseudoadi-
abatic boundary conditions which give the temperature, buoyancy and humidity at the
top boundary freedom to adjust. We also impose idealised no-slip boundary conditions at
both boundaries. Climate change can be imposed by careful choice of the climate param-
eters, namely the surface temperature, the radiative cooling rate and the surface relative
humidity: we illustrate a typical climate change scenario by doubling the radiative cooling
in response to a 10K increase in surface temperature, keeping the surface relative humidity
fixed.

The fundamental linear behaviour of the Rainy-Bénard model has been studied using
a basic state analysis (section 3) and a linear stability analysis (section 4), and quantified
using bothmoisture and conditional instability diagnostics. The pseudoadiabtic boundary
conditions taken at the top boundary allow realistic adjustment in the basic state solution
to close to the neutral parcel profile (figure 4), which is a well-observed feature of tropical
convective environments (e.g. Betts 1986) and was not possible in the previous studies by
Vallis et al. (2019), Agasthya et al. (2025), and Oishi and Brown (2024). The basic state
analysis reveals that the radiative cooling parameter is primarily responsible for changes
in the (basic state) conditional instability, whereas the surface temperature and surface
relative humidity are responsible for changes in the (basic state) precipitation (figures 5
and 6).

We used a linear instability analysis to calculate the critical Rayleigh number for convec-
tive onset for a range of climate change parameter values, examining the action of the most
unstable mode (section 4.1) and the waves associated with the highest frequency mode.
The most unstable mode has a moistening action on the updraft (w′ > 0) regions of the
domain, and a drying action on the subsiding regions (w′ < 0) of the domain, with a cir-
culation from the moister updraft regions to the drier subsiding regions (figures 8, 9 and
10). The moisture perturbation is much weaker above the LCL then below, as a result of
the condensational timescale being small, which means that q′ ≈ αq̄sb′ where q̄s drops
off exponentially with height; no such constraint exists on the perturbation in the lower
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Figure 16. Buoyancy flux w′b′ at criticality, plotted for varying: surface temperature (top left), surface
relative humidity (top right), and radiative cooling (bottom). Dashed lines mark the LFCs and dotted
linesmark the LCLs of the different environments. The eigenvectors are normalised such thatmax(wr) =
5 × 10−4 andwi = 0. (Colour online)

Figure 17. Specific humidity flux w′q′ at criticality, plotted for varying: surface temperature (top left),
surface relative humidity (top right), and radiative cooling (bottom). Dashed lines mark the LFCs and
dotted lines mark the LCLs of the different environments. The eigenvectors are normalised such that
max(wr) = 5 × 10−4 andwi = 0. (Colour online)
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unsaturated part of the domain. In terms of conditional instability, we find that the most
unstable mode causes a reduction of both the convective inhibition (CIN) below the LFC,
and the pCAPE above the LFC, in the updraft regions. We find damped oscillatory modes
associated with dry internal gravity waves trapped in the lower unsaturated region of the
domain, as in Oishi and Brown (2024).We derived an approximate dispersion relationship
for the dry internal gravity waves in equation (43), which differs from that given in Oishi
and Brown 2025, but shows qualitative agreement with the numerically calculated results
(figure 13).

A key result is the derivation of non-dimensional parameters which correctly capture
the relationship between moist instability and diffusion (section 2.6 and Appendix C). We
used the positive convective available potential energy (pCAPE) as a scale for the kinetic
energy in the system, and its associated length scale (the difference between the level of neu-
tral buoyancy (LNB) and the level of free convection (LFC)) to construct a moist Rayleigh
number, called the Rainy number:

Ry = pCAPE × (LNB − LFC)2

νκ

The Rainy number represents the ratio of (moist) conditional instability (quantified by
pCAPE) to diffusion. We find that Ry changes in response to changes in moist instability;
Ra does not (figures 1 and 12). By using conditional instability (quantified by pCAPE) to
set the scales in the system, the Rainy number is a better control parameter for our model:
across the climate parameter space, Ry varies less at criticality than Ra.

Due to the relationship between radiative cooling and pCAPE in our solutions, we are
also able to define a radiatively-basedRainy number (seeAppendixC). TheRadiativeRainy
number, which uses a differentmeasure ofmoist conditional instability, also varies less than
Ra at criticality as a result. In fact the use of the CAPE-based or radiatively-based Rainy
number is probably an open choice according to the scientific question at hand. CAPE-
based Ry would naturally be appropriate for studies of convection and the water cycle;
radiatively-based Rywould be a natural control for the system when studying sensitivity to
boundary fluxes and radiative forcing.

Under the typical climate change scenario, the basic state analysis results indicate that
we expect more intense moist convection, with more rainfall. There is more moisture in
the system (associated with warmer surface temperatures) and this leads to a mid-domain
profile which is warmer, following a profile which is more “bowed” (figure 5), so despite
the warmer and humid surface air, the warmer mid-levels lead to increased CIN under
climate change. For the onset of convection to occur in a system with more CIN, the avail-
able potential energy (pCAPE) must increase, and as a result the critical Rainy number
increases. The increase in the critical Rainy number is associated with an intensification of
the water cycle (as found in Kendon et al. 2019): we expectmore intense (increased pCAPE
∼ w2/2), more intermittent (increased CIN) moist convection under climate change. Our
future research will build on this framework and examine non-linear simulations and
transport of moist Rainy-Bénard convection under climate change.
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Note

1. An alternative definition of conditional instability from the American Meteorological Society
Glossary: “The state of a layer of unsaturated air when its lapse rate of temperature is less than
the dry-adiabatic lapse rate but greater than the moist-adiabatic lapse rate”. For saturated upper
profiles, the two definitions of conditional instability are equivalent, but not generally (American
Meteorological Society 2023)
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Appendices

Appendix A. implicit global warming

Instead of imposing a surface temperature increase in the perturbation temperature, with a constant
reference state of θ0 = T0 = 300K, we present here an implicit method for a small variation in the
surface temperature by modifying the reference temperature directly.

Let T0 = T0 + 
T0, with T0 ≡ 300K and f representing parameter f ’s value for T0 = T0, we
can fully examine the effect of increasing the surface temperature on this system. Starting with the
Clausius-Clapyeron relationship,

es = e0 exp
{
L
Rv

(
1
T0

− 1
T

)}
, (A.1)

Substituting T = T0 + δT and assuming T0 � δT + 
T0, we can approximate (A.1) by:

es ≈ e0 exp

{
L
Rv

(

T0 + δT

T0
2

)}
.

Which after some manipulation can be written (using a first order Taylor expansion) as,

es ≈ e0

(
1 + L

RvT0
2
T0

)
exp

{
L

RvT0
2 δT

}
.

It follows that,

e0(
T0) ≈ e0

(
1 + L

RvT0
2 
T0

)
. (A.2)

As before, we express the pressure as,

p ≈ p0 exp
(

cp
RdT0

δT
)

≈ p0 exp
{

cp
RdT0

(
1 − 
T0

2T0

)
δT

}
,

So that the saturation specific humidity can be approximated,

qs = ε
es
p

≈ ε
e0
p0

(
1 + L

RvT0
2
T0

)
exp

{
L

RvT0
2 δT − cp

RdT0

(
1 − 
T0

T0

)
δT

}
,
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⇒ qs ≈ q0(
T0) exp (α(
T0)δT) , (A.3)
where,

q0(
T0) ≈ q0 + Lq0
RvT0

2
T0, (A.4)

and,

α(
T0) ≈ α + cp

RdT0
2 
T0. (A.5)

We also have the gamma parameter, γ = gL/(cpθ0), and since θ0 = T0 + 
T0, we can write

γ (
T0) = γ − γ

2T0

T0 (A.6)

We are interested in the non-dimensional parameters, under the same dry adiabatic non-
dimensionalisation as in section 2.2. Recall that [T] = gH/cp is independent of the reference

temperature T0, but [B] = g2H/(cpθ0) ≈ [B] − [B]
2T0


T0, i.e. the buoyancy scale decreases with
increasing surface temperature. We note that the non-dimensional parameters which depend on
θ0 or/and 
T0 are:

Ra = g2H4

θ0cpνκ
, γ̂ = q0(
T0)L

gH
, τ̂ = τg

(cpθ0)1/2
, r̂ = (c3pθ0)1/2r

g2H
, α̂ = gHα(
T0)

cp
(A.7)

We then want to write the parameters in terms of the non-dimensionalised surface temperature
increase, 
T̂0 = 
T0/[T]. Note that T0 ≈ 3[T]. Expanding about θ0 about T0, we can write the
non-dimensional parameters as:

Ra(
T̂0) ≈ Ra
(
1 − 1

3

T̂0

)
, (A.8)

γ (
T̂0) ≈ γ

(
1 + L

3RvT0

T̂0

)
≈ γ

(
1 + 6
T̂0

)
, (A.9)

τ(
T̂0) ≈ τ

(
1 − 1

6

T̂0

)
, (A.10)

r(
T̂0) ≈ r
(
1 + 1

6

T̂0

)
, (A.11)

and,

α(
T̂0) ≈ α + gH
3RdT0


T̂0 ≈ α + 3.8
T̂0 (A.12)

Note that we only consider surface temperature increases up to∼ 10K, i.e
T̂0 ≤ 0.1. The dominant
parameter changing is γ , due to the nature of the Clausius-Clapyeron relation. Changes in Ra, r & τ
are almost negligible, due to the range of surface temperature increases we consider in our analysis.
Also notice that by using the leading order approximation (p = p0) presented in Vallis et al. (2019),
the dependence of the surface temperature in α above can be removed.

In figure A1, we show a comparison of the temperature profiles of the solution where the surface
temperature is changed explicitly (as in the main body), and implicitly (by changing the parameters
above) for surface temperatures of 305K (blue) and 310K (red). There is a slight difference in the
upper part of the profiles, but the profiles show a similar qualitative change with surface temperature
for both methods. While the implicit method of varying the non-dimensional may be more consis-
tent, it does not allow for easy understanding and implementation of a climate change scenario. The
scales of the parameters are changing as a function of the surface temperature, which does not allow
straightforward comparison of the solutions.

The analysis above provides a mapping between the explicit and implicit methods for impos-
ing a surface temperature increase. The implicit approach to global warming is more consistent
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Figure A1. Comparison of the temperature profiles for the explicit (solid) and implicit (dashed) meth-
ods of imposing a surface temperature in crease. For the explicit case, we plot δT − bsurf to allow
direct comparison with the implicit solution, which has δT(0) = 0. The base parameter values are
Ra = 106, RHsurf = 0.6, τ = 0.05, α = 6.0, & γ = 0.25 (Colour online).

with the model assumptions than the explicit approach. However, the modification of the reference
temperature and potential temperature (T0, θ0) causes the scales used in the dry adiabatic non-
dimensionalisation to change, whichmakes the comparison of the different climate change scenarios
more difficult to interpret. Due to the range of surface temperatures considered in our analysis, the
explicit and implicit methods provide only slightly different results. We note that while less consis-
tent than the implicit method, the explicit method captures the key effects of a surface temperature
increase: warmer domain temperatures, a Clausius-Clapyeron scale increase in the moisture, and
increased curvature of the moist adiabat.

Appendix B. CAPE for the dry system

FromWallefe and Smith 2015, the classic Rayleigh-Bénard convection equations are:

Du
Dt

= −∇φ + gαvTk + ν∇2u, (B.1)

DT
Dt

= κ∇2T. (B.2)

Note that temperature here is equivalent to buoyancy in ourmodel. A surface parcel wouldmaintain
its temperature on adiabatic ascent (DT/Dt = 0), and so the parcel profile is given by Tp(z) = T0.
The basic state solution, for fixed temperature boundary conditions T(0) = T0, T(H) = T1 is,

T = T0 − 
T
H

z, (B.3)

where 
T ≡ T0 − T1. As in section 2.4, we take the environment to be the basic state, and we
calculate the (dry) CAPE as:

CAPE =
∫ H

0
(Tp − TE) dz = 
T

H

∫ H

0
z dz = H
T

2
(B.4)
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Note that Tp ≥ TE at all heights, so pCAPE = CAPE, CIN = 0, LFC = 0, and LNB = H. Recalling
the expression for the Rainy number (equation (26)), it follows that,

Ry = H3
T
2κν

= Ra
2gαv

. (B.5)

Therefore, the Rainy number is directly proportional to the classical Rayleigh number for the dry
system.

Appendix C. radiative rainy number

We rescale the dry adiabatic non-dimensionalisation, using the minimum moist static energy gra-
dient of the basic state to set the timescale, and the height of the domain to set the length scale. Note
that, from equation (31),

dm
dz

= rRa1/2(z − 1). (C.1)

Next, we recall the alternative definition of conditional instability is dm/dz < 0 and db/dz > 0, and
note that dm/dz is a minimum at z = 0. Writing,

−min
(
dm
dz

)
∼ [B]

[L]
= 1

[t]2
,

and taking [L] = 1 (non-dimensional height of the domain), the new scales can be written as:

[t] = 1
r1/2 Ra1/4

, [L] = 1, [B] = r Ra1/2, [U] = [L]
[t]

= r1/2Ra1/4. (C.2)

Note that the (instability) timescale decreases with r and Ra, and the velocity and buoyancy scales
increase with r and Ra. After some algebra, the rescaled momentum equation can be written as:

Dû
Dt̂

= − − ∇φ̂ + b̂k + 1

Ry3/4R

∇2û, (C.3)

where the Radiative Rainy number is defined as,

RyR ≡ r2/3 Ra. (C.4)

Note that RaR/Ry at criticality shows a variation of ∼ 20%. This (approximate) proportionality
reveals the relationship,

pCAPE ∼ r2/3

(1 − LFC)2
, (C.5)

at least for constant surface relative humidity (RHsurf = 0.6). The relationship for the different cli-
mate chance scenarios is shown in figure C2. The ratio does not vary significantly with radiation,
relative to the changes with surface humidity or surface temperature.

Appendix D. parameter correction

In Vallis et al. (2019), the value of the constant e0 = 611 Pa in equation (2.16) is valid for a reference
temperature of T0 = 273K (Roland Stull 2024), rather than the specified reference temperature of
T0 = 300K used throughout the rest of the paper. Letting θ0 = 300K, T0 = 273K, and expressing
T = θ0 + δT, we can write the saturation vapor pressure equation (2.16) as,

es = e0 exp
(

L
Rv

{
1
T0

− 1
θ0 + δT

})
. (D.1)

Assuming θ0 � δT, equation (D.1) can be approximately written as,

es ≈ e0 exp
(

L
Rv

{
θ0 − T0

T0θ0

})
exp

(
L
Rv

{
δT
T0θ0

})
. (D.2)
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Figure C1. Critical Rainy number (left) and critical Radiative Rainy number (right). Both Rainy numbers
are based on different quantifications of conditional instability, and show a degree of proportionality.
(Colour online).

Figure C2. Ratio of the critical Rainy number to the critical Radiative Rainy number. (Colour online).

Recall the approximate relationship between the saturation vapor pressure and saturation specific
humidity given by equation (2.18),

qs ≈ ε
es
p
. (D.3)

Using equation (2.21), the pressure can be approximately written by,

p ≈ p0 exp
(
cpδT
Rdθ0

)
. (D.4)

Combining equations (D.2)–(D.4), the saturation vapor pressure can be expressed as,

qs = ε
e0
p0

exp
(

L
Rv

{
θ0 − T0

T0θ0

})
exp

({
L

Rvθ0T0
− cp

Rdθ0

}
δT

)
,

or,
qs = q0 exp (αδT), (D.5)

where,

q0 = ε
e0
p0

exp
(

L
Rv

{
θ0 − T0

T0θ0

})
= 0.019 kg kg−1, (D.6)

and,

α = L
Rvθ0T0

− cp
Rdθ0

= 0.054K−1. (D.7)
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Note that in Vallis et al. (2019), α = 0.060K−1, and q0 = 3.8 × 10−3 kg kg−1, which is five times
smaller than the value found in equation (D.6). The discrepancy in these parameters affects the
values of the non-dimensional parameters α and γ in the Rainy-Bénard model.
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