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Abstract
Conflict-free coloring of a hypergraph H = (V, E) using k colors is a function f : V → {1, 2, . . . , k}
such that for all E ∈ E , there exists a vertex v ∈ E with a unique color. That is, f(v) ̸= f(u) for all
u ∈ E \ {v}. The minimum k for which H has a conflict-free coloring using k colors is called the
conflict-free chromatic number of H. For a simple graph G, a conflict-free coloring of the hypergraph
with vertex set V (G) and edge set being the set of all closed neighborhoods of the vertices in G is
called a conflict-free closed neighborhood (CFCN) coloring of G. CFCN chromatic number, denoted
by χCN (G), is the minimum number of colors used in a conflict-free closed neighborhood coloring of
G. Analogously, we define conflict-free open neighborhood (CFON) coloring and CFON chromatic
number, χON (G), of a graph G.

There are various works on proving upper and lower bounds of χON (G) and χCN (G). In this
work, we develop streaming algorithms for CFCN and CFON coloring of a graph where the number
of colors used matches the best-known upper bounds of χON (G) and χCN (G). Our algorithms use
as input an edge stream of the graph G in the insertion-only model. Our results and the best-known
bounds for χON (G) and χCN (G) are given below.

1. Pach and Tardos [Combinatorics, Probability and Computing, 2009] showed that, for any n

vertex graph G, χCN (G) = O(ln2 n). Glebov, Szabó and Tardos [Combinatorics, Probability
and Computing, 2014] showed the existence of graphs G with χCN (G) = Ω(ln2 n). We design a
randomized single-pass semi-streaming algorithm (i.e., it uses O(n ln n) space1 that, given an
n-vertex graph G, outputs a CFCN coloring of G using O(ln2 n) colors with probability at least
(1 − 2

n
).

2. Bhyravarapu, Kalyanasundaram, Mathew [Journal of Graph Theory, 2021] showed that for a
graph G with maximum degree ∆, χCN (G) = O(ln2 ∆). The methods used by our algorithms
give rise to a simpler, alternate proof for this bound.

3. It is known that χON (G) ≤ 1/2 +
√

2n + 1/4 (See Pach and Tardos [Combinatorics, Probability
and Computing, 2009] and Ph.D. thesis of Cheilaris). This bound is asymptotically tight.

We design a deterministic single-pass O(n
√

n) space streaming algorithm that, given a graph
G on n vertices, finds a CFON coloring using 2

√
n colors.

We design a randomized, single-pass, semi-streaming algorithm to find a CFON coloring of a
graph G using O(

√
n ln2 n) colors with success probability at least (1 − 2

n
).

4. It is known that χON (G) ≤ ∆ + 1, where ∆ is the maximum degree of a vertex in G. Further,
there are graphs G known with χON (G) = ∆ + 1. We design a randomized two-pass semi-
streaming algorithm (uses O( 1

ϵ2 n ln3 n) space) that outputs a CFON coloring of G using (1 + ϵ)∆
colors, for any ϵ > 0, with a probability at least (1 − 1

n
).

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Streaming algorithm, conflict-free coloring, vertex coloring, randomized
algorithms

Digital Object Identifier 10.4230/LIPIcs.WADS.2025.44

1 The space complexity is in terms of number of words.

© Rogers Mathew, Fahad Panolan, and Seshikanth;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Algorithms and Data Structures (WADS 2025).
Editors: Pat Morin and Eunjin Oh; Article No. 44; pp. 44:1–44:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rogers@cse.iith.ac.in
https://orcid.org/0000-0003-4536-1136
mailto:F.Panolan@leeds.ac.uk
https://orcid.org/0000-0001-6213-8687
mailto:cs21resch01001@iith.ac.in
https://doi.org/10.4230/LIPIcs.WADS.2025.44
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


44:2 Streaming Algorithms for Conflict-Free Coloring

1 Introduction

Conflict-Free coloring (or CF coloring) of a hypergraph is a coloring of its vertices in which
each hyperedge sees some color exactly once. The minimum number of colors required
for the CF coloring of a hypergraph H, denoted by χCF (H), is called the conflict-free
chromatic number of H. Motivated by its application in a frequency assignment problem in
cellular networks, conflict-free coloring was introduced in 2002 by Even, Lokter, Ron, and
Smorodinsky [17].

Cellular networks consist of base stations and mobile agents. Base stations, represented
as vertices, are stationary and serve as the network’s core, while mobile agents are clients
served by base stations. Each base station operates on a fixed frequency, represented by a
color. To establish a connection with a base station, an agent’s device must tune itself to
that base station’s frequency. Agents can be within the range of multiple base stations. The
range of communication for each agent is defined by a hyperedge, which represents the set
of base stations it is capable of communicating with. To prevent interference, frequencies
must be assigned to base stations in a conflict-free manner as described below. Every mobile
agent should be able to find some base station in its vicinity that operates in a frequency
that is distinct from that of all the other base stations in its vicinity. In combinatorial terms,
this is about coloring the base stations in such a way that every agent sees a base station of
a unique color in the hyperedge associated with it. While assigning n different frequencies to
n base stations can solve the problem, it is expensive. Therefore, a scheme that allows the
reusing of frequencies, whenever possible is preferred to minimize expenses.

Recently, conflict-free coloring and its variants were used in [19] to get improved results on
a problem in coding theory, namely the Pliable Index Coding problem. Also, CF coloring has
found applications in battery consumption analysis in sensor networks, in certain problems
related to RFID protocols, in the vertex ranking problem (also known as ordered coloring,
which finds applications in various fields, such as VLSI design and operations research), etc.
See [14–19,21,23–25] for more details.

We define below two popular variants of the conflict-free coloring of graphs that have been
extensively studied. Given a graph G, the open neighborhood of a vertex v in G, denoted by
NG(v), is the set of vertices adjacent to v in G. The closed neighborhood of a vertex v in G,
denoted by NG[v], is defined as {v}∪NG(v). A coloring of the vertices of G using k colors is a
Conflict-Free Closed Neighborhood coloring (CFCN coloring) if every vertex v sees some color
exactly once in its closed neighborhood NG[v]. The minimum k for which such a coloring
exists is called the Conflict-Free Closed Neighborhood chromatic number (or CFCN chromatic
number) of G. It is denoted by χCN (G). Analogously, one can define Conflict-Free Open
Neighborhood coloring (CFON coloring) and Conflict-Free Open Neighborhood chromatic
number (CFON chromatic number) of a graph by replacing “closed neighborhood” with
“open neighborhood” in the above definitions. It is denoted by χON (G). It is easy to see that
for any graph G, χCN (G) is at most its chromatic number as in any proper coloring of G,
every vertex v sees its color exactly once in its closed neighborhood NG[v]. However, there
are graphs G for which χON (G) is arbitrarily larger than its chromatic number. For any
positive integer r, Example 4 gives bipartite graphs (and hence its CFCN chromatic number
is at most 2) with CFON chromatic number at least r. It is known that for any graph G with
maximum degree ∆, (i) χCN (G) = O(ln2 ∆) (see [12]), and (ii) χON (G) ≤ ∆ + 1 (see [23]).
Both these bounds are asymptotically tight (see Section 2 for more details).
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In this paper, we focus on semi-streaming algorithms (Refer [22] for more information on
graph streams) for conflict-free coloring of graphs. We consider only graph streams that are
insert-only. Below, we define an insert-only graph stream. We consider streams consisting of
a sequence of undirected edges e = (u, v), where u, v ∈ [n] = {1, 2, . . . , n}. Such a stream,
S = ⟨e1, e2, . . . , em⟩ naturally defines an undirected graph G = (V, E), where V = [n] and
E = {e1, . . . , em}. We assume the stream elements are distinct, and therefore, the resulting
graph is a simple graph. An algorithm for graphs is a semi-streaming graph algorithm if it
takes as input a graph stream and does all the computations using O(n · polylog(n)) bits of
space, where n is the number of vertices of the graph. The efficiency of a graph algorithm
in a streaming model is measured by the space it uses, the time it requires to process each
edge, and the number of passes it makes over the graph stream. Extensive research has been
conducted on semi-streaming algorithms for proper coloring of graphs, as demonstrated in
several notable works [1, 3–5,8, 9]. Similarly, edge coloring has been thoroughly explored in
the context of streaming algorithms, with notable contributions found in [2, 7]. However, to
the best of our knowledge, there is no streaming algorithm known for conflict-free coloring of
graphs. We describe our results and methods in the section below.

2 Our contributions

First, we state a few results from the literature. Then we explain our results and briefly
describe the key ideas involved. Please note that the space used by the algorithms mentioned
below is in terms of the number of words.

Auxiliary results from the literature. The following results on conflict-free coloring are due
to Pach and Tardos [23].

▶ Proposition 1 (Theorem 1.1 in [23]). Let H = (V, E) be a hypergraph, where every vertex is
present in at most ∆ hyperedges. Then χCF (H) ≤ ∆ + 1. Moreover, there is a deterministic
O(n∆) time (and hence O(n∆) space) algorithm that obtains such a coloring.

▶ Proposition 2 (Theorem 1.2 in [23]). For any positive integers t and Γ, the conflict-free
chromatic number of any hypergraph in which each edge is of size at least 2t − 1 and each
edge intersects at most Γ others is O(tΓ 1

t ln Γ).

As a corollary of Proposition 2, it is proved that χON (G) ≤ 1
2 +

√
2n + 1

4 . Cheilaris gave
an alternate proof to to this result [14].

▶ Proposition 3 (Proposition 4.40 in [14]). For every graph G, χON (G) ≤ 2
√

n.

From Example 4, we infer that the bound in Proposition 3 is asymptotically tight.

▶ Example 4. Let K∗
r denote the graph obtained from a complete graph on r vertices by

subdividing every edge exactly once. This graph with
(

r
2
)

+ r vertices and with a maximum
degree of r − 1 is known to have a CFON chromatic number of r. Here, subdividing an edge
uv means introducing a new vertex w and replacing the edge uv with edges uw and wv.

Our methods and results. Pach and Tardos [23] showed that, for any graph G, χCN (G) =
O(ln2 n) where n is the number of vertices in G. Glebov, Szabó and Tardos [18] showed the
existence of graphs G with χCN (G) = Ω(ln2 n).

WADS 2025



44:4 Streaming Algorithms for Conflict-Free Coloring

Result 1: There is a randomized, single-pass, O(n ln n) space streaming algorithm
that, given an n-vertex graph G, outputs a CFCN coloring of G using O(ln2 n) colors
with probability at least (1 − 2

n ).

Our algorithm partitions the vertex set into two parts: Part A, which is made of vertices
of degree at least 2c ln n for some constant c, and Part B, which is the set of all the remaining
vertices (which are of degree less than 2c ln n). Part A is further partitioned into two parts,
namely A′ and A′′. The set A′′ is made of all vertices in A that have no neighbor in B. We
choose a random coloring for the vertices in A from a geometric distribution. Then, we will
show that, with high probability, every vertex in A′′ sees some color exactly once in its open
and closed neighborhood.

Next, we construct a hypergraph H = (B, E), where E = {NG[v] ∩ B : v ∈ A′ ∪ B} ∪
{NG(v) ∩ B : v ∈ A′ ∪ B, NG(v) ∩ B ̸= ∅)}. Observe that the maximum degree of H is at
most 2c ln n and hence can be CF colored by the greedy procedure given in Proposition 1
using 2c ln n + 1 colors. Finally, we observe that the union of the two colorings explained
above (let this coloring be c) is a CFCN coloring of G and obtain Result 1. Moreover, we
observe that for many vertices, there is a unique color in its open neighborhood as well. More
specifically, let B1 = {b ∈ B : NG(b) ∩ B = ∅}. We prove that for any vertex v ∈ V (G) \ B1,
there is a unique colored vertex in NG(v). Also, notice that for all b ∈ B1, |NG(b)| = O(ln n)
and NG(b) ⊆ A′. So in the semi-streaming algorithm, we store the neighborhood information
of the vertices in B1 and obtain a CFON coloring c′ of the graph induced on A′ ∪ B1 using
at most O(

√
n) colors. Then, the coloring co defined as co(v) = (c(v), c′(v)) for all v, is a

CFON coloring of G using O(
√

n ln2 n) colors. Here, for convenience, assume that c′(v) = 1
if v /∈ A′ ∪ B1. This gives us the following result on CFON coloring.

Result 2: There is a randomized, single-pass, semi-streaming algorithm that, given
a graph G on n vertices, finds a CFON coloring using O(

√
n ln2 n) colors and in

polynomial time with probability at least (1 − 2
n ).

From Proposition 3, we know that χON (G) ≤ 2
√

n. This bound is asymptotically tight
due to Example 4. Our next result, whose proof has been moved to the appendix due to the
paucity of space, is the following.

Result 3: There is a deterministic, single-pass, O(n
√

n) space streaming algorithm
that, given a graph G on n vertices, finds a CFON coloring using 2

√
n colors.

For a graph G, with maximum degree ∆, Pach and Tardos [23] in the year 2009 showed
that χCN (G) = O(ln2+ϵ ∆) for any ϵ > 0. As mentioned above, in 2014, Glebov, Szabó,
and Tardos [18] proved that there exist graphs G on n vertices with χCN (G) = Ω(ln2 n)
(and thereby Ω(ln2 ∆)). In the year 2021, Bhyravarapu, Kalyanasundaram, and Mathew [12]
tightened the upper bound to show that χCN (G) = O(ln2 ∆). The methods we use in proving
Result 1 give us an alternate, shorter proof (which is given below).

Proof of χCN (G) = O(ln2 ∆). We partition V (G) = A ⊎ B, where A = {v ∈ V (G) :
degG(v) ≥ 2t − 1}, B = V (G) \ A and t = ln ∆. Further, let A = A1 ⊎ A2 where A1 = {a ∈
A : (NG(a) ∩ B) ̸= ∅} and A2 = A \ A1. We define a hypergraph H2 = (A, E2) where E2 =
{NG[a] : a ∈ A2}. From the definition of A2, NG[a] ⊆ A, ∀a ∈ A2. Applying Proposition 2
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with t = ln ∆, Γ = ∆2, we get χCN (H2) = O(log2 ∆). This coloring of the vertices of A

ensures that every vertex in A2 sees some color exactly once in its closed neighborhood in
G. We define another hypergraph H1 = (B, E1), E1 = {NG[v] ∩ B : v ∈ A1 ∪ B}. Since the
degree of a vertex in B in graph G is at most 2 ln ∆ − 2, we can conclude that every vertex
in H1 is present in at most 2 ln ∆ − 1 hyperedges. Applying Proposition 1 on H1, we get
χCN (H1) ≤ 2 ln ∆. We make sure that the set of colors used to color H2 is disjoint from the
set of colors used to color H1. This coloring of the vertices of B ensures that every vertex in
A1 ⊎ B sees some color exactly once in its closed neighborhood in G. ◀

It is known that χON (G) ≤ ∆ + 1, where ∆ is the maximum degree of a vertex in G

(follows from Proposition 1). From Example 4, we know that this bound is tight. Our next
result is the following.

Result 4: There is a two-pass semi-streaming algorithm (uses O( 1
ϵ2 n ln3 n) space)

that outputs a CFON coloring of G using (1 + ϵ)∆ colors, for any ϵ > 0, with
probability at least (1 − 1

n ).

In our algorithm of Result 4, we use the pallete sparsification lemma of Assadi, Chen,
and Khanna [4]. For each vertex v ∈ V (G), we sample a set L(v) of O( 1

ϵ ln n) colors from
[(1 + ϵ)∆]. In the first pass of the stream, for each vertex v, we identify a special vertex s(v)
that will get a unique color among NG(v) in our coloring. In the second pass, using the list
of colors and special vertices, we find a sketch H of G of size O( 1

ϵ2 n ln2 n). Finally, we do a
greedy procedure on H to get a CFON coloring.

We observe that any O(1)-pass streaming algorithm that determines if the CFCN (CFON)
chromatic number of an input graph is at most 2 or not, requires Ω(n) space. The proofs of
both the results are by reductions from the two player communication problem Disjointness
(refer [20]). In this problem, Alice and Bob are given two strings of length n (say the strings
given to them are p1 . . . pn and q1 . . . qn, respectively), and they are disjoint if there is no
i ∈ [n] such that pi = 1 and qi = 1. It is known that any protocol (even randomized) solving
Disjointness requires at least Ω(n) space.

ai bi

cidi

xi

pi = 0, qi = 0, χCN = 2.

ai bi

cidi

xi

pi = 1, qi = 0, χCN = 2. We
get similar graph for pi = 0,
qi = 1.

ai bi

cidi

xi

pi = 1, qi = 1, χCN = 3.

Figure 1 An illustration of the cases in the construction of the graph G(I). The CFCN chromatic
number of the rightmost graph is 3, and the CFCN chromatic number of the other two graphs is 2.

Proof of lower bound for CFCN. Consider an instance I of the Disjointness Problem
where Alice is given an n-bit string p1 . . . pn and Bob is given an n-bit string q1 . . . qn.
Together they construct a graph G(I) on 5n vertices whose vertices are ai, bi, ci, di, xi, where
1 ≤ i ≤ n. For every i, Alice adds the edges aibi, bici, cidi, diai to form n 4-cycles. Further,
for every i, (i) if pi = 1, then Alice adds the edge bixi, and (ii) if qi = 1, then Bob adds the

WADS 2025
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edge cixi. For each i, they create one or two components of G(I) which is isomorphic to
one of the graphs in Figure 1. The graph when both the corresponding bits intersect (i.e.,
pi = qi = 1) require at least 3 colors for any CFCN coloring. It can be verified that the
graph G(I) thus constructed has its CFCN chromatic number at most 2 if and only if I is a
YES instance of the Disjointness problem. ◀

ai bi

ci

diei

fi

pi = 0, qi = 0, χON = 2.

ai bi

ci

diei

fi

pi = 1, qi = 0, χON = 2. We
get similar graph for pi = 0,
qi = 1.

ai bi

ci

diei

fi

pi = 1, qi = 1, χON = 3.

Figure 2 An illustration of the cases in the construction of the graph H(I). The CFON chromatic
number of the rightmost graph is 3, and the CFON chromatic number of the other two graphs is 2.

Proof of lower bound for CFON. For this purpose, given an instance I, Alice and Bob
together construct a graph H(I) on 6n vertices, namely ai, bi, ci, di, ei, fi, 1 ≤ i ≤ n, as
described below: For every i, Alice adds the edges aibi, cidi, diei, eifi. Further, for every i,
(i) if pi = 1, then Alice adds the edge aifi, and (ii) if qi = 1, the Bob adds the edge bici.
If there exists i such that pi = qi = 1, then H(I) has a connected component which is a
cycle of length 6 and we need at least 3 colors in any CFON coloring of it. Otherwise each
connected component of H(I) is a path and its CFON chromatic number is at most 2. See
Figure 2 for an illustration. ◀

3 Semi-streaming algorithms for CFCN and CFON colorings

In this section, we prove the following theorems.

▶ Theorem 5. There exists a randomized, single-pass, semi-streaming algorithm that, given
a graph G with n vertices, with probability at least

(
1 − 2

n

)
, finds a CFCN coloring using

O(ln2 n) colors, using O(n ln n) space and in polynomial time.

▶ Theorem 6. There exists a randomized, single-pass, semi-streaming algorithm that, given
a graph G on n vertices, with probability at least (1 − 2

n ), finds a CFON coloring using
O(

√
n ln2 n) colors, using O(n ln n) space and in polynomial time.

Towards that, we first prove the following lemma about conflict-free coloring. The bound
obtained on the number of colors used to do a conflict-free coloring of the hypergraph defined
in this lemma can be obtained by directly substituting the values t = 2 ln r and Γ = 2n in
the statement of Proposition 2 that was proved in [23]. However, Proposition 2 would only
ensure that such a coloring exists with positive probability. In the lemma below, we modify
the proof of this proposition to obtain such a coloring with high probability. For the sake of
completeness, we provide the proof of this lemma in the appendix.
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▶ Lemma 7 (⋆). 2 Let H = (V, E) be a hypergraph with |V | = n, |E| ≤ 2n, and |E| ≥ 4 ln r−1
for all E ∈ E, where r ≥ max{7, n} is a positive integer. Then, Algorithm 1, which takes as
input V runs in O(n ln2 r) time, uses O(n) space and with probability greater than

(
1 − 2

r

)
returns a conflict-free coloring of H that uses at most ⌈16e ln2 r⌉ colors.

Algorithm 1 Randomized Algorithm for CF coloring of H.

Input: The vertex set of hypergraph H = (V, E), where each hyperedge E satisfies
|E| ≥ 4 ln r − 1, ∀E ∈ E , and r ≥ n = |V |.

Output: A CF coloring function c : V → [⌈16e ln2 r⌉]
1 Let T = ⌈16e ln2 r⌉ and let c(v) = 0, ∀v ∈ V

2 Set i := 0
3 while i < T do
4 i := i + 1;
5 for each vertex v ∈ V with c(v) = 0 do
6 Independently toss a coin that gives Head with probability 1

8e ln r

7 if the outcome is Head then
8 c(v) := i

9 return c

Next, we prove the following lemma that gives a coloring such that a subset of the vertices
with “large” degree gets a unique color in its open and closed neighborhoods.

▶ Lemma 8. Let G1 be a graph on n1 vertices, where V (G1) = X ⊎ Y . Suppose for all
x ∈ X, degG1(x) ≥ 4 ln r1 − 1, where r1 is a positive integer with r1 ≥ max{n1, 7}. Let c1
be the coloring c1 : V (G1) → [⌈16e ln2 r1⌉] obtained by invoking Algorithm 1 with V (G1) as
input. Then, with probability 1 − 2

r1
, every vertex in X sees some color exactly once in its

open and closed neighborhoods.

Proof. Proof follows from the application of Lemma 7 with H1 = (V1, E1) defined as
V1 = V (G1) and E1 = {NG1 [v] : v ∈ X} ∪ {NG1(v) : v ∈ X}. ◀

▶ Lemma 9. Let r2 ∈ Z+ and let G2 be a graph on n2 vertices, where V (G2) = X ⊎ Y with
the following properties: (i) X is an independent set, (ii) for all x ∈ X, NG2(x) ∩ Y ̸= ∅,
and (iii) for all y ∈ Y, degG2(y) < 4⌈ln r2⌉ − 1. Then, Algorithm 2 is a greedy, deterministic
algorithm that runs in O(n2 ln r2) time and O(n2 ln r2) space, and outputs a coloring of
vertices in Y using at most (8⌈ln r2⌉) colors with the following properties.
(a) Every vertex in V (G2) sees some color exactly once in its closed neighborhood.
(b) Every vertex v ∈ V (G2) with NG2(v) ∩ Y ≠ ∅ sees some color exactly once in its open

neighborhood.

Proof. The hypergraph H2 constructed in step 1 of Algorithm 2 takes O(n2 ln r2) space
because the degree of this hypergraph is at most 8⌈ln r2⌉. It is easy to see that a conflict-free
coloring of H2 will ensure properties (a) and (b). Proposition 1 gives a conflict-free coloring
of H2 in O(n2 ln r2) time and O(n2 ln r2) space using at most 8⌈ln r2⌉ colors. ◀

2 Proof of results marked with ⋆ are deferred to the appendix.

WADS 2025



44:8 Streaming Algorithms for Conflict-Free Coloring

Algorithm 2 Deterministic Algorithm for conflict-free coloring of G2.

Input: The vertex set and edge set of the graph G2 with
1. Partition V (G2) = X ⊎ Y , where X is an independent set,
2. ∀x ∈ X, NG2(x) ∩ Y ̸= ∅ and
3. ∀y ∈ Y, degG2(y) < (4⌈ln r2⌉ − 1)

Output: A coloring function c2 : Y → [8⌈ln r2⌉] that satisfies properties (a) and (b)
mentioned in Lemma 9.

1 Construct a hypergraph H2 = (Y, E) with

E = {NG2 [v] ∩ Y : v ∈ V (G2)} ∪ {NG2(v) ∩ Y : v ∈ V (G2), NG2(v) ∩ Y ̸= ∅}.

Note that the degree of this hypergraph is at most 8⌈ln r2⌉ because for all y ∈ Y ,
degG2(y) < 4⌈ln r2⌉. Use the algorithm given in Proposition 1 to get a coloring
c2 : Y → 8[⌈ln r2⌉] of the vertices of H2 such that every hyperedge sees some color
exactly once.

2 Return the coloring c2.

▶ Lemma 10. Let G be a graph on n vertices, where
V (G) = A ⊎ B, A = A′ ⊎ A′′, A′ = {a ∈ A : NG(a) ∩ B ̸= ∅}, A′′ = A \ A′,
for all a ∈ A, degG(a) ≥ (4⌈ln n⌉ − 1), and
for all b ∈ B, degG(b) < (4⌈ln n⌉ − 1).

Algorithm 3 takes as input (i) the sets A′, A′′, B, (ii) NG(a′) ∩ B for all a′ ∈ A′, and (iii)
NG(b) for all b ∈ B, runs in O(n · ln2 n) time, uses O(n ln n) space and gives a coloring c

of V (G) using O(ln2 n) colors such that with probability greater than
(
1 − 2

n

)
the following

holds.
(i) c is a CFCN coloring of G.
(ii) For every v ∈ V (G) \ {b ∈ B : NG(b) ∩ B = ∅}, v sees some color exactly once in its

open neighbourhood.

Proof. We apply Lemma 8 with the following inputs: G1 = (A, E1), where E1 = {(u, v) :
u, v ∈ A}, X = A′′, Y = A′, and r1 = n. The algorithm mentioned in Lemma 7, runs
in O(n ln2 n) time, as n1 ≤ r1 = n. It uses O(n) space and outputs the coloring function
c1 : A → [16⌈e ln2 n⌉]. With probability greater than (1 − 2

n ), every vertex in A′′(= X) will
see some color exactly once in its open and closed neighborhoods under the coloring c1 (as
well as in c).

Next, we invoke Algorithm 2 with the following inputs: the graph G2 = (A′ ⊎ B, E2),
where X = A′, Y = B, r2 = n, and E2 = E(G) \ E1. It is important to note that
(i) G2 is well-defined as every edge in E2 has both its endpoints in A′ ∪ B, and (ii) A′

is an independent set in G2. According to Lemma 9, Algorithm 2 outputs the coloring
c2 : B → {16⌈e ln2 n⌉ + 1, . . . , 16⌈e ln2 n⌉ + 8⌈ln n⌉} in O(n ln n) time, using O(n ln n) space,
since n2 ≤ r2 = n. By property (a) of Lemma 9, every vertex in A′ ∪ B sees some color
exactly once in its closed neighborhood under the coloring c2 (as well as in c). Therefore, we
have proved that c is a CFCN coloring of G.

Furthermore, based on the reasoning above, our algorithm takes O(n ln2 n) time and
O(n ln n) space. We have already proved that with probability greater than (1 − 2

n ), every
vertex in A′′ will see some color exactly once in its open neighborhoods under the coloring c.
By the property (b) of Lemma 9, we know that every vertex v in {u ∈ V (G2) : NG2(u) ∩ Y ≠
∅} = A′ ∪ {b ∈ B : NG(b) ∩ B ̸= ∅}, sees some vertex exactly once in its open neighborhood
under the coloring c2 (as well as in c). This proves property (ii) mentioned in the lemma. ◀
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Algorithm 3 Algorithm for conflict free coloring.

Input: (i) vertex set V (G) of the graph G on n vertices and the partition
V (G) = A ⊎ B, where A = A′ ⊎ A′′, (ii) NG(a′) ∩ B for all a′ ∈ A′, and (iii)
NG(b) for all b ∈ B. The input satisfies the conditions of Lemma 10.

Output: A coloring function c : V (G) → [16⌈e ln2 n⌉ + 8⌈ln n⌉].
1 Consider the graph G1 = (A, E1), where E1 = {(u, v) : u, v ∈ A}. We apply the

algorithm mentioned in Lemma 8 with G1 as the input. Let X = A′′, Y = A′, and
r1 = n. Notice that for all x ∈ X = A′′, degG1(x) ≥ (4⌈ln n⌉ − 1). Let
c1 : A → [16⌈e ln2 n⌉] be the coloring returned by the algorithm mentioned in
Lemma 8.

2 Consider the graph G2 = (A′ ⊎ B, E2), where E2 = E(G) \ E1. Note that A′ is an
independent set in G2. Invoke Algorithm 2 with G2 as the input. Set X = A′,
Y = B, and r2 = n. Let the coloring function returned by Algorithm 2 be
c2 : B → {16⌈e ln2 n⌉ + 1, . . . , 16⌈e ln2 n⌉ + 8⌈ln n⌉}.

3 Return c : V (G) → [16⌈e ln2 n⌉ + 4⌈ln n⌉ − 1], defined as follows:

c(v) =
{

c1(v), if v ∈ A

c2(v), if v ∈ B

Proof of Theorem 5. The proof follows from the application of Lemma 10 and the following
partitioning of the vertex set V := V (G). We start by partitioning the vertex set V into
two sets, namely A and B, where A = {v ∈ V : degG(v) ≥ (4⌈ln n⌉ − 1)} and B = V \ A

using the following procedure . Here, A represents the set of high-degree vertices, while B

represents the set of low-degree vertices.
To facilitate the partitioning process, we maintain a list L(v) = {u : u ∈ NG(v)}. Initially,

we set A := ∅ and L(v) = ∅. As each edge (u, v) passes through the stream, we update
L(u) = L(u) ∪ {v} if u ∈ V \ A and L(v) = L(v) ∪ {u} if v ∈ V \ A. Additionally, if a vertex
w satisfies |L(w)| ≥ (4⌈ln n⌉ − 1), then we update A := A ∪ {w}. At the end of the stream,
we define B := V \A. It is important to note that for any vertex b ∈ B, |L(b)| < (4⌈ln n⌉−1).
Up to this point, the storage requirement for

⋃
v∈V

L(v) is O(n ln n) space.

Next, for all a ∈ A, update L(a) as L(a) = {b ∈ B : a ∈ L(b)}. That is L(a) is the set
NG(a) ∩ B. Observe that updating L(a)’s can only double the total space used so far. After
updating L(a), for all a ∈ A, we define A′ = {a ∈ A : L(a) ̸= ∅} and A′′ = A \ A′. We have
thus obtained (i) the sets A′, A′′, B, (ii) NG(a′) ∩ B, for all a′ ∈ A′, and (iii) NG(b) for all
b ∈ B. We can now invoke Algorithm 3 with the required inputs to obtain a CFCN coloring
function c : V (G) → [16⌈e ln2 n⌉ + 8⌈ln n⌉]. From Lemma 10, we know that Algorithm 3
requires only O(n ln n) space and runs in polynomial time. ◀

Proof of Theorem 6. Given a graph G = (V, E), we follow the same partitioning procedure
mentioned in Theorem 5. That is, A = {v ∈ V : degG(v) ≥ (4⌈ln n⌉−1)}, and B = V (G)\A.
We again partition B ⊆ V into two sets: B = B1 ⊎ B2, where B1 = {b ∈ B : NG(b) ∩ B = ∅}
and B2 = B \B1 That is, using similar steps as in the case of Theorem 5, we get the partition
of V (G) into A′ ⊎ A′′ ⊎ B1 ⊎ B2. Moreover, we also get L(b) = NG(b) for all b ∈ B in
O(n ln n) space. Now we invoke Algorithm 3 with the required inputs to obtain a coloring
c : V (G) → [16⌈e ln2 n⌉ + 8⌈ln n⌉]. From Lemma 10, we know that Algorithm 3 requires only
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O(n ln n) space and runs in polynomial time. Moreover, with probability greater than 1 − 2
n ,

for every v ∈ V (G) \ {b ∈ B : NG(b) ∩ B = ∅}, v sees some color exactly once in its open
neighbourhood.

We now invoke Proposition 3 (or an algorithmic version of it (see Theorem 18)) on the
graph G′ = (A′ ∪ B1, E′) where E′ = {(a, b) ∈ E(G) : a ∈ A′, b ∈ B1} and get a CFON
coloring c′ : V (G′) → [⌈2

√
n⌉] of G′. Notice that |E′| = O(n ln n) and hence c′ can be

obtained in O(n ln n) space and polynomial time (see Theorem 18). Now, consider the
coloring co on V (G) defined as follows.

co(v) =
{

(c(v), c′(v)), if v ∈ A′ ∪ B1
(c(v), 1), otherwise

Now it is easy to see that co is a CFON coloring because for each v ∈ V (G) \ B1, there is
a unique color in the open neighborhood of v due to the coloring c and for each v ∈ B1,
there is a unique color in the open neighborhood of v due to the coloring c′. Notice that the
number of colors used in co is O(

√
n ln2 n). ◀

4 Semi-streaming algorithm for CFON coloring using (1 + ϵ)∆ colors

In this section we prove a two-pass randomized semi-streaming algorithm for finding a CFON
coloring of the input graph G using (1 + ϵ)∆ colors, where ∆ is the maximum degree of G.
The theorem is formally stated below.

▶ Theorem 11. There is a two-pass randomized semi-streaming algorithm (uses O( 1
ϵ2 n ln3 n)

space) that given a graph G and ϵ > 0, outputs a CFON coloring of G using (1 + ϵ)∆ colors
or reports fail. It outputs a CFON coloring with probability at least (1 − 1

n3 ). Here, ∆ is the
maximum degree of G.

We would like to mention that prior knowledge of ∆ is not required. During the first
pass of the edge stream, we find the maximum degree ∆ of G, and for each vertex u ∈ V (G),
a special vertex s(u) as explained below. Let V (G) = {v1, . . . , vn} and let Π be a fixed order
v1, v2, . . . , vn. For each u ∈ V (G), s(u) = vi, where i is the least index such that vi ∈ NG(u).
We would like to mention that if our algorithm outputs a coloring, then for each vertex
u ∈ V (G), s(u) will get a unique color among NG(u). It is easy to note that one can find
the maximum degree ∆ from the first pass using O(n) space by keeping n counters, one per
vertex. One can find out the special vertices from the first pass of the edge stream using the
following procedure. We maintain an array (call it “a”) of size n in memory. The array keeps
track of the special vertices, i.e., the minimum indexed vertex in the open neighborhood of
every vertex in the graph seen until now. Initially, all the elements in the array are set to
NULL. When an edge (vi, vj) comes in the stream, we update a[i] as follows.

If a[i] =NULL, then set a[i] = vj .
If a[i] = w for some vertex w ∈ V (G), then we set a[i] = vj iff vj <Π w.
Similarly, we update the entry a[j].

Notice that the space used in the first pass is O(n ln n). In the second pass of the stream,
we construct a sketch H of G. Before the beginning of the second pass, for each vertex
v ∈ V (G), we sample a set of colors L(v) of size t = 4

ϵ ln n from [(1 + ϵ)∆] uniformly and
independently at random with replacement. Note that L(v) is a multiset as the colors are
sampled at random with replacement.
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Algorithm 4 Algorithm for CFON coloring of graph G.

Data: Stream of edges of a graph G and ϵ > 0
Result: coloring c : V (G) → [(1 + ϵ)∆] where ∆ is the maximum degree of G

1 Fix an ordering Π = v1, . . . , vn of V (G).
2 For all v ∈ V , sample a set L(v) of size t = 4

ϵ ln n colors from [(1 + ϵ)∆] uniformly
and independently at random with replacement.

3 In the first pass of the edge stream, compute the maximum degree ∆ of G and special
vertices s(u) for all u ∈ V (G).

4 In the second pass of the edge stream, construct the sketch H of G with respect L

(see Definition 12).
5 Do coloring c : V (G) → [(1 + ϵ)∆] using a greedy procedure on H as explained below.
6 In the ith step, we have colored all the vertices v1, . . . , vi−1. Now we color vi as

follows.
Let Si = {s(u) : u ∈ NH(vi)} ∩ {v1, . . . , vi−1} and Zi = L(vi) \ {c(w) | w ∈ Si}}
If Zi = ∅, then report FAIL.
Otherwise c(vi) = min Z.

▶ Definition 12 (Sketch of G with respect to L). A sketch of G with respect to L is the
subgraph H of G defined as follows: V (H) = V (G), and

E(H) = {(u, v) : (L(u) ∩ L(s(v)) ̸= ∅) ∨ ((L(s(u)) ∩ L(v)) ̸= ∅))}

It is easy to store the sketch H of G in the second pass. For each edge (u, v) encountered
in the edge stream, we check if (u, v) ∈ E(H) by checking the condition (L(u) ∩ L(s(v)) ̸=
∅) ∨ ((L(s(u)) ∩ L(v)) ̸= ∅)). Thus, by the end of the second pass, we have the sketch H of
G with respect to L.

Finally, we do a coloring c : V (G) → [(1 + ϵ)∆] using a greedy procedure on H explained
as follows. We color the vertices in the order v1, . . . , vn. In the ith step we color the vertex vi

as follows. Let Si = {s(u) : u ∈ NG(vi)} ∩ {v1, . . . , vi−1}.
Note that for each u ∈ NG(vi), s(u) ≤Π vi and Si is the set of special vertices, of “all”

the neighbors of vi, that are on the left side of vi in the ordering Π. Let Zi = L(vi) \ {c(w) |
w ∈ Si}. That is, Zi is the set of colors from L(vi) that are not used to color the vertices
in Si. Now we color vi as per the following.

If Zi = ∅, then report FAIL. That is no color is available in the list L(vi) that is not
equal to the color of the special vertices in Si.
Otherwise c(vi) = min Zi.

For convenience, the pseudocode of the algorithm is available in Algorithm 4. Next we
prove the following lemma which will be used to prove Theorem 11.

▶ Lemma 13 (⋆). With probability at least 0.99, |E(H)| ≤ 1600
ϵ2 n ln2 n.

▶ Lemma 14. If Algorithm 4 produces a coloring c then c is a CFON coloring of G. Moreover,
Algorithm 4 produces a CFON coloring with probability at least (1 − 1

n3 ).

Proof. Suppose Algorithm 4 outputs a coloring c. To prove that it is a CFON coloring of G,
we need to prove that for each v ∈ V (G), there is a vertex in NG(v) with unique color. We
will prove that for each vertex v ∈ V (G), s(v) becomes the uniquely colored vertex in NG(v).
Recall that s(v) is the first vertex in Π among NG(v). So Algorithm 4 colors s(v) before
coloring the vertices in NG(v) \ {s(v)}. Step 6 of Algorithm 4 implies that each vertex in
NG(v) \ {s(v)} gets a color different from the color of s(v). So, c is the CFON coloring of G.
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We now find the probability that Algorithm 4 reports fail. Suppose Algorithm 4 reports
FAIL in the ith iteration of step 6. It means that Zi = ∅. That is, L(vi) ⊆ {c(x) | x ∈ Si}.
We know that |Si| ≤ |NG(vi)| ≤ ∆. Here, we want to calculate Pr[L(vi) ⊆ Si]. This is
calculated as follows.

Pr[L(vi) ⊆ Si] =
(

|Si|
((1 + ϵ)∆)

)t

≤
(

∆
(1 + ϵ)∆)

)t

= 1
(1 + ϵ)t

= 1
(1 + ϵ) 4

ϵ ·ln n
≤ 1

n4

Here, the second inequality follows from the fact that |Si| ≤ ∆. Notice that there are n

iterations, and by the union bound, the probability that the algorithm reports FAIL in any
one of these iterations is at most 1

n3 . ◀

Proof of Theorem 11. We run Algorithm 4 ln n times parallelly. In each execution of the
algorithm, if the space used by it exceeds 1600

ϵ2 n ln n, then we abort it. Finally, if any of
the execution outputs a coloring, we output one such coloring. Otherwise, we output FAIL.
The probability that each execution is either aborted or output FAIL is upper bounded by

1
100 + 1

n3 ≤ 0.02. The probability that all the executions fail with probability is at most
0.02ln n ≤ 1

n3 . This implies that the overall probability that Algorithm 4 succeeds is at least
(1 − 1

n3 ). Notice that each execution of Algorithm 4 takes O( 1
ϵ2 n ln2 n) space and hence the

total space is O( 1
ϵ2 n ln3 n). ◀

5 Concluding remarks

Most of the study on CFCN and CFON coloring so far has been towards proving tighter
bounds in terms of various graph parameters like maximum degree, order of the graph,
pathwidth, etc. Showing improved bounds for special graph classes like planar graphs, line
graphs, unit-disc graphs, etc. has also been explored. CFCN and CFON coloring problems
have also been explored from a parameterized complexity setting [10,11, 13]. To the best of
our knowledge, this is the first paper exploring semi-streaming algorithms for these coloring
problems. The bounds (on the number of colors used) we obtain in Theorems 5, 11, and
18 are asymptotically tight. Yet these leave us with many more intriguing open questions,
some of which are listed below. Given as input an edge stream of an n-vertex graph G with
maximum degree ∆,
1. Is it possible to obtain a deterministic single pass semi-streaming algorithm that does a

CFCN coloring using O(ln2 n) colors? The algorithm given by Theorem 5 is randomized.
2. Is it possible to improve Theorem 6 to obtain a semi-streaming (deterministic or random-

ized) algorithm that gives a CFON coloring using O(
√

n) colors?
3. Is it possible to obtain a semi-streaming algorithm that outputs a CFON coloring of G

using ∆ + 1 colors? Theorem 11 gives a two-pass randomized semi-streaming algorithm
that outputs a CFON coloring using at most (1 + ϵ)∆ colors. And, Theorem 18 can be
modified to obtain a deterministic single-pass streaming algorithm for CFON coloring of G

using ∆ + 1 colors that uses O(n
√

n) space (the algorithm given by the theorem works, if
∆ ≥ 2

√
n − 1. Otherwise, we store the entire graph and color it offline). As far as classical

coloring is concerned, there are randomized single-pass semi-streaming algorithms that
output a ∆ + 1-coloring with high probability (see [6]). At the same time, it is known
(see [8]) that any single-pass streaming algorithm that outputs a (d + 1)-coloring of G

requires at least Ω(n2) space, where d is the degeneracy of G (the graph G is k-degenerate
if its vertices can be arranged in a line such that every vertex has at most k neighbors to
its left. The minimum k for which G is k-degenerate is called its degeneracy. Clearly,
this parameter is at most ∆). Coming back to the CFON coloring problem, any CFON
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coloring of G would want some vertex, say s(v), in the neighborhood of each vertex v to
receive a color distinct from that of the other neighbors of v. If we construct an auxiliary
graph of G by adding edges between s(v) and all the other neighbors of v, for every v,
such a graph would have a maximum degree of Θ(∆2) and degeneracy of ∆. And a
classical coloring of this auxiliary graph would yield a CFON coloring of G. This makes
the question of obtaining a semi-streaming algorithm for (∆ + 1)-CFON coloring of G all
the more interesting.
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A Proof of Lemma 7

In any given iteration of the “while” loop, the “for” loop in Step 5 runs at most n times.
The while loop in Step 3 runs at most T = ⌈16e ln2 r⌉ times. Thus it is easy to see that the
algorithm terminates in O(nT ) = O(n ln2 r) steps.

Note that the vertex set V of H can be stored in O(n) space. The algorithm does not
need to store the edges regardless of the structure of the hypergraph H. The algorithm does
a randomized coloring of the vertices in V , which is explained in steps 5-8. This can be done
in O(n) workspace. Thus, the total space required is O(n).

Consider an execution of Algorithm 1. Let Av denote the event of v not receiving any
non-zero color.

Pr[Av] = (1 − p)T , where p is the probability for Head and p = 1
8e ln r

=
(

1 − 1
8e ln r

)T

≤ e− T
8e ln r ≤ 1

r2 (∵ T = ⌈16e ln2 r⌉)

Let A denote the event of some vertex in V not receiving a non-zero color. Then, Pr(A) =
Pr(

⋃
v∈V

Av) ≤
∑

v∈V

Pr(Av) ≤ n · 1
r2 ≤ r · 1

r2 (∵ n ≤ r) = 1
r . Thus, we have Pr(A) ≤ 1

r .
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Let Ā denote the complement of event A. For a hyperedge E ∈ E , let BE denote the event
of E not seeing a uniquely colored vertex. And, let B denote the event of some hyperedge
E ∈ E not seeing a unique color. That is, B denotes the event of the coloring function not
being a conflict-free coloring of H. From the definition of B, B =

⋃
E∈E

BE . Let B̄ denote the

complement of the event B. Then we know that,

Pr(Ā ∩ B̄) = Pr(Ā) · Pr(B̄|Ā) ≥ (1 − 1
r

) · Pr(B̄|Ā) (1)

We are left with the task of estimating P (B̄|Ā). We have,

Pr(B̄|Ā) = 1 − Pr(B|Ā) = 1 − Pr(
⋃

E∈E
BE |Ā) ≥ 1 −

∑
E∈E

Pr(BE |Ā) (2)

To estimate Pr(BE |Ā), we use the following lemma from [23].

▶ Lemma 15 (Lemma 3.1 in [23]). Let V be a set of elements and let E ⊆ V with |E| ≥ 2t−1
for a positive integer t. Let us color each element of V independently, according to the
geometric distribution with parameter p. Then the probability that no element of E receives a
unique color (one that is not received by any other vertex of E) is at most 2(etp)t.

With respect to the execution of Algorithm 1, given that the event Ā has happened
(that is, the algorithm has assigned a non-zero color for every vertex v ∈ V ), the coloring c

returned by the algorithm is a coloring based on a geometric distribution with parameter
p = 1

8e ln r . Thus, Lemma 15 gives an upper bound to P (BE |Ā). Applying Lemma 15 with
p = 1

8e ln r and t = 2 ln r, we have

Pr(BE |Ā) ≤ 2
(

e · 2 ln r · 1
8e ln r

)2 ln r

≤ 2
r2.773 (3)

From Equations (2) and (3), we get

Pr(B̄|Ā) ≥ 1 − |E| · 2
r2.773 = 1 − 4

r1.773 (Because |E| ≤ 2n ≤ 2r) (4)

From Equations (4) and (1), we have

Pr(Ā ∩ B̄) ≥
(

1 − 1
r

) (
1 − 4

r1.773

)
≥

(
1 − 1

r

)2
>

(
1 − 2

r

)
(5)

Here, the second inequality follows from the fact that 1 − 4
r1.773 > 1 − 1

r when r ≥ 7. This
completes the proof of the lemma.

B Proof of Lemma 13

To prove Lemma 13, first we prove the following lemma and then use this lemma.

▶ Lemma 16. Let (u, v) ∈ E(G). Then Pr[(u, v) ∈ E(H)] ≤ 2t2

(1+ϵ)∆ .

Proof. Recall that for all w ∈ V (G), L(w) denotes the pallete of colors for the vertex w and
|L(w)| = t. The colors are sampled uniformly and independently at random with replacement
from the set of colors [(1 + ϵ)∆]. Let E1 be the event (L(u) ∩ L(s(v))) ̸= ∅ and let E2 be the
event (L(s(u))∩L(v)) ̸= ∅. Now, we have Pr[(u, v) ∈ E(H)] = Pr[E1 ∨E2] ≤ Pr[E1]+Pr[E2].
We now calculate Pr[E1]. Let L(s(v)) = {r1, . . . , rt}. Recall that L(s(v)) is a multiset.
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Pr[E1] = Pr

 ⋃
i∈[t]

ri ∈ L(u)

 ≤
∑
i∈[t]

Pr(ri ∈ L(u)) =
∑
i∈[t]

t

(1 + ϵ)∆ = t2

(1 + ϵ)∆

Similarly, Pr[E2] ≤ t2

(1+ϵ)∆ . Thus, we get Pr[(u, v) ∈ E(H)] ≤ Pr[E1] + Pr[E2] ≤ 2t2

(1+ϵ)∆ . ◀

Below we state Markov’s Inequality.

▶ Proposition 17 (Markov’s inequality). If X is a nonnegative random variable and a > 0,
then Pr[X ≥ a] ≤ E(X)

a .

Now, we are ready to prove Lemma 13.

Proof of Lemma 13. Let X be the random variable that denotes |E(H)|. For each v ∈ V (H),
let Xv denote the degree of vertex v in H. For each (v, u) ∈ E(G), Xvu is the indicator
random variable defined as follows: Xvu = 1 if and only if (v, u) ∈ E(H). Then, for any
v ∈ V (G), Xv =

∑
u∈NG(v)

Xvu, and E[Xv] is calculated as follows.

E[Xv] =
∑

u∈NG(v)

E[Xvu] ≤ ∆ 2t2

(1 + ϵ)∆ = 2t2

(1 + ϵ) (6)

Here, the second inequality follows from Lemma 16. Notice that X = 1
2

∑
v∈V (G) Xv.

Thus, by Equation (6)

E[X] = 1
2

∑
v∈V (G)

E[Xv] ≤ n

2 · 2t2

(1 + ϵ) ≤ 16n ln2 n

ϵ2 .

By Markov’s inequality, Pr[X > 1600n ln2 n
ϵ2 ] ≤ 1

100 . Thus, |E(H)| ≤ 1600
ϵ2 n ln2 n with probabil-

ity at least 0.99. ◀

C Streaming algorithm for CFON coloring using O(
√

n) colors

Cheilaris proved that, for a graph G on n vertices, χON (G) ≤ 2
√

n [14]. Pach and Tardos
improved this to χON (G) ≤

√
2n [23]. The above upper bounds are asymptotically tight

due to Example 4. Cheilaris’s result in Proposition 3 uses a deterministic algorithm to do a
coloring of the vertices as follows. When a vertex is present in at least

√
n neighborhoods,

then we color that vertex with a new distinct color. Note that this vertex will be a unique
color for at least

√
n neighbourhoods. Next, we consider another vertex that is present in at

least
√

n neighborhoods with no vertex in this neighborhood colored so far. Then, we color
that vertex with a new distinct color and continue this process. At the end of this process,
we have used at most

√
n colors because there are only n neighborhoods. Also, at the end of

this process, each vertex will be part of at most
√

n neighborhoods with no vertex in these
neighborhoods colored so far. Then we use Proposition 1 to color the remaining vertices
using at most

√
n new colors. Clearly, this algorithm requires to see the entire input to do

the coloring.
In this section, we give a streaming algorithm to do a CFON coloring of G using 2

√
n

colors. We prove the following result.

▶ Theorem 18. There is a deterministic single-pass O(n
√

n)-space streaming algorithm that,
given a graph G on n vertices, finds a CFON coloring using at most 2

√
n colors.
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Algorithm 5 Algorithm for CFON coloring of a graph G on n vertices using 2
√

n colors.

Input: Stream of edges of G, where V (G) = [n].
Output: coloring function f : V (G) → [⌈2

√
n⌉].

1 Set V := V (G);
2 Set L(v) := ∅, for all v ∈ V (G);
3 Set i := 1;
4 Set marked[v] := false, for all v ∈ V (G) ;

/* marked[v] denotes if NG(v) has a unique colored member or not */
5 while an edge e = (u, v) arrives in the stream do
6 if v is colored then
7 marked[u] := true;
8 L(u) := ∅;

/* v is a uniquely colored vertex in NG(u). */
9 if u is colored then

10 marked[v] := true ;
11 L(v) := ∅;

/* u is a uniquely colored vertex in NG(v). */
/* Below, we update the lists L(u) and L(v) based on whether u and

v are unmarked or not. */
12 if marked[v] = false then
13 L(v) := L(v) ∪ {u} ;
14 if marked[u] = false then
15 L(u) := L(u) ∪ {v} ;
16 if v is not colored and |{w : v ∈ L(w)}| ≥

√
n then

/* Below, we color v */
17 f(v) := i;
18 i := i + 1;
19 V := V \ {v};
20 L(z) := ∅ and marked[z] := true, for all z such that v ∈ L(z);

/* v is a uniquely colored vertex in NG(z). */
21 if u is not colored and |{w : u ∈ L(w)}| ≥

√
n then

/* Below, we color u */
22 f(u) := i;
23 i := i + 1;
24 V := V \ {u};
25 L(z) := ∅ and marked[z] := true, for all z such that v ∈ L(z);

/* u is a uniquely colored vertex in NG(z). */

26 Let H = (V, E) be the hypergraph, where E = {L(v) : v ∈ V (G), marked[v] = false}.
Note that the maximum degree of any vertex in H is at most

√
n − 1. Apply the

greedy coloring algorithm given by Proposition 1 to do a CF coloring of H using
√

n

colors from the set {i + 1, . . . , i +
√

n}.
27 Output f .

Proof. The pseudocode of our algorithm is given in Algorithm 5. We explain the algorithm
here. We use V to denote the set of all so-far uncolored vertices. Initially, as all the vertices
in V (G) are uncolored, we initialize V := V (G). We “mark” a vertex v if it sees some unique
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coloring in NG(v). Initially, all the vertices are unmarked. For an unmarked vertex v, we
shall use the list L(v) to denote the set of neighbors of v that we have seen so far. From
the moment v is marked, we maintain L(v) to be an empty set as the “marked” status of v

implies it is seeing a uniquely colored vertex in its open neighborhood. When a new edge
(u, v) arrives in the stream, the algorithm executes Steps 6 to 27 which are explained below.
Note that in these steps while coloring vertices we do not use the same color twice. If u

(or v) is already colored then we mark v, (resp., u) as u (resp., v) will act as the uniquely
colored vertex in the open neighborhood of v (resp., u). As mentioned above, as soon as a
vertex is marked, its list (in this case, L(u) or L(v) or both) is reset to the empty set. These
steps are executed in Lines 6 to 11. We update the list of u (or v), if it is unmarked, in Lines
12 to 15. If v is not colored and is present in at least

√
n lists, then we assign a new color to

v. We remove it from V which maintains the set of all uncolored vertices so far. We mark
all vertices z that have v in L(z), as v will act as the uniquely colored neighbor of such a
vertex z. As mentioned before, we immediately reset L(z) to the empty set. These steps are
implemented in Lines 16 to 21. Now, in a similar fashion, if u is not colored and is present in
at least

√
n lists, we execute similar steps for the vertex u in Lines 22 to 27.

We claim that we color at most
√

n vertices in total during the various iterations of the
while loop (Lines 6 to 27). Every time we color a new vertex in Line 18 or Line 24, we
update the status of least

√
n new vertices from unmarked to marked and set their lists

to ∅. Since there are only n vertices in total and since we do not unmark a vertex that is
already marked, our claim holds. Next, we claim that every vertex that is marked sees some
color exactly once in its open neighborhood. Every time a vertex is marked in Lines 10, 21,
or 27, it has some colored vertex in its open neighborhood (see the comments below these
lines). Since no two vertices receive the same color inside the while loop, our claim holds.
To summarise, (i) we have used at most

√
n colors so far, and (ii) every marked vertex is

seeing some color exactly once in its open neighborhood.
When we exit the while loop, it is only the unmarked vertices that are yet to see a unique

color in their open neighborhood. We take care of them in Line 28. In this step, we construct
a hypergraph H whose vertex set is the set of so far uncolored vertices (maintained by V)
and whose edge set E is all the lists L(v) for which v is unmarked. In other words, E is the
set of all lists L(v) that are not empty sets. Clearly, such lists L(v) contain only uncolored
vertices (that is, vertices in V); else v would have been marked and L(v) would have been
reset to ∅. Further, for any unmarked vertex v, L(v) = NG(v) as our algorithm added every
neighbor of v into L(v) as and when they were unveiled (see Lines 13 and 15). Thus, any
conflict-free coloring of H using a set of new colors would result in every unmarked vertex
seeing a unique color in its open neighborhood in G. We claim that the maximum degree of
any vertex in H (that is, the maximum number of hyperedges any vertex in V is present in)
is at most

√
n − 1 and then use Proposition 1 to do a greedy conflict-free coloring of H using

at most
√

n new colors. We prove the claim by contradiction. Suppose there existed a vertex
v ∈ V which was present in

√
n or more hyperedges (or lists) L(w) in H. But, then such a

vertex v would satisfy the conditions of the if statement in Line 16. Line 20 would then lead
to the contradictory situation that v is not a member of V. This proves the claim.

We have thus shown that the algorithm does give a CFON coloring of G using at most
2
√

n colors. It is easy to see that it is a single-pass, deterministic algorithm. Finally, the
amount of memory required is the space required to store the lists L(u) for all u. Notice
that each time during the execution of the algorithm each vertex v is present in at most

√
n

lists. This implies that the space complexity is O(n
√

n). ◀
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