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Abstract

In certain cutting-edge applications, it is found that a weighted sum of two
x?-distributions plays an important role. It is well-known that the work on
both central and non-central x2-distributions is classical and the next obvi-
ous step for extension is the weighted sum of two y2-distributions. Although
there has been considerable theoretical work on the distribution of general
linear combinations of x?, there have been no dedicated work on either get-
ting deep insight into the distribution even in the particular case of weighted
sum of two x?-distributions or its applications. We first derive the most gen-
eral distribution of the weighted sum of two non-central x? and give some
properties. Particular cases are considered, and one important case arises
when one of the x? has 2 degrees of freedom, so that it has an exponential
distribution. We refer to the resulted weighted sum as the exponentially mod-
ified x2-distribution. Another important case is when one of the x? has large
degrees of freedom, hence approximates a normal distribution. The resulted
weighted sum is known as the exponentially modified Gaussian distribution
in the literature. We give further insight into these skew distributions and
we also consider some inference problems for these distributions. This work
is motivated by new challenges in shape analysis on how to deal with asym-
metry of bilateral shapes and we illustrate our methodology by applying it
to a shape analysis problem involving a smile data on the cleft lip patients.

AMS (2000) subject classification. Primary 62E15; 62P10; Secondary 62H10;
62H12.

Keywords and phrases. Bilateral symmetry, Cleft lip patients, Exponen-
tially modified y?-distribution, Exponentially modified Gaussian distribu-
tion, Generalized x2-distribution, Linear combination of x2-distributions.

1 Introduction
There have been several papers dealing with general linear combinations
of x?-distributions (see for example, McKay 1932, Press 1966 and Bausch
2013); also known as generalized x2-distribution. However, these papers
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lack deeper insight even in the simple case of sum of two y?-distributions.
The work for single non-central y2-distribution has been classical and well-
studied and the next natural step is to move to the weighted sum of two
x2-distributions, which we propose to do in this paper. We note that there
is an exception for a particular case of the weighted sum, when one of the
x? is approximated by a normal (for large degrees of freedom) and the other
one has 2 degrees of freedom. That is, we have the sum of a normal and an
exponential distributions which is known in the literature as the exponen-
tially modified Gaussian distribution; it has been applied in various practi-
cal applications including chemical analysis (Grushka 1972) and stochastic
frontier analysis (Kumbhakar and Lovell 2000).

Let x? with k degrees of freedom and non-centrality parameter A be
denoted by x%(\). We define our weighted sum as

Z ~ axil ()\1) + bXé()\Q), k1> 0,ko > 0,1 >0,X >0, (11)

where the two y2-distributions are independent and (a, b) can take any real
value, that is, we allow negative values of a and b, though in most of the
practical cases, a and b are positive. Further, we will write Z to be distributed
as WS((k1, k2)T, (A1, A2)T, (a,b)T), where WS stands for Weighted Sum.

As mentioned earlier, work has been done for various linear combina-
tions of x2-distributions. The particular case of two weighted central y?-
distributions with the same degrees of freedom has been given by Bausch
(2013) and we re-derive it as a particular case of our general weighted dis-
tribution.

When ko = 2 and A\, = 0 in Z, the x? is equivalent to an exponential
variable, so we call this distribution “exponentially modified x2-distribution”
and denote it by ex-x?. Furthermore, when k; is large, Xil (A1) approximates
a normal distribution, so the resulting distribution is the ex-Gaussian dis-
tribution (denoted by ex-Gaussian in this paper) as indicated before.

This work is motivated by new challenges in shape analysis/size-and-
shape analysis to deal with asymmetry of bilateral shapes (see for example
Ajmera et al. 2022, 2023, Bock and Bowman 2006 and Patel et al. 2023). In
shape analysis, the object is invariant under translation, scaling and rota-
tion (i.e., Euclidean similarity transformations), whereas in size-and-shape
analysis, the object is invariant only under translation and rotation, see
for example, Dryden and Mardia (2016). In this paper, we will work on an
example using size-and-shape analysis. Our data are landmark-based, which
means that a set of landmarks has been identified apriori for each dataset.
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Hence, each object in the data is represented by a configuration matrix X
containing the coordinates of each landmark.

In some cases, the data is registered first in order to perform any statis-
tical analysis. Figure 1 shows one way of registering the objects in size-and-
shape analysis (the Bookstein registration). There are four landmarks for a
rectangular shapes and their indices have been labeled 1,...,4. The left of
Fig. 1 shows the original configuration; the second translated figure of Fig. 1
displays the translated configuration where landmark 1 is at the origin; the
right of Fig. 1 shows the registered configuration after rotation where the
line joining landmarks 1 and 2 becomes the z-axis. The codes for example
are contained in the code chunk 1 of the R script Sankhya Chi. There are
other methods for carrying out registration, see for example, Dryden and
Mardia (2016).

An object is said to be bilateral symmetry if its left and right parts are
exactly the same with respect to some mid-line or mid-plane. For a bilateral
shape, its landmarks can be divided into two categories: paired and solo.
For the two landmarks which form a pair, they should lie on both sides of
the mid-plane. The solo landmarks are unpaired and they should lie on the
mid-plane in the symmetric case. Figure 2 shows an example of a bilaterally
symmetric shape in two-dimensions. The mid-line is the y-axis. From the
figure, for example, the landmarks 6 and 8 form a landmark pair, while
landmarks 7 and 19 are solos.

The key focus is on the asymmetry measure, ¢, (referred to in this
paper as AS = ASymmetry measure for simplicity), given in Mardia et al.
(2024a). For practical applications such as the smile data (cleft lip patients)
illustrated here, the distribution of the AS statistics is required, which under
certain assumptions is distributed as the WS distribution. The smile data is
used to illustrate how to estimate parameters and carry out one important
test of hypothesis. The test is straightforward to carry out and the result is
consistent with the medical opinion. Details are given in Section 7.

The paper is organized as following: Section 2 provides notations and sev-
eral well-known important formulae. The main distribution given in Eq. 1.1
and corresponding special cases are discussed in Section 3. The ex-? is con-
sidered in Section 4 and in Section 5, ex-Gaussian distribution is discussed.
In these sections, we give mainly their properties related to moments. In
Section 6, we provide the parameter estimations of these distributions. The
application to the cleft lip data in shape analysis is given in Section 7. We
provide some discussions in Section 8.
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2 Preliminaries

We provide here some preliminary background and well-known results with
notations which are used subsequently.

We write X ~ X% which is a chi-square distribution with degrees of
freedom (df) k£ > 0. The probability density function (pdf) of X is

1 k e
Ix(x k) = — z2 teTz, >0, (2.1)
2:T(4)

and the characteristic function of X ~ x? is given by

bx(t k) = (1 —2it)"s. (2.2)

Let X ~ x%(\) be a non-central chi-square distribution with df £ > 0 and
non-centrality parameter A\ > 0, which has the pdf

fx(zk, ) = %e‘@“)/z (i)z_; I, (\/Tx) L x>0,  (2.3)

where Ij,(z) is the modified Bessel function of first kind:

SO
I(2) = 4 : (2.4)
P TnZ:O m!T'(p+m + 1)
The characteristic function of X ~ xZ(A) is
i
exp (11—2%)
Ox(tih,N) = ————7. (2.5)
(1 —2it)=
We write the lower incomplete gamma function defined as
T
(s, x) :/ t=te7tdt, x>0 (2.6)
0
and the beta function defined as
[(z)T
B(zl,zz) = (Zl) (22), 21,22 > 0. (27)
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The other function, we will need is the confluent hypergeometric function
1F1(a; b; 2):

az ala+1)2? > (a)pz"
Filab:z) =1+ -2 = 2.
hlabi) =1+t o ; o 28

where (a), =a(a+1)---(a+r—1) and (a)g = 1. Further,

Fuab2) = F(G)FF((?_Q) /0 a1 _pt-alge  (2.9)

When z — 0 and b # —n for n € N, we have (see Section 13.5 on page 508
of Abramowitz and Stegun 1964)

1F1(a;b;2) — 1. (2.10)

Suppose X and Y are two independent random variables with pdf fx(-) and
fy () respectively. Define the sum

Z=X+Y.

Then the pdf of Z is given by the convolution formula
fz(z) = / fx(x)fy(z — x)dx, (2.11)
x

where X is the domain of X. Let ¢x(-) and ¢y (-) denote the characteristic
functions of X and Y respectively. Then the characteristic function of Z is
given by
¢z(t) = ox (t)dy (1) (2.12)

We note the following well-known results of sum Z (which can be derived
using (2.12)):

e For Z = x}, (M) + xz,(A2), we have Z ~ xi 1 (A1 + A2).

e For 7 = Xil + Xl2c27 we have Z ~ Xi1+k2‘

e For Z = x} (M) + x3,, we have Z ~ x3. . (M1).

For the standard normal distribution N(0,1), we will denote the pdf as ¢(-)
and cumulative distribution function (cdf) as ®(-).
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3 Distribution of a Weighted Sum of Two Non-Central
x2-Distributions

In this section, we first consider our general weighted sum of the random
variable

Z ~ WS((kla kZ)Tv (>‘17 >‘2)T7 (CL, b)T) =aX +10Y, (31)

where X ~ Xil()\l) and Y ~ X%Q()\Q) are independent, a, b > 0, k1, ko > 0,
A1, A2 > 0. In most of our works, df k; and ko are positive integers, but our
theorems in general are applicable for any positive ki and k.

3.1 General Weighted Sum  We now prove the following general the-
orem for the distribution of the random variable Z given by Eq. 3.1.
Theorem 3.1 Non-central case. The pdf of the weighted sum of two non-
central x2-distributions with different df

Z ~ WS((kla k2)T> ()‘17 )‘2)Ta (CL, b)T) = aXil ()‘1) + ing (>‘2)
s given by

fZ(Z;a7b)k17k27)\17)\2)
e BGHMAN) 2 NT T g\ e
T dab /Oe<m1> (b/\2>
Az Ao(z — )
it »

Further, we have the alternative form

fz(z5a,b,k1,ka, A1, A2) =

_1i(z kitky o0
SRR & s G )" B gk -
Z ™ 1P| 5 +m, m ) z

ky  kyik: k.
b2 asonzo  mnIT( ; = +m+n)

L%
a 2

where z > 0 and 1F1(+) is the confluent hypergeometric function given at
Eq. 2.8.

Proof On substituting the pdf of non-central x2-distribution given in Eq. 2.3
after scaling X and Y (using aX and bY) into the convolution formula
equation (2.11):

f2(2) = / T fx (@) (e — o), (3.4)
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Equation 3.2 follows. On substituting the series expansion of Bessel function
given in Eq. 2.4 and then changing the order of integral and summation, we
find that the density becomes

_1cz A\ (A2 .
e~ 5 (FHA1+A2) =@ i <4a> (41») / e*%%%wkl(zf@%*”*ld:p

a%l b%QZ% =0 oo mIndl (k1 /2 + m)D(k2/2 +n) Jo

(3.5)

After changing the variable x = zt, we see that the integral becomes
kq+ko 1 1 b=a 4 k1 1 ko 1
z~ 2 tmAns e 2w Ml )Ty (3.6)
0

Noting that the integral is equal to a confluent hypergeometric function in
Eq. 2.9, given by

(% +m)I(% +n) ky k1 + ko b—a
R e .
g 1 1<2 tm,——o—tmtn,——— z) (3.7)

and substituting (3.6) and (3.7) in (3.5), we obtain (3.3) and the proof of
Theorem 3.1 follows. O

Several special cases of Theorem 3.1 are given in the following corollaries,
which can be derived using equation (3.2).
Corollary 3.1.1 Central case. The pdf of the weighted sum of central x>-
distributions with equal df

Z ~ WS((k, k)", (0,0)", (a,0)") = axi + bx3,
with k, a, b > 0 and a # b, is given by

, (Y at+b | k= 1k la — b|
fz(z;a,b,k) = (ab);Zggl"(k)exp{ z} z 2 (la—1]) I% (Wz) , (3.8)

where z > 0.

Proof When k; = ky = k and by using the pdf of central y?-distribution in
the convolution formula in Egs. 2.11, 3.2 becomes

e : z (1 1 . K
fZ(Z;a,b,k):Wkr‘(g)z/o eXp{—Q (a—b>}$2 1(2:-%)2 ldﬂf.
(3.9)
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After changing the variable x = zt, the integral becomes

ZF1 /1 exp b @t tg_l(l - t)g_ldt (3.10)
0 2ab ' '

It can be seen the above integral is equal to the confluent hypergeometric
function in Eq. 2.9, so we have

ky2 “—
Fr((Qk)) 1Py <§;k; 2abbz) ) (3.11)

Substituting the Kummer’s second transform (see Section 13.6 on page 509
of Abramowitz and Stegun 1964):

ko a—b a—b \fa—=b\ 7 [1+k a—b
F —kr— = I'(—— | [x2
! 1<2’ " 2ab Z> eXp{4ab Z}(&Lb Z) ( 2 ) 2<4ab Z>
(3.12)
into (3.9) and using (3.10) and (3.11), the result follows. 0
Corollary 3.1.2 Central case. The pdf of the weighted sum of central x>-

distributions with different df

Z ~ WS((k1,k2)",(0,0)7, (a, b)) = axi, + bxi,,

with k1, ko, a, b >0 and a # b, is given by

kze - 1F1<k1;k1+k2;a_bz>,z>0.

kyi+ko
—5—=-1

fZ(z;a7b7k17k72): -
(2a)

w‘j S

(3.13)
Proof When k; # ko and by using the pdf of central y2-distribution in the
convolution formula in Egs. 2.11, 3.2 becomes

e 25 z z /(1 1 k1 ka
fz(za,b,k1,ka) = TR TES () /0 GXP{—5 (E - g)}m 2 " l(z—2)7 lda
(3.14)
on changing the variable x = zt in the integral and using the confluent
hypergeometric function given in Eq. 2.9, the result follows. O

Corollary 3.1.3 Mixzed case. The pdf of the weighted sum of one central
and one non-central x2-distributions with different df

Z ~ WS((k1,k2)", (N, 007, (a,0)") = axi, (N) + bxZ,,
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with X\, k1, ka, a, b >0 and a # b, is given by

)m k1+k2 +m—1

) exp{ }
fZ(Z7aab7k17k27)‘)_ 2k1-;k2 kl 2 Z m! !

= F k1+k2 +m)

kl k1+k2 b—a
Fi | = — 1
1 ( 92 +m, 9 +m> 2ab Z) ) (3 5)

where z > 0.

Proof By using the convolution formula in Eq. 2.11 with one central and
another non-central pdf, we can write (3.2) directly as

ex _ 2 _ A z v ©
fz(za,0, k1, ko, N) = — p{l 22l / e 3G )pd T3y
2%+, zb7)\**§1“(’i22) 0

(\/);Tl) (z fx)%?_ldx. (3.16)

By using the series expansion of Bessel function I,(z) given in Eq. 2.4 and
changing the order of summation and integration, we obtain

eXp{_%(%"i‘/\)} i (ﬁ)m /Ze QQZ x2+m 1( a})%_ld{ﬂ.
2% syt aymil )

(k) FpE Sy mID(Y +m
(3.17)
Again, on changing the variable: x = zt and using the confluent hypergeo-
metric function given in Eq. 2.9, the result follows. a

The first two moments of random variable Z given by Eq. 3.1 can be shown
to be the following:

E{Z} = a(lﬁ + /\1) + b(kz + /\2), Var{Z} = 2a2(k1 + 2)\1) + 2()2(]{2 + 2)\2).
(3.18)

These moments are used later in the moment estimators for this distribution.

4 Ex-x? Distribution
In this section and the following Section 5, we will assume that ko = 2 for df
and the non-centrality parameter Ao = 0 in Z, so that the second variable in
this weighted sum is as an exponential distribution written as Exzp(c) with
the pdf given by
flx;e) =ce ™, >0, ¢c>0, (4.1)
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which in the case of x3, ¢ = %, but we will use a general ¢. We will denote
the pdf of Exp(c) given by Eq. 4.1 as ((+;¢).

In this section, we consider the following ex-x? random variable defined
by:

Z ~ex-x2(k, \ ¢, (a,0)1) = ax3(\) + bEzp(c), (4.2)
where a, b, k and ¢ > 0. We will use ex-x%(k, A, ¢, (a,b)T) as an abbreviation
for ex-x? distribution.

We start from the case where A =0 in Z.
Theorem 4.1 Central case. The pdf of the weighted sum of the central
case
Z ~ ex-x*(k,0,¢c, (a,b)) = ax? + bExp(c)

s given by

1. fore< £

2a’

(%) 2'\2a b
(4.3)
2. for ¢ > 2%,
2 (i)g c k k c
bk, c)= —~2a (7>F LIS B
fZ(Z,CL, 3 )C) kl—\(%)c Zab 1 1(272+ 7<b 2a>2>72>07
(4.4)
where ((+;¢) is the pdf of Exp(c).
Proof The convolution formula given in Eq. 2.11 becomes
ce”v? S 1.
fz(za,b,k,¢c) = k/ e le=(at)egy (4.5)
(2a)2T(£)b Jo
c < %: by changing the variable: v = (z—la — %) x, we see that the above

integral is the same as the lower incomplete gamma function defined in
Eq. 2.6 and is given as

G3) PGGD) e

We substitute (4.6) into (4.5) and the result follows.
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c> %: we use the integral identity quoted in Section 3.38, page 318, of

Gradshteyn and Ryzhik (1980):
/ 2w — )P e = B, v)ur T F (v, g4 v, fu), (4.7)
0

where B(-) is the beta function given in Eq. 2.7. Thus, the integral becomes

k k k c 1
B (1, 2) 1F1 (2, 5 + 1, (b - 2(1) Z) (48)
O

By substituting (4.8) into (4.5), the result follows.

Next, we consider the case where A > 0 in Z.
Theorem 4.2 Non-central case. The pdf for the weighted sum of the non-

central case
Z ~ ex-x*(k, A, ¢, (a,0)") = axj(A) + bEzp(c)

s given by
b
e when a < o,
k Ab m
A b 2 e\ = (5p25ag) k b— 2ac
a,bk,\) = £ lad .
folsabkn =3 (=) C<Z’b)§0mlr(g+m)7(z m, )
(4.9)
b
e when a > 3,
A/2ZN\E e\ = (%)mlFl (§+m,§+m+1, 222;b2>
fazab kN =e2 (=) ¢(=57) 2 ; :
2a b ——0 m!F(§+m+1)
(4.10)

where z > 0 in the above two equations and ((-;¢) is the pdf of Exp(c).

Proof The convolution integral given in Eq. 2.11 becomes

z;a,b,k,/\ = E 1 E_1
fa( ) 2012172 Jo
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By using the series expansion of I,(z) given in Eq. 2.4, we obtain
Tl A
A\m z
LAY oy G [t tan )
2V a A= mIl(5 +m) Jo

When a < 2%, by using the following integral identity in Section 3.38, page
317, of Gradshteyn and Ryzhik (1980) which is given as

/ e M dr = (v, pu), (4.13)
0

where 7(-) is the lower incomplete gamma function given in Eq. 2.6. Hence,
the integral given in Eq. 4.12 becomes

b— 2ac —(5+m) k b— 2ac
— —_ 4.14
< 2ab ) 7(2””’ 2ab Z) (4.14)

Substituting equation (4.12) and (4.14) into (4.11), the result follows.
When a > %, using (4.7), the integral given in Eq. 4.12 becomes

k el k k 2ac — b
= ERROY I = 1, 2. 4.1
<2+m> zz Y 1<2—|—m,2+m+ Y z) (4.15)

Substituting equation (4.12) and (4.15) into (4.11), the result follows. O

Corollary 4.2.1 Non-central case. The pdf of the weighted sum of x3(\)
and x3 = Exp(3)

1 1
7 ~ ex-x* <2, A, 3 (a, b)T> =ax3(\) + bExp <2>

s given by

e when a < b,

e_%g(z 2) b—a
. — 1 .
fz(z;a,b,0) . E 2 v (m+1, T R > 0;
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o when a > b,

A
ik h) & G a—b
fz(z;a,b,A) = % mzz:o (m!)z(erl)lFl <m+1,m+2,mz), z >0,
(4.17)

where ((+; ¢) is the pdf of Exp(c).
Proof By substituting £k = 2 and ¢ = % in Egs. 4.9 and 4.10, the results
follow. O

Remark 1 Note that the proof depends on a < % or a > 2% for both central
and non-central cases, which is due to the Exp(c) and the weights.. Further,
it is easier to derive the distribution of Z directly in the particular case of
A = 0 as we have done in Theorem 4.1 rather than obtaining it as a corollary
of Theorem 4.2 with A > 0.

The first two moments of random variable Z given by Eq. 4.2 can be
shown to be the following:

E{Z} :a(k—l—/\)—i-g, var{Z} —2a2(k+2)\)—|—iz. (4.18)

These moments are used later in the moment estimators for this distribution.

5 Ex-Gaussian Distribution

In this section, we consider a particular case of the ex-x? defined in Eq. 4.2
with df & — oo. It is well known that as k — oo, the x7(\) can be approxi-
mated by

N(k+ X 2(k+2N)).

Hence, the random variable is given by

Z ~ exG(p, 0%, ¢, (a, b)T) = aN(u,0%) +bExp(c), a >0, b>0, ¢ >0,

(5.1)
which is the weighted sum of a normal and an exponential distribution
and known as the ex-Gaussian distribution, which we have denoted by
exG(u, 0%, ¢, (a,b)T). Note that here we have got one normal variable with
range (—00,0), whereas for the exponential part, the variable has domain
(0,00). Hence, there is a choice we could use for the convolution formula
obtained from Eq. 2.11 by interchanging X and Y and substituting in the
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proper domain for X in two ways as follows, namely for the normal integra-
tion part (X with Z = X +Y') we have in the convolution formula is

fo2)= [ " fx(@)fr (- m)d, (5.2)

whereas for the exponential integration part (Y') we have in the convolution
formula is

f2(z) = / T iz -9 i)y, (5.3)

For Eq. 5.3, note that since the exponential random variable Y is always
positive, so the lower limit of the convolution integral for this case is 0.
Further, the normal random variable can be negative, hence it is possible
that Z <Y, so Y is not bounded above (unlike the normal random variable
X which is bounded above by Z). Consequently, the upper limit of the
integral in Eq. 5.3 is co.

Theorem 5.1 The pdf of the weighted sum of normal and exponential ran-
dom variables

Z ~ exG(p, 0%, ¢, (a,b)") = aN(n, %) + bExp(c)

s given by
2.2 2
‘ o\ c cfa’o c V2(z — )
fZ(Z,G,b,C,/,L,U)—eXp{bGM+ 2b2 }<<Z7b>@< ﬁ ) ZER,
(5.4)
where ((+;¢) is the pdf of Exp(c) and
ca’o?
a = ap + b 8 = V2a202.

Proof Using the convolution formula given in Eq. 2.11, we have

oy e 7 (z — (ap + “57))*
fZ(Z;CL,b,C,ILL,O' )OC@ b €xXp § — dx

2,2
oo 2a°0

xe v d <\/§(Zﬂ_a)> : (5.5)
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(3020'2

z—(apt=57)

lafo

where we have changed the variable: t = in the first expression

and let
2

2
a=au+ Caba . 8= 24202 (5.6)

in the second expression.
By integrating over (5.5), the normalizing constant is

C e C + 02020'2
€ o d Cqpyr CVO°
b TPV T T2

and the result hence follows from Eq. 5.5. O
The following corollary is a special case of Theorem 5.1 and can be derived
easily from Eq. 5.4.

Corollary 5.1.1 The pdf of the weighted sum of normal and x3 distributions

1 1
Z ~ exG (,u, o?, 3 (a, b)T> =aN(u,0?) + bEzp <2> =aN(u,0?) + bx3a

s given by
2 2
. 2N e d T an) (1Y g (V2(—0)
fZ(Z7a/7b7l’L7O-)eXp{8b2 +2b}<<zvzb>®< ﬂ 7Z€R7
(5.7)

where ((+;¢) is the pdf of Exp(c) and

a’o?

a=ap+ T B = V202a?.

In the following theorem, we consider the negative ex-Gaussian distribu-
tion, which has b < 0, —|b| < 0.
Theorem 5.2 When b < 0, the pdf of negative ex-Gaussian distribution

4~ 6ZCG(,M, 027 Cy (CL, _’b|)T) = (IN(/,L, 02) - ‘b‘Ewp(C)

s given by
222 o \/i(z o O/)
Cab 2y _ € a*o®c®  c(z —ap) o '
fZ(Z7a’7 7”70- ) |b‘ exp{ 2b2 + |b| ,B (5 8)
where

a’o?
o =ap— M, B =V202a?,
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Proof Since Y ~ Exp(c), thus for b < 0, the pdf of bY is

Fy(y;b) = =¥y < 0,

0]

In this case, we use the convolution formula given in Eq. 2.11 so that

cGow [0 v — (2 — ap + 45)?
fa(z:a,b,1,0%) e T >/ eXp{_ . dy

2,2
—oo 2a°0

2 .2

c(z—ap a —agc

O<€<|b‘;>¢) B — (ap \I)
lalo

NpECT <_ﬂ<2ﬂ—a’)> , (5.9)

a252c

Yy— (Z al"/“r |b]
lalo

and have set o/ = ap — “2“;‘26, 8 = v202a? in the third expression.

By integrating over the last step of Eq. 5.9, the normalizing constant is

where we have changed the variable: ¢t = in the first integral

and hence, the result follows from Eq. 5.9. a

We note that the negative ex-Gaussian has been derived in Carr et al.
(2009) using a different method. Carr et al. (2009) uses this distribution for
modeling the option prices. We have drawn several plots of the two densities:
ex-x? and ex-Gaussian and both are skewed distribution which have been
already noted in previous papers.

The first three moments of random variable Z given by Eq. 5.1 can be
shown to be the following.

2(3)°

b
B2} = el2) = G

(5.10)

N

Note that the skewness coefficient 31 in Eq. 5.10 is always positive for this
distribution. These moments are used later for moment estimators for this
distribution.
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6 Estimation

6.1 Parameter Estimation for Weighted Sum of two x?-Distributions
Recall the random variable Z defined in Eq. 1.1:

Z ~ WS((kl’ kQ)Tv ()‘17 )‘Q)Tv (a’v b)T) = aXIqu ()‘1) + bXIZi'Q ()‘2)7

with ¢ and b known and inference should be provided on A1 and A;. We
give below first the method of moment (MoM) estimates (which are easy to
compute) and then give some methods on how to compute maximum likeli-
hood estimate (MLE) numerically since the maximum likelihood equations
are analytically intractable.

6.1.1 Moment Estimates. Let z1,---,z, denote a sample of Z ~
WS((k1, k2)T, (A1, A2)T, (a,b)T). Let z denote the sample mean and s?
denote the sample variance. By using the moments given in Eq. 3.18, the
MoM equations are

z=a(ky + 1) + bk + \2), 8% =2a%(k1 +2\1) + 2% (ko 4+ 2)2).
By solving the above two equations, we have

< 4bz—s2 — (dab—2a%)ky — 26%ky . Z—a(ky + Ay) — by
A = Ao = ; .

Nl
4ab — 4a? (6.1)

Now, let wuj,---,u, be independently normally distributed such that
wj ~ N(p;,0%) fori=1,... ky, and let ug, 11, , Uk, 11, be independently
normally distributed such that w; ~ N(u;,03) for i = ki + 1,..., k1 + ko.
Thus, we can show that

k1 w2 k1 k1+k2 u2 k1+k2
Lo 00 = 3w ahd, (0 Y Sead,00) = 3 b~ odid, (),
i=1 "1 i=1 i=ki4+1 2 i=ky+1
with
k1 Mg ki+ka o
AL = 5, Ao = E —5 (6.2)
i=1 1 i=ki+1 2
Hence,
k1+ko
2 2.2 2.2
E ui ~ 07Xk, (A1) + 03X%, (A2), (6.3)

=1
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where a = 0? and b = 03. The estimates of A\; and Ay can be derived by

plugging in the estimates of o7, o5 and p;, for i = 1,... k1 + ko:
. 1 /12 A k1+k2 [Lg
M=> =) S (6.4)
i—1 1 imki+1 02

The advantage of this method over the MoM given in Eq. 6.1 is that esti-
mates of A\; and Ay cannot be negative. Further, the estimates of o7 and o3
can be obtained as the following:

1. Subtract the sample means ji; from realizations of u;, for i = 1,... &k
and ¢ = k1+1,..., k1 + ko separately. Then stack the observations into
a long vector.

2. Compute sample variance on this stacked vector.

This method is applicable since the random variable Z has been derived
originally from the matrix normal distribution, so the estimates of non-
centrality parameters can be obtained by estimating the parameters of the
normal distribution. Since this method of moment estimation uses different
types of moments comparing with Eq. 6.1, so we will call these estimates
hybrid moment estimates.

Similarly, for the ex-y? random variable given in Eq. 4.2

7 ~ eX—XQ(k, A ¢ (a, b)T) = axi()\) + bExp(c),

where a and b are known, the MoM equations by using (4.18) are

b b?
Eza(k—i-)\)—i-g, 32:2a2(k+2>\)+c—2.

By solving these two equations, we have

4ab + /16a2b? — 4b2(4az — s2 — 2a2k)
2(4az — s% — 2a’%k)

é(z — ak) — b

ac

é: 75\:

(6.5)

Note that there are two roots and depending on the data, an appropriate
root can be selected in general. We do not use the moment estimates in our
illustration in Section 7.2.2 since we could compute the MLEs.
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6.1.2 MLE. We can write the MLE equations for the parameters,
but the solutions are not in closed form. However, we can estimate these
parameters in practical examples using simulated annealing (SA) algorithm
as described in Section 7.2.2.

6.2 Parameter Estimation for ex-Gaussian We will consider below two
parameter estimation approaches — MoM and MLE — for the ex-Gaussian
distribution. Let zq,...,z, be a sample of random variable Z defined in
Eq. 5.1

Z ~ exG(u, 02, ¢, (a,0)7) = aN(u, 0%) + bExp(c)
with sample mean z and sample variance s?, where a and b are given.

6.2.1 MoM. Using (5.10), we find that the MoM equations to estimate
the parameters (i, o2, c) are

b 2 _ 2.2 b2 2(%>3

= @1 ()} Dok (6.6)

MY

where Z is the sample mean, s? is the sample variance and b, is the sample
skewness coeflicient

% Z?:l(zi - 5)3

b =
R

(6.7)

~ For glven a and b, it can be shown that the moment estimates [L, 62 and
¢ of u, 02 and c are given by (see, for example, Dyson 1998)

() -3 () -2 e

However, in our illustration in Section 7.2.2, we will be using only MLE.
6.2.2 MLE. We rewrite the pdf of the ex-Gaussian distribution as
follows:

2.2 2
' o C c cla’o® ez V2(z — a)
fz(z,a,b,c,u,a)—bexp{ba,u,—i— 552 b}¢><ﬂ , 2z €R,
(6.9)

=

where ®(-) is the cdf of N(0,1) and

25

a=ap+ —— «“ = V2a?02.
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Suppose a and b are known as before and the aim is to estimate MLE of p,
o2 and c. It can be seen that the log-likelihood is

¢ (¢ cca’o? ez " V2(z — a)
((p,0%,¢) =nlog -+ <au + — > +) log® <> .

(6.10)
Recall that

x

o) = [ el o) = pla) = ——e %,

where ¢(-) is the pdf of N(0,1). Hence, the MLE for (u, 0%, ¢) are the
solutions of the following equations

e
8[L b i1 (I)(\/i(«z—a)) -

8€(u, 0'2’0) . na2c? nop <\/§(%—a)> ac, o _1  Z—al, o —2 0
do? 22 _;¢)<\/§(z§—a)> [Qb( ) 2a (%) ]_ ’

V2(zi—a)\ Va2o2
o(p,0%,¢) n  nap  ncato? "Lz 90( B ) b
B A SRR P P Sy prewy B
(6.11)

It can be seen that there is no closed solution and these equations can only
be solved numerically. We will use SA in our practical application since it is a
reliable modern approach and details are in Section 7.2.2. Alternatively, one
can use the older numerical methods such as quantile maximum likelihood
method as done in Brown and Heathcote (2003) to compute the MLE.

7 Application to Shape Analysis

7.1 Bilateral Symmetry  Recall from Section 1 that shape analysis
deals with shapes of objects when the effects of translation, scaling and
rotation are filtered out (see, for example, Dryden and Mardia 2016). An
object is defined by a set of landmarks on which the samples are taken. Here,
we focus on bilateral symmetry of objects (Mardia et al. 2000). An object in
two or three dimensions is said to be bilaterally symmetric if its mirror image
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about some line, in two dimensions, or some plane, in three dimensions, is
the same as the original form after relabeling paired (see below) landmarks.
This mirroring locus will, in general, be called the mid-plane (Mardia et al.
2000). The same discussion applies for size-and-shape analysis, which is our
focus in the application.

Further, in a population with perfect bilateral symmetry, we have two
types of landmarks. Some are paired and they do not lie on the mid-plane,
but appear separately on left and right sides. Additional landmarks must lie
exactly on the mid-plane; they are unpaired/solos. Let there be Kp land-
mark pairs (so there are in total 2Kp landmarks) and Kg solos, so the
total landmarks are K = 2Kp + Kg. Let X € RE*M denote the random
“configuration matrix” for an object with K landmarks in M dimensions,
with X[k, m| for the coordinate m of landmark k, where k = 1,..., K and
m=1,..., M. We write the coordinate vector of landmark k as X[k, ]. Let
(kr,kgr) denote the indices for a typical landmark pair and kg the index
for a solo, where kz, € {k : landmark k is on the left side of mid-plane} and
similar for kg, ks € {k : landmark k is solo}.

Let vec(-) denote the matrix vectorization operator: vec(X) € REM is
the vector with length KM obtained by stacking columns of X together.

We assume that
vec(X) ~ N(vec(p), X), (7.1)

where p = E{X} € REXM is the mean configuration. ¥ € REMXEM g
the covariance matrix. For simplicity, we assume ¥ = o?Ig s, where I s
is the KM x KM identity matrix. In other words, we assume an isotropic
Gaussian distribution over the landmarks. Note that we are using the same
o2 notation for different underlying distribution, but it will be clear from
the context which o2 is meant.

Mardia et al. (2024a) have introduced a measure of asymmetry (AS) of
bilateral objects defined by

M
AS= " N d(kr, kr),m]” + > dl(ks)], (7.2)
ks

(kr,kr) m=1

where in the paper AS is written as ¢r,(d) and d € RMEr+EKs g hased
on X as follows. Let d[(kr, kgr), m| and d[(kg)] denote the components in d
corresponding to paired landmarks and solos respectively then d’s are given
by the following in terms of X'’s

d{(kr,kr),1] = X[k, 1] + X[kgr, 1]
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d[(kL,kR),m] = X[k:L,m] — X[kp“m], m = 2, ve ,M
d|(ks)] = Xks, 1]. (73)

We now give two simple examples defining X’s and d’s in M = 2 dimensions
with Kp = 2 landmark pairs and Kg = 0 solo. The configuration matrices
for the two examples are taken as

X, 17 —4.33 0 Xo[1, F —4.66 0
v - | X2 T | 433 0 . — | %22, 71 | 466 0
PTIX3,17 )| 433 384 2T [ X3, )T T | 6.55 3.01
X4, 1F —4.33 3.84 Xo[4, 17 —4.79 2.24

(7.4)

These configurations are displayed in the Fig. 3 with their reflection;
the landmark pairs are (1,2) and (3,4). The mid-line is the y-axis. The
configurations X7 and Xs are shown in the left and right figures in the top
row of Fig. 3 respectively, whereas the bottom row of Fig. 3 show their
corresponding reflections Xfeﬂ) and X;reﬂ), where the left is for X; and
X {reﬁ) and right is for X5 and Xéreﬂ). Note that X is bilaterally symmetric,
with d = 0. Table 1 gives the M Kp + Kg = 4 elements of the vector d for
Xs. The two elements for the landmark pair (1, 2) are listed first, followed
by the landmark pair (3, 4). Notice that the elements of d corresponding to
landmarks 1 and 2 are 0, since these two landmarks are equally spaced on
both sides of the mid-line y-axis. However, for the second configuration, the
values of the d’s are non-zero. Using the values in Table 1, we can compute
the value of AS defined in Eq. 7.2 as

AS =1.76% + 0.77% = 3.69.

This value of AS quantifies the departure from symmetry. The codes for the
symmetric and asymmetric examples are contained in the code chunks 2 and
3 respectively of the R script Sankhya Chi.

Since the d’s given by Eq. 7.3 are linear functions of X’s and the X’s
are normally distributed, hence, under the assumption (7.1), d’s are also
normally distributed. Therefore, Eq. 7.2 is a sum of two quadratic functions
in normal variables, namely

M
ASy = Y Y dl(kp,kg),m]* and ASy = " d|(ks)]*, (7.5)
ks

(kpkr) m=1



ON THE DISTRIBUTION OF WEIGHTED SUM OF TWO CHI-SQUARES. . .

I0JD0A 9INYRIJ AIRUOUID[O ISLM-D)RUIPIOOD S} 9JRIJSN[[T 0} IOPIO Ul ‘AoArdodsor
(sour] pejjop ur) Em:wvm pue Am&w X Ssuoroapgel AoAryoadsel oY) Yim 19730807 (soul] prjos ur) s1oelqo [eursio
O} MOUS MOI WO0)30(q O3 Ul SoIn3y JYSLI pur 3Jo] oY, ‘A[oArgoadsor ¢y Tetoje[npenb onjowrwdse o) pue Ty
9[8URDOI OLIPPWIWIAS 9} JO SUOIJRINSHYUOD [RULSLIO o[} MOYs MOI dOj oY} Ul $oIndy JYSLI pue Po[ oY, :¢ 9In3Iq

X 4 [0) 3
A <

o5
o




K. V. Mardia and X. Wu

Table 1: Elements of the absolute elementary feature vector d € R* for X,
with K = 4 landmarks in M = 2 dimensions

Landmark Coordinate Feature of d value of d
Indices Axis

Pair 1 d[(1,2),1] = Xo[1,1] + X2[2, 1] 0

(1,2)

Pair 2 d[(1,2),2] = X3[1,2] — X5[2,2] 0

(1,2)

Pair 1 d[(3,4),1] = X2[3,1] + X2[4,1] 1.76

(3,4)

Pair 2 d[(3,4),2] = X2[3,2] — X[4, 2] 0.77

(3,4)

so we can write (7.2) as AS = AS; + ASs, that is, we have
AS ~ WS((k1, k2)T, (A1, A2)T, (202, 02)T) = 20%X7, (M) + 0xE, (N2), (7.6)

where A1 and Ao are the two non-centrality parameters corresponding to
landmark pairs and solos respectively:

A = (u[kL71]+u‘[kR71])2+(P‘[kL72]7”[kR»2D2+'“+(P‘[kL7M]7”[kRaM])2
1= >

202
(kr.kR) 7

x =y Wl DT (7.7)

ks g
Hence, it can be seen that Eq. 7.6 has the structure of our main distributional
assumption given in Eq. 1.1 with a = 202, b = 0. Note that df for the first
x? distribution is k; = M Kp and for the second one is ko = Kg. Further,
we introduce a direct measure of asymmetry AS, for the mean shape p as

AS, = 2)\0% + Ao (7.8)

For completeness, we note the following moments which can be deduced
from Eq. 3.18:

E{AS} = 207 (k1 + A1) + 07 (k2 + A2), var{AS} = 80" (k1 + 2\1) + 20 (k2 + 2)2), (7.9)

The methods of moments for estimating A; and Ay have already been
given in Section 6.1, Egs. 6.1 (MoM estimates) and 6.4 (hybrid estimates).
For hybrid estimates, we have k; = M Kp and ko = Kg. The u’s in Eq. 6.3
are the d’s which are given in Eq. 7.3, and 07 = 202 and 03 = 0. The i’s
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in Eq. 6.4 are obtained by plugging estimate fi of mean shape p in Eq. 7.7.
The procedures for estimating o2 are given at the end of Section 6.1.

Suppose we have two groups (g1 and g2) of data and would like to test
whether there are differences in asymmetry between the two groups. We note
that the asymmetries are measured through the A\; and A5, as can be seen in
AS,, given by Eq. 7.8, so the test can be based on statistics corresponding
to )\1 and )\2.

Let o; , A{" and AJ' denote the variance of isotropic Gaussian distribution
and two non-centrality parameters for group g;, ¢ = 1,2. We assume that
o; can be estimated separately from A{" and X" and can take o7 as known
by plugging in its estimates. We are interested in testing whether significant

differences exist among the non-centrality parameters of the two groups:
Ho: X' = AP vs Hy - N # NP, i=1,2,

where i = 1,2. We employ a simple test as follows. The test statistic is
chosen simply as difference between \; for the two groups:

dy, = [N = X\?|, i =1,2, (7.10)

where 5\;‘71 is the estimate of \Y" using equation (6.1) or (6.4), similarly for
A,

We use the permutation test to estimate the p-value corresponding to
the test statistic given by Eq. 7.10. In each iteration, we resample from the
pooled data of configuration matrices for the two groups, then we compute
moment estimates j\flb and 5\% using (6.1) or (6.4), where b = 1,...,B
is the index for iteration. We use B = 10000. The p-value is estimated
by comparing the observed test statistic with the quantile of test statistic
computed on resampled data. We will see below that for this case, there is
only one non-centrality parameter of interest. Under this assumption, it is
simpler to use this particular test statistics rather than using the likelihood-
ratio test.

7.2 Application to the Smile Data Mardia et al. (2024a) have intro-
duced the smile data arising from the problem of measuring asymmetry
after the cleft lip surgery. The data consists of three time frames and for
illustrative purpose, we use here the first frame of the data. The details of
the data are given in the paper but the point to note is the data has been
pre-registered so that the effect of translation, scale and rotation has been
removed, so the configuration matrix is an Euclidean random matrix.
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Our main selected data is the cleft lip data which is 3-dimensional
(M = 3) with sample size = 13 and there are 24 landmarks (K = 24).
For simplicity, we refer to it as Datal. We have also used similar data for
control subjects with sample size = 12 and refer to it as control data or
Data2. Figure 4 shows the location of the landmarks in 2-dimension over
the lip. Among these 24 landmarks, there are Kp = 11 landmark pairs and
K¢ = 2 solo landmarks. Table 2 shows the indices for landmark pairs and
solos from Fig. 4. The scale of the data is in mm.

Hence, the df for the two y2-distributions in weighted sum AS given in
Eq. 7.6 are k1 = 33 and ks = 2 respectively and here

AS ~ WS((33,2)T, (A1, \2)T, (20%,02)T) = 20%x25(\1) + 0%x3(Na). (7.11)

In Section 7.2.1 below we first use the inference under normality, includ-
ing estimation and testing, and in Section 7.2.2 the ex-y? and ex-Gaussian
models are fitted. We then give the comparison.

7.2.1 Inference under Matrix Normality. In this section, we will use
the random matrix normality of the configurations when needed, though our
main focus will be directly on the measure of asymmetry AS.

Estimation Let zq,--- , 2z, be the observed AS realizations of cleft or con-
trol subjects, where AS is defined in Eq. 7.2 and n = 13 for cleft and n = 12
for control. Two different estimators given in Eqs. 6.1 and 6.4 respectively,
where Eq. 6.1 gives the MoM estimators and Eq. 6.4 gives the hybrid esti-
mators, are used to estimate A\; and \o. However, o2 is estimated using the
same method given at the end of Section 6.1.1.

We first use the MoM equations given in Eq. 6.1. The values of the
moment estimates A; and Ay are shown in Table 3, together with sample
mean Z and sample variance s?. The MoM estimates of A\; and A\ given
in Table 3 are both negative, though a priori non-centrality parameters are
non-negative. Thus, these estimates are inadequate for this data.

Then, we use the hybrid moment estimators given in Eq. 6.4 to esti-
mate A\; and A,. Further, the estimates fi is obtained simply by taking the
arithmetic mean of sample configuration matrices from each group, as our
data has been pre-registered. We find that the hybrid moment estimates Ao
are negligible in both cases relative to A1, thus we set Ay = 0. Hence, the
random variable AS given in Eq. 7.6 is now simply

AS ~ WS((33,2)T, (\1,0)T, (202, 63T = 202x2,(\1) + 023
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Table 2: Indices of landmark pairs and solos in Fig. 4 on the lip

Landmark notation Indices

pair (kr,kR) (1,13), (2,12), (3, 11), (4,10), (5,9), (6,8), (20,18),
(21,17), (22,16),
(23,15), (24,14)

ks 7,19

In this case, the moments from Eq. 3.18 become:
E{AS} = 202(ky + A1) + 02ka, var{AS} = 8c*(ky + 2)\1) + 20%k,. (7.12)

The estimates of A\; and o2 are given in Table 4. We do not report the
likelihood values since the likelihood function is not involved in these hybrid
estimates. The estimate &2 for cleft lip data is larger than control data,
which indicates that there is more variation in the cleft lip data. Further,
recall that AS is a measure of asymmetry and E{AS} and var{AS} are larger
for cleft group from Table 4, indicating that cleft lip has more asymmetry in
mean as well as there is more variability, which matches the medical opinion.

By plugging in the estimates of A\; and o2 in Eq. 7.12, the mean and
variance of AS are computed and reported in Table 4. We also give the
density plots of AS in both cases. To plot these, we have used the convpow
function in R to compute the convoluted pdf of AS given by Eq. 7.6. Figure 5
shows the plot for pdf of AS for both cleft and control subjects. From the
figure, it can be seen visually that their means are well-separated and there
is more variation for cleft lip data. It also indicates that both distributions
are approximately normal.

Two-sample Test for Asymmetry We now test for differences between
the asymmetry measures for the cleft lip data (Datal) and control data
(Data2) using the method described in Section 7.1. Since the parameter A\,

Table 3: Sample mean and variance of AS of subjects from the smile data,
together with the moment estimates of A; and Ay by using (6.1)

z 52 A Ao
Cleft 45.47 483.83 —0.29 —65.64
Control 19.89 211.19 —-0.44 —-63.26

The first row is for Datal and the second row is for Data2
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Table 4: Estimations of A; and 62 for the smile data (Datal: cleft lip, Data2:
control) using hybrid estimators given in Eq. 6.4, MLEs for ex-x? model and
ex-Gaussian model, k&1 = 33 and ko = 2 in Eq. 7.6

A 52 E{AS}  var{AS} log-likelihood  AS,,
Hybrid Moment Estimator:
Cleft 0.034 28.03  1907.95 210990 NA 1.91
Control  0.94 5.15 359.88 7506.93 NA 9.68
ex-x2:
Cleft 0.58 0.66 45.65 120.78 -72.21 0.77
Control  0.23 0.28 19.17 21.30 —74.58 0.13
ex-Gaussian:
Cleft 0.48 0.75 51.72 155.07 ~74.03 0.72
Control  0.51 0.35 24.16 33.83 ~75.58 0.36

is taken to be 0 as described above, the parameter A\; is of interested so our
test statistics is simply a single statistics given by

dy, = A9 — AZ| (7.13)

where the superscript g1 is for Datal and g¢o is for Data2. Our 5\‘1’1 and 5\‘172
are estimated using (6.4) by first estimating o2 for each data separately from
A1 and then plugging in the estimates 62 into (6.4) for o2 for each case to
compute estimates 5\1 of A1. It is found that in our case dy, = 0.90. Using
the permutation test, the p-value is found to be 0.001. Hence, we conclude
that there are significant differences between cleft lip data and control data
based on this statistics, which matches medical opinion.

The codes for computing MoM estimators given in Eq. 6.1 and the hybrid
estimators given in Eq. 6.4 are contained in the code chunk 3 in the R script
Sankhya Chi Inf, together with carrying out the permutation test. The
codes for computing the AS measures for cleft and control subjects are in
code chunk 2 of the script.

7.2.2 Inference under Ex-x? and Ez-Gaussian Models. We now give
the MLE for ex-y? and ex-Gaussian models using only observed values of AS.
In the following, again, we will take Ao = 0 so there are only two parameters
to be estimated: A\; and o2.

Ex-x? Model We now assume the following model from Eq. 4.2

1 1
AS ~ exx? (kl, M, 5 (207, UQ)T) = 20232, (M) + o2 Eap (5) = 2022, (M) + 023,



K.V. Mardia and X. Wu
Distribution of AS

ér | n —— control
> _|
e g
° S

o J P4 s ’ h N s ~

o e S~ o

S 4 J--

S | | | | | |

0 1000 2000 3000 4000 5000
Z

Figure 5: Plot of pdf for AS for cleft and control subjects from the cleft lip
data. The solid line shows the pdf for control data while the dashed line is
for cleft data

where k; = 33, and obtain the MLE of parameters A; and o2. As mentioned
in Section 6.1.2, the MLE solutions can be obtained via SA using the pdf
of AS given in Theorem 4.2. The function convpow in R is used to evaluate
the likelihood. We use the proposal densities for cleft as U(0,2) for A; and
U(0,10) for o2 respectively, where U(a,b) is the uniform distribution on
interval (a,b). On the other hand, for control, we use U(0,1) for A\; and
U(0,2) for o? respectively. A chain of length 100000 is run for both cleft
and control. The MLEs of A; and o2 so obtained are given in Table 4,
together with the values of the log-likelihood. The conclusion is similar as
the hybrid estimates: the mean for cleft subjects is larger than control and
there is more variation for cleft lip data. Moreover, for the direct asymmetry
measure of the mean shape p given in Eq. 7.8, its estimate is larger for cleft
which matches the medical opinion.

Ex-Gaussian Model We assume the following model from Eq. 5.1

AS ~exG (/ﬁ AL 2(k1+2A1), % (202,02)T> =202 N(k1+A1,2(k1+271))+02 Exp (%) , (7.14)
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where k; = 33, and obtain the MLE for parameters A; and o2. As mentioned
in Section 6.1.2, the MLE solutions can be obtained via the SA algorithm
using the pdf of AS given in Eq. 5.7. We use the proposals for cleft and con-
trol subjects as U(0, 1) for A\; and I'(5, 1) for o2 respectively, where I'(«, 3)
is the gamma distribution and « > 0 is the shape parameter, 5 > 0 is the
rate parameter. A chain of length 100000 is run for both cleft and control.
The MLEs of A\; and 02 so obtained are given in Table 4, together with
the values of the log-likelihood. The conclusion is similar as the hybrid esti-
mates and MLE for ex-x? model: the mean for cleft subjects is larger than
control and there is more variation for cleft. The direct asymmetry measure
of the mean shape p given in Eq. 7.8 has larger value for cleft subjects as
well.

Summary The parameter estimates obtained from all three approaches
indicate that the distributions of AS are well-separated for cleft and con-
trol subjects. Further, the distribution of AS for cleft has larger mean and
variation.

The MLEs of variance of isotropic Gaussian distribution, o2, obtained
from ex-y? and ex-Gaussian models are smaller than that of hybrid estima-
tors. Note that o2 estimated directly from the original configurations in the
hybrid estimator requires the original landmark data which seems to lead to
higher variance in the 62, which may be as we have a small dataset here. In
Table 4, we have also given the estimates AS,, = 20162 of the mean shape p
given by Eq. 7.8, using apriori A, = 0. In the case of hybrid estimates, it indi-
cates that the control is more asymmetric which is contrary to the medical
opinion. However, under the assumption of ex-x? or ex-Gaussian, there is a
clear evidence from AS,, that the cleft is more asymmetric than the control
which is consistent with the medical opinion. Further work is required to
study the relative performance of these three estimation procedures. Here,
these are all used simply for illustrative purpose.

The codes for computing the density function of ex-x? distribution and
performing the simulated annealing method to estimate the MLEs for ex-
x? and ex-Gaussian distributions are given in the code chunks 4 and 5
respectively in the R script Sankhya Chi Inf.

8 Discussion

We have focused here for the weighted sum of two y2-distributions. Our aim
has been to give deeper insight into the distribution of the weighted sum and
consider particular cases and provide the procedure to carry out inference in
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practice. Our approach can be extended to any general linear combination
of x2-distributions; however, that will need some further research.

It is interesting to note that the density function given by Eq. 5.4 of ex-
Gaussian distribution has a similar structure as Azzalini’s skew distribution
(Azzalini 2013), which has the pdf given by

fz(z;a) = 20(2)P(az), (8.1)

where again ¢(-) and ®(-) are the pdf and cdf of standard normal distribution
respectively. In our Eq. 5.4, the density component in the product is pro-
portional to the exponential distribution, but the second component in both
case is normal. Future work will be involved in comparing the three skew
distributions: Azzalini’s skew distribution, ex-x? and ex-Gaussian. Azza-
lini’s distribution is well-established in contrast and therefore it would give
a deeper insight into the other two distributions.

We have given the general form of ex-x? and ex-Gaussian distributions
in Egs. 4.2 and 5.1 respectively. In ex-x2, there are four parameters, a, b, A
and ¢, and in ex-Gaussian, there are five parameters, a, b, i, 0 and c. For
application, one should be aware there could be non-identifiability problems
in the parameter space.

In our shape application, the underlying random variable is in fact a
random matrix, on which samples are drawn. We have indicated how one
can use it for inference by using a hybrid moment estimator approach. Future
work is required to assess its performance in comparison to the MLE method.

We have assumed isotropic normal distribution for the application but
future work will involve the non-isotropic normal distribution as a starting
point, so that we will have the weighted sum of two general quadratic forms
in random variable Z. Further, we have only considered the sum of two
weighted x? and there is a potential to work in the similar way for the sum
of two general Wishart distributions (Mardia et al. 2024b).

We have mentioned the first two moments of the WS distribution at
Eq. 3.18 and have used third moments for ex-Gaussian. Future work will
involve writing down the higher moments of WS and studying their behavior
for general method of moments for weighted sums of y2-distributions. We
have focused on the linear function of known a and b as required by our
illustrative example but, in particular, this future work will explore the
moment estimators when both a and b are also unknown in the weighted
sum.
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The computer program used in this work has been deposited at GitHub
with link: https://github.com/XW-2025-hub/Sankhya-paper, with read-me
files.
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