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Abstract

In certain cutting-edge applications, it is found that a weighted sum of two χ
2-distributions plays

an important role. It is well-known that the work on both central and non-central χ2-distributions

is classical and the next obvious step for extension is the weighted sum of two χ
2-distributions.

Although there has been considerable theoretical work on the distribution of general linear combi-

nations of χ2, there have been no dedicated work on either getting deep insight into the distribution

even in the particular case of weighted sum of two χ
2-distributions or its applications. We first

derive the most general distribution of the weighted sum of two non-central χ2 and give some

properties. Particular cases are considered, and one important case arises when one of the χ
2 has

2 degrees of freedom, so that it has an exponential distribution. We refer to the resulted weighted

sum as the exponentially modified χ
2-distribution. Another important case is when one of the χ

2

has large degrees of freedom, hence approximates a normal distribution. The resulted weighted

sum is known as the exponentially modified Gaussian distribution in the literature. We give fur-

ther insight into these skew distributions and we also consider some inference problems for these

distributions. This work is motivated by new challenges in shape analysis on how to deal with

asymmetry of bilateral shapes and we illustrate our methodology by applying it to a shape analysis

problem involving a smile data on the cleft lip patients.

Keywords: bilateral symmetry, cleft lip patients, exponentially modified χ2-distribution, exponentially
modified Gaussian distribution, generalized χ2-distribution, linear combination of χ2-distributions.
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1 Introduction

There have been several papers dealing with general linear combinations of χ2-distributions (see for

example, McKay [1], Press [2] and Bausch [3]); also known as generalized χ2-distribution. However,

these papers lack deeper insight even in the simple case of sum of two χ2-distributions. The work for
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single non-central χ2-distribution has been classical and well-studied and the next natural step is to

move to the weighted sum of two χ2-distributions, which we propose to do in this paper. We note that

there is an exception for a particular case of the weighted sum, when one of the χ2 is approximated by

a normal (for large degrees of freedom) and the other one has 2 degrees of freedom. That is, we have the

sum of a normal and an exponential distributions which is known in the literature as the exponentially

modified Gaussian distribution; it has been applied in various practical applications including chemical

analysis (Grushka [4]) and stochastic frontier analysis (Kumbhakar and Lovell [5]).

Let χ2 with k degrees of freedom and non-centrality parameter λ be denoted by χ2
k(λ). We define our

weighted sum as

Z ∼ aχ2
k1
(λ1) + bχ2

k2
(λ2), k1 > 0, k2 > 0, λ1 > 0, λ2 > 0, (1.1)

where the two χ2-distributions are independent and (a, b) can take any real value, that is, we allow

negative values of a and b, though in most of the practical cases, a and b are positive. Further, we will

write Z to be distributed as WS((k1, k2)
T , (λ1, λ2)

T , (a, b)T ), where WS stands for Weighted Sum.

As mentioned earlier, work has been done for various linear combinations of χ2-distributions. The

particular case of two weighted central χ2-distributions with the same degrees of freedom has been

given by Bausch [3] and we re-derive it as a particular case of our general weighted distribution.

When k2 = 2 and λ2 = 0 in Z, the χ2 is equivalent to an exponential variable, so we call this

distribution “exponentially modified χ2-distribution” and denote it by ex-χ2. Furthermore, when k1
is large, χ2

k1
(λ1) approximates a normal distribution, so the resulting distribution is the ex-Gaussian

distribution (denoted by ex-Gaussian in this paper) as indicated before.

This work is motivated by new challenges in shape analysis/size and shape analysis to deal with

asymmetry of bilateral shapes (see for example Bock and Bowman [6], Patel et al. [7], Ajmera et al.

[8] and Ajmera et al. [9]). In shape analysis, the object is invariant under translation, scaling and

rotation (i.e., Euclidean similarity transformations), whereas in size-and-shape analysis, the object is

invariant only under translation and rotation, see for example, Dryden and Mardia [10]. In this paper,

we will work on an example using size-and-shape analysis. Our data are landmark-based, which means

that a set of landmarks has been identified apriori for each dataset. Hence, each object in the data is

represented by a configuration matrix X containing the coordinates of each landmark.

In some cases, the data is registered first in order to perform any statistical analysis. Figure 1 shows

one way of registering the objects in size-and-shape analysis (the Bookstein registration). There are

four landmarks for a rectangular shapes and their indices have been labeled 1, . . . , 4. The left of Figure

1 shows the original configuration; the second translated figure of Figure 1 displays the translated

configuration where landmark 1 is at the origin; the right of Figure 1 shows the registered configuration

after rotation where the line joining landmarks 1 and 2 becomes the x-axis. The codes for example are

contained in the code chunk 1 of the R script Sankhya Chi. There are other methods for carrying out

registration, see for example, Dryden and Mardia [10].
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Fig. 1: From left to right: the original configuration; the translated configuration (landmark 1 is at

the origin); the registered configuration after rotation of the translated configuration.
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An object is said to be bilateral symmetry if its left and right parts are exactly the same with respect

to some midline or midplane. For a bilateral shape, its landmarks can be divided into two categories:

paired and solo. For the two landmarks which form a pair, they should lie on both sides of the midplane.

The solo landmarks are unpaired and they should lie on the midplane in the symmetric case. Figure 2

shows an example of a bilaterally symmetric shape in two-dimensions. The midline is the y-axis. From

the figure, for example, the landmarks 6 and 8 form a landmark pair, while landmarks 7 and 19 are

solos.

−15 −10 −5 0 5 10 15

−
5

0
5

Example of bilaterally symmetric shape

x
y

x

y

Fig. 2: An example of a bilaterally symmetric shape.

The key focus is on the asymmetry measure, ϕL2
(referred to in this paper as AS = ASymmetry

measure for simplicity), given in Mardia et al. [11]. For practical applications such as the smile data

(cleft lip patients) illustrated here, the distribution of the AS statistics is required, which under certain

assumptions is distributed as the WS distribution. The smile data is used to illustrate how to estimate

parameters and carry out one important test of hypothesis. The test is straightforward to carry out

and the result is consistent with the medical opinion. Details are given in Section 7.

The paper is organized as following: Section 2 provides notations and several well-known important

formulae. The main distribution given in equation (1.1) and corresponding special cases are discussed in

Section 3. The ex-χ2 is considered in Section 4 and in Section 5, ex-Gaussian distribution is discussed.

In these sections, we give mainly their properties related to moments. In Section 6, we provide the

parameter estimations of these distributions. The application to the cleft lip data in shape analysis is

given in Section 7. We provide some discussions in Section 8.

2 Preliminaries

We provide here some preliminary background and well-known results with notations which are used

subsequently.

We write X ∼ χ2
k which is a chi-square distribution with degrees of freedom (df) k > 0. The probability

density function (pdf) of X is

fX(x; k) =
1

2
k
2 Γ(k2 )

x
k
2−1e−

x
2 , x > 0, (2.1)

and the characteristic function of X ∼ χ2
k is given by

ϕX(t; k) = (1− 2it)−
k
2 . (2.2)
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Let X ∼ χ2
k(λ) be a non-central chi-square distribution with df k > 0 and non-centrality parameter

λ > 0, which has the pdf

fX(x; k, λ) =
1

2
e−(x+λ)/2

(x
λ

) k
4− 1

2

I k
2−1

(√
λx
)
, x > 0, (2.3)

where Ip(z) is the modified Bessel function of first kind:

Ip(z) =

∞∑

m=0

(
1
4z

2
)m+ p

2

m!Γ(p+m+ 1)
. (2.4)

The characteristic function of X ∼ χ2
k(λ) is

ϕX(t; k, λ) =
exp

(
iλt

1−2it

)

(1− 2it)
k
2

. (2.5)

We write the lower incomplete gamma function defined as

γ(s, x) =

∫ x

0

ts−1e−tdt, x > 0 (2.6)

and the beta function defined as

B(z1, z2) =
Γ(z1)Γ(z2)

Γ(z1 + z2)
, z1, z2 > 0. (2.7)

The other function, we will need is the confluent hypergeometric function 1F 1(a; b; z):

1F 1(a; b; z) = 1 +
a

b

z

1!
+

a(a+ 1)

b(b+ 1)

z2

2!
+ · · · =

∞∑

r=0

(a)rz
r

(b)rr!
, (2.8)

where (a)r = a(a+ 1) · · · (a+ r − 1) and (a)0 = 1. Further,

1F 1(a; b; z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

eztta−1(1− t)b−a−1dt (2.9)

When z → 0 and b ̸= −n for n ∈ N, we have (see Section 13.5 on page 508 of Abramowitz and Stegun

[12])

1F 1(a; b; z) → 1. (2.10)

Suppose X and Y are two independent random variables with pdf fX(·) and fY (·) respectively. Define

the sum

Z = X + Y.

Then the pdf of Z is given by the convolution formula

fZ(z) =

∫

X
fX(x)fY (z − x)dx, (2.11)

where X is the domain of X. Let ϕX(·) and ϕY (·) denote the characteristic functions of X and Y

respectively. Then the characteristic function of Z is given by

ϕZ(t) = ϕX(t)ϕY (t). (2.12)

We note the following well-known results of sum Z (which can be derived using (2.12)):
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• For Z = χ2
k1
(λ1) + χ2

k2
(λ2), we have Z ∼ χ2

k1+k2
(λ1 + λ2).

• For Z = χ2
k1

+ χ2
k2
, we have Z ∼ χ2

k1+k2
.

• For Z = χ2
k1
(λ1) + χ2

k2
, we have Z ∼ χ2

k1+k2
(λ1).

For the standard normal distribution N(0, 1), we will denote the pdf as φ(·) and cumulative distribution

function (cdf) as Φ(·).

3 Distribution of a Weighted Sum of Two Non-Central

χ2-Distributions

In this section, we first consider our general weighted sum of the random variable

Z ∼ WS((k1, k2)
T , (λ1, λ2)

T , (a, b)T ) = aX + bY, (3.1)

where X ∼ χ2
k1
(λ1) and Y ∼ χ2

k2
(λ2) are independent, a, b > 0, k1, k2 > 0, λ1, λ2 > 0. In most of our

works, df k1 and k2 are positive integers, but our theorems in general are applicable for any positive

k1 and k2.

3.1 General Weighted Sum

We now prove the following general theorem for the distribution of the random variable Z given by

(3.1).

Theorem 3.1. Non-central case. The pdf of the weighted sum of two non-central χ2-distributions

with different df

Z ∼ WS((k1, k2)
T , (λ1, λ2)

T , (a, b)T ) = aχ2
k1
(λ1) + bχ2

k2
(λ2)

is given by

fZ(z; a, b, k1, k2, λ1, λ2)

=
e−

1
2 (

z
b
+λ1+λ2)

4ab

∫ z

0

e−
x
2 (

1
a
− 1

b
)

(
x

aλ1

) k1
4 − 1

2
(
z − x

bλ2

) k2
4 − 1

2

I k1
2 −1

(√
λ1x

a

)
I k2

2 −1

(√
λ2(z − x)

b

)
dx.

(3.2)

Further, we have the alternative form

fZ(z; a, b, k1, k2, λ1, λ2) =

e−
1
2 (

z
b
+λ1+λ2)

a
k1
2 b

k2
2 2

k1+k2
2

∞∑

m=0

∞∑

n=0

(
λ1

4a

)m (λ2

4b

)n
z

k1+k2
2 +m+n−1

m!n!Γ(k1+k2

2 +m+ n)
1F 1

(
k1
2

+m,
k1 + k2

2
+m+ n,−b− a

2ab
z

)
,
(3.3)

where z > 0 and 1F 1(·) is the confluent hypergeometric function given at (2.8).

Proof. On substituting the pdf of non-central χ2-distribution given in (2.3) after scaling X and Y

(using aX and bY ) into the convolution formula (equation (2.11)):

fZ(z) =

∫ z

0

fX(x)fY (z − x)dx, (3.4)
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(3.2) follows. On substituting the series expansion of Bessel function given in (2.4) and then changing

the order of integral and summation, we find that the density becomes

e−
1
2 (

z
b
+λ1+λ2)

a
k1
2 b

k2
2 2

k1+k2
2

∞∑

m=0

∞∑

n=0

(
λ1

4a

)m (λ2

4b

)n

m!n!Γ(k1/2 +m)Γ(k2/2 + n)

∫ z

0

e−
b−a
2ab

xx
k1
2 +m−1(z − x)

k2
2 +n−1dx, (3.5)

After changing the variable x = zt, we see that the integral becomes

z
k1+k2

2 +m+n−1

∫ 1

0

e−
b−a
2ab

ztt
k1
2 +m−1(1− t)

k2
2 +n−1dt (3.6)

Noting that the integral is equal to a confluent hypergeometric function in (2.9), given by

Γ(k1

2 +m)Γ(k2

2 + n)

Γ(k1+k2

2 +m+ n)
1F 1

(
k1
2

+m,
k1 + k2

2
+m+ n,−b− a

2ab
z

)
(3.7)

and substituting (3.6) and (3.7) in (3.5), we obtain (3.3) and the proof of Theorem 3.1 follows.

Several special cases of Theorem 3.1 are given in the following corollaries, which can be derived using

equation (3.2).

Corollary 3.1.1. Central case. The pdf of the weighted sum of central χ2-distributions with equal df

Z ∼ WS((k, k)T , (0, 0)T , (a, b)T ) = aχ2
k + bχ2

k,

with k, a, b > 0 and a ̸= b, is given by

fZ(z; a, b, k) =
Γ
(
1+k
2

)

(ab)
1
2 2

3
2− k

2 Γ(k)
exp

{
−a+ b

4ab
z

}
z

k−1
2 (|a− b|) 1−k

2 I k−1
2

( |a− b|
4ab

z

)
, (3.8)

where z > 0.

Proof. When k1 = k2 = k and by using the pdf of central χ2-distribution in the convolution formula

in (2.11), (3.2) becomes

fZ(z; a, b, k) =
e−

z
2b

(ab)
k
2 2kΓ(k2 )

2

∫ z

0

exp

{
−x

2

(
1

a
− 1

b

)}
x

k
2−1(z − x)

k
2−1dx. (3.9)

After changing the variable x = zt, the integral becomes

zk−1

∫ 1

0

exp

{
−b− a

2ab
zt

}
t
k
2−1(1− t)

k
2−1dt. (3.10)

It can be seen the above integral is equal to the confluent hypergeometric function in (2.9), so we have

Γ(k2 )
2

Γ(k) 1F 1

(
k

2
; k;

a− b

2ab
z

)
. (3.11)

Substituting the Kummer’s second transform (see Section 13.6 on page 509 of Abramowitz and Stegun

[12]):

1F 1

(
k

2
; k;

a− b

2ab
z

)
= exp

{
a− b

4ab
z

}(
a− b

8ab
z

) 1−k
2

Γ

(
1 + k

2

)
I k−1

2

(
a− b

4ab
z

)
(3.12)

into (3.9) and using (3.10) and (3.11), the result follows.

6



Corollary 3.1.2. Central case. The pdf of the weighted sum of central χ2-distributions with different

df

Z ∼ WS((k1, k2)
T , (0, 0)T , (a, b)T ) = aχ2

k1
+ bχ2

k2
,

with k1, k2, a, b > 0 and a ̸= b, is given by

fZ(z; a, b, k1, k2) =
z

k1+k2
2 −1e−

z
2b

(2a)
k1
2 (2b)

k2
2 Γ(k1+k2

2 )
1F 1

(
k1
2
;
k1 + k2

2
;
a− b

2ab
z

)
, z > 0. (3.13)

Proof. When k1 ̸= k2 and by using the pdf of central χ2-distribution in the convolution formula in

(2.11), (3.2) becomes

fZ(z; a, b, k1, k2) =
e−

z
2b

a
k1
2 b

k2
2 2

k1+k2
2 Γ(k1

2 )Γ(k2

2 )

∫ z

0

exp

{
−x

2

(
1

a
− 1

b

)}
x

k1
2 −1(z − x)

k2
2 −1dx. (3.14)

on changing the variable x = zt in the integral and using the confluent hypergeometric function given

in (2.9), the result follows.

Corollary 3.1.3. Mixed case. The pdf of the weighted sum of one central and one non-central

χ2-distributions with different df

Z ∼ WS((k1, k2)
T , (λ, 0)T , (a, b)T ) = aχ2

k1
(λ) + bχ2

k2
,

with λ, k1, k2, a, b > 0 and a ̸= b, is given by

fZ(z; a, b, k1, k2, λ) =
exp

{
− 1

2 (
z
b + λ)

}

2
k1+k2

2 a
k1
2 b

k2
2

∞∑

m=0

(
λ
4a

)m
z

k1+k2
2 +m−1

m!Γ(k1+k2

2 +m)
1F 1

(
k1
2

+m,
k1 + k2

2
+m,−b− a

2ab
z

)
,

(3.15)

where z > 0.

Proof. By using the convolution formula in (2.11) with one central and another non-central pdf, we

can write (3.2) directly as

fZ(z; a, b, k1, k2, λ) =
exp

{
− z

2b − λ
2

}

2
k2
2 +1a

k1
4 + 1

2 b
k2
2 λ

k1
4 − 1

2Γ(k2

2 )

∫ z

0

e−
x
2 (

1
a
− 1

b
)x

k1
4 − 1

2 I k1
2 −1

(√
λx

a

)
(z − x)

k2
2 −1dx.

(3.16)

By using the series expansion of Bessel function Ip(z) given in (2.4) and changing the order of

summation and integration, we obtain

exp
{
− 1

2 (
z
b + λ)

}

2
k1+k2

2 Γ(k2

2 )a
k1
2 b

k2
2

∞∑

m=0

(
λ
4a

)m

m!Γ(k1

2 +m)

∫ z

0

e−
b−a
2ab

xx
k1
2 +m−1(z − x)

k2
2 −1dx. (3.17)

Again, on changing the variable: x = zt and using the confluent hypergeometric function given in (2.9),

the result follows.

The first two moments of random variable Z given by (3.1) can be shown to be the following:

E{Z} = a(k1 + λ1) + b(k2 + λ2), var{Z} = 2a2(k1 + 2λ1) + 2b2(k2 + 2λ2). (3.18)

These moments are used later in the moment estimators for this distribution.
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4 Ex-χ2 Distribution

In this Section and the following Section 5, we will assume that k2 = 2 for df and the non-centrality

parameter λ2 = 0 in Z, so that the second variable in this weighted sum is as an exponential distribution

written as Exp(c) with the pdf given by

f(x; c) = ce−cx, x > 0, c > 0, (4.1)

which in the case of χ2
2, c =

1
2 , but we will use a general c. We will denote the pdf of Exp(c) given by

(4.1) as ζ(·; c).

In this section, we consider the following ex-χ2 random variable defined by:

Z ∼ ex-χ2(k, λ, c, (a, b)T ) = aχ2
k(λ) + bExp(c), (4.2)

where a, b, k and c > 0. We will use ex-χ2(k, λ, c, (a, b)T ) as an abbreviation for ex-χ2 distribution.

We start from the case where λ = 0 in Z.

Theorem 4.1. Central case. The pdf of the weighted sum of the central case

Z ∼ ex-χ2(k, 0, c, (a, b)T ) = aχ2
k + bExp(c)

is given by

1. for c < b
2a ,

fZ(z; a, b, k, c) =

(
b

b−2ac

) k
2

Γ(k2 )
ζ
(
z;

c

b

)
γ

(
k

2
,

(
1

2a
− c

b

)
z

)
, z > 0; (4.3)

2. for c > b
2a ,

fZ(z; a, b, k, c) =
2
(

z
2a

) k
2

kΓ(k2 )
ζ
(
z;

c

b

)
1F 1

(
k

2
,
k

2
+ 1,

(
c

b
− 1

2a

)
z

)
, z > 0, (4.4)

where ζ(·; c) is the pdf of Exp(c).

Proof. The convolution formula given in (2.11) becomes

fZ(z; a, b, k, c) =
ce−

c
b
z

(2a)
k
2 Γ(k2 )b

∫ z

0

x
k
2−1e−(

1
2a− c

b )xdx (4.5)

c < b
2a : by changing the variable: u =

(
1
2a − c

b

)
x, we see that the above integral is the same as the

lower incomplete gamma function defined in (2.6) and is given as

(
1

2a
− c

b

)− k
2

γ

(
k

2
,

(
1

2a
− c

b

)
z

)
. (4.6)

We substitute (4.6) into (4.5) and the result follows.

c > b
2a : we use the integral identity quoted in Section 3.38, page 318, of Gradshteyn and Ryzhik [13]:

∫ u

0

xv−1(u− x)µ−1eβxdx = B(µ, v)uµ+v−1
1F 1(v, µ+ v, βu), (4.7)
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where B(·) is the beta function given in (2.7). Thus, the integral becomes

B

(
1,

k

2

)
1F 1

(
k

2
,
k

2
+ 1,

(
c

b
− 1

2a

)
z

)
(4.8)

By substituting (4.8) into (4.5), the result follows.

Next, we consider the case where λ > 0 in Z.

Theorem 4.2. Non-central case. The pdf for the weighted sum of the non-central case

Z ∼ ex-χ2(k, λ, c, (a, b)T ) = aχ2
k(λ) + bExp(c)

is given by

• when a < b
2c ,

fZ(z; a, b, k, λ) = e−
λ
2

(
b

b− 2ac

) k
2

ζ
(
z;

c

b

) ∞∑

m=0

( λb
2(b−2ac) )

m

m!Γ(k2 +m)
γ

(
k

2
+m,

b− 2ac

2ab
z

)
; (4.9)

• when a > b
2c ,

fZ(z; a, b, k, λ) = e−
λ
2

( z

2a

) k
2

ζ
(
z;

c

b

) ∞∑

m=0

(λz4a )
m

1F 1

(
k
2 +m, k

2 +m+ 1, 2ac−b
2ab z

)

m!Γ(k2 +m+ 1)
, (4.10)

where z > 0 in the above two equations and ζ(·; c) is the pdf of Exp(c).

Proof. The convolution integral given in (2.11) becomes

fZ(z; a, b, k, λ) =
c exp

{
− cz

b − λ
2

}

2a
k
4+

1
2 bλ

k
4− 1

2

∫ z

0

e−x( 1
2a− c

b
)x

k
4− 1

2 I k
2−1

(√
λx

a

)
dx. (4.11)

By using the series expansion of Ip(z) given in (2.4), we obtain

(
1

2

√
λ

a

) k1
2 −1 ∞∑

m=0

( λ
4a )

m

m!Γ(k2 +m)

∫ z

0

e−x( 1
2a− c

b
)x

k
2+m−1dx. (4.12)

When a < b
2c , by using the following integral identity in Section 3.38, page 317, of Gradshteyn and

Ryzhik [13] which is given as ∫ u

0

xv−1e−µxdx = µ−vγ(v, µu), (4.13)

where γ(·) is the lower incomplete gamma function given in (2.6). Hence, the integral given in (4.12)

becomes (
b− 2ac

2ab

)−( k
2+m)

γ

(
k

2
+m,

b− 2ac

2ab
z

)
, (4.14)

Substituting equation (4.12) and (4.14) into (4.11), the result follows.

When a > b
2c , using (4.7), the integral given in (4.12) becomes

(
k

2
+m

)−1

z
k
2+m

1F 1

(
k

2
+m,

k

2
+m+ 1,

2ac− b

2ab
z

)
. (4.15)

9



Substituting equation (4.12) and (4.15) into (4.11), the result follows.

Corollary 4.2.1. Non-central case. The pdf of the weighted sum of χ2
2(λ) and χ2

2 ≡ Exp( 12 )

Z ∼ ex-χ2

(
2, λ,

1

2
, (a, b)T

)
= aχ2

2(λ) + bExp

(
1

2

)

is given by

• when a < b,

fZ(z; a, b, λ) =
e−

λ
2 ζ(z; 1

2b )

1− a
b

∞∑

m=0

( λb
2(b−a) )

m

(m!)2
γ

(
m+ 1,

b− a

2ab
z

)
, z > 0; (4.16)

• when a > b,

fZ(z; a, b, λ) =
e−

λ
2 zζ(z; 1

2b )

2a

∞∑

m=0

(λz4a )
m

(m!)2(m+ 1) 1F 1

(
m+ 1,m+ 2,

a− b

2ab
z

)
, z > 0, (4.17)

where ζ(·; c) is the pdf of Exp(c).

Proof. By substituting k = 2 and c = 1
2 in equation (4.9) and (4.10), the results follow.

Remark 1. Note that the proof depends on a < b
2c or a > b

2c for both central and non-central cases,

which is due to the Exp(c) and the weights.. Further, it is easier to derive the distribution of Z directly

in the particular case of λ = 0 as we have done in Theorem 4.1 rather than obtaining it as a corollary

of Theorem 4.2 with λ > 0.

The first two moments of random variable Z given by (4.2) can be shown to be the following:

E{Z} = a(k + λ) +
b

c
, var{Z} = 2a2(k + 2λ) +

b2

c2
. (4.18)

These moments are used later in the moment estimators for this distribution.

5 Ex-Gaussian Distribution

In this section, we consider a particular case of the ex-χ2 defined in equation (4.2) with df k → ∞. It

is well known that as k → ∞, the χ2
k(λ) can be approximated by

N(k + λ, 2(k + 2λ)).

Hence, the random variable is given by

Z ∼ exG(µ, σ2, c, (a, b)T ) = aN(µ, σ2) + bExp(c), a > 0, b > 0, c > 0, (5.1)

which is the weighted sum of a normal and an exponential distribution and known as the ex-Gaussian

distribution, which we have denoted by exG(µ, σ2, c, (a, b)T ). Note that here we have got one normal

variable with range (−∞,∞), whereas for the exponential part, the variable has domain (0,∞). Hence,

there is a choice we could use for the convolution formula obtained from (2.11) by interchanging X

10



and Y and substituting in the proper domain for X in two ways as follows, namely for the normal

integration part (X with Z = X + Y ) we have in the convolution formula is

fZ(z) =

∫ z

−∞
fX(x)fY (z − x)dx, (5.2)

whereas for the exponential integration part (Y ) we have in the convolution formula is

fZ(z) =

∫ ∞

0

fX(z − y)fY (y)dy. (5.3)

For (5.3), note that since the exponential random variable Y is always positive, so the lower limit of

the convolution integral for this case is 0. Further, the normal random variable can be negative, hence

it is possible that Z < Y , so Y is not bounded above (unlike the normal random variable X which is

bounded above by Z). Consequently, the upper limit of the integral in (5.3) is ∞.

Theorem 5.1. The pdf of the weighted sum of normal and exponential random variables

Z ∼ exG(µ, σ2, c, (a, b)T ) = aN(µ, σ2) + bExp(c)

is given by

fZ(z; a, b, c, µ, σ
2) = exp

{
c

b
aµ+

c2a2σ2

2b2

}
ζ
(
z;

c

b

)
Φ

(√
2(z − α)

β

)
, z ∈ R, (5.4)

where ζ(·; c) is the pdf of Exp(c) and

α = aµ+
ca2σ2

b
, β =

√
2a2σ2.

Proof. Using the convolution formula given in (2.11), we have

fZ(z; a, b, c, µ, σ
2) ∝ e−

cz
b

∫ z

−∞
exp

{
− (x− (aµ+ ca2σ2

b ))2

2a2σ2

}
dx

∝ e−
cz
b Φ

(√
2(z − α)

β

)
,

(5.5)

where we have changed the variable: t =
x−(aµ+ ca2σ2

b
)

|a|σ in the first expression and let

α = aµ+
ca2σ2

b
, β =

√
2a2σ2 (5.6)

in the second expression. By integrating over (5.5), the normalizing constant is

c

b
exp

{
c

b
aµ+

c2a2σ2

2b2

}

and the result hence follows from (5.5).

The following corollary is a special case of Theorem 5.1 and can be derived easily from (5.4).

Corollary 5.1.1. The pdf of the weighted sum of normal and χ2
2 distributions

Z ∼ exG

(
µ, σ2,

1

2
, (a, b)T

)
= aN(µ, σ2) + bExp

(
1

2

)
= aN(µ, σ2) + bχ2

2

11



is given by

fZ(z; a, b, µ, σ
2) = exp

{
σ2a2

8b2
+

aµ

2b

}
ζ

(
z;

1

2b

)
Φ

(√
2(z − α)

β

)
, z ∈ R, (5.7)

where ζ(·; c) is the pdf of Exp(c) and

α = aµ+
a2σ2

2b
, β =

√
2σ2a2.

In the following theorem, we consider the negative ex-Gaussian distribution, which has b < 0.

Theorem 5.2. When b < 0, the pdf of negative ex-Gaussian distribution

Z ∼ exG(µ, σ2, c, (a,−|b|)T ) = aN(µ, σ2)− |b|Exp(c)

is given by

fZ(z; a, b, µ, σ
2) =

c

|b| exp
{
a2σ2c2

2b2
+

c(z − aµ)

|b|

}
Φ

(
−
√
2(z − α′)

β

)
(5.8)

where

α′ = aµ− a2σ2

2|b| , β =
√
2σ2a2,

Proof. Since Y ∼ Exp(c), thus for b < 0, the pdf of bY is

fY (y; b) =
c

|b|e
c
|b|

y, y < 0.

In this case, we use the convolution formula given in (2.11) so that

fZ(z; a, b, µ, σ
2) ∝ e

c(z−aµ)
|b|

∫ 0

−∞
exp



−

[y − (z − aµ+ a2σ2c
|b| )]2

2a2σ2



 dy

∝ e
c(z−aµ)

|b| Φ


−

z − (aµ− a2σ2c
|b| )

|a|σ




∝ e
c(z−aµ)

|b| Φ

(
−
√
2(z − α′)

β

)
,

(5.9)

where we have changed the variable: t =
y−(z−aµ+ a2σ2c

|b|
)

|a|σ in the first integral and have set α′ = aµ −
a2σ2c
|b| , β =

√
2σ2a2 in the third expression. By integrating over the last step of (5.9), the normalizing

constant is
c

|b|e
a2σ2c2

2b2 ,

and hence, the result follows from (5.9).

We note that the negative ex-Gaussian has been derived in Carr et al. [14] using a different method.

Carr et al. [14] uses this distribution for modeling the option prices. We have drawn several plots of

the two densities: ex-χ2 and ex-Gaussian and both are skewed distribution which have been already

noted in previous papers.
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The first three moments of random variable Z given by (5.1) can be shown to be the following.

E{Z} = aµ+
b

c
, var{Z} = a2σ2 +

b2

c2
, β1 =

2( bc )
3

(a2σ2 + ( bc )
2)

3
2

. (5.10)

Note that the skewness coefficient β1 in (5.10) is always positive for this distribution. These moments

are used later for moment estimators for this distribution.

6 Estimation

6.1 Parameter Estimation for Weighted Sum of two χ2-Distributions

Recall the random variable Z defined in equation (1.1):

Z ∼ WS((k1, k2)
T , (λ1, λ2)

T , (a, b)T ) = aχ2
k1
(λ1) + bχ2

k2
(λ2),

with a and b known and inference should be provided on λ1 and λ2. We give below first the method

of moment (MoM) estimates (which are easy to compute) and then give some methods on how to

compute maximum likelihood estimate (MLE) numerically since the maximum likelihood equations

are analytically intractable.

6.1.1 Moment Estimates

Let z1, · · · , zn denote a sample of Z ∼ WS((k1, k2)
T , (λ1, λ2)

T , (a, b)T ). Let z̄ denote the sample mean

and s2 denote the sample variance. By using the moments given in (3.18), the MoM equations are

z̄ = a(k1 + λ1) + b(k2 + λ2), s2 = 2a2(k1 + 2λ1) + 2b2(k2 + 2λ2).

By solving the above two equations, we have

λ̂1 =
4bz̄ − s2 − (4ab− 2a2)k1 − 2b2k2

4ab− 4a2
, λ̂2 =

z̄ − a(k1 + λ̂1)− bk2
b

. (6.1)

Now, let u1, · · · , uk1
be independently normally distributed such that ui ∼ N(µi, σ

2
1) for i = 1, . . . , k1,

and let uk1+1, · · · , uk1+k2
be independently normally distributed such that ui ∼ N(µi, σ

2
2) for i =

k1 + 1, . . . , k1 + k2. Thus, we can give that

k1∑

i=1

u2
i

σ2
1

∼ χ2
k1
(λ1) ⇒

k1∑

i=1

u2
i ∼ σ2

1χ
2
k1
(λ1);

k1+k2∑

i=k1+1

u2
i

σ2
2

∼ χ2
k2
(λ2) ⇒

k1+k2∑

i=k1+1

u2
i ∼ σ2

2χ
2
k2
(λ2),

with

λ1 =

k1∑

i=1

µ2
i

σ2
1

, λ2 =

k1+k2∑

i=k1+1

µ2
i

σ2
2

. (6.2)

Hence,
k1+k2∑

i=1

u2
i ∼ σ2

1χ
2
k1
(λ1) + σ2

2χ
2
k2
(λ2), (6.3)
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where a = σ2
1 and b = σ2

2 . The estimates of λ1 and λ2 can be derived by plugging in the estimates of

σ2
1 , σ

2
2 and µi, for i = 1, . . . , k1 + k2:

λ̂1 =

k1∑

i=1

µ̂2
i

σ̂2
1

, λ̂2 =

k1+k2∑

i=k1+1

µ̂2
i

σ̂2
2

. (6.4)

The advantage of this method over the MoM given in (6.1) is that estimates of λ1 and λ2 cannot be

negative. Further, the estimates of σ2
1 and σ2

2 can be obtained as the following:

1. Subtract the sample means µ̂i from realizations of ui, for i = 1, . . . , k1 and i = k1 + 1, . . . , k1 + k2
separately. Then stack the observations into a long vector.

2. Compute sample variance on this stacked vector.

This method is applicable since the random variable Z has been derived originally from the matrix

normal distribution, so the estimates of non-centrality parameters can be obtained by estimating the

parameters of the normal distribution. Since this method of moment estimation uses different types of

moments comparing with (6.1), so we will call these estimates hybrid moment estimates.

Similarly, for the ex-χ2 random variable given in (4.2)

Z ∼ ex-χ2(k, λ, c, (a, b)T ) = aχ2
k(λ) + bExp(c),

where a and b are known, the MoM equations by using (4.18) are

z̄ = a(k + λ) +
b

c
, s2 = 2a2(k + 2λ) +

b2

c2
.

By solving these two equations, we have

ĉ =
4ab±

√
16a2b2 − 4b2(4az̄ − s2 − 2a2k)

2(4az̄ − s2 − 2a2k)
, λ̂ =

ĉ(z̄ − ak)− b

aĉ
. (6.5)

Note that there are two roots and depending on the data, an appropriate root can be selected in general.

We do not use the moment estimates in our illustration in Section 7.2.2 since we could compute the

MLEs.

6.1.2 MLE

We can write the MLE equations for the parameters, but the solutions are not in closed form. However,

we can estimate these parameters in practical examples using simulated annealing (SA) algorithm as

described in Section 7.2.2.

6.2 Parameter Estimation for ex-Gaussian

We will consider below two parameter estimation approaches – MoM and MLE – for the ex-Gaussian

distribution. Let z1, . . . , zn be a sample of random variable Z defined in (5.1)

Z ∼ exG(µ, σ2, c, (a, b)T ) = aN(µ, σ2) + bExp(c)

with sample mean z̄ and sample variance s2, where a and b are given.
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6.2.1 MoM

Using (5.10), we find that the MoM equations to estimate the parameters (µ, σ2, c) are

z̄ = aµ+
b

c
, s2 = a2σ2 +

b2

c2
, b1 =

2( bc )
3

(a2σ2 + ( bc )
2)

3
2

, (6.6)

where z̄ is the sample mean, s2 is the sample variance and b1 is the sample skewness coefficient

b1 =
1
n

∑n
i=1(zi − z̄)3

(s2)
3
2

. (6.7)

For given a and b, it can be shown that the moment estimates ˆ̂µ, ˆ̂σ2 and ˆ̂c of µ, σ2 and c are given by

(see, for example, Dyson [15])

ˆ̂µ =
1

a

(
z̄ − s

(
b1
2

) 1
3

)
, ˆ̂σ2 =

s2

a2

(
1−

(
b1
2

) 2
3

)
, ˆ̂c =

b

s

(
b1
2

)− 1
3

. (6.8)

However, in our illustration in Section 7.2.2, we will be using only MLE.

6.2.2 MLE

We rewrite the pdf of the ex-Gaussian distribution as follows:

fZ(z; a, b, c, µ, σ
2) =

c

b
exp

{
c

b
aµ+

c2a2σ2

2b2
− cz

b

}
Φ

(√
2(z − α)

β

)
, z ∈ R, (6.9)

where Φ(·) is the cdf of N(0, 1) and

α = aµ+
ca2σ2

b
, β =

√
2a2σ2.

Suppose a and b are known as before and the aim is to estimate MLE of µ, σ2 and c. It can be seen

that the log-likelihood is

ℓ(µ, σ2, c) = n log
c

b
+

n∑

i=1

(
c

b
aµ+

c2a2σ2

2b2
− czi

b

)
+

n∑

i=1

log Φ

(√
2(zi − α)

β

)
(6.10)

Recall that

Φ(x) =

∫ x

−∞
φ(t)dt,

d

dx
Φ(x) = φ(x) =

1√
2π

e−
x2

2 ,
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where φ(·) is the pdf of N(0, 1). Hence, the MLE for (µ, σ2, c) are the solutions of the following

equations

∂ℓ(µ, σ2, c)

∂µ
=

nac

b
−

n∑

i=1

φ
(√

2(zi−α)
β

)
1√
σ2

Φ
(√

2(zi−α)
β

) = 0

∂ℓ(µ, σ2, c)

∂σ2
=

na2c2

2b2
−

n∑

i=1

φ
(√

2(zi−α)
β

)

Φ
(√

2(zi−α)
β

)
[
ac

2b
(σ2)−

1
2 +

zi − aµ

2a
(σ2)−

3
2

]
= 0

∂ℓ(µ, σ2, c)

∂c
=

n

c
+

naµ

b
+

nca2σ2

b2
−

n∑

i=1

zi
b
−

n∑

i=1

φ
(√

2(zi−α)
β

) √
a2σ2

b

Φ
(√

2(zi−α)
β

) = 0

(6.11)

It can be seen that there is no closed solution and these equations can only be solved numerically. We

will use SA in our practical application since it is a reliable modern approach and details are in Section

7.2.2. Alternatively, one can use the older numerical methods such as quantile maximum likelihood

method as done in Brown and Heathcote [16] to compute the MLE.

7 Application to Shape Analysis

7.1 Bilateral Symmetry

Recall from Section 1 that shape analysis deals with shapes of objects when the effects of translation,

scaling and rotation are filtered out (see, for example, Dryden and Mardia [10]). An object is defined

by a set of landmarks on which the samples are taken. Here, we focus on bilateral symmetry of objects

(Mardia et al. [17]). An object in two or three dimensions is said to be bilaterally symmetric if its

mirror image about some line, in two dimensions, or some plane, in three dimensions, is the same as

the original form after relabeling paired (see below) landmarks. This mirroring locus will, in general,

be called the mid-plane (Mardia et al. [17]). The same discussion applies for size-and-shape analysis,

which is our focus in the application.

Further, in a population with perfect bilateral symmetry, we have two types of landmarks. Some are

paired and they do not lie on the mid-plane, but appear separately on left and right sides. Additional

landmarks must lie exactly on the mid-plane; they are unpaired/solos. Let there be KP landmark pairs

(so there are in total 2KP landmarks) and KS solos, so the total landmarks are K = 2KP + KS .

Let X ∈ R
K×M denote the random “configuration matrix” for an object with K landmarks in M

dimensions, with X[k,m] for the coordinate m of landmark k, where k = 1, . . . ,K and m = 1, . . . ,M .

We write the coordinate vector of landmark k as X[k, ]. Let (kL, kR) denote the indices for a typical

landmark pair and kS the index for a solo, where kL ∈ {k : landmark k is on the left side of mid-plane}
and similar for kR, kS ∈ {k : landmark k is solo}.

Let vec(·) denote the matrix vectorization operator: vec(X) ∈ R
KM is the vector with length KM

obtained by stacking columns of X together. We assume that

vec(X) ∼ N(vec(µ),Σ), (7.1)

where µ = E{X} ∈ R
K×M is the mean configuration. Σ ∈ R

KM×KM is the covariance matrix. For

simplicity, we assume Σ = σ2IKM , where IKM is the KM ×KM identity matrix. In other words, we

assume an isotropic Gaussian distribution over the landmarks. Note that we are using the same σ2

notation for different underlying distribution, but it will be clear from the context which σ2 is meant.
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Mardia et al. [11] have introduced a measure of asymmetry (AS) of bilateral objects defined by

AS =
∑

(kL,kR)

M∑

m=1

d[(kL, kR),m]2 +
∑

kS

d[(kS)]
2, (7.2)

where in the paper AS is written as ϕL2
(d) and d ∈ R

MKP+KS is based on X as follows. Let

d[(kL, kR),m] and d[(kS)] denote the components in d corresponding to paired landmarks and solos

respectively then d’s are given by the following in terms of X’s

d[(kL, kR), 1] = X[kL, 1] +X[kR, 1]

d[(kL, kR),m] = X[kL,m]−X[kR,m], m = 2, . . . ,M

d[(kS)] = X[kS , 1].

(7.3)

We now give two simple examples defining X’s and d’s in M = 2 dimensions with KP = 2 landmark

pairs and KS = 0 solo. The configuration matrices for the two examples are taken as

X1 =




X1[1, ]T

X1[2, ]T

X1[3, ]T

X1[4, ]T


 =




−4.33 0

4.33 0

4.33 3.84

−4.33 3.84


 , X2 =




X2[1, ]T

X2[2, ]T

X2[3, ]T

X2[4, ]T


 =




−4.66 0

4.66 0

6.55 3.01

−4.79 2.24


 . (7.4)

4 3
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Fig. 3: The left and right figures in the top row show the original configurations of the symmetric

rectangle X1 and the asymmetric quadrilateral X2 respectively. The left and right figures in the bottom

row show the original objects (in solid lines) together with their respectively reflections X
(refl)
1 and

X
(refl)
2 (in dotted lines) respectively, in order to illustrate the coordinate-wise elementary feature vector.

These configurations are displayed in the Figure 3 with their reflection; the landmark pairs are (1, 2) and

(3, 4). The midline is the y-axis. The configurations X1 and X2 are shown in the left and right figures

in the top row of Figure 3 respectively, whereas the bottom row of Figure 3 show their corresponding

reflections X
(refl)
1 and X

(refl)
2 , where the left is for X1 and X

(refl)
1 and right is for X2 and X

(refl)
2 . Note

that X1 is bilaterally symmetric, with d = 0. Table 1 gives the MKP +KS = 4 elements of the vector d

for X2. The two elements for the landmark pair (1, 2) are listed first, followed by the landmark pair (3,

4). Notice that the elements of d corresponding to landmarks 1 and 2 are 0, since these two landmarks

are equally spaced on both sides of the midline y-axis. However, for the second configuration, the values
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Table 1: Elements of the absolute elementary feature vector d ∈ R
4 for X2 with K = 4 landmarks in

M = 2 dimensions.

Landmark Indices Coordinate Axis Feature of a value of d

Pair (1,2) 1 d[(1, 2), 1] = X2[1, 1] +X2[2, 1] 0

Pair (1,2) 2 d[(1, 2), 2] = X2[1, 2]−X2[2, 2] 0

Pair (3,4) 1 d[(3, 4), 1] = X2[3, 1] +X2[4, 1] 1.76

Pair (3,4) 2 d[(3, 4), 2] = X2[3, 2]−X2[4, 2] 0.77

of the d’s are non-zero. Using the values in the tables, we can compute the value of AS defined in (7.2)

as

AS = 1.762 + 0.772 = 3.69.

This value of AS quantifies the departure from symmetry. The codes for the symmetric and asymmetric

examples are contained in the code chunks 2 and 3 respectively of the R script Sankhya Chi.

Since the d’s given by (7.3) are linear functions of X’s and the X’s are normally distributed, hence,

under the assumption (7.1), d’s are also normally distributed. Therefore, (7.2) is a sum of two quadratic

functions in normal variables, namely

AS1 =
∑

(kL,kR)

M∑

m=1

d[(kL, kR),m]2 and AS2 =
∑

kS

d[(kS)]
2, (7.5)

so we can write (7.2) as AS = AS1 +AS2, that is, we have

AS ∼ WS((k1, k2)
T , (λ1, λ2)

T , (2σ2, σ2)T ) = 2σ2χ2
k1
(λ1) + σ2χ2

k2
(λ2), (7.6)

where λ1 and λ2 are the two non-centrality parameters corresponding to landmark pairs and solos

respectively:

λ1 =
∑

(kL,kR)

(µ[kL, 1] + µ[kR, 1])
2 + (µ[kL, 2]− µ[kR, 2])

2 + · · ·+ (µ[kL,M ]− µ[kR,M ])2

2σ2

λ2 =
∑

kS

(µ[kS , 1])
2

σ2
.

(7.7)

Hence, it can be seen that (7.6) has the structure of our main distributional assumption given in (1.1)

with a = 2σ2, b = σ2. Note that df for the first χ2 distribution is k1 = MKP and for the second one

is k2 = KS . Further, we introduce a direct measure of asymmetry ASµ for the mean shape µ as

ASµ = 2λ1σ
2 + λ2σ

2. (7.8)

For completeness, we note the following moments which can be deduced from (3.18):

E{AS} = 2σ2(k1 + λ1) + σ2(k2 + λ2), var{AS} = 8σ4(k1 + 2λ1) + 2σ4(k2 + 2λ2), (7.9)

The methods of moments for estimating λ1 and λ2 have already been given in Section 6.1, equation

(6.1) (MoM estimates) and (6.4) (hybrid estimates). For hybrid estimates, we have k1 = MKP and

k2 = KS . The u’s in (6.3) are the d’s which are given in (7.3), and σ2
1 = 2σ2 and σ2

2 = σ2. The µ̂’s in

(6.4) are obtained by plugging estimate µ̂ of mean shape µ in (7.7). The procedures for estimating σ2

are given at the end of Section 6.1.

Suppose we have two groups (g1 and g2) of data and would like to test whether there are differences in

asymmetry between the two groups. We note that the asymmetries are reflected through the λ1 and λ2,

as can be seen in ASµ given by (7.8), so the test can be based on statistics corresponding to λ1 and λ2.
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Table 2: Indices of landmark pairs and solos in Figure 4 on the lip.

Landmark notation Indices

pair (kL, kR) (1,13), (2,12), (3, 11), (4,10), (5,9), (6,8), (20,18), (21,17), (22,16),

(23,15), (24,14)

kS 7, 19

Let σ2
gi , λ

gi
1 and λgi

2 denote the variance of isotropic Gaussian distribution and two non-centrality

parameters for group gi, i = 1, 2. We assume that σ2
gi can be estimated separately from λgi

1 and λgi
2

and can take σ2
gi as known by plugging in its estimates. It is interested in testing whether significant

differences exist among the non-centrality parameters of the two groups:

H0 : λg1
i = λg2

i vs H1 : λg1
i ̸= λg2

i , i = 1, 2,

where i = 1, 2. We employ a simple test as the following: the test statistic is chosen simply as difference

between λi for the two groups:

dλi
= |λ̂g1

i − λ̂g2
i |, i = 1, 2, (7.10)

where λ̂g1
i is the estimate of λg1

i using equation (6.1) or (6.4), similarly for λ̂g2
i .

In practice, permutation test is used to estimate the p-value corresponding to the test statistic given

by (7.10). In each iteration, we resample from the pooled data of configuration matrices for the two

groups, then we compute moment estimates λ̂g1
i,b and λ̂g2

i,b using (6.1) or (6.4), where b = 1, . . . , B is

the index for iteration. We use B = 10000. The p-value is estimated by comparing the observed test

statistic with the quantile of test statistic computed on resampled data. We will see below that for this

case, there is only one non-centrality parameter of interest. Under this assumption, it is simpler to use

this particular test statistics rather than using the likelihood-ratio test.

7.2 Application to the Smile Data

Mardia et al. [11] have introduced the smile data arising from the problem of measuring asymmetry

after the cleft lip surgery. The data consists of three time frames and for illustrative purpose, we use

here the first frame of the data. The details of the data are given in the paper but the point to note is

the data has been pre-registered so that the effect of translation, scale and rotation has been removed,

so the configuration matrix is an Euclidean random matrix.

Our main selected data is the cleft lip data which is 3-dimensional (M = 3) with sample size = 13 and

there are 24 landmarks (K = 24). For simplicity, we refer to it as Data1. We have also used similar data

for control subjects with sample size = 12 and refer to it as control data or Data2. Figure 4 shows the

location of the landmarks in 2-dimension over the lip. Among these 24 landmarks, there are KP = 11

landmark pairs and KS = 2 solo landmarks. Table 2 shows the indices for landmark pairs and solos

from Figure 4. The scale of the data is in mm.

Hence, the df for the two χ2-distributions in weighted sum AS given in (7.6) are k1 = 33 and k2 = 2

respectively and here

AS ∼ WS((33, 2)T , (λ1, λ2)
T , (2σ2, σ2)T ) = 2σ2χ2

33(λ1) + σ2χ2
2(λ2). (7.11)

In Section 7.2.1 below we first use the inference under normality, including estimation and testing, and

in Section 7.2.2 the ex-χ2 and ex-Gaussian models are fitted. We then give the comparison.
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Fig. 4: Lip configuration with 24 landmarks used in the smile data.

Table 3: Sample mean and variance of AS of subjects from the smile data, together with the moment

estimates of λ1 and λ2 by using (6.1). The first row is for Data1 and the second row is for Data2.

z̄ s2 λ̂1 λ̂2

Cleft 45.47 483.83 -0.29 -65.64

Control 19.89 211.19 -0.44 -63.26

7.2.1 Inference under Matrix Normality

In this section, we will use the random matrix normality of the configurations when needed, though

our main focus will be directly on the measure of asymmetry AS.

Estimation: Let z1, · · · , zn be the observed AS realizations of cleft or control subjects, where AS is

defined in (7.2) and n = 13 for cleft and n = 12 for control. Two different estimators given in (6.1)

and (6.4) respectively, where (6.1) gives the MoM estimators and (6.4) gives the hybrid estimators,

are used to estimate λ1 and λ2. However, σ2 is estimated using the same method given at the end of

Section 6.1.1.

We first use the MoM equations given in (6.1). The values of the moment estimates λ̂1 and λ̂2 are

shown in Table 3, together with sample mean z̄ and sample variance s2. The MoM estimates of λ1

and λ2 given in Table 3 are both negative, though a priori non-centrality parameters are non-negative.

Thus, these estimates are inadequate for this data.

Then, we use the hybrid moment estimators given in (6.4) to estimate λ1 and λ2. Further, the estimates

µ̂ is obtained simply by taking the arithmetic mean of sample configuration matrices from each group,

as our data has been pre-registered. We find that the hybrid moment estimates λ̂2 are negligible in both

cases relative to λ̂1, thus we set λ2 = 0. Hence, the random variable AS given in (7.6) is now simply

AS ∼ WS((33, 2)T , (λ1, 0)
T , (2σ2, σ2)T ) = 2σ2χ2

33(λ1) + σ2χ2
2.

In this case, the moments from (3.18) become:

E{AS} = 2σ2(k1 + λ1) + σ2k2, var{AS} = 8σ4(k1 + 2λ1) + 2σ4k2. (7.12)

The estimates of λ1 and σ2 are given in Table 4. We do not report the likelihood values since the

likelihood function is not involved in these hybrid estimates. The estimate σ̂2 for cleft lip data is larger

than control data, which indicates that there is more variation in the cleft lip data. Further, recall

that AS is a measure of asymmetry and E{AS} and var{AS} are larger for cleft group from Table 4,

indicating that cleft lip has more asymmetry in mean as well as there is more variability, which matches

the medical opinion.
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Table 4: Estimations of λ̂1 and σ̂2 for the smile data (Data1: cleft lip, Data2: control) using hybrid

estimators given in (6.4), MLEs for ex-χ2 model and ex-Gaussian model, k1 = 33 and k2 = 2 in (7.6).

λ̂1 σ̂2 E{AS} var{AS} log-likelihood ÂSµ
Hybrid Moment Estimator:

Cleft 0.034 28.03 1907.95 210990 NA 1.91

Control 0.94 5.15 359.88 7506.93 NA 9.68

ex-χ2:

Cleft 0.58 0.66 45.65 120.78 -72.21 0.77

Control 0.23 0.28 19.17 21.30 -74.58 0.13

ex-Gaussian:

Cleft 0.48 0.75 51.72 155.07 -74.03 0.72

Control 0.51 0.35 24.16 33.83 -75.58 0.36
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Fig. 5: Plot of pdf for AS for cleft and control subjects from the cleft lip data. The solid line shows

the pdf for control data while the dashed line is for cleft data.

By plugging in the estimates of λ1 and σ2 in equation (7.12), the mean and variance of AS are computed

and reported in Table 4. We also give the density plots of AS in both cases. To plot these, we have

used the convpow function in R to compute the convoluted pdf of AS given by (7.6). Figure 5 shows

the plot for pdf of AS for both cleft and control subjects. From the figure, it can be seen visually that

their means are well-separated and there is more variation for cleft lip data. It also indicates that both

distributions are approximately normal.

Two-sample test for asymmetry: We now test for differences between the asymmetry measures for

the cleft lip data (Data1) and control data (Data2) using the method described in Section 7.1. Since

the parameter λ2 is taken to be 0 as described above, the parameter λ1 is of interested so our test

statistics is simply a single statistics given by

dλ1
= |λ̂g1

1 − λ̂g2
1 | (7.13)

where the superscript g1 is for Data1 and g2 is for Data2. Our λ̂g1
1 and λ̂g2

1 are estimated using (6.4)

by first estimating σ2 for each data separately from λ1 and then plugging in the estimates σ̂2 into

(6.4) for σ2 for each case to compute estimates λ̂1 of λ1. It is found that in our case dλ1
= 0.90. Using

the permutation test, the p-value is found to be 0.001. Hence, we conclude that there are significant

differences between cleft lip data and control data based on this statistics, which matches medical

opinion.

The codes for computing MoM estimators given in (6.1) and the hybrid estimators given in (6.4)

are contained in the code chunk 3 in the R script Sankhya Chi Inf, together with carrying out the

permutation test. The codes for computing the AS measures for cleft and control subjects are in code

chunk 2 of the script.
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7.2.2 Inference under Ex-χ2 and Ex-Gaussian Models

We now give the MLE for ex-χ2 and ex-Gaussian models using only observed values of AS. In the

following, again, we will take λ2 = 0 so there are only two parameters to be estimated: λ1 and σ2.

Ex-χ2 Model: We assume the following model from equation (4.2)

AS ∼ ex-χ2

(
k1, λ1,

1

2
, (2σ2, σ2)T

)
= 2σ2χ2

k1
(λ1) + σ2Exp

(
1

2

)
= 2σ2χ2

k1
(λ1) + σ2χ2

2,

where k1 = 33, and obtain the MLE of parameters λ1 and σ2. As mentioned in Section 6.1.2, the MLE

solutions can be obtained via SA using the pdf of AS given in Theorem 4.2. The function convpow in R

is used to evaluate the likelihood. We use the proposal densities for cleft as U(0, 2) for λ1 and U(0, 10)

for σ2 respectively, where U(a, b) is the uniform distribution on interval (a, b). On the other hand, for

control, we use U(0, 1) for λ1 and U(0, 2) for σ2 respectively. A chain of length 100000 is run for both

cleft and control. The MLEs of λ1 and σ2 so obtained are given in Table 4, together with the values of

the log-likelihood. The conclusion is similar as the hybrid estimates: the mean for cleft subjects is larger

than control and there is more variation for cleft lip data. Moreover, for the direct asymmetry measure

of the mean shape µ given in (7.8), its estimate is larger for cleft which matches the medical opinion.

Ex-Gaussian Model: We assume the following model from equation (5.1)

AS ∼ exG

(
k1 + λ1, 2(k1 + 2λ1),

1

2
, (2σ2, σ2)T

)
= 2σ2N(k1 + λ1, 2(k1 + 2λ1)) + σ2Exp

(
1

2

)
, (7.14)

where k1 = 33, and obtain the MLE for parameters λ1 and σ2. As mentioned in Section 6.1.2, the

MLE solutions can be obtained via the SA algorithm using the pdf of AS given in (5.7). We use the

proposals for cleft and control subjects as U(0, 1) for λ1 and Γ(5, 1) for σ2 respectively, where Γ(α, β)

is the gamma distribution and α > 0 is the shape parameter, β > 0 is the rate parameter. A chain of

length 100000 is run for both cleft and control. The MLEs of λ1 and σ2 so obtained are given in Table

4, together with the values of the log-likelihood. The conclusion is similar as the hybrid estimates and

MLE for ex-χ2 model: the mean for cleft subjects is larger than control and there is more variation

for cleft. The direct asymmetry measure of the mean shape µ given in (7.8) has larger value for cleft

subjects as well.

Summary: The parameter estimates obtained from all three approaches indicate that the distributions

of AS are well-separated for cleft and control subjects. Further, the distribution of AS for cleft has

larger mean and variation.

The MLEs of variance of isotropic Gaussian distribution, σ2, obtained from ex-χ2 and ex-Gaussian

models are smaller than that of hybrid estimators. Note that σ2 estimated directly from the original

configurations in the hybrid estimator requires the original landmark data which seems to lead to higher

variance in the σ̂2, which may be as we have a small dataset here. In Table 4, we have also given the

estimates ÂSµ = 2λ̂1σ̂
2 of the mean shape µ given by (7.8), using apriori λ2 = 0. In the case of hybrid

estimates, it indicates that the control is more asymmetric which is contrary to the medical opinion.

However, under the assumption of ex-χ2 or ex-Gaussian, there is a clear evidence from ÂSµ that the

cleft is more asymmetric than the control which is consistent with the medical opinion. Further work

is required to study the relative performance of these three estimation procedures. Here, these are all

used simply for illustrative purpose.

The codes for computing the density function of ex-χ2 distribution and performing the simulated

annealing method to estimate the MLEs for ex-χ2 and ex-Gaussian distributions are given in the code

chunks 4 and 5 respectively in the R script Sankhya Chi Inf.
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8 Discussion

We have focused here for the weighted sum of two χ2-distributions. Our aim has been to give deeper

insight into the distribution of the weighted sum and consider particular cases and provide the procedure

to carry out inference in practice. Our approach can be extended to any general linear combination of

χ2-distributions; however, that will need some further research.

It is interesting to note that the density function given by (5.4) of ex-Gaussian distribution has a

similar structure as Azzalini’s skew distribution (Azzalini [18]), which has the pdf given by

fZ(z;α) = 2φ(z)Φ(αz), (8.1)

where again φ(·) and Φ(·) are the pdf and cdf of standard normal distribution respectively. In our (5.4),

the density component in the product is proportional to the exponential distribution, but the second

component in both case is normal. Future work will be involved in comparing the three skew distribu-

tions: Azzalini’s skew distribution, ex-χ2 and ex-Gaussian. Azzalini’s distribution is well-established in

contrast and therefore it would give a deeper insight into the other two distributions.

We have given the general form of ex-χ2 and ex-Gaussian distributions in (4.2) and (5.1) respectively.

In ex-χ2, there are four parameters, a, b, λ and c, and in ex-Gaussian, there are five parameters, a, b,

µ, σ2 and c. For application, one should be aware there could be non-identifiability problems in the

parameter space.

In our shape application, the underlying random variable is in fact a random matrix, on which samples

are drawn. We have indicated how one can use it for inference by using a hybrid moment estimator

approach. Future work is required to assess its performance in comparison to the MLE method.

We have assumed isotropic normal distribution for the application but future work will involve the non-

isotropic normal distribution as a starting point, so that we will have the weighted sum of two general

quadratic forms in random variable Z. Further, we have only considered the sum of two weighted χ2

and there is a potential to work in the similar way for the sum of two general Wishart distributions

(Mardia et al. [19]).

We have mentioned the first two moments of the WS distribution at (3.18) and have used third moments

for ex-Gaussian. Future work will involve writing down the higher moments of WS and studying their

behavior for general method of moments for weighted sums of χ2-distributions. We have focused on

the linear function of a and b as required by our illustrative example but, in particular, this future

work will explore the moment estimators when both a and b are also unknown in the weighted sum.

The computer program used in this work has been deposited at GitHub with link: https://github.com/

XW-2025-hub/Sankhya-paper, with read-me files.
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