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Abbreviations  

ACE Angiotensin-Converting Enzyme 

BIA Bioelectrical Impedance Analysis 

BMI Body Mass Index 

CVD Cardiovascular Disease 

DXA Dual Energy X-ray Absorptiometry 

EWGSOP European Working Group on Sarcopenia in Older People  

ExT Endurance Exercise Training 

FITT Frequency, Intensity, Time, and Type  

GDF15 Growth Differentiation Factor 15 

GLP1 Glucagon-Like Peptide-1  

HF Heart Failure 

HFpEF Heart Failure with Preserved Ejection Fraction 

HFrEF Heart Failure with Reduced Ejection Fraction 

HIIT High-Intensity Interval Training 

ICD10-CM International Classification of Diseases, 10th Revision, Clinical Modification 

IGF1 Insulin-like Growth Factor 1 

IL1β Interleukin 1 beta 

IL6 Interleukin 6 

MuRF1 Muscle RING-Finger Protein-1 

PGC1α Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha 

RAAS Renin–Angiotensin–Aldosterone System 

RM Repetition Maximum 

RxT Resistance Exercise Training 

SARC-F Strength, Assistance, Rise, Climb, Falls Questionnaire 

SARMs Selective Androgen Receptor Modulators 

SGLT2 Sodium-Glucose Cotransporter 2 

SPPB Short Physical Performance Battery 

TNFα Tumour Necrosis Factor alpha 

TUG Timed Up and Go 

VO₂peak Peak Pulmonary Oxygen Uptake 
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Abstract  

This document aims to review current scientific evidence on exercise and nutrition as a treatment for 

sarcopenia in the context of cardiovascular disease (CVD). First, we introduce the topic of 

sarcopenia and its estimated prevalence in patients with CVD. Then, we critically analyse the 

available evidence to support the use of exercise and nutrition, both alone and combined, for treating 

sarcopenia in patients with CVD followed by discussing factors that may optimise management. We 

further discuss the relevance of how medications used in CVD impact sarcopenia and how they may 

negatively interact with exercise/nutritional interventions. Finally, we provide insights into the 

practical implications and future directions for managing sarcopenia in patients with CVD. In 

summary, optimised physical exercise interventions (dedicated resistance training in addition to 

endurance training and other modalities) together with adequate nutritional intake (avoiding 

malnutrition and ensuring sufficient protein consumption) is advised for the prevention and 

management of sarcopenia. However, there currently remains a lack of high-quality evidence to 

support these approaches in the context of CVD, where baseline sarcopenia status has typically not 

been evaluated. Future work, therefore, is required in CVD populations with confirmed sarcopenia 

to better understand what optimal exercise and nutritional strategies are required to further improve 

sarcopenia management. 
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1.0 Introduction  

Cardiovascular disease (CVD) is a global contributor to morbidity and mortality, with rates projected 

to rise1. Many patients with CVD present with the co-morbidity sarcopenia, which is characterised by 

a loss of skeletal muscle mass and function2,3. Sarcopenia decreases mobility and increases frailty 

and risk of falls, which promote disease progression and low quality of life in patients with CVD3. 

Sarcopenia is associated with an increased risk of all-cause mortality in both those with4-6 and without 

CVD7,8, while further representing a key risk factor for the onset as well as progression of CVD9,10. 

Since 2016, sarcopenia has been recognised as a disease (ICD10-CM: M62.84)11. Combined, CVD 

and sarcopenia can be viewed as a perfect storm that worsen symptoms, functional independence, 

and clinical outcomes2,12.  

 

There is currently no document published by the European Society of Cardiology (ESC) dedicated 

to the topic of sarcopenia and its management in patients with CVD, which highlights a knowledge 

gap. A primary gap identified in general sarcopenia research is the identification and validation of 

tailored treatment interventions for the diverse group of patients with CVD13. Despite the global 

prevalence of sarcopenia rapidly increasing3, evidence supporting the implementation of effective 

and targeted treatments remain limited. One important reason for that is the lack of screening for 

sarcopenia in clinical practice, precluding the provision of therapies addressing sarcopenia. As such, 

this manuscript creates awareness and informs the clinical field on the need to evaluate the presence 

of sarcopenia and adapt therapy accordingly. Interventions to combat sarcopenia include regular 

physical exercise and healthy nutrition, and while much evidence supports these approaches for 

improving general cardiovascular health and fitness in CVD populations14,15, the evidence for and 

the optimal doses required, either independently or combined, that address poor skeletal muscle 

health (sarcopenia) in the diverse group of patients with CVD remains incompletely addressed2.  

 

This paper, therefore, aims to provide a scientific statement evaluating the current evidence to 

support the use of exercise and nutrition as treatments for sarcopenia in CVD. Specifically, in CVD 

populations we aimed to identify: i) current definition, criteria, and prevalence of sarcopenia; ii) what 

exercise training or nutritional interventions show greatest efficacy for treating sarcopenia; iii) if 

concurrent exercise-nutrition interventions are available that optimise sarcopenia treatment and 

underlying mechanisms; iv) the positive/negative interactions between medications and 

exercise/nutrition on sarcopenia management; v) practical implications and gaps in knowledge that 

require addressing. To support immediate clinical relevance, evidence is primarily sourced from 

human studies, and we focus on those studies in which sarcopenia was diagnosed to strengthen 

specificity.  
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2.0 Evidence Review  

The document was prepared by a working group composed of contributors from the European 

Association of Preventive Cardiology (EAPC) of the ESC, as well as from other relevant invited 

healthcare professionals with expertise in the fields of sarcopenia, exercise physiology, 

physiotherapy, and nutrition. Members of the group were asked to perform a detailed literature 

search of the selected topic using electronic databases, and to select and critically evaluate relevant 

papers to provide a scientific statement.  
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3.0 Sarcopenia: definition and diagnosis  

The 2021 ESC Guidelines on CVD prevention and management in clinical practice highlighted a 

need to screen and treat sarcopenia appropriately16,17. However, there remains a lack of knowledge 

on how to diagnose and manage sarcopenia in the CVD field. There is considerable overlap, but 

clear distinction, between sarcopenia and several other conditions that include frailty18, cachexia19, 

and malnutrition12,20 (Figure 1) and each should be treated accordingly. Sarcopenia is defined as a 

progressive and generalised skeletal muscle disorder involving the accelerated loss of muscle mass 

and function that is associated with a range of adverse outcomes including falls, fractures, functional 

decline, and mortality3,21. Sarcopenia is defined ‘primary’ or age-related when no other specific cause 

is evident, or ‘secondary’ when causal factors other than ageing are present13. Secondary 

sarcopenia, where muscle loss is associated with specific disease(s), is particularly relevant for those 

living with CVD22, with one small study (N=17-30) showing that > 50% of patients with advanced 

heart failure (HF) were diagnosed with sarcopenia despite being < 60 years of age23. However, 

caution is warranted when generalising smaller studies to the general CVD population. Sarcopenia 

can also be sub-categorised as being either acute or chronic13, with differences in aetiology and 

prognostic implications. Acute sarcopenia, lasting <6 months, is typically related to acute illness, 

injury or hospitalisation24, and is reversible if appropriate treatment (e.g., exercise, nutrition) is 

initiated in a timely manner. Acute sarcopenia is particularly relevant in patients with CVD, where 

hospitalizations due to invasive surgery or HF decompensation are high and linked to increased 

sarcopenia2,16. Chronic sarcopenia lasting >6 months on the other hand is associated with the 

presence of other chronic and progressive conditions.  

 

Early efforts to conceptualise a definition of sarcopenia focused on the loss of muscle or lean mass25. 

However, muscle strength and function are now universally viewed as the central components of 

sarcopenia, because of stronger associations with adverse outcomes7. Several operational 

definitions of sarcopenia have been proposed, and revised, by working groups from around the world 

including Asia26, Europe13 and the USA27 with ongoing work aiming to create a global consensus 

definition of sarcopenia28. The current European Working Group on Sarcopenia in Older People 

(EWGSOP2) definition is the most widely applied in research and clinical practice and characterises 

sarcopenia as a loss of muscle strength, mass, and function13. The EWGSOP2 uses an algorithm 

for identifying individuals with possible sarcopenia, diagnosis, and severity (Figure 1). The algorithm 

shows that clinical suspicion and/or the SARC-F questionnaire29 should be used initially to identify 

individuals with probable sarcopenia. Low muscle strength can then be identified using either grip 

strength30 or chair stand test31. Sarcopenia is confirmed by the presence of low muscle quantity or 

quality (e.g., by dual energy x-ray absorptiometry [DXA] or bioelectrical impedance analysis [BIA]). 

Finally, sarcopenia severity is thereafter assessed by the measurement of physical performance 

(e.g., gait speed, short physical performance battery [SPPB], timed up-and-go test [TUG], or 400-

meter walk test [400MWT]).  
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More recently, increasing attention has been given to the concept of sarcopenic obesity, with 

considerable effort made to establish a consensus on definition and diagnostic criteria32.  

Characterised by a concurrent decline in muscle mass and function with increased adiposity, 

sarcopenic obesity is a growing concern because of its association with a range of adverse health 

outcomes33. The combination of sarcopenia and obesity may act synergistically to augment the 

consequences of either condition alone34. Sarcopenic obesity may have particular relevance for 

many patients with CVD, especially in HF with preserved ejection fraction (HFpEF), where it has 

been linked to greater exercise intolerance35 and mortality36 in large cohort studies. Moreover, 

although often overlooked, another key feature common in CVD37 that is closely linked to greater 

symptoms and mortality is respiratory muscle weakness38. Testing for respiratory muscle sarcopenia 

could therefore provide a useful assessment in patients with CVD, although limitations currently 

include no established cut-off criteria.  

 

 Take home message 

There needs to be a greater awareness in the CVD field of what sarcopenia is, how it is 

diagnosed, and the associated negative outcomes, as this will aid early detection and 

appropriate treatment. Current guidelines for sarcopenia management are based on 

evidence from the general population and do not account for the additional influence of CVD.      
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4.0. Prevalence of sarcopenia in CVD  

The prevalence of sarcopenia varies widely between studies, likely influenced by the definition, 

methods, and cut-off criteria used39. Sarcopenia is estimated to influence around 5-10% of the 

general population, typically increasing with age21. A meta-analysis including different classifications 

and cut-off points reported high variability in sarcopenia incidence in the general population ranging 

from 10-27%, with rates of 2-9% for severe sarcopenia39. Similarly, substantial variation is reported 

for sarcopenic obesity with estimates of 5-15%7,40, which is likely impacted by the definition lacking 

consensus33. Although sex differences have been reported, they remain inconsistent and show 

sensitivity to the classification criteria39. Compared with the general population, the prevalence of 

sarcopenia amongst patients with CVD is significantly higher at 35%, ranging from 10 to 69%2,22. 

However, these higher rates may be influenced by a potential bias compared with the general 

population due to CVD patients spending increased time in medical care. Sarcopenia is particularly 

common amongst patients with HF (both with reduced ejection fraction [HFrEF] and HFpEF), 

suggested to occur in at least 20-34% of patients based on large cohorts22,41,42 and increasing up to 

~50% at time of left ventricular assist device implantation23 and ~60-70% in those hospitalized for 

acute decompensated HF in smaller studies22,42. Sarcopenia in HF is more prevalent in men 

compared with women41,43 (but based on small female sample sizes of N=16-41), and in those who 

are older41 (i.e., 31% and 25% in those above compared to below 65 years of age, respectively44). 

However, rates as high as 50% have been reported in those with HF aged between 40-50 years of 

age, albeit in small populations (N=30-55)23,45. Despite a systematic review and meta-analysis 

reporting a high incidence of sarcopenia in other CVD conditions2,22 such as aortic stenosis (21-

70%), coronary artery disease (12-25%), cardiac arrhythmia (30%), cardiac surgery (35%) and 

peripheral artery disease (35%), these other conditions have generally received less attention. 

Finally, sarcopenia can be further increased by existing and chronic comorbidities common to 

patients with CVD, such as chronic kidney disease, obesity, hypertension, respiratory diseases, 

diabetes, and cancer12, further exacerbating symptoms and disease progression12,21 (Graphical 

Abstract).   

 

 Take home message 

The estimated prevalence of sarcopenia is higher in patients with CVD compared with the 

general population, and this is likely exacerbated by coexisting chronic comorbidities that 

further contribute towards greater symptoms and poorer clinical outcomes.  
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5.0 Aetiology and mechanisms of sarcopenia in CVD  

An improved understanding of the biological mechanisms underpinning the onset of sarcopenia 

could help identify suitable therapeutic targets and improve treatment strategies. However, the 

mechanisms underlying sarcopenia are complex and multifactorial12,46. Briefly, proposed 

mechanisms include chronic low-grade inflammation, hormonal changes, neuromuscular 

impairments, mitochondrial dysfunction, changes in rates of protein turnover, oxidative stress, 

genetic/epigenetic factors, stem cell dysfunction, and cellular senescence12,46. Lifestyle factors likely 

contribute, such as inadequate nutrition47 and physical inactivity48, especially during periods of 

disuse associated with hospital (re)admissions, where recovery is known to be slower in old 

compared with young patients49 and exacerbated by CVD50. Interestingly, lack of exercise training 

alone does not seem to be a sole mechanism, as small cohort studies (N=20-28) have shown that 

even lifelong exercise delays rather than eliminates signs of sarcopenia48.  

 

As noted in Section 4.0, the prevalence of acute and chronic sarcopenia are higher in CVD compared 

with the general population, which is likely due to additional CVD-specific mechanisms promoting 

the onset and progression of secondary sarcopenia above and beyond that associated with ageing 

(i.e. primary sarcopenia). These mechanisms may include crosstalk with primary organ dysfunction, 

reduced peripheral perfusion (hypoxia), increased systemic inflammation, iron deficiency, insulin 

resistance, neurohormonal disturbances (increased sympathetic activity), and endothelial 

dysfunction. Also, additional comorbidities (e.g. kidney disease, cancer, diabetes), disease-related 

malnutrition, physical inactivity, increased hospital readmissions, and side effects of medications 

may play a role51. Moreover, sex differences in sarcopenia prevalence are reported in CVD41 and 

recent evidence suggests sex-specific biological mechanisms may contribute43. Underlying changes 

to muscle characteristics in patients with CVD include a shift in fibre-type composition and 

metabolism (from oxidative and fatigue-resistant Type I to the more glycolytic and fatigable Type II), 

increased mitochondrial dysfunction, fibre atrophy (predominantly Type II) and apoptosis, fibre 

contractile weakness, increased fibrosis and fat infiltration, and reduced muscle capillarity51,52. 

Importantly, however, mechanisms of secondary sarcopenia specific to CVD remain incompletely 

understood. Although many studies have investigated the underlying mechanisms of muscle 

pathology in populations with CVD2, especially in HF52,53, most of these studies did not make any 

diagnosis of sarcopenia, which may explain variability between past studies54-56. Together, therefore, 

most knowledge is based on evidence drawn from CVD populations that likely included those with 

and without diagnosed sarcopenia, meaning current biological understanding remains vague. 

 

 Take home message  
The underlying biological mechanisms causing sarcopenia are complex and remain 

incompletely understood, with most of our understanding derived from patients without CVD.  
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6.0. Principles of exercise training in CVD  

Lifestyle interventions are important tools to prevent and overcome the sarcopenia-related health 

burden in patients with CVD, of which exercise training forms a cornerstone57,58. The practical basics 

of an exercise prescription should address the components included in the so-called FITT principles: 

frequency, intensity, time, and type.59 Frequency is how often exercise is performed each week, 

intensity is how hard the exercise is, time is the exercise duration, and type is the mode of exercise 

(typically endurance or resistance, but also flexibility and balance exercises). The American College 

of Sports Medicine (ACSM) advises adding volume (the total amount of exercise) and progression 

(how the programme advances), when designing an individualised exercise prescription (FITT-VP)59. 

Exercise volume is the product of exercise frequency, intensity, and duration of each exercise 

session. The suggested rate of progression in an exercise programme depends on the health status, 

physical fitness, training responses, and goals of each individual59. Progression implies increasing 

any of the components of the FITT principle, as tolerated by the individual. Specification of all FITT 

components is important for an optimal personalised exercise prescription as outlined in detail 

previously14,60.  Nevertheless, in clinical practice substantial variability exists amongst CV patients in 

both clinical characteristics and their responses to exercise therapy61. This underscores that the 

principle of one size fits all will not be sufficiently effective and that individual adjustments should be 

made according to the patient's underlying disease(s), risk profile, and individual needs to maximize 

its effectiveness on the health outcome for the patient. Given the increasing incidence of sarcopenia 

there is a need to inform on more specific and professional advice for exercise training that will also 

target improvements in muscle health in patients with CVD.    
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6.1 Evidence for resistance exercise training as a treatment targeting sarcopenia in CVD  

Strength or resistance exercise training (RxT) is currently recognised as a primary treatment to 

manage sarcopenia62. The International Clinical Practice Guidelines for Sarcopenia advise RxT for 

improving muscle mass, muscle strength, and physical performance63. RxT involves working against 

applied forces such as resistance machines, free weights, bodyweight exercises, or resistance 

bands. These exercises can be individualised based on the FITT principles59, or aligned to RxT 

programming variables62. The current suggestions for RxT in CVD populations includes 30-60 min 

of weekly training with 8-10 different exercises per session, with each set containing 8-12 repetitions 

at 40-60% one repetition maximum (1RM) at least twice weekly58. Further advice includes having an 

interval of at least 48 hours between training sessions of the same muscle groups58. Note, however, 

these guidelines are generalised to the CVD population. As such, a more gradual and tailored 

approach is likely required for those with diagnosed sarcopenia, significant frailty, or mobility issues 

(e.g., arthritis), whereby use of the modified repetition maximum (RM) approach may be required 

(e.g., the highest weight that can be lifted over a defined number of repetitions; 10RM)62.   

 

Solid evidence in older patients shows that RxT can increase muscle strength and physical 

performance, and to a lesser extent muscle mass, as reported in systematic (umbrella) reviews64-67. 

However, for those diagnosed with sarcopenia, less high-quality evidence is available66,68. A recent 

network meta-analysis from 42 randomized controlled trials provided moderate-high evidence to 

support the utility of RxT as a treatment for sarcopenia, which included a majority of studies meeting 

baseline characteristics for sarcopenia diagnosis (3728 patients; 73% female)69. Moreover, a 

randomized controlled study in older patients with sarcopenia (~85 years of age) recovering from 

acute illness showed improved handgrip strength, physical performance, and mobility after a RxT 

intervention for 12 weeks (2 x per week, 20 min sessions with 3 sets of 8-12 reps of multiple strength 

exercise at 70-80% 1RM)70. Although similar findings have been reported in other studies using RxT 

protocols in patients diagnosed with sarcopenia71,72, these were confounded by a post acute care 

study setting, lack of muscle mass measures, and low samples sizes, highlighting the need for more 

well-controlled studies to show complete efficacy of RxT in sarcopenia treatment.  

 

Among patients with CVD, the benefits of RxT on muscle strength are well supported49,73,74 (Table 

1; Figure 2). For example, a systematic review and meta-analysis in patients with HF concluded that 

RxT improves muscle strength and physical function, without adverse effects on cardiac measures73. 

A systematic review included studies on patients with peripheral arterial disease and found RxT was 

likely the best treatment75. In HFrEF and coronary heart disease, multiple studies have shown 

benefits for RxT on muscle strength and physical function73,76. A small, randomized RxT study 

showed that muscle strength was improved by ~50% in females with HFrEF compared with 

controls77. This study also found that exercise capacity was increased following 10 weeks of high-

intensity progressive RxT, although without significant changes in muscle mass77. Similar changes 
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related to muscle strength have also been reported in other randomized studies on RxT in HFrEF 

including benefits to quality of life and clinical status78-80, but large-scale clinical studies on RxT in 

HFrEF are currently missing. Although most studies have performed low-to-moderate load RxT(< 

40% 1RM), utilising high-load RxT (70-80% 1-RM) may provide greater strength gains in patients 

with coronary artery disease or HF81-83 and excellent guidelines are available to direct this in CVD 

populations81-83. Similarly, in peripheral arterial disease, high-intensity progressive RxT (4-6 months 

for 3 x per week) showed beneficial effects on muscle strength, muscle mass, walking time, and 

quality of life scores84. Although high-load RxT shows few adverse effects in patients with CVD85, 

large randomized controlled trials are still required to support efficacy and feasibility in the frailest 

patients. Less is known about the effects of RxT on muscle function in other CVDs, such as HFpEF 

or valvular heart disease86. A recent randomized controlled study in a small, predominately male 

cohort of older patients with HFpEF, reported that RxT for ~12 weeks was safe and improved muscle 

strength and physical performance87. However, almost all knowledge to date on the effect of RxT on 

muscle strength and mass in patients with CVD derives from studies in populations without 

sarcopenia diagnosed at baseline (Table 1; Figure 2). An ongoing randomised controlled trial that 

includes patients with HFpEF diagnosed with sarcopenia will determine whether home-based RxT 

(2 x per week, 2 sets of 10 reps at 60%–70% 1RM) can attenuate sarcopenia88. As such, current 

evidence for the specific effects of RxT on sarcopenia-related outcomes in patients with CVD is 

uncertain (Figure 2), whereas it remains unclear in the long-term whether sarcopenia returns to pre-

training levels if or once patients cease RxT. 

 

 Take home message  
Resistance training is advised as a safe add-on treatment for patients with CVD and 

concomitant sarcopenia, primarily for improving muscle strength and physical performance. 

Emerging evidence supports the gradual (starting low) and progressive implementation of 

higher-load resistance training when feasible. However, there is still limited high-quality 

evidence regarding the specific optimal frequency, intensity, time, and type parameters of 

resistance training that yield the greatest benefits for patients with CVD diagnosed with 

sarcopenia. 
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6.2 Evidence for endurance and high-intensity interval exercise training in treating 

sarcopenia in CVD 

For sarcopenia management, less attention has been directed towards the effects of endurance 

exercise training (ExT; also termed aerobic training) compared with RxT in patients with and without 

CVD. Current guidelines for ExT in patients with CVD advise at least 150 min per week of moderate-

intensity exercise over 5 days, or at least 75 min per week of vigorous-intensity exercise over 3 days 

(typically termed high-intensity training that may or may not include intervals; HIIT) or a 

combination89. Although ExT does not generally promote muscle hypertrophy, it is safe and promotes 

muscle health, cardiorespiratory fitness, and quality of life scores in patients with CVD89,90. Even low 

to moderate-intensity cycling may help preserve muscle mass and strength in CVD patients due to 

the low loading components required. The key mechanisms for how ExT increases muscle health in 

patients with CVD include improved mitochondrial function, a shift in muscle fibre-type composition 

and metabolism (glycolytic to oxidative), increased muscle capillarity, enhanced anti-inflammatory 

capacity, and also anti-atrophy effects related to a downregulation in molecular catabolic signalling 

(e.g. MuRF1, myostatin)52,57. Together these changes contribute towards increasing exercise 

capacity (e.g., peak pulmonary oxygen uptake; VO2peak) and may further benefit muscle mass and 

function in patients with CVD52,57 (Table 1).  

 

In patients with sarcopenia but no CVD, a recent network meta-analysis supported the beneficial 

effects of ExT on muscle strength and physical performance, but not muscle mass91. However, other 

reports have been conflicting69. To date, most studies on the effects of ExT in patients with CVD 

failed to specify those diagnosed with sarcopenia or include sarcopenia assessments, limiting 

current understanding (Table 1). For example, patients with coronary artery disease who completed 

3 months of ExT-based cardiac rehabilitation improved knee extensor muscular endurance, which 

was the strongest predictor for changes in VO2peak
92. However, in a subsample of this population in 

the SAINTEX-study, no significant effect could be observed on isometric handgrip strength or 

isokinetic quadriceps strength after 12 weeks of 3 weekly sessions of HIIT or ExT.93 These 

differences between studies are most likely due to the method used to evaluate muscle strength, 

which focussed more on isometric rather than dynamic strength. Interestingly, some randomised 

controlled trials in patients with HFrEF have shown that ExT may confer anti-atrophic effects and 

even restore baseline muscle mass. For instance, 24 weeks of daily ExT containing 20 min sessions 

cycling at 70% VO2peak attenuated muscle atrophy in patients with HFrEF94 and these findings were 

repeated in another study that was performed for just 12 weeks95. Moreover, these anti-atrophic 

effects were age-independent and observed in both those < 55 or > 65 years of age in patients with 

HFrEF96. Similarly, 6 weeks of HIIT in heart transplant recipients resulted in a 5% increase in 

quadriceps muscle cross-sectional area97. These findings are in line with a recent review in healthy 

older adults documenting improvements in muscle mass and strength following HIIT, albeit with the 

caveat of a high risk of bias and low number of studies98. However, recent landmark studies in the 
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field of HF have reported that ExT (moderate-intensity or HIIT) show similar benefits to exercise 

capacity and muscle (cellular/molecular) adaptations after 12 weeks99,100. Again, the lack of 

sarcopenia diagnosis, as well as incomplete measures of muscle mass, strength, and physical 

performance, limit interpretation (Table 1; Figure 2) and indicate the need for further research.   

 

 Take home message  
Endurance training increases exercise capacity in patients with CVD and these benefits 

extend to promoting muscle function and reducing muscle atrophy. However, the specific 

effects of endurance training in patients with CVD diagnosed with sarcopenia remain unclear.  
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6.3 Additional factors influencing the response to resistance and endurance exercise training 

The complex and multifactorial aetiology of sarcopenia in patients with CVD51,101 presents a 

challenge in identifying specific exercise modalities to combat the decline in muscle health. Most 

evidence points towards RxT combined with ExT as offering the greatest benefits to reduce 

sarcopenia in CVD52,102 (Figure 2). For example, HIIT supplemented with RxT in HFrEF showed 

additional benefits for muscle strength compared with HIIT alone following 36 sessions103. In 

addition, concurrent RxT and ExT performed in older adults with sarcopenia resulted in higher 

muscle strength and gait speed when combined with balance training as shown from a meta-

analysis104. In a large-scale longitudinal study, high flexibility was associated with reduced risk of 

sarcopenia in adults over 50 years of age105. As such, every 1 cm increase in flexibility was 

associated with a 4% reduced incident of low muscle mass and handgrip strength105. More data from 

randomised controlled trials are still required to strengthen evidence concerning the effects of 

different training modalities on sarcopenia in CVD. Sex-specific differences in the response to 

exercise training should also be an important consideration in the treatment of sarcopenia in CVD. 

In healthy older adults, a meta-analysis that included 36 randomized controlled trials of RxT 

demonstrated that the effects sizes for absolute and relative change in muscle strength differed 

between males and females109. Given the sex differences in skeletal muscle biology43 and 

sarcopenia incidence41 in CVD populations, more research is needed to understand how sex 

interacts with the exercise response to influence sarcopenia (Figure 2).   

 

 Take home message  
Combining different modes of exercise training, particularly resistance and endurance 

training, will likely improve sarcopenia management in CVD and optimise the muscle 

response.  
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7.0. A role for nutrition in the management of CVD and sarcopenia 

Nutrition is an important and modifiable factor for sarcopenia in older patients110, but the evidence in 

patients with CVD remains scarce111. Malnutrition is a key predictor of survival in patients with and 

without CVD, increasing the risk of complications and mortality, and closely associated with incident 

sarcopenia20,112,113. However, malnutrition is frequently overlooked in patients with CVD despite its 

high prevalence, affecting up to 50% of patients with HF20,112,113. The pathophysiology of malnutrition 

includes changes in appetite, dietary intake, and malabsorption, which can promote sarcopenia111. 

Assessment of nutritional status alongside physical activity levels are therefore crucial to estimate 

energy requirements and avoiding over- or under-nutrition (which themselves are forms of 

malnutrition; Fig. 1)111. Establishing healthy dietary habits should thus constitute a central step in the 

treatment of CVD, which is unanimously advocated by major guidelines and offers an alternative 

treatment than pharmacotherapy alone15,114. Critically, the interaction between nutrition and 

pharmacotherapy is complex, which likely impacts sarcopenia incidence even further.  
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7.1 Optimising nutrition as a treatment for sarcopenia in CVD  

Adequate protein intake is important in the management of sarcopenia. Protein requirements vary 

according to age and health status115. While 0.8 g/kg body mass per day is an appropriate protein 

intake in young to middle-aged adults, older adults require > 1 g/kg body mass per day and up to 

1.2-1.5 g/kg body mass per day in under-nutrition or catabolic states111. Protein intake is especially 

important due to malnutrition being common in individuals with HF113 or undergoing cardiac 

surgery116. However, protein intake is frequently insufficient in community-dwelling older adults 

according to a recent meta-analysis, which showed that 14-30% consumed less than 0.8 g protein/kg 

body mass daily117. Low protein intake may contribute to sarcopenia by decreasing muscle protein 

synthesis118, although this mechanism remains debated47.  

 

For optimal muscle protein synthesis, animal proteins provide all essential amino acids (i.e., 

complete proteins), although recent evidence supports the efficacy of plant-based proteins119. In 

particular, leucine (an essential branched-chain amino acid) stimulates muscle protein synthesis 

even if protein intake is otherwise low120. The threshold for leucine content per meal has been 

estimated to be between 2.2-4.0 g/meal to adequately stimulate muscle protein synthesis121,122. 

Whey protein, a protein rich in leucine, is therefore frequently used in muscle growth studies and 

has been shown to increase lean mass, strength, and physical function in sarcopenic adults, but not 

in healthy older people, according to a meta-analysis123. One randomised controlled trial in patients 

with HF demonstrated that whey protein led to improvements in body composition, including skeletal 

muscle, but did not affect strength124. While the role of high protein intake on CVD risk remains 

controversial125,126, the type of dietary protein may explain some of the discrepant results127. A 

network meta-analysis addressing the role of high versus low protein intake as well as protein type 

(animal vs plant) also showed that high-protein, high-carbohydrate, low-fat diet and plant-protein rich 

diets were associated with favourable outcomes128. Therefore, if protein intake is not met in patients 

with CVD, increasing protein intake from plant sources as well as from fish129 or lean poultry130 is 

reported safe and may be helpful to prevent sarcopenia. Overall, however, in people with CVD there 

remains limited evidence to support that protein supplementation alone reduces sarcopenia, and 

although some evidence supports potential improvements to lean mass and physical function131 

(Table 1), the wide variability in protein type and dose used in CVD patients is a key limitation131.  

 

Interestingly, in older people, improvements in muscle mass and function were also increased by 

co-supplementing whey protein with vitamin D123. However, the evidence for vitamin D 

supplementation alone is less clear. While vitamin D deficiency is linked to lower muscle mass, 

function, and homeostasis132,133, a meta-analysis of 10 clinical trials concluded that supplementation 

with vitamin D as a monotherapy did not improve hand grip strength, lean mass, or muscle function 

in older adults134. Few studies have investigated the effect of vitamin D supplementation on 

sarcopenia in CVD patients, with one study showing no benefits after 20 weeks of treatment in 
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HFrEF135. Other nutrients studied include high-dose polyunsaturated fatty acid (PUFA) 

supplementation (>2.5 g/d) in patients with HFrEF, which was associated with greater gains in 

muscle strength of upper and lower extremities in older adults136 and, when supplemented with 

amino acids, increased lean mass (but not muscle strength or physical function) (Table 1). However, 

caution is warranted using PUFAs in patients with CVD due to higher risk of arrhythmias137. A 

summary of nutritional interventions relevant for sarcopenia in CVD are presented in Table 1 and 

Figure 2. 

 

 Take home message 

Adequate nutritional intake with sufficient protein may prevent sarcopenia in older people, 

but little evidence is currently available in the context of CVD. If protein intake is insufficient, 

fish and lean poultry, as well as whey protein supplementation, may serve as suitable sources 

of high-quality protein without affecting risk of CVD. 
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7.2. Consideration of additional factors influencing nutritional benefits  

There is an increasing recognition that more diverse and healthy dietary patterns138,139 are more 

important than focusing on single nutrients47, and alongside more personalised nutritional 

interventions114, could help optimise sarcopenia management in patients with CVD. Traditionally, 

diets advised for CVD prevention are plant-based114,140. Plant-based diets consist of whole grains, 

legumes, vegetables, fruit, nuts, seeds and unsaturated vegetable oils, and, when optimised, are 

suggested to provide adequate protein content119. The Mediterranean diet, which is also largely 

plant-based but includes protein from fish, eggs, dairy, and lean meat, has been suggested as a 

suitable diet both in CVD15 and sarcopenia management141,142, especially due to antioxidant and anti-

inflammatory properties143. While observational studies show positive associations between 

Mediterranean diet and body composition and muscle function144,145, an association with changes in 

sarcopenia requires further research145. Although clinical trials on the effect of a Mediterranean diet 

on sarcopenia-related measures are scarce, a sub-analysis of the PREMID study showed that a 

Mediterranean diet combined with physical activity attenuated loss of lean mass in adults > 60 years 

of age with metabolic syndrome146.  

 

Antioxidant nutrients such as carotenoids, polyphenols, and certain vitamins (which act as an 

exogenous defence against oxidative damage) have also gained attention, but the interpretation of 

current findings is hampered by different study methodologies. There is observational evidence that 

both higher dietary intake and serum levels of carotenoids are associated with better muscle function 

and strength147,148 as well as reduced decline of physical function (gait speed) over time in older 

adults149-151. A recent meta-analysis, which aggregated findings from observational studies and 

randomised controlled trials on antioxidant-rich food intake and supplementation of antioxidants 

(vitamin E and magnesium), showed associations with better grip strength and muscle function in 

old-young adults152. Iron supplementation may offer another promising treatment for sarcopenia in 

patients with CVD, especially in those with iron deficiency153. Iron deficiency is associated with 

muscle dysfunction in patients with HFrEF154 but this can be reduced following short-term iron 

supplementation155.  

 

While beneficial for CVD prevention156, caloric restriction and fasting should be cautiously prescribed 

in older adults due to the potential loss of muscle mass157, although duration seems critical. For 

example, data show short-term caloric restriction may benefit muscle/physical performance in 

obesity157, including those with HFpEF158,159 (Figure 2). There is not yet sufficient data on time-

restricted eating, but this approach may constitute an option if weight loss is needed, as it still allows 

adequate-per-meal protein intake and can be combined with exercise training to counteract potential 

muscle loss160. In this regard, the time-of-day for meals has been implicated in the management of 

sarcopenia, with some data reporting that the distribution of protein intake (~30 g/meal) is important 

in older patients161,162 and potentially a higher intake in the evening is associated with higher 
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BMI163,164, whereas glucose tolerance, insulin secretion165, and satiety166 may be improved when 

meals are consumed earlier in the day. To date, high quality studies on the effect of meal timing on 

muscle health are missing in the setting of CVD and sarcopenia, which is also similar for other 

emerging and related areas implicated as potential future therapeutic targets including the muscle-

gut microbiome axis167,168,169.  

 

 Take home message 

Various factors influence how nutrition impacts sarcopenia, including the amount of energy, 

composition, delivery, and timing of the diet. Dietary patterns may overall be more important 

than single nutrients in the prevention of sarcopenia. How to tailor these nutritional factors to 

optimally manage sarcopenia in the context of CVD remains unclear.      
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8.0. Interaction between exercise and nutrition to optimise sarcopenia management in CVD   

Although potential benefits in sarcopenia management may be achieved via independent exercise 

or nutritional strategies, a combination of these approaches may prove most effective91,170. This is 

likely due to both interventions impacting a wide range of underlying mechanisms linked to poor 

muscle health in both CVD and ageing, as reviewed in detail elsewhere52,57. Briefly, these may 

include improved neurohormonal status alongside reduced systemic/local inflammation (IL6, IL1β, 

TNFα), reactive oxygen species, hypoxia, and insulin resistance. These changes help normalise 

anabolic/catabolic signalling (e.g. IGF1-Akt, MuRF1, myostatin) to increase protein turnover 

alongside improving myofilament, intracellular calcium, and neuromuscular homeostasis to impact 

both fibre size and function52,57. Further mechanisms also involve improved mitochondrial 

function/signalling (e.g., via PGC1α) and reversal of abnormal fibre type shifts, which benefit energy 

metabolism to decrease muscle fatigue52,57.   

 

In this regard, when in a state of negative energy balance, evidence favours that coupling a high-

protein diet with RxT potentiates muscle mass gains2. The underlying mechanism is linked to 

changes in the dynamic balance between rates of muscle protein synthesis and muscle protein 

degradation. As both protein synthesis and breakdown increase after RxT, the careful timing of 

protein intake following exercise can help increase protein synthesis further to promote muscle 

protein balance and maximise muscle adaptations161,171. Research into the effects of protein 

supplementation when combined with RxT remains a dynamic field2. A systematic review and meta-

analysis showed that protein supplementation in conjunction with RxT provides greater 

improvements in muscle mass in older individuals compared with RxT alone172.  In general, however, 

improvements in muscle mass following concurrent RxT and protein supplementation across the 

lifecourse remain conflicting172,173, as are findings combining RxT with multi-ingredient supplements 

(e.g. creatine, vitamin D)174. This evidence supports that other potential mechanisms could be limiting 

muscle adaptations following RxT, which could offer future therapeutic targets (see Section 9.0).  

 

Critically, many populations included in past studies that investigated concurrent exercise and 

nutrition interventions were not diagnosed with sarcopenia. In this regard, some of the strongest 

evidence to date comes from the combined exercise/nutritional SPRINTT study, a multicentre 

randomised control trial including 16 clinical sites175. This study included > 1000 older (> 70 years of 

age) community-dwelling males and females diagnosed with sarcopenia and physical frailty175. 

Participants were randomised to either control (receiving healthy ageing lifestyle education) or 

multicomponent intervention (combining regular RxT, ExT, balance and flexibility exercises, 

alongside dietary assessments and personalised plans including a protein intake of 1-1.2 g/kg body 

mass per day) for up to 3 years175. Overall, those assigned to multicomponent interventions showed 

reduced incidence of sarcopenia for the primary outcome measure of physical performance (SPPB), 

with less frailty and immobility. However, only females showed improved indices of muscle mass 
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and strength, highlighting the importance of sex differences175. The SPRINTT trial is one of the few 

well-controlled studies investigating how the interaction of exercise and nutrition can be used to 

effectively manage sarcopenia. These findings have been supported by multiple network meta-

analyses in patients with diagnosed sarcopenia from 26-46 randomised controlled trials. Such 

studies concluded that RxT combined with mixed exercise modalities (ExT, balance) was the most 

effective for increasing muscle mass, strength, and physical performance, whereas nutritional 

supplementations promoted specific gains in strength and physical performance69,91,176. In this 

regard, another important investigation includes the FrOST study (n=43)177-179, which specifically 

used a time- and cost-efficient, low-volume/high-intensity dynamic RxT protocol (2 x per week over 

12-18 months) in older men with osteosarcopenia. Specifically, this study supplemented 

osteosarcopenia patients with adequate whey protein, vitamin D, and calcium to confirm that 

supervised RxT increased muscle mass and strength compared with untrained controls alongside 

decreasing cardiometabolic risk factors, thus showing particular relevance for CVD populations.  

 

Unfortunately, in patients with CVD there remain few high-quality studies and little evidence to 

support concurrent exercise and nutritional interventions enhance sarcopenia treatment102 (Table 1; 

Figure 2). For example, a randomized clinical trial in patients with HFrEF showed that after 3 months 

those performing RxT with or without branch chain amino-acids supplementation (10 g per day) had 

similar improvements in muscle strength and body composition180. Moreover, a pilot study in patients 

with congenital heart disease diagnosed with sarcopenia found increased muscle mass after 2 

months of RxT combined with amino acid supplementation (leucine), however, a control group 

performing RxT alone was not included181. Interestingly, a randomised controlled trial in older obese 

HFpEF patients combining caloric restriction with ExT and RxT for 20 weeks showed greater muscle 

strength, physical performance, and quality of life scores, although muscle loss was an adverse 

effect158,159. Ongoing trials are currently underway in patients with HFpEF diagnosed with 

sarcopenia, which will shed further light into whether RxT combined with protein supplementation is 

beneficial88. Moving forwards, more studies should address the effectiveness of combined exercise 

and nutritional interventions in sarcopenia management specific to CVD populations, carefully 

accounting for mitigating factors that include participant profiles (age, sex, health status), diversity of 

protein supplements (type, quantity, duration), exercise training protocols (FITT), and assessment 

tools2. Beyond protein intake, RxT combined with vs. without creatine supplementation (3-6 months 

at ~5-20 g/d) is also reported to maximise gains in muscle strength, lean mass, and physical 

performance in older adults182. This approach could be relevant for patients with CVD given that 

smaller studies reported short-term creatine supplementation (20 g/d) for up to 6 weeks improved 

muscle strength, endurance, and body weight in HFrEF patients183,184. However, larger studies are 

still required to confirm efficacy and safety of creatine across varying treatment doses and durations, 

especially as some studies suggest lower doses in conjunction with exercise may provide no 

additional benefits to muscle health in patients with CVD185.  
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 Take home message 

Evidence suggests that multicomponent interventions (mixed exercises with nutritional 

support) likely provide the most effective approach to attenuate sarcopenia, however, there 

is a lack of high-quality evidence to confirm if this is similar in CVD populations.  
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9.0. What limits optimal muscle gains in patients with CVD for treating sarcopenia? 

Compared with younger adults, older adults may show lower increases in muscle mass following 

exercise or nutritional stimuli, which is termed anabolic resistance171. Blunted muscle adaptations 

following RxT are also observed in patients with CVD independent of age186,187. Collectively, CVD 

may exacerbate limitations in muscle growth with RxT compared with age-matched controls, without 

impacting functional gains in strength and physical function. However, whether muscle 

improvements in response to exercise are limited in patients with CVD diagnosed with sarcopenia 

remains poorly explored. The mechanisms that underlie anabolic resistance in ageing remain an 

active research area, however, most evidence points towards a limitation in the ability to increase 

rates of protein synthesis appropriately171. Although more controversial188,189, another mechanism 

may include the inability to activate and recruit resident muscle stem (satellite) cells, which was 

recently linked to CVD100,190. As such, optimising protein intake to overcome limitations in anabolic 

signalling during RxT186 could help manage sarcopenia more effectively in patients with CVD.   

 

Other potential mechanisms limiting the treatment of sarcopenia in CVD include reduced muscle 

blood flow/capillarity191 and mitochondrial dysfunction192,193. Given that CVD is associated with lower 

endothelial function, muscle capillarity, and mitochondrial function194-197, specific interventions that 

target these mechanisms (e.g., low-load blood flow restriction exercise) may enhance muscle blood 

flow and oxidative capacity to promote muscle gains. For example, small pilot studies without 

sarcopenia diagnosed showed muscle functional improvements in patients after cardiac surgery198 

or with HFrEF187 following low-load blood flow restriction exercise for 6 weeks, or in protocols that 

combined both RxT with ExT for 6 months in HFrEF199. However, it remains questionable how 

practical such protocols are to implement in patients with CVD and sarcopenia. A more feasible 

approach for managing sarcopenia in CVD may include respiratory (inspiratory) muscle training. For 

example, data from large-randomised studies in HFrEF reported that combining inspiratory muscle 

training with ExT and RxT over 12 weeks showed greater improvements in physical function and 

quality of life than ExT alone200,201. Taken together, concurrent RxT and ExT will likely optimise gains 

in muscle mass, strength, and physical performance in patients with CVD and sarcopenia, especially 

when combined with other exercise modalities such as balance, flexibility, and/or inspiratory muscle 

training (Figure 2). Finally, other mechanisms that may influence the interaction between sarcopenia, 

CVD, exercise, and nutrition, but require further study in humans, include epigenetic 

modifications202,203, but also the promising area related to muscle-secreted hormones/factors called 

myokines (e.g. irisin, apelin, musclin)204,205. Although some myokines have been linked to increased 

risk and progression of CVD205,206, other myokines released in response to exercise (termed 

exerkines) have cardioprotective and anti-sarcopenic properties204, highlighting another future 

avenue to exploit in the management of sarcopenia in CVD.      

 

 



26 

 

 Take home message  
Ageing and CVD can both attenuate muscle growth in response to resistance training, yet 

improvements in muscle strength remain achievable in most patients. Different modes of 

exercise combined with adequate nutrition may be appropriate to overcome limiting 

mechanisms and optimise sarcopenia management.    
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10.0. Influence of pharmacological and device therapies on sarcopenia in CVD 

The high prevalence and wide range of medications taken by patients with CVD could have a positive 

or negative impact on exercise-nutritional outcomes and therefore affect overall sarcopenia 

treatment. For example, some medications may negatively impact exercise training outcomes207. As 

such, the impact of medications on sarcopenia per se and their interaction with exercise and 

nutritional strategies in patients with CVD should be carefully evaluated. To date, there remains no 

established drug agent approved for treating sarcopenia, whereas the interactions of various CVD 

medications with exercise-nutritional responses remains poorly investigated. However, promising 

studies in older patients have suggested that certain drugs could be effective for sarcopenia 

management (Table 2). These include myostatin inhibitors, which increase muscle mass in older 

patients but without parallel improvements in muscle function or physical performance208,209. These 

findings underscore the challenge and complexity of using drug agents alone to treat sarcopenia, 

pointing towards a combined approach integrating exercise and nutrition to optimise outcomes – a 

point highlighted by a study that showed combined exercise training with vs. without the anabolic 

agent testosterone induced greater improvements in muscle strength and clinical outcomes in HF 

patients210. However, apart from hormonal drug agents such as testosterone, growth hormone, and 

ghrelin (Table 2), that in themselves may pose significant health risks in patients with CVD, many 

candidate sarcopenic drug agents remain untested in CVD. These include selective androgen 

receptor modulators (SARMs), which may have less adverse effects compared with traditional 

anabolic agents despite providing similar anti-sarcopenic benefits211 (Table 2). Nevertheless, there 

is evidence to support that various guideline-directed medical therapies prescribed in CVD such as 

angiotensin-converting enzyme inhibitors and beta-blockers benefit muscle mass and function in 

patients with212-214 but not without CVD215-217, whereas other recent evidence shows that sodium 

glucose cotransporter 2 (SGLT2) inhibitors are associated with decreased muscle atrophy in 

HFrEF218 and frailty in HFpEF219.  

 

It is important to recognise that some drug agents with beneficial clinical outcomes may exacerbate 

sarcopenia, inducing potential muscle pathology related to atrophy, mitochondrial dysfunction, and 

necrosis, such as traditional loop diuretics220,221, metformin222, statins223,224, and 

immunosuppressants (e.g., corticosteroids, cyclosporine225), and these may even have negative 

effects on exercise training outcomes. For example, 14 weeks of RxT combined with taking 

metformin in older adults was shown to blunt increases in muscle mass222, whereas statins have 

been reported to blunt standard muscle adaptations to exercise training207. Moreover, although the 

clinical benefits of glucagon-like peptide-1 (GLP1) analogues in patients with obesity and HFpEF 

have been positive226, it remains unclear whether this weight-loss approach promotes sarcopenia 

and under-nutrition227,228 or if GLP1 analogues influence outcomes following exercise-nutrition 

interventions. Moreover, cardio-oncology studies have outlined the balance between using 

chemotherapy agents to promote lifespan but at the cost of accelerating sarcopenia229. Collectively, 
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therefore, careful consideration should be given to medications being prescribed to patients with 

CVD as they may have an impact on the progression and severity of sarcopenia. Noteworthy, almost 

all studies showing beneficial effects of drug agents in CVD on skeletal muscle were limited by low 

sample sizes, did not control for the potential confounding factor of physical inactivity or diagnose 

baseline sarcopenia, whereas many have not investigated if medications have beneficial or 

detrimental effects to exercise and nutritional interventions. Further work is therefore required to 

clarify these issues in addition to investigating other emerging pathways of interest (e.g. GDF15)230. 

In addition to drug agents, other studies have investigated the effects of devices (e.g. left ventricular 

assist devices23,231 or cardiac resynchronization therapy232), muscle stimulation protocols (e.g. via 

neuromuscular electrical stimulation233-236), and supplemental oxygen to impact the muscle 

microenvironment237 on indices of sarcopenia, but with conflicting findings (Table 2).   

 

 Take home message  
Various medications and devices prescribed as a primary treatment for CVD may attenuate 

sarcopenia progression (e.g., ACE inhibitors, beta-blockers), however, some drug agents 

may conversely promote sarcopenia (e.g. GLP1 analogues) and potentially inhibit muscle 

adaptations in response to exercise (e.g. metformin, statins). Future studies should 

investigate which type of medications can positively or negatively impact exercise-nutritional 

interventions, and how they help or interfere with sarcopenia management in CVD.   
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11.0 Practical implications for treating sarcopenia in clinic settings 

Although a main goal in CVD management is to improve or prevent deterioration of cardiac function 

and limit disease progression16,17, treating other systemic pathological conditions such as sarcopenia 

is critical for reducing symptoms and improving quality of life. Sarcopenia represents a viable 

therapeutic target that shows a degree of reversibility, which is closely linked to clinical outcomes in 

CVD2. Thus, a key aim should be to integrate sarcopenia screening and diagnosis into the routine 

clinical management and follow-up of patients with CVD. This approach would allow early 

interventions including tailored exercise and nutritional strategies to effectively manage sarcopenia 

(Figure 2). Assessing and diagnosing sarcopenia alongside related conditions such as frailty, 

cachexia, and malnutrition (e.g. via nutritional assessments)20,238, should become a priority and 

targeted as early as possible in patients with CVD (Graphical Abstract). Rapid screening can be 

implemented during annual consultations, hospitalisations (phase I) and at entry of an ambulatory 

programme, based on clinical suspicion or by administering the SARC-F questionnaire. In cases 

where sarcopenia is suspected, this should then be followed by relatively straightforward 

assessments of muscle strength such as handgrip or chair-stand test to confirm probable 

sarcopenia. The subsequent diagnostic confirmation through evaluation of muscle mass and 

assessment of severity via physical performance tests can be carried out by physiotherapists or 

cardiac nurses working in the outpatient clinics, inpatient units or ambulatory care settings. The 

management of sarcopenia should then be incorporated within cardiac rehabilitation or facilitated by 

appropriate referral of the patients to physiotherapists and dieticians, following a holistic 

individualised approach14 including optimising exercise and nutritional strategies to manage 

sarcopenia (Figure 2; Figure 3).  

 

There is preliminary evidence that cardiac rehabilitation is beneficial for managing sarcopenia, as 

shown in a large study conducted in males and females with HF that reported reduced sarcopenia 

following 3-5 months of out-patient cardiac rehabilitation (combined ExT and RxT 5 x per week)239. 

Interestingly, those failing to decrease their sarcopenia status showed higher mortality239, providing 

a strong argument for treating sarcopenia as a central component of cardiac rehabilitation. This may 

be especially true in older patients with CVD who are hospitalised with acute events, in whom rates 

of sarcopenia are high and recovery low240 and where risk of acute sarcopenia is high24. For example, 

early and tailored physical rehabilitation focusing on strength, balance, mobility and endurance (36 

sessions, 60 min each, over 3 months) in an elderly predominantly frail population of hospitalised 

patients with acute decompensated HF improved physical performance and outcomes compared 

with usual care in a large multicentre randomized controlled REHAB-HF trial (n=326), although 

nutritional support was not addressed240. A secondary analysis of the REHAB-HF trial further 

compared patients diagnosed with vs. without baseline sarcopenia (handgrip strength/gait speed) 

following rehabilitation241. The findings revealed that even hospitalised patients with sarcopenia 

could improve a range of physical performance indices compared with patients without 
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sarcopenia241. Given the high incidence of acute hospitalisation in patients with CVD and increased 

risk of acute sarcopenia during this time frame24, these findings suggest treating sarcopenia early in 

hospitalised patients with CVD via physical exercise, but with further tailored nutritional interventions, 

would attenuate acute sarcopenia and its subsequent progression. As evidence shows that females 

with CVD have less improvements in physical performance compared with males following cardiac 

rehabilitation242 despite showing less signs of muscle pathology43, sex differences should also be 

accounted for during cardiac rehabilitation and treating sarcopenia in CVD patients.  

 

In summary, the treatment of sarcopenia in patients with CVD should involve multi-component 

cardiac rehabilitation and a multi-disciplinary team including clinicians, exercise professionals, 

physiotherapists, dietitians, and social workers according to recent standards and guidelines14,16,243. 

It is critical patients meet target exercise intensity thresholds during cardiac rehabilitation 

programmes otherwise the training may be insufficient to produce tangible benefits on reducing 

sarcopenia14,83. Integration of all aspects relevant to the individual patient should be contemplated, 

including personal and environmental context factors (e.g. living status, collaboration with care 

providers) as outlined by the International Classification of Functioning, Disability and Health243.  

 

 

 Take home message  
Integrating sarcopenia diagnosis and management during outpatient consultations, 

hospitalisation (phase I), and at entry of an ambulatory cardiac rehabilitation programme 

(phase II) will help detect and treat this condition early, with tailored exercise and nutritional 

approaches optimising functional outcomes. Figure 3 provides an infograph for healthcare 

professionals to aid sarcopenia management in CVD.  
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12.0 Future directions and conclusions  

Research on the pathological mechanisms and optimal treatments of sarcopenia in patients with 

CVD remains in its infancy (Figure 2; Table 1). Future studies should include patients with CVD who 

have been diagnosed with sarcopenia to optimise exercise and nutritional strategies. Nevertheless, 

current limitations related to different sarcopenia definitions are slowing progress in identifying 

mechanisms and effective treatments244. Cardiac rehabilitation offers an excellent opportunity to 

diagnose sarcopenia early, monitor its progression, and optimise its management14. Optimising 

exercise and nutritional interventions, including combined modes of exercise alongside adequate 

protein intake and early treatment of malnutrition, are critical considerations in patients with CVD 

and sarcopenia. Addressing determinants of a non-responsive muscle micro-environment could also 

be relevant. Importantly, patients with severe- rather than moderate-sarcopenia may require a more 

nuanced approach, for instance greater emphasis on multicomponent interventions175, whereas 

specific considerations may be needed in relation to sex differences43. Given the large prevalence 

of obesity in patients with CVD (e.g. HFpEF), sarcopenic obesity likely represents an important area 

of future research, as does the alternative therapeutic target of respiratory (diaphragm) sarcopenia 

in CVD38. In conclusion, reducing sarcopenia in patients with CVD will increase engagement in more 

physical activity and promote functional independence, which will ultimately improve quality of life 

and long-term outcomes. 
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Figures legends  

Graphical Abstract. Optimising the management of sarcopenia in cardiovascular disease (CVD) by 

implementing early screening/diagnosis followed by combined exercise with nutritional interventions. 

A reciprocal relationship exists between CVD and sarcopenia. Various CVDs promote the onset and 

progression of sarcopenia (bubble size indicates relative prevalence in each condition, with the 

highest in heart failure), which is commonly exacerbated by additional comorbidities including 

chronic kidney disease (CKD) and type 2 diabetes (T2D). Sarcopenia is characterised by loss of 

skeletal muscle mass and strength, and decreased physical performance. Assessing and diagnosing 

sarcopenia should be done as early as possible and integrated into standard clinical practice and 

cardiac rehabilitation (CR). Current evidence suggests that the most effective approach for reducing 

sarcopenia in CVD is likely via resistance training combined with other exercise modalities such as 

endurance training, alongside minimising malnutrition and attaining adequate protein intake. 

Personalising the selected interventions to the individual with CVD is key to attaining the greatest 

benefits to reduce sarcopenia, including accounting for current medications.   

 

Figure 1. Operational definition of sarcopenia and screening algorithm for case finding, diagnosis 

and quantifying severity, based on current European Working Group on Sarcopenia in Older Patients 

(EWGSOP)13, presented alongside the closely related but distinct conditions of cachexia19, the 

physical phenotype of frailty245, and malnutrition (based on the Global Leader Initiative on 

Malnutrition (GLIM) criteria)246. Probable sarcopenia is identified by Criterion #1. Diagnosis is 

confirmed by additional documentation of Criterion #2. If Criteria 1, 2 and 3 are all met, sarcopenia 

is defined as severe. Abbreviations: ASM, appendicular skeletal muscle mass derived by DXA or 

BIA; BIA, bioelectrical impedance analysis; CT, computed tomography; DXA, dual-energy x-ray 

absorptiometry; MRI, magnetic resonance imaging; SPPB, short physical performance battery; TUG, 

timed up and go.  

 

Figure 2. Summary of the potential benefits of exercise training and nutritional interventions in the 

management of sarcopenia in patients with cardiovascular disease (CVD), with current knowledge 

gaps in the field presented (detailed explanation in main). Evidence favours that different modes of 

exercise training can primarily increase muscle strength and physical performance, whereas 

nutritional supplementation potentially benefits muscle mass. There is sparse evidence to confirm 

whether combined exercise and nutritional interventions provide the most effective approach to 

reducing sarcopenia in patients with CVD. An important caveat is that most evidence is drawn from 

patients with CVD where sarcopenia was not diagnosed or from older adults without CVD, which 

limits current understanding. Abbreviations: AA, amino acids; CVD, cardiovascular disease; PUFA, 

polyunsaturated fatty acids; Vit, vitamin.     
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Figure 3. Proposed “speedy” check list for diagnosing and managing sarcopenia in patients with 

cardiovascular disease  
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Tables 

Table 1. Selected studies investigating exercise, nutritional, and their combined effects on sarcopenia status in patients with cardiovascular disease  

Intervention  Study details Population Baseline 
sarcopenia 
diagnosed? 

Sarcopenia outcomes 
(and others) 

References 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Resistance training 

Randomised controlled trial 
10 weeks, 3 x per week, 60 min 
session dynamic muscle group 
exercises at 80% 1RM for 3 
sets x 8 reps 
 

N=16 HFrEF  
(16 females) 

77±6 y 

No ↑ Muscle strength 
↑ Physical performance (6MWT 

distance) 
↔ Muscle mass  

(↑ Muscle endurance,  
 ↔ cardiac function)  

Pu et al. 
200177 

18 weeks, 3 sets of 8 reps @ 
80% 1RM for 7 dynamic 
exercises 

N=10 HFrEF/HFpEF  
(7 males) 
73±2 y 

No ↑ Muscle strength,  
↑ Physical function 

↔ Lean mass,  
(↔ Exercise capacity, ↔ cardiac 

function) 

Savage et al. 
201178 

Randomised controlled trial 
3-4 months, 2-3 x per week, 3 
sets at high-load (6-8 
repetitions @ 80% 1RM) or 
low-load (12-16 repetitions @ 
40% 1RM)  

N=59 Coronary artery 
disease  

(44 males) 
62±8 y 

No ↑ Muscle strength 
(↑ Exercise capacity) 

 

Kambic et al. 
202282 

Randomised controlled trial 
3 months, 3 sessions per week, 
2 sets of multiple exercise 8-12 
repetitions @ at 60% 1RM 

N=9 HFpEF  
(8 males) 
70±7 y 

No ↑ Muscle strength 
↔ lean mass 

(↑ Exercise capacity,  
↓ fat mass) 

Sharif et al. 
202487 

Randomised controlled trial 
8 weeks, 3 x per week, 1 h, 2 
sets, 25 repetitions per major 
muscle groups (resistance 
band)  

N=16 HFrEF 
 (8 males) 

63±9 y 

No ↑ Physical performance (gait speed, 
6MWT distance) 

(↑ Exercise capacity,  
↑ QoL) 

Tyni-Lenne et 
al. 2001247 

     
 
 
 
 
 

Randomised controlled trial 
6 weeks, interval training, 3 x 
per week, 9 x 5 min bouts 
(intervals) @ ventilatory 

N=12 Heart transplant 
recipients  
(11 males) 

54±2 y 
 

No ↔ Muscle mass  
(↑ Mitochondria indices, 

↔ muscle capillarity)  
 

Lampert et al. 
199897 
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Endurance Training 

threshold and 90% peak power, 
cycle ergometry.  
Randomised controlled trial 
6 months, 4-6 x per week, 20 
minutes @ 70% VO2peak, cycle 
ergometry  

N=20 HFrEF  
(20 males) 

54±2 y 
 

No ↑ Exercise capacity (VO2peak)  
(↓ Muscle inflammation) 

Gielen et al. 
200394 

3 months, moderate continuous 
training, 2 x per week, 45 min 
session @ 80% HRpeak  
 

N=260 with coronary 
artery disease  
(223 males) 

 61±10 y 
 

No ↑ Muscle strength 
 

Thomaes et al. 
201292 

3 months, 3 x per week of 
intervals (4 x 4 bouts of 4 min 
high intensity @ 85-95% 
HRpeak, with 3 min bouts of 
recovery @ 50-70% of 
HRpeak) or moderate 
continuous training (37 
minutes @ 60-70% of 
HRpeak) 

N=200 coronary artery 
disease  

(180 males)  
58±9 y 

 

No ↔ Muscle strength 
 

Pattyn et al. 
201793 

Randomised controlled trial; 
3 months of HIIT (3 x per 
week, 4 x 4 bouts of 4 min @ 
80–90% HRR with 3 min 
recovery bouts @ 35-
50%HRR) or moderate 
continuous training (5 x per 
week, 40 minutes per session 
@ 35-50% of HRR); Cycle 
ergometry 

N=41 HFpEF  
(12 males) 

72 y 
 
 

No ↑ Exercise capacity 
(↓ Muscle atrophy markers in HIIT. 
↑ Mitochondrial function in HIIT) 

 

Winzer et al. 
2022100 

Randomised controlled trial 
3 months, 7 x per week with 
20-30 min sessions @ 
60%VO2peak; 
Cycle ergometry 

n=37 advanced HFrEF  
(37 males) 

61±2 y 

No ↑ Muscle mass 
(↓ Muscle catabolic markers) 

 
 
 

Hollriegel et 
al. 201395 

     
 
 
 
 

Randomised controlled trial 
6 weeks of a high caloric (600 
kcal/d) protein rich (20 g/d) 
supplement 

n=29 HFrEF 
(24 males) 

63±11 y 

No 
 

↑ Physical performance (6MWT 
distance) 

↑ Lean mass,  
(↑ Body mass, ↑ QoL) 

Rozentryt et 
al. 2010248 
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Nutrition 

Randomised controlled trial 
8 weeks of essential amino 
acids supplementation (8g/d)  

n=38 HFrEF 
(27 male) 

74±4 y 
 

No ↑ Physical performance (6MWT 
distance, VO2peak) 

Aquilani et al. 
2008; 

Lombardi et 
al. 2014249,250 

Randomised controlled trial 
12 weeks of fish oil (6.5 g/d) 
and l-alanyl-l-glutamine (8g/d) 

n=31 HFrEF 
(26 male) 

59±2 y 
 

No 
 

↑ Lean mass 
↔ Muscle strength (and function),  
↔ Physical performance (6MWT 

distance, VO2peak) 
(↑ QoL, ↔ heart function)  

Wu et al., 
2015251 

Randomised controlled trial 
12 months of individualized 
nutrition high protein 

n=86 HFrEF  
(NA) 

No ↑ 6MWT distance  Ortiz Cortes et 
al. 2024252 

Randomised controlled trial 
24 weeks of a high protein 
(7.4g/d), high energy (141 
kcal/d) supplementation 

n=38 HFrEF 
(27 males) 

68±2 y 
 

Yes ↑ Lean mass 
↑ Physical performance (6MWT 

distance)  
(↑ QoL in both control and intervention 

groups) 
 

Herrera-
Martinez et al. 

2023253 

     
 
 
 
 
 
 
 
 
 
Concurrent exercise and 
nutrition 
 

Randomised controlled trial 
20 weeks of ExT (3 x per 
week) + caloric restriction (350 
kcal/d)    

n=100 obese HFpEF 
(81 females) 

67±5 y  

No 
 

↑ Physical performance (6MWT 
distance, VO2peak)  

↓ Muscle mass  
(↑ QoL, ↓ Cardiac mass, ↓ Body mass)  

 

Sahni et al. 
2021145 

 

Randomised controlled trial 
20 weeks of RxT + ExT (3 x 
per week) + caloric restriction 
(350 kcal/d)  

n=88 
Obese HFpEF 
(75 females) 

68±5 y 

No 
 

↑ Muscle strength,  
↑ Physical performance (6MWT 

distance, VO2peak)  
↓ Muscle mass 

(↑ QoL) 

Lauretani et 
al. 2008146 

Randomised controlled trial 
36 months of 
RxT+ExT+balance+flexibility 
training with dietary 
assessments and personalised 
plans.  

n=1519 Community-
dwelling older adults 

(1088 females) 
79±6 y  

 

Yes ↑ Muscle strength,  
↑ Physical performance 

↑ Muscle mass (females) 
(↓ Mobility disability, ↓ Physical frailty) 

Bernabei et 
al. 2022175 

Randomised controlled trial 
12 weeks of RxT with 
branched-chain amino acid 
supplementation (10 g/d) 

N=66 HFrEF 
(39 male) 

73 (62-80) y 
 

No ↑ Muscle strength  
(↑ VO2peak, ↓ Symptoms, ↓ Fatigue; ↔ in 

RxT group alone)  

Xiao et al. 
2019160 
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Abbreviations: ExT, Endurance exercise training; HFrEF or HFpEF, heart failure with reduced or preserved ejection fraction; HRR, heart rate reserve; HIIT, High-

intensity interval training; QoL, quality of life; RxT, resistance exercise training; 1RM; 1 repetition maximum; 6MWT, 6 minute walk test;   
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Table 2. Selected pharmacological, device, and stimulation interventions with potential for influencing sarcopenia in patients with cardiovascular disease  

Treatment Agent  Population Baseline 
sarcopenia 
diagnosed? 

Sarcopenia outcomes 
(and others) 

References 

 
 
 
 
 
 
Anabolic stimulants 
 

Testosterone HFrEF No 
 

↑ muscle strength, 
↑ physical performance 

(↔cardiac function) 

Toma et al. 2012; 
Caminiti et al. 

2009254,255 

Human growth hormone HFrEF No 
 

↔ physical performance 
(no muscle measurements) 

Osterziel et al. 
1998256 

 
 

Selective androgen receptor 
modulators (SARMs) 

Older adults No ↑ Lean mass. 
↑ physical performance 

 

Wen et al. 2025; 
Dalton et al. 
2011211,257 

Older adults Yes ↑ Lean mass. 
↔  physical performance 

 

Papanicolaou et al. 
2013258 

 
 
 
Myostatin inhibitors 

 
 
 

Bimagrumab 

Older adults 
 

Yes ↑ Lean mass 
↔ physical performance,  

↔ muscle function 

Rooks et al. 2020209 

Older hip fracture 
adults 

Yes ↑ Lean mass 
↔ physical performance, 

Hofbauer et al. 
2021208 

Type 2 diabetes + 
obesity 

No ↑ Lean mass. 
(↑ metabolic markers) 

Heymsfield et al. 
2021259 

 
Anti-GDF-15 therapy: 

Ponsegromab Cancer cachexia 
 

No 
 

↑ Physical activity 
(↑ weight, ↑ appetite) 

Groarke et al. 2024230 

 
Ghrelin 
 

Anamorelin,  
Macimorelin. 

HFrEF 
 

No 
 

↑ muscle mass, 
↑ physical performance  

(↑ cardiac function). 

Nagaya et al. 2024260 

Non-small-cell lung 
cancer 

Yes ↑ lean mass, 
↔ muscle strength. 

Temel et al. 2016261 

 
 
 

 
 
 

β2-adrenergic receptor 
agonist 

HFrEF 
 

No 
 

↑ muscle mass,  
↑muscle  strength 

↔ physical performance 
(adverse cardiac effects) 

Kamalakkannan et al. 
2008262 

β-blockers HFrEF 
 

No 
 

↓ cachexia Clark et al. 2017214 
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Guideline-directed 
medications 
 

ACE inhibitor Hypertension/HFrEF 
 

No 
 

↑muscle  strength 
↑muscle atrophy 

↑ physical performance 
(↓ cachexia) 

 

Schaufelberger et al. 
1996; Anker et al. 

2003; Vescovo et al. 
1998 

212,263,264 
SGLT2i HFrEF No 

 
↓ muscle atrophy 

(↑ anti-inflammatory and muscle 
metabolism) 

Wood et al. 2024218 

 
 
 
 
 
Cardiac devices 

 
 

Ventricular Assist Device  
 

Advanced HFrEF 
 

Yes 
 

↑ Muscle mass, 
↑ Physical performance.  

↔ Muscle strength 
(↑ quality of life) 

Vest et al. 202223 

Advanced HFrEF No 
 

↓  Muscle atrophy. 
↑ Muscle strength. 

physical performance unassessed 

Khawaja et al. 
2014231 

Cardiac resynchronization 
therapy  

HFrEF No 
 

↔ muscle atrophy 
↑ Physical performance 

(↔ inflammation) 

Larsen et al. 2013232 

 
 
 
 
Muscle stimulation 

Vibration therapy 
 

Older adults 
 
 

Yes 
 

↑ muscle strength 
↑ physical performance. 

Wu et al. 2020265 

Neuromuscular electrical 
stimulation 

 

HFrEF, cardiac 
surgery  

No 
 

↑ physical performance 
↑ muscle strength 
(↑ quality of life) 

Poltavskaya et al. 
2022; Banerjee et al. 

2009236,266 

Pulsed electromagnetic 
fields 

 

Older adults No 
 

↑ physical performance,  
↑ muscle mass. 

Venugobal et al. 
2023235 

Abbreviations: HFrEF or HFpEF, Heart failure with reduced or preserved ejection fraction;  
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