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Abstract

The parameter that captures the similarity among disciplinary categories is a key quantity 
of many measures of interdisciplinarity. This study evaluates the feasibility of using large 
language models to estimate this parameter rather than using traditional methods based 
on citational networks among disciplines. An experimental procedure tested the precision, 
agreement, resilience, robustness, and explainability of estimates from OpenAI’s ChatGPT, 
Google’s Gemini, and Anthropic’s Claude. The experiment collected a sample of 228 simi‑
larity matrices among two disciplinary taxonomies, for a total of 16,200 sampled estimate 
values. The experiment concludes that Gemini reaches precise estimates, comparable to 
traditional methods. ChatGPT stands out only for its superior resilience when dealing with 
semantically trivial changes in how disciplines are described. Claude resulted in a balanced 
profile. While rarely in full agreement, all three models undertake the estimation task suf‑
ficiently well.
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Introduction

Interdisciplinarity can be defined as the integration of “information, data, technique, tools, 
perspective, concepts, and/or theories” from two or more separated bodies of knowledge 
to improve understanding or problem solving (Committee on Facilitating Interdisciplinary 
Research, 2005). Interdisciplinarity also involves collaboration across research areas, cross‑
citing unrelated scientific journals, and other related phenomena. In particular, IDR has 
been consistently linked to innovation and technological applications in industry, given its 
capacity to solve practical problems (Bromham et al., 2016; D’Este et al., 2019; Haeussler 
& Sauermann, 2020; Larivière & Gingras, 2010; Leahey, 2016; Leahey & Barringer, 2020; 
Porter & Rafols, 2009; Rafols et  al., 2012; van Rijnsoever & Hessels, 2011). Given this 
widely believed view, the study on the organisation of interdisciplinary research (IDR) has 
developed an established status as a research programme within the field of quantitative 
studies of science, with clear research pathways. Research questions as: “How to measure 
interdisciplinarity?”, “Does IDR lead to higher scientific impact?”, “Is an interdisciplinary 
education better?” or “Is there a bias against IDR in peer review or funding?”, have been 
explored extensively by dedicated scholars.

Measuring interdisciplinarity has always been a key issue. Given the elusive definitions 
of IDR, its assessment needs robust measures. Indeed, a series of studies (Fontana et al., 
2020; Wang & Schneider, 2020; Zwanenburg et al., 2022) have shown that indicators of 
interdisciplinarity may not be as mutually coherent as the research community has pre‑
viously assumed. The findings of a substantial number of studies may overly depend on 
how the authors define the model of measurement, creating a danger of selective reporting 
of only those methods that produce outcomes that favour preferred outcomes (Cantone, 
2024). Nevertheless, as suggested by Mugabushaka et al. (2016), the pluralism of different 
quantitative measures of IDR may instead simply reflect the evolution and improvement of 
theorisation about operative definitions of IDR.

Within the theory of measurement of IDR, a key parameter is the similarity between 
two disciplinary categories. Already in the original conceptualisation of (Stirling, 2007) 
and (Porter & Rafols, 2009), the set of references became the canonical metadata used 
to quantify of the influence of disciplines over a unitary or collective body of research. For 
example, if half of the references in an article cite journals of Economics, it is deduced 
that the article recognises Economics for around half of its inspirations. In other words, 
the metadata of the references tells that such an article must have something to do with the 
category Economics (Avila‑Robinson et al., 2021; Huang et al., 2021; Leydesdorff, 2005; 
Mutz, 2022; Rousseau et al., 2019; Thijs et al., 2021). The established “Diversity” frame‑
work  recognises that an article has several   inspirations when it cites many disciplines 
(Variety) in equal proportion (Balance). The third parameter of the formulas of diversity is 
the similarity (Disparity) among disciplines. If the categories, i.e., the disciplines, are too 
conceptually adjacent, then the disciplinary diversity of the article is typically tuned down. 
Intuitively, an article linking two social sciences is less interdisciplinary than one linking a 
social and a natural science.

The model of measurement based on the references is well‑known, reliable, and sen‑
sible, and this leads to methods to assess the similarity of a disciplinary taxonomy based 
on citational networks. Nevertheless, references are only an indirect measure of the 
effective semantic (ergo, textual) content of scientific articles, and an alternative meas‑
urement  method already employs classifications based on advanced automated tech‑
niques from Artificial Intelligence (AI) for Natural Language Processing (Cantone, 2024). 
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While AI has indeed been employed to classify documents, it has been largely untouched 
as a source of knowledge about the parameters of similarity among disciplines.

This study is aimed at filling this gap, introducing an experimental protocol that sur‑
veys many statistical properties and other qualities of the large language models (LLMs) 
as a source of numeric values for the similarity parameters among disciplinary categories. 
LLMs are AIs that are trained to provide useful answers to a wide variety of general ques‑
tions prompted in natural languages. They are capable of communicating with a human 
agent, behaving similarly to so‑called chatbots, but being capable of generalising and 
generating a much wider range of answers (Mei et al., 2024; Noy & Zhang, 2023; Nejjar 
et al., 2024; Ray, 2023; Shanahan, 2024). The state‑of‑the‑art of research on LLMs focused 
on understanding which areas LLMs can replace or complement previous methodologies 
that require effort or coordination from human agents (Bornmann & Lepori, 2024; Dillion 
et  al., 2023; Gilardi et  al., 2023; Jones, 2024; Thelwall, 2024; Zheng et  al., 2024). This 
study stands on the following conjecture: an LLM, asked to provide a numerical estimate 
for similarity between two disciplines, can return a formally valid response in a number 
within the unitary range; then must exist a sufficiently detailed question about a finite tax‑
onomy (a ‘well‑made prompt’) capable to generate a whole similarity matrix as its output, 
such that it approximates sufficiently well results from traditional methods. Finally, while 
it is rarely easy to understand the criteria used by LLMs to determine the values in the 
similarity matrix, one could even conjecture that LLM’s extensive access to diverse data 
sources, being capable of estimation, potentially better informed than those derived from 
citation‑based traditional methods.

In other words, a central aim of this study is to assess if estimates obtained by LLM‑
based methods are not inferior to those achieved through traditional approaches based on 
citations. Asking questions in natural language does not require computational skill, and 
has the advantage that it does not require access to a large and potentially very expen‑
sive database of citational networks. In this regard, LLM‑based methods could be a step 
towards removing an important entry barrier for researching IDR. However, given the vari‑
ety of methods and formulas that are used to process matrices of citations into matrices of 
similarity, both methodologies lack a ground truth parameter to asses their bias, henceforth 
a strict evaluation of the gain in accuracy of the estimate is impossible to test. Arguably, it 
could be said that there is no such thing as an ‘objective’ parameter of similarity, since a 
precise estimate could still reflect implicit sensitivity to the decisions adopted in the quan‑
tification (Marres & de Rijcke, 2020; Rafols, 2019; Stirling, 2023). For this reason, this 
study will focus on statistical characteristics that define the quality of a sampling proce‑
dure, such as the statistical dispersion of estimates among repeated identical trials of que‑
ries, or the sensitivity of the output towards alternative spellings of the prompt.

Ideal features for an LLM‑based process of similarity estimation are: Replicability, 
the logical and numeric consistency of estimates within and between language models; 
the Sensitivity to semantic changes in the input taxonomy; and the Explainability of the 
model, which is the capacity of an LLM to explain how to relate its internal processes to 
understandable scientific methodologies. From these principles, five specific statistics can 
be tested: 

1. The Precision of the model can be quantified as the inverse of the variance of estimates 
across identical trial runs as if in parallel. It counts as a test for the Replicability of the 
estimation from the same model. If the same matrix of citations is processed through 
the same formula, the result ought to be identical. However, the same LLM, at the same 
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internal parametric state, and on the same state of training, prompted twice with the 
same prompt for the same taxonomy can provide slightly different estimates. It is impor‑
tant to establish that the variance in estimates is trivial. A potential source of variability 
in estimates is temperature, an internal parameter of the LLM that, once raised, lowers 
the filtering threshold for source content to contribute to an answer, augmenting the 
randomness of the answers. Temperature is used in LLMs as a source of randomness to 
make responses more ‘human‑like’ and less robotic.

2. The Replicability of the method also concerns the capacity to reach a logically consistent 
result independently of which LLM is queried. Different LLMs should be in Agreement 
with each other on the results of any estimation, whereas the statistics can be measured 
as the difference in the average estimates. These statistics are based on an important 
epistemological motivation: if different models reach an Agreement with low differences 
on average, it would imply the process of training each LLM draws on evidence from 
the real world that allows a sufficiently learned LLM to establish reliable scores for the 
matrix of similarity. In other words, if many LLMs are in Agreement, this would count 
as evidence to support that stable differences (ergo, meaningful parametric similarities) 
among disciplines exist. On the contrary, if multiple LLMs consistently fail to align in 
their estimates, it would be reasonable to believe that at least one of them has a bias, 
even if it is not straightforward to identify which LLM is the biased one.

3. The principle of Sensitivity can be synthesised with two simple definitions. Resilience 
is the capacity to differentiate numeric estimates for semantically different categories. 
A semantic shift in the name of a category should follow a proportionate shift in the 
estimates of similarity. This capacity is useful because taxonomies of science are mostly 
outsourced to expert actors who propose names for the disciplinary categories at differ‑
ent levels of granularity.

4. The latter principle holds for the Robustness of an LLM‑based estimation, which cap‑
tures the capacity to deal with a shift in the estimates when a category changes its 
nominal meaning without altering its semantic meaning (e.g., substituting “Computer 
Science” with “Informatics”). In this case, differences in outcomes should ideally be 
zero.

5. While LLMs do not offer a way to reproduce their methods, they should at least be capa‑
ble of outlining the principles behind their assessment of similarity. This is an applica‑
tion of the principle of Explainability of an LLM. There is a risk that the software may 
“hallucinate” an inaccurate response: instead of providing an accurate answer, LLMs 
sometimes infer an answer from a set of principles that satisfy the query in a generic 
situation (Farquhar et al., 2024). In such cases, the LLM is trying to appease the agent 
with a convenient response, but this response could be misleading when attempting to 
reverse‑engineer the LLM’s estimation method.

To check to what extent these features hold for LLMs, we developed a prompt and tested it 
across two taxonomies using three commonly used public LLMs: ChatGPT 4o (CGPT4o), 
Claude 3.5 Sonnet (C‑Sonnet), and Gemini 1.5 Pro (Gemini). We used the taxonomy of 
five fields of science from the Leiden Ranking (L5F) and a modified version of the dis‑
ciplinary groups of Clarivate’s Journal Citation Report (9S). A control for the tempera‑
ture parameter has also been included. Given the quality of answers decreased for higher 
temperatures (which increased randomness), the test of the replicability of the results was 
exclusively conducted with the temperature parameter at its lowest level, zero. Even with 
this precaution, some results were unsatisfactory, especially the performance of CGPT4o.
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To check applicability, we tested the distribution of the stochastic error of the estimates, 
and we found that Gemini and Claude outperform CGPT4o in Precision; however, the 
three LLMs are not consistently in Agreement. Additionally, we compared estimates for 
similarity between the categories of 9S among LLM‑based methods and citational‑based 
methods, and we concluded that Gemini showed signs to be the most apt LLM for sci‑
entometric research, because it consistently approximated traditional estimates based on 
citations with only a minor bias. To check the Sensitivity, we slightly altered the names of 
the categories. All three LLMs showed good Resilience, yet Gemini and C‑Sonnet showed 
excessive Sensitivity to trivially altered nomenclatures for the disciplines.

Theoretical background on the measurement of similarity

Similarity is a universal concept covering the semantic space between ‘identity’ and ‘dif‑
ference’. With these two concepts, similarity shares the features of always being referred 
to as a pair of objects (X, Y). A singular object can be similar to the average of its group, 
and a group can be, on average, highly or lowly similar, but all of these features are derived 
by operations on pairs of elements (Leydesdorff, 2005; Rao, 1982; Tversky, 1977). These 
characteristics of the concept of similarity are reflected in the two fundamental rules of any 
operative definition for a z measure of similarity:

• Unitary range: 

• Identity of the indiscernibles: 

One may be led to think that Eq. (1) implies that

but this is not strictly implied in Eq. (1).
From this set of rules, two macro‑approaches to advance the definition of similarity 

emerge.

A structural definition of similarity

A structural definition of similarity tries to capture the underlying essence of a compari‑
son between a pair of objects. It defines the similarity of two objects using a measuring 
procedure: to see if two objects are identical or different, it involves measuring, element 
by element, the extent of the congruence between the two juxtaposed objects (Markman & 
Gentner, 1996; Willett, 2014). This definition is captured by the formula of “Intersection 
over Union” of two sets:

In this formula, X and Y are binary vectors (x, y) of the presence or absence of features. 
This is also known as the Jaccard Index.

0 < z(X, Y) ≤ 1;∀(X, Y)

(1)z(X, X) ∶= 1

(2)z(X, Y) = 1 ⟺ X ≡ Y

(3)z
Jac

(X, Y) ∶=
|(X ∩ Y)|

|(X ∪ Y)|
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A limit of any formalisation of the principle of structural similarity is that in many cases, 
X and Y are not the underlying objects, but the stylised representations of those objects, 
e.g., vectors, etc. Inevitably, the information encapsulated in X, Y, etc. can be coarse or 
imprecise, and the format of representing objects as categorical sets can also be limiting. 
As a result, the structural approach has gradually evolved towards evaluating measures of 
similarity between vectors. For example, in cases where features i are traced through scales 
of values, between 0 and 1 for X, i.e., for x

i
∈ (0 ∶ 1) , Eq. (3) can be generalised (under the 

name Fuzzy Jaccard) as follows:

As a very general case for x
i
∈ R Eq. (3) is extended as follows:

which can be recognised with the name of Tanimoto Index (Petković et al., 2021; Willett, 
2014).

While both Eq. (4) and are generalisations of Eq. (3) and the three equations converge 
for x

i
 defined as a binary (presence of absence of the feature), they do not converge for 

x
i
∈ (0 ∶ 1) , i.e. for fuzzy scales. This may be a reason for the proliferation of alternative 

structural similarity measures in the literature.
Tversky (1977) tried to comprehend this variety by generalising Eq. (3):

The limit of Eq. (6) for �
x
= �

y
= 1 Eq. (6), converges to Eq. (3), since a union of two sets 

can be decomposed into their intersection and their two mutual set differences:

In addition, Eq. (6) also converges to the Dice‑Sorensen Index for �
x
= �

y
= .5:

A functional definition of similarity

Equation (8) can be interpreted as the divergence that occurs as a consequence of decisions 
to opt for Y instead of X. This interpretation differs from a structural definition of similar‑
ity, and it is closer to a functional definition. A structural definition of similarity reduces 
objects to their essential elements and then compares them. A functional definition of simi‑
larity is concerned with differences in outcomes, in the context where the objects operate. 
Functional similarity can be defined as the fungibility of two options, which captures how 
much one can act as a substitute for the other, independently of their physical congruence 
(Hahn et  al., 2003; Medin et  al., 1993). The relevance and value of this alternative per‑
spective on similarly has increased with the growing use of new Data Science methods 

(4)z
fJac

(x, y) ∶=

∑

i[min(x, y)]
∑

i[max(x, y)]

(5)z
Tani

(x, y) ∶=

∑

i(xi ⋅ yi)
∑

i(x
2

i
) +

∑

i(y
2

i
) −

∑

i(xi ⋅ yi)

(6)z
Tver

(X, Y) ∶=
|(X ∩ Y)|

|(X ∩ Y)| + �x|X − Y| + �y|Y − X|

(7)(X ∪ Y) =
⋃

[(X ∩ Y), (X − Y), (Y − X)]

(8)z
Dice

(X, Y) ∶=
2 ⋅ �(X ∩ Y)�
�X� + �Y�

=
2
∑

i(xi ⋅ yi)∑
i(x

2

i
) +

∑
i(y

2

i
)
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within their traditional areas of applications concerning decision‑making in Finance, Man‑
agement, etc., and also increasingly in applications in the natural sciences (classification, 
artificial intelligence, etc.).

This difference in the definition of similarity can be understood through many examples. 
A simple and pertinent one is the following: two urns contain the same number of blue and 
red balls, are shuffled in two different ways, see Fig. 1. A structural approach will detect 
that the positions of the balls are mutually independent, and therefore conclude that the two 
urns are as different as possible. A functional approach will detect that the probability of 
drawing a blue ball is identical for each urn, so the two urns are functionally identical.

From this example, other formulas for measuring functional similarity can be derived. 
These require specifying objects in terms of probabilities of outcomes rather than vectors:

So the functional similarity between two objects would result in the intersection of the 
masses of the two distributions. Consider the following formula:

Equation (9 )works as an extension of real numbers of Eq. (8). Yet, for x defined on a 
binary scale, Eq. (9) converges to the F1 score, that is, the harmonic mean between preci‑
sion and recall of a test of binary classification1.

P(X) ∶ {p(xi=1), p(xi=2),…)}

(9)z
eF1

(X, Y) ∶=
2 ⋅

∑

i[p(xi) ⋅ p(yi)]
∑

i p(xi)
2 +

∑

i p(yi)
2

Fig. 1  Two urns filled with the 
same amount of red and blue 
balls, shuffled differently. Gener‑
ated by DeepAI 

1 In fact, assuming that X is the ground truth, and that Y is the variable for the positive outcomes (i.e. yi = 1 
means that i is test‑positive), hence

and

Precision(Y) ∶=

∑

i xi ⋅ yi
∑

i yi
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A benefit of adopting a functional definition is that one can assess the similarity of two 
distributions indirectly, deriving a complementary or inverse formula from the divergence 
between the two. Typical measures of divergence, like the �2 or the Kullback‑Leiber not 
have a form in (0 : 1) and are not defined for p(x) = 0 . The Hellinger Divergence, instead

is constrained in (0 : 1), so one can adopt its complement to estimate functional similarity:

To conclude, both perspectives can legitimately be used to justify formulas to capture simi‑
larity. A structuralist definition of similarity is closer to an objective one, because if two 
physical objects are materially identical, then it follows that they are perfectly fungible for 
any purpose. Nevertheless, there are some small benefits from adopting a functional defi‑
nition of similarity. One, for example, is the general heuristic that consequences are often 
easier to sample correctly and treat mathematically. In many applications, tracing conse‑
quences is much less expensive than tracing objective features, possibly because there is 
an indefinite number of features that can be traced about objects, and missing one could 
bias the estimation of structural similarity. Instead, if a consequence is unobserved, likely, 
its consequences are not very relevant, because if it were, it would be known and observed. 
On the other hand, it may hold that the structural similarity z(X, Y) is equal to z(X, Y �) , but 
the ‘different pieces’ (’missing pieces’) may be different, and differently relevant for X. For 
example, a car missing a seat (or with a replaced seat) can still work properly, while a car 
missing wheels (or with damaged wheels) cannot. The functional definition of similarity 
works as a useful ad hoc that is transparent in how the evaluated terms p(x) are stylised. 
Finally, one can notice that the functional definition requires fewer assumptions than the 
structural. As Tversky noticed, a structural definition must assume symmetry in similarity:

(10)d
Hell.

(X, Y) =
1
√

2

�

�

i

�

√

p(xi) −
√

p(yi)

�2

(11)z
Hell.

(X, Y) ∶= 1 − d
Hell.

(X, Y)

Footnote 1 (continued)

Then it follows

The F1 score is a typical indicator of ‘fidelity’ between a condition (X) and an experimental observation 
(Y). It may satisfy the definition of fungibility, in the sense that one can affirm that if it is sufficiently high, 
one is allowed to treat the positive cases (Y) as a ground truth (X) without an high hazard; in other words, 
with little consequences, independently by how exactly the testing procedure is capable to infer the condi‑
tion. A difference between F1 and Eq. ((9) consists in the latter considering the possibility that ground truth 
cannot be defined on clear‑cut binary outcomes (Goutte & Gaussier, 2005). As a consequence, the testing 
procedure results in more uncertain outcomes. Another difference is that in F1 i indexes the observations 
while in Eq. ((9) i indexes the outcomes of X, constrained by the definition of probabilities 

∑

P(X) = 1 . 
Therefore, even for functional similarity, one can instead resort to a different operative definition for z, con‑
sidering, for example, Fuzzy Jaccard (Eq. 4) or Tanimoto (Eq. 5).

Recall(Y) ∶=

∑

i xi ⋅ yi
∑

i xi

F1(X, Y) =
2

[Precision(Y)]−1 + [Recall(Y)]−1
=

2 ⋅

∑

i xi ⋅ yi
∑

i x2

i
+
∑

i y2

i
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leading actors to accept Eq. (1) as true. This is not needed for a functional definition. An 
object can be fungible for another but not vice versa.

The role of similarity in quantitative studies on interdisciplinarity

Scientific disciplines are iconic and well‑recognisable branches of knowledge. A discipline 
is not just a set of linked ideas: disciplines also have specialised methods and a particu‑
lar way of organising the professional life of experts (Becher, 1981; Becher, 1994; Börner 
et al., 2012; Bu et al., 2021; Hodgson & Donald, 2022; Jacobs & Frickel, 2009; Sugimoto 
& Weingart, 2015; Stichweh, 1992). Considering only the few general branches of science, 
scientific activities are sufficiently well defined by the conjunction of an object of enquiry 
plus a methodological tradition. This approach leads to simple distinctions, such as “The‑
oretical sciences” vs. “Applied”, or “Natural” vs “Social” (Fanelli & Glanzel, 2013). At 
higher definition, more subdivisions are recognised as relevant, and the concepts of trans‑
mission and certification of knowledge are more emphasised.

Despite the growing interest in IDR from science‑policy experts, measuring IDR is not 
straightforward. As Cantone (2024) demonstrated, there are many paradigms of measure‑
ment. Disciplinary similarity emerged as an influential factor for measuring disciplinary 
diversity. Across paradigms, the considered taxonomy of i disciplines is stylised as:

Henceforth, the formalism pi(x) symbolises the proportion of i in the considered metadata 
(e.g. the references, etc.) of the unit of analysis x.

A canonical formula of disciplinary diversity is then the Rao‑Stirling index Stirling 
(2007):

where in this case (i, j) is the placeholder formalism for all the couplets of elements of I  . 
[z(i, j) − 1] is the component of ‘disparity’ in the equation (Shu et al., 2022; Zhang et al., 
2016), and it also appeared in alternative parametric formulas for diversity (Mutz, 2022; 
Leydesdorff, 2018; Leydesdorff et al., 2019; Wang et al., 2017). The disparity factor can be 
easily equated as the complement of the similarity between i and j disciplines, that is z(i, j) 
in Eq. (12).

Similarity between disciplines: measures and meaning

The component of Disparity has been introduced across the paradigms of measurement of 
IDR to correct the implicit assumption that the knowledge and activities embodied within 
disciplinary categories are uniformly close to one another. This assumption is rarely justifi‑
able: as previously mentioned, at a general level, natural sciences are clustered together,

In other words, the role of coefficients of similarity is to correct the measurement of 
IDR (e.g via Eq.12) for the effective conceptual proximity between the couples of disci‑
plines involved in the metadata of the unit of analysis. In light of this, one might question 

z(X, Y) = ẑ ⟺ [z(Y , X) = ẑ]

I ∶ {ii, i2,… , i, j,… ik}

(12)Δ2(x) =
∑

(i,j)

pi(x) ⋅ pj(x) ⋅ [z(i, j) − 1]
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what the notion of similarity between disciplines entails. For example, one could notice 
that, in the unfortunate occurrence of a leg injury, the diagnosis of the radiologist is always 
followed by the intervention of the orthopedist, and finally by the rehabilitative therapy 
of the physiatrist. So it could be stated that these sub‑disciplines of Medicine are similar 
because they work together. This conception falls under the case of structural similarity, 
because by being frequently collaborative and synergetic one to each other, they realise a 
synergy towards a unique achievement, the total rehabilitation of the patient, that would not 
be possible without any of the specialists. On the contrary, similarity could originate from 
mutual fungibility, or even rivalry. Various examples can be found among the humanities 
and social sciences (e.g. “is behavioural theory a substitute for classical rational theory of 
economic actor?”). But other examples can be found in technology (e.g., statistical meth‑
ods vs. machine learning). This approach considers the function of the discipline.

This debate would not be solved if not by looking in detail at the common methods of 
quantification of z(i, j). The works of Leydesdorff (2005) Adnani et al. (2020), Huang et al. 
(2021), and Shu et al. (2022) document a variety of well‑established approaches to estimate 
disciplinary similarity. Some of these approaches can be relatable to the formal theory 
presented in Section “Theoretical background on the measurement of similarity”, others 
potentially expand it with new insights. The core feature of virtually all the established 
approaches is the assumption that the relevant metadata to measure disciplinary diversity is 
the network of citations among articles published in journals ascribed as highly relevant for 
the elicited taxonomy of disciplines. The steering principle is that the more two disciplines 
cite each other (network proximity), the more similar they are.

Let

be the sum of all the citations from articles published in journals linked to discipline i 
towards articles linked to j (outward links). Pairwise, by inverting the direction of the 
arrow, the quantity

represents the sum of citations received by j from i (inward links). Given a I  taxonomy, 
from these formalisms can be derived vectors of disciplines citing others

and of the disciplines being cited by others

Together, these compose the matrix of citations C, that is, the adjacency matrix of the con‑
sidered network of journals.

From the vectors of C, one can quantify the similarity among disciplines, for example, 
by applications of the methods outlined in Section “Theoretical background on the meas‑
urement of similarity”. This study establishes another formula in the specific literature of 
IDR. The first is the Salton’s cosine:

ci→j

ci←j

i
→

∶ {ci→j1
, ci→j2

,…}

i
←

∶ {cj1→i, cj2→i,…}
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which can be understood as a translation of the Bravais‑Person coefficient of linear correla‑
tion, which always preserves the sign of its inputs, i.e., for positive vectors it will always be 
a positive number (Egghe & Leydesdorff, 2009).

Peculiarly, all the considered formulas account for inward and outward citations dis‑
jointly, i.e., they can be applied to pairs of citing disciplines or cited disciplines. This dis‑
tinction has been proven not to matter empirically for the specific estimation of similarity, 
since typically for large networks the two numbers tend to coincide. Nevertheless, it can be 
remarked that the similarity of the references (outward links) stands as a structural similar‑
ity in metadata. In this case, two disciplines are similar because they share a high intersec‑
tion of shared ideas. On the contrary, the similarity in being cited (inward links) highlights 
the functional fungibility of the two disciplines. To conclude, there are also methods of 
quantification that consider jointly the sums of inward and outward citations, for example, 
the Ochiai method:

Materials

At the beginning of the experimental procedure, a textual prompt was written and repeat‑
edly tested without saving its results until a final version was established. The prompt aims 
to output a code that runs in the language R and generates a matrix of scores of similar‑
ity for the input of the list of disciplines. Two taxonomies of disciplines have been elic‑
ited; these fit in the final version of the prompt. The fitted prompts are then imputed to 
the LLM through packages that connect the R Studio software with the APIs (Application 
Programming Interface) of the LLM. Finally, R‑Studio receives the answer, executes the 
code, and saves the output matrix of similarities as a stand‑alone object. The process has 
been repeated many times with the final version of the prompt to simulate a proper process 
of sampling and resampling of outcomes. Outcomes from these multiple trials are com‑
pared to similarities estimated through traditional methods presented in Section “Theoreti‑
cal background on the measurement of similarity”.

The considered taxonomies are derived by the “Leiden Five Fields” taxonomy2 or L5F, 
and from the disciplinary groups of Clarivate’s Journal Citation Report3 (9S). The tested 
LLMs are: ChatGPT 4o (“CGPT4o), Claude 3.5 Sonnet (“C‑Sonnet”), and Google Gemini 
1.5 Pro (“Gemini”).

Prompt

The prompt was submitted to the LLMs through the automated connection to their respec‑
tive APIs, using wrapper software to pipe the results directly to R Studio. For C‑Sonnet we 
used the ClaudeR package, for Gemini we used gemini.R, and for CGPT4o tidy-
chatmodels. Redundancy in the instructions of the prompt is justified by the need to 

(14)
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2 https:// www. leide nrank ing. com/ infor mation/ fields
3 https:// jcr. clari vate. com/ jcr/ browse‑ categ ories

https://www.leidenranking.com/information/fields
https://jcr.clarivate.com/jcr/browse-categories
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automate the generation of the similarity matrix into a R object. The prompt was progres‑
sively improved through many rounds of trials to reduce formal and substantial errors 
in the format of the response, but only results from the final version of the prompt have 
been employed in the analysis of the study. There is text between two curly brackets in the 
prompt, which indicates how the taxonomies have been fitted in the prompt.

Prompt

You are an expert in quantitative studies in science

Your task is to provide an R script that, when executed, will generate a symmetrical square matrix object 
in R with {{I2}} elements. Hence, the length () of the matrix that will be generated by the script must 
be equal to {{I2}}

The matrix should not be assigned to an object. It should run on a script, not on a markdown, which 
means no backticks should be found in your answer

The content of the matrix is estimates of the disciplinary similarity among the following categories:

{{CATEGORIES of I}}

Requirements:
∙ The similarity values should be between 0 and 1
∙ The matrix should be symmetrical along the diagonal. It means that once evaluated, the code must be 

TRUE for isSymmetric()
∙ The similarity values on the diagonal should all be 1
∙ Approximate the real similarity values as closely as possible
∙ Keep three decimal places for all values

∙ The code must generate a matrix of {{I2}} elements
∙ In the code for the matrix, the names for rows and columns must be the categories that I provided
∙ Be sure that the dimension name generating the matrix reports “dimnames = list(c(...), c(...))” where 

“...” are {{CATEGORIES of I}}

Before providing your final answer, think through the problem step‑by‑step. Consider the following:
∙ The nature of research in each category
∙ The methodologies commonly used
∙ The overlap in subject matter
∙ The frequency of interdisciplinary collaborations
∙ The similarity in publication venues and citation patterns

After considering all pairs of categories, present your final similarity matrix in the following format:

It must be a code in R that generates a matrix object that represents your estimates

It must start with a matrix(c(1.000... and contain no “ ∖ n” within the code

Remember to name correctly dimnames: rows and columns correctly. The dimnames should be 
{{CATEGORIES of I}}

You are not allowed to generate a code with no dimname. You are not allowed to name dimnames as 
“V1” or rows “1”, or with similar numeric references

The matrix must be squared and symmetrical, made of {{I2}} elements. Less than {{I2}} elements is not 
allowed. More than {{I2}} elements is not allowed

The output must consist exclusively of R code. Do not output anything that is not R code

Do not open your message with phrases like “Here is the...” or “Sure...”. All the content of your answer 
must be exclusively R code
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Table 1  Leiden five fields (L5F)

Field Label Alternative

Biomedical and health sciences BHS Biomedical sciences

Life and Earth sciences LES Life sciences

Mathematics and Computer Science MCS Mathematics

Physical sciences and engineering PSE Engineering

Social sciences and humanities SSH Social sciences

Statistics of the sampling algorithm

 Number of LLM tested 3

 Number of temperatures tested 3

 Unique couples of fields (k(i, j)) 10

 Number of equivalent estimates for original combinations 24

 Number of equivalent estimates for alternative combinations 6

 Total number of runs 108

 Total number of estimates drawn 3, 240
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Sampling similarities in the Leiden Five Fields

The Leiden Five Fields taxonomy (Table 1) is inspired by Waltman and van Eck (2012) 
and Traag et  al. (2019). It is ideal for a preliminary glimpse of the precision of and the 
agreement among LLMs since it is synthetic but well‑representative of the main divisions 
among sciences, coupling disciplines into only five fields of research.

For each of the 3 LLMs, a similarity matrix was drawn 18 times to fit the prompt to the 
original five fields: 6 times at temperature = 0 , 6 times at temperature = .5 , and 6 times at 
temperature = 1 . By enforcing z(i, i) ∶= 1 (see Eq.  1) and z(i, j) = z(j, i) there are only 
(

5

2

)

= 10 unique combinations of fields with stochastic similarity.

For each LLM, the sampling algorithm has been run across 5 other iterations, with each 
iteration drawing 18 matrices (6 for each temperature). The difference for these additional 
5 iterations is that in each iteration, the name of one field has been altered into an alterna‑
tive form (see Table 1) to test the Resilience of the estimates to trivial alterations. These 
alternative categories remove one part of the name of the original field, as a substantial, not 
only nominal, change in the terms of referenced disciplinarity.

The final result is that the similarity z(i, j) of each unique couple of L5F has been sam‑
pled 24 times for each combination per LLM and temperature, while combinations involv‑
ing alternative categories have been sampled only 6 times per LLM and temperature. In 
total, 3, 240 estimates have been drawn for the L5F taxonomy.

Sampling similarities in the disciplines of Journal Citation Report

Clarivate’s Journal Citation Report associates a large list of scientific journals to a tax‑
onomy of more than 200 “subject categories”, organised in 21 disciplinary groups. From 
these groups, we derived a taxonomy of only 9 subjects (9S). In the 9S taxonomy, some 
categories are identical to a group, some are merges of groups, and some groups are 
ignored, see Table 2.

A taxonomy of 9 subjects combines 
(

9

2

)

= 36 unique couples; for this reason, instead 

of iterating six different variations of the taxonomy, the algorithm was run for only two 
types of iterations: once with the original categories of 9S, and once with the alternative 
names instead of their original (e.g. Life Science vs. Biology). If substantial differences in 
estimates are expected by altering L5F, we expect that alternatives for 9S should not devi‑
ate the estimates as much. In 9S, the disciplinarity is better defined, and the proposed mod‑
ifications in the wording of the disciplines do not alter the semantic reference of the cate‑
gories. Hence, this time the alteration counts as a test of the Robustness of the LLM; in 
particular, the deviations between original and alternative names should be lower for 9S 
than L5F.

In this case, for each LLM, the similarity matrixes have been drawn 99 times by fitting 
the prompt on the original 9S taxonomy: 33 times at temperature = 0 , 33 times at tempera‑
ture = .5 , and 33 times at temperature = 1 , for a total of 10, 692 estimations. In addition, 
the iteration with the alternative names has been run 7 times for each LLM and tempera‑
ture, for a total of 2, 268 estimations on alternative combinations.
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Citation‑based methods of similarity

The result of sampling similarity from the LLM has been compared to estimates of tradi‑
tional methods considered in Section “Theoretical background on the measurement of sim‑
ilarity”. Since the established assumption is to quantify the similarity of disciplines from a 
network of citations, we accessed the Journal Citation Report database for the year 2023. 
This is a network of all citations among journals indexed with one or more of Clarivate’s 
Group. The C adjacency matrix of this network is presented in Table 3. Journals with mul‑
tiple associations across the 9 Categories are counted once for each category.

For each couple of categories i ≠ j , 13 estimates have been considered from seven esti‑
mators (Table 4). Six estimators of these have been applied twice, once for the columns 
and once for the rows of C, while this distinction does not matter for the Ochiai. In three 

Table 2  Nine disciplinary subjects (9S)

Clarivate’s group Category Label Alternative name

Agricultural Sciences Biology BIO Life Science

Arts & Humanities

Biology & Biochemistry Biology BIO Life Science

Chemistry Chemistry CHE

Clinical Medicine Clinical Medicine MED Health Science

Computer Science Mathematics & Computer Science MCS Mathematics & Informatics

Economics & Business Economics & Business ECB

Engineering Engineering & Materials Science EMS

Environment/Ecology Biology BIO Life Science

Geosciences Geology GEO Earth Science

History & Archaeology

Literature & Language

Materials Science Engineering & Materials Science EMS

Mathematics Mathematics & Computer Science MCS Mathematics & Informatics

Multidisciplinary

Philosophy & Religion

Physics Physics PHY

Plant & Animal Science Biology BIO Life Science

Psychiatry/Psychology Psychology & Social Sciences PSS Human Sciences

Social Sciences Psychology & Social Sciences PSS Human Sciences

Visual & Performing Arts

Statistics of the sampling algorithm

Number of LLM tested 3

Number of temperatures tested 3

Unique couples of categories (k(i, j)) 36

Number of equivalent estimates for original combinations 33

Number of equivalent estimates for alternative combinations 7

Total number of runs 120

Total number of estimates drawn 12, 960
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Table 3  Cross‑citations among 9S categories

Citer Cited category

Category BIO CHE MED ECB EMS GEO MCS PHY PSS

BIO 12, 337, 674 1, 502, 395 3, 032, 856 936, 409 983, 026 257, 796 244, 477 53, 175 149, 909

CHE 1, 290, 528 5, 307, 020 252, 689 47, 334 1, 543, 809 197, 877 110, 568 267, 028 8, 375

MED 2, 514, 098 141, 590 10, 825, 769 91, 331 75, 182 3, 408 149, 676 35, 655 461, 103

ECB 534, 253 52, 141 123, 724 2, 299, 166 143, 066 36, 196 231, 546 6, 170 417, 533

EMS 804, 319 2, 025, 145 183, 718 199, 542 5, 286, 851 117, 437 717, 523 559, 538 30, 479

GEO 165, 901 273, 146 7, 999 36, 110 88, 397 567, 985 23, 852 22, 714 8, 168

MCS 180, 487 82, 938 156, 559 222, 188 643, 488 17, 268 2, 701, 321 109, 473 108, 173

PHY 51, 685 185, 815 37, 663 5, 231 378, 003 23, 622 105, 137 1, 698, 720 5, 973

PSS 131, 280 6, 126 548, 930 351, 896 15, 526 7, 236 109, 581 5, 777 1, 747, 167



Scientometrics 

cases, the estimator requires normalizing the vectors of C to their proportions instead of 
absolute methods (4).

Results

The temperature of LLM influences bias and precision of the similarity scores

The temperature of the LLM has a slight, but not trivial, effect ( �Temp ≠ 0 ) on both the 
estimation of the generic z(i,  j) similarity score, see Table 5. The column z̄(i, j) is the 
average z among the k = 10 combinations of i and j. n = 24 is the number of estimates 
for each combination. For the L5F taxonomy, arguably the effect of increasing the 

Table 4  Summary of considered 
estimators of similarity on the 
citational network

Estimator Scale Equation

Cosine of vectors Sum of citations Eq. (13)

Generalised Jaccard 
(Tanimoto)

Sum of citations Eq. (5)

Dice‑Sorensen Sum of citations Eq. (8)

Fuzzy Jaccard Relative proportions of citations Eq. (4)

Extended F1 Relative proportions of citations Eq. (9)

Hellinger Relative proportions of citations Eq. (11)

Ochiai Sum of citations Eq. (14)

Table 5  Effect of temperature on the estimation of similarity

Taxon Model Temp n k(i, j) z̄(i, j) p(z ∣ �Temp = 0) s̄i,j(z) p(Levene)

L5F C‑Sonnet 0 24 10 0.41 0.01 0.04 0.93

C‑Sonnet 0.5 24 10 0.42 0.05

C‑Sonnet 1 24 10 0.44 0.06

Gemini 0 24 10 0.29 0.48 0.04 ∼ 1

Gemini 0.5 24 10 0.29 0.05

Gemini 1 24 10 0.28 0.05

CGPT4o 0 24 10 0.55 0.76 0.06 0.17

CGPT4o 0.5 24 10 0.54 0.10

CGPT4o 1 24 10 0.55 0.10

9S C‑Sonnet 0 33 36 0.36 ∼ 0 0.02 0.06

C‑Sonnet 0.5 33 36 0.43 0.07

C‑Sonnet 1 33 36 0.40 0.07

Gemini 0 33 36 0.20 ∼ 0 0.03 ∼ 0

Gemini 0.5 33 36 0.23 0.07

Gemini 1 33 36 0.23 0.06

CGPT4o 0 33 36 0.56 ∼ 0 0.07 0.5

CGPT4o 0.5 33 36 0.59 0.07

CGPT4o 1 33 36 0.61 0.09
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temperature from 0 to 1 is negligible, nevertheless, using a model that corrects for the 
fixed effect of the 10 groups of combinations, the �Temp effect is always statistically sig‑
nificant ( p(z ∣ �Temp = 0) in Table 5) for t‑Student tests across the 9S taxonomy4.

As expected, temperature has also a consistent positive impact on the variance of the 
estimates; this can be noticed by observing the column s̄i,j(z) , which measures the average 
value across the standard deviation of the estimates within each combination of categories 
i and j. We tested this impact with Levene’s test of homoskedasticity across temperature 
values on the pool of estimates per combinations of taxonomy and model, i.e., not grouped 
for the combinations of categories, differently from the previous test on the average. The 
results are statistically significant only for the combination of Gemini and 9S ( p ∼ 0 ). The 
high p‑values on the tests to reject homoskedasticity paired with the consistent increase in 
standard deviation at higher temperatures, suggest that raising the temperature above 0 has 
only a small negative influence on the precision of the estimation.

We restricted the replicability analysis to only estimates generated with Temperature set 
at 0, as it is the most reliable, and reducing randomness will provide the highest precision 
of outcomes (lower variance). Sensitivity analysis is based on average differences between 
original and traditional nomenclatures, and is conducted without removing the estimates 
generated with higher temperature, to preserve a larger sample size.

Fig. 2  Estimates of similarity are represented with a box‑violin method. The bold line is the median, and 
the box is the interquartile range; however, a mirrored kernel curve (“violin”) of the density of the estimates 
is over‑imposed over the box. A flat line is an ideal result in terms of Precision of the LLM estimation

4 The formula in R to reproduce the t‑test is the following:  fixest::feols(formula = z ∼ Temp 
| Categories, data = .)
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Replicability

At Temp. = 0 C‑Sonnet and Gemini have a sufficiently good Precision, except when social 
sciences are involved in the estimations, see Figs. 2 and 3.

Fig. 3  The bold line is the median, the box is the interquartile range, and the mirrored kernel curve (“vio‑
lin”) is the density of the estimates. A flat line is an ideal result in terms of Precision of the LLM estimation
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Nevertheless, different LLMs do not always reach an agreement. For L5F, this is 
particularly noticeable for all combinations of the five fields except when the field of 
Biomedical and Health Sciences (BHS) is involved. Adopting the 9S, it is possible to 
assess when an LLM agrees with citation‑based methods. Gemini is consistently the 
closest LLM to these approaches. This fact alone does not necessarily assure that Gem‑
ini is objectively the best of the three models. Indeed, it provides evidence that Gemini 
internalised some form of “knowledge” about the scores generated by citation‑based 
methods. 9S ChatGPT 4o is consistently the farthest from the scores generated by cita‑
tion‑based methods. This result should be considered along with the fact that in the 9S 
taxonomy, the scores are considerably lower than for L5F, and in some cases, ChatGPT 
4o seems to end up closer to the centre of the scale .5, a behaviour consistent to what 
is seen in Fig. 2. This could be (weak) evidence that ChatGPT 4o is just hallucinating 
numbers to complete the task it has been given.

Resilience

A test for Resilience is conducted with the estimates for L5S. The average is used as 
an estimate for the similarity when the fields are reported exactly as they are vs. in the 
reduced alternative are compared in Table 1.

While for Biomedical and Health Sciences (BHS) and Life and Earth Sciences (LES) 
results are mixed, the results for Physical Sciences and Engineering (PSE) and Social 
Sciences and Humanities (SSH) are strong evidence of all three LLMs being sufficiently 
capable to operate with a correct Sensitivity towards meaningful distinction among dis‑
ciplinary categories. When “Physics” is prompted instead of “Physical Sciences and 
Engineering”, the similarities with all the other fields are coherently reduced, except 
for CGPT4o showing a small increase of similarity between Mathematics and Computer 
Science (see “Alt PSE” in Table 5). This behaviour is consistent with a form of LLM 
‘understanding’ that, in general, Science, Technology, Engineering and Mathematics 
(STEM) disciplinary subjects are more interdisciplinary than a specialisation in Physics. 
This becomes even more evident when we notice that by removing “Humanities” from 
SSH, the similarity increases (see “Alt SSH” in Tab 1 with natural sciences. The LLMs 
recognise that the abstract idea of ‘social sciences’ is closer to natural sciences when it 
is severed from its connection with the Humanities. Given the prominence of books in 
the outputs of the humanities and their generally weaker coverage in citation datasets, 
the positive value of using LLMs to capture similarity is notable.

Robustness

Of the 60 combinations of models and alternatives for the L5F, the average absolute 
deviation (the average length of the bars in Fig. 4) is equal to .054; for 9S this equals 
0.067 (see Table  6). These statistics indicate that the tested LLMs are very sensitive 
and not very robust to trivial changes in the nomenclature. Trivial alternative names at 
a lower granularity induce deviations in the similarity that are not significantly inferior 
to substantial changes. Looking at Fig. 5, it may seem that this effect is clustered around 
problematic couples of disciplines (e.g. Medicine and Engineering, see Alt MED and 
EMS in Fig. 5), but in reality even the median absolute deviation for L5F (.39) is not 
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Fig. 4  Check of resilience: substantial alternatives. The black dot is the average estimate for the unaltered 
nomenclature; when the bar is yellow, the alternative has a higher average similarity; when the bar is pur‑
ple, lower
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higher than the median for 9S (.5). Curiously, after disaggregating this diagnostic sta‑
tistic across the three models, again the outlier is CGPT4o, even if the decrease is too 
small to be deemed statistically significant ( p = .46).

Explainability

We asked ChatGPT, Gemini, and Claude directly how they define “similarity” and “disci‑
pline similarity”. Answers are provided in Table 7.

They all regarded similarity as “the degree to which two (or more) entities share charac‑
teristics, properties, or meaning”, a definition that aligns with how humans conceptualise 
similarity. C‑Sonnet provides a pure structural definition of similarity. CGPT4o mentions 
the possibility of similarity having to do with a functional relationship, recognising that 
similarity depends on the context of measurement. Gemini stands out for providing a form 
of methodology for measurement, primarily as structural, also mentioning that the “mean‑
ing” of the feature is context‑dependent.

C‑Sonnet defines disciplinary similarity as the structural similarity (“overlap”) of two 
“academic or professional” fields, based on “interactions”. This definition corresponds, 
although vaguely, to the cognitive definition of similarity in IDR. Curiously, C‑Sonnet 
explicitly recognises the multi‑dimensionality of the task of measuring disciplinary simi‑
larity (Cantone, 2024). CGPT4o is vaguer and does not provide a very useful evaluation, 
repeating that “convergence” must stand for scopes, principles, methods, and social struc‑
tures. Gemini provides examples but seems to harmonise the previous two perspectives. 
All three LLMs seem to favour a structural definition of disciplinary similarity based on 
the overall attributes. At this stage, LLMs may derive the attributes from insights closely 
paralleling humans’ intuitions, nevertheless, none of these insights seem to explicitly grasp 
the finesse of scientometric methods to establish the disciplinary similarity.

Discussion

This study contributes to address the question: “Should researchers employ large language 
models to estimate disciplinary similarity?”. The findings suggest an affirmative answer. 
Apart from the potential bias present in certain models and their generally limited robust‑
ness, the study did not find relevant obstacles in the use of LLMs for estimating similarity 
matrices. In light of the encouraging outcomes observed here, future developments in this 
area may enhance all core aspects for the effective estimation of disciplinary similarity 
through LLMs.

The most obvious benefit of adopting this AI‑driven approach is the lower barriers to 
access. For example, referencing the specific operations of the study, the retrieval of the 

Table 6  Mean absolute 
difference between alternative 
nomenclatures

Sample In L5F In 9S

All .054 .067

C‑Sonnet .057 .073

Gemini .040 .064

CGPT4o .066 .064
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network of citations in the Journal Citation Report required a specific right of access, which 
is typically granted to academic institutions, but not to independent researchers. Then, 
given the dimension of the network (around 11 gigabytes of data for the table of citations), 

Fig. 5  Check of robustness: nominal alternatives. The black dot is the average estimate for the unaltered 
nomenclature; when the bar is yellow, the alternative has a higher average similarity; when the bar is pur‑
ple, lower
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data must be pre‑processed with dedicated languages for data querying, then exported into 
a software for data analysis. Roughly speaking, with the adoption of high‑performing lap‑
tops, the estimation of similarity with citational methods required four hours of computa‑
tions between pre‑processing and export in SQL, and processing in R. On the contrary, the 
generation of a similarity matrix from an LLM through the API requires very few minutes, 
and the whole experiment on LLMs consisting of a total of 228 queries costs less than 15$.

The results of this study imply that in the long run, the technology of LLMs will allow 
the following achievements: 

1. A singular query to an LLM for a matrix of similarities can be an alternative to tradi‑
tional methods based on citations. Aside from the aforementioned gains in the reduction 
of computational labour, there is also a conceptual benefit: typically, authors do not 
retrieve a full network of citations to estimate the disciplinary diversity. Instead, they use 
the network emerging from their sample of articles for the estimations. In other words, 
the same sample is used for both internal parameterisation of a model and inference 
through the model. This is not an advisable analytical practice because it may induce a 
systemic error in the inference. LLMs will always provide information out‑of‑the‑sample 

Table 7  Definition of similarity and disciplinary similarity by LLMs

Model Similarity

C‑Sonnet The degree to which two or more entities share common characteristics or properties. The 
inverse of the difference or distance between entities in a defined space of comparison

CGPT4o The extent to which two entities (objects, concepts, situations, etc.) exhibit comparable proper‑
ties, behaviours, or relationships within a specific context. These properties could be physi‑
cal, functional, relational, or abstract, depending on what is being compared

Gemini The degree of shared meaning between two entities. This means:
∙ Extracting Key Features: I identify the core elements that define each entity. These could be 

words, concepts, relationships, patterns, or any other meaningful characteristic
∙ Comparing Features: I assess the overlap and divergence between the extracted features. The 

more shared features and the stronger their connection, the higher the similarity
∙ Context Matters: The meaning of features can change depending on context. I consider the 

specific situation and purpose when evaluating similarity

Model Disciplinary similarity

C‑Sonnet The degree of overlap and connection between two academic or professional fields based on 
their fundamental characteristics and interactions. This similarity can be quantified through a 
multi‑dimensional analysis of key components

CGPT4o The extent to which two disciplines converge in their objectives, underlying principles, research 
methods, knowledge structures, and societal contributions. In essence, it reflects how much 
overlap exists in the content and approaches of two fields of study or practice

Gemini The degree of interconnectedness between two fields of study. This encompasses:
∙ Shared Foundational Concepts: Disciplines built upon similar core principles and theories are 

more likely to be similar. For example, physics and engineering share foundational concepts in 
mathematics and mechanics

∙ Overlapping Methodologies: Fields utilizing comparable research methods, analytical tech‑
niques, or problem‑solving approaches exhibit higher similarity. For instance, sociology and 
anthropology often employ qualitative research methods

∙ Interdisciplinary Connections: Disciplines frequently borrowing ideas, collaborating on 
research, or addressing shared problems indicate stronger similarity. An example is the over‑
lap between neuroscience and psychology in studying human behaviour
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where statistical error is independent from the systemic error of the sampling process 
of the data. Nevertheless, this substitution relies on specific assumptions that the LLM 
is precise and robust. This study did not identify such a perfect candidate among the 
surveyed LLMs, but with rapid development, it could emerge in future studies.

2. A different approach would be to average a singular value across estimates sampled from 
different LLMs, for each pair of disciplines. In this case, the most important decision 
regards how to establish the weights of the average to correctly assess the researcher’s 
confidence in the outputs of different LLMs. A simple solution could be to set weights 
proportional to the precision of the LLM. An even better weighting scheme would 
account for both the precision and the robustness of LLM, for the specific pair of disci‑
plines.

3. Finally, the information of citational networks and LLM can be combined. Aside from 
just averaging scores, a more advanced method would involve the concept of Bayesian 
updates of the scores. This would require estimating the parameters of a Beta distribu‑
tion from the scores generated by LLM, multiplying these for the Likelihood function 
of the estimates of similarity through traditional methods, and finally normalizing them 
to retain the variance in the scale between 0 and 1. From the updated distribution, it is 
possible to identify the maximum (i.e., the mode of the posterior distribution), which is 
the most reliable value for the similarity score.

Aside from the promising application of this proposal, this study holds important limi‑
tations that should be acknowledged and possibly challenged in future studies. A first 
limitation regards the number of surveyed LLMs. While ChatGPT, Claude, and Gemini 
are among the most acknowledged, alternatives emerged in AI’s Grok and the European 
Mistral’s Le Chat. Chinese brands also produced high‑quality LLMs as DeepSeek or 
Alibaba’s Qwen. In addition, all of these have fast cycles of development so the experi‑
ment presented in this study should be replicated, including more and newer versions of 
the models.

Another limitation of the study regards the dimension of the similarity matrix. The 
study tested taxonomies with five to nine disciplines, but taxonomies of ten to twenty‑
five disciplines are common, too. Of course, the size of the matrix of similarities is the 
square of the taxonomy, and even enforcing symmetry as the prompt does, a query for 
all the combinations of 25 disciplines is requesting no less than 600 estimates for each 
trial. This could stress the capacity of the LLMs to format correctly consistently over 
trials, and be a technical bottleneck in the process of automation of sampling. Solutions 
to smooth the process of resampling in future experiments could include pre‑formatting 
a list of combinations of disciplines, instead of querying a whole matrix, at the cost of 
higher expenses in API tokens, i.e., higher computational costs on the side of LLM side. 
It is hypothesised that a test on a higher number of disciplines could much better assess 
the effective Resilience of the LLM.

To conclude, beyond the evident limitations discussed, one may raise a deeper ques‑
tion: what exactly is the internal mechanism within LLMs that connects a request for 
a similarity matrix to a numerical output? We propose a metaphor to illustrate our 
two main conjectures. Imagine a humanoid robot seated at a restaurant table. A waiter 
brings out the chef’s finest dishes, which the robot ingests, making them disappear into 
its mechanical mouth. The robot is then asked to provide an objective evaluation of 
the culinary experience. One possibility is that the robot has developed its own sense 
of taste, perhaps through some form of synthetic sensory apparatus. If the robot’s 
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judgments closely align with human evaluations, it could suggest a degree of objec‑
tivity in the concept of “flavor”. Conversely, if the robot produces unusual judgments, 
what we might call “hallucinations”, this could mean that its apparatus detects aspects 
hidden from human perception instead. Its assessments might not predict human taste 
reliably, but the information provided could offer novel perspectives. And since the idea 
of a universally objective taste remains debatable, it would be unfair to label the robot’s 
responses as simply inaccurate. In this study, we metaphorically aimed to assess how 
well the robot can replicate human taste (Agreement), and how consistent it is with its 
own past evaluations, rather than offering arbitrary responses (Precision).

Alternatively, the robot might not have developed any real sensory ability. Upon identi‑
fying the dish, it could simply draw on its knowledge base of expert opinions and deliver 
an average judgment. When applied to similarity estimation, this kind of “cheating” would 
actually be ideal–since it would mean that the LLM is simply saving us time by retrieving 
highly specific, relevant information from existing sources. Qualitative analyses, maybe in 
the form of dialogic surveys should be welcomed, to prove this conjecture. Evidence for 
this second hypothesis is in the excellence of Gemini in being in Agreement with traditional 
methods. Gemini might be accessing an extensive body of scientific knowledge for training 
through Google Scholar. Possibly, within this body of knowledge, there are papers pub‑
lished in scientometric journals, reporting estimates for similarity scores. Then exactly as 
the robot that just summarised the opinions of past experts, by drawing on this knowledge, 
the LLM could try align itself with past literature. Gemini proved itself to be the advanced 
LLM for the task of similarity estimation by rarely failing at formatting output in the phase 
of prototypation of the prompt, and by being capable to explains its methods in detail too. 
None of these results should be considered definitive due to the inherently dynamic nature 
of the comparative performances among brands of LLMs.
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