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Self-force and the Schwarzschild star

Abhinove N. Seenivasan’] and Sam R. Dolaxl]

9 Consortium for Fundamental Physics,

10 School of Mathematical and Physical Sciences,
Unwversity of Sheffield, Hicks Building,
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15 Abstract

We consider the self-force acting on a pointlike (electromagnetienor conformal-scalar) charge

oNOYTULT D WN =

18 held fixed on a spacetime with a spherically-symmetric mass distributionef constant density (the
19 Schwarzschild star). The Schwarzschild interior is shown to be gonformal to a three-sphere geometry;
2 we use this conformal symmetry to obtain closed-form expressions for mode solutions. We calculate
22 the self-force with two complementary regularization methods, direc¢t and difference regularization,
showing agreement. For the first time, we show that differencertegularization can be applied in the
25 non-vacuum interior region, due to the vanishing of certain regularized mode sums. The new results
for the self-force come in three forms: series éxpansions forthe self-force near the centre of the star
28 and in the far field; a new approximation that,deseribes the divergence in the self-force near the
star’s boundary; and numerical data presented in a selection of plots. We conclude with a discussion
31 of the logarithmic divergence in the self-force in the approach to the star’s surface, and the effect of

32 boundaries.
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I. INTRODUCTION

An electric charge interacts with electromagnetic fields in its vicinity. Since an, electric
charge is also the source for an electromagnetic field, one cannot avoid the ‘question of self-
interactions, even in classical field theory. For example, it is well-known that an accelerated
charge generates radiation. This is accompanied by a radiation reaction force on the parti-
cle which ensures that energy is properly conserved. The earliest such inquiries led to the
Abraham-Lorentz-Dirac force law [1], and this has been an active fieldwof enquiry ever since.

The presence of spacetime curvature arising in General Relativity (GR) adds to the subtlety
of the self-interaction problem. Even in the simple case of a static electric’charge, the field lines
are not completely isotropic in the vicinity of a pointlike particle, dueto the interplay between
the electromagnetic field and the background curvature. In other words, one cannot avoid the
notion of a self force (SF) [2] even in elementary scenarios.yThe theoretical arguments that
lead to the requirement of a self-force hold equally well for gravitational fields generated by
masses, as well as for scalar fields generated by scalaticharges. The latter, being the simplest
case of all, typically serves as an instructive model for understanding general aspects of the
theory. The calculation of the SF for scalar, eleetric and massive particles has been the focus
of the community for over three decades andireviews of the subject can be found in [3] and
[4].

The gravitational self-force is of partigular importance because it is used to model the
orbital evolution of binary systems with a small mass ratio [5H7], that are radiating energy in
the form of gravitational waves (GW). The scalar and EM self-forces are not of such immediate
experimental relevance, it would appear; but nevertheless they are interesting in their own
right, and they serve to clarify aspeetsithat are more opaque in the former case (for example,
unlike the gravitational self-force,\the scalar and EM self-forces are not gauge-dependent).
We focus on the latten,cases here:

The electromagnetic self-force of charged particles has been explored since the work of
Copson [§] in the 1920s.0In the 1980s, Smith and Will [9] showed that a pointlike particle
of electromagneti¢ charge ¢ held fixed at r = ry outside a Schwarzschild black hole (BH) of
mass M, experiefiees a self-force that is repulsive, and equal in magnitude to ¢ M /73 (see also
Ref. [10]). Heresve have adopted units such that G = ¢ = 4mwep = 1.

For scalar'fields; a key result, due to Wiseman [I1], is that the SF on a scalar charge held
stationary outside a Schwarzschild black hole (BH) is precisely zero. Conversely, outside a
Newtonian star (i.e. a dilute star with R > M), Poisson and Pfenning [12] showed that a
scalar charge held static at radius r experiences a self-force of F, = 2£¢*M/r3, where ¢ is

the coupling to the Ricci scalar (with & = 1/6 for conformal coupling and £ = 0 for minimal

2
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coupling). Taken together, these results indicate that the self-force depends on_the global
structure of the spacetime, and not just on its local geometry.

Calculations of the self-force for pointlike particles, such as those above, typically. involve
reqularization, whereby a symmetric (i.e. isotropic around the particle) but.formally singular
part of the field is removed to leave a regular remainder. Regularization is necegsary (but
straightforward) even in flat spacetime, when dealing with pointlike particlesin the simple
example of a pointlike charge ¢ held at z = d above a grounded conducting plate at z = 0,
the electric potential is (by the method of image charges) given by, V' '= Ve Vi where

_ q _ q
T VPP (e—d) Vr= V2 B2+ (e )2 o
Before one can compute the force on the pointlike charge atliz = d it'is necessary to regularize

2

by removing the term Vs. The force on the particle is then given'by F = —¢VVg = — ;2.

In this example it is notable that this (self) force is attractivépproportional to ¢, and clearly
dependent on boundary conditions. Moreover, this force diverges as d — 0. In this work, we
shall show that the self-force in curved spacetim¢ alsendiverges, albeit in weaker fashion, at
the boundary of a Schwarzschild star.

In vacuum regions of spacetimes of spherical'symmetry, one can circumvent the need for
removing the S field directly by calculating self-foree differences, following the prescription of
Drivas & Gralla [13] (see also Isoyamta & Peisson [14]). As known from Birkhoff’s theorem, the
spacetime in the vacuum region outside an‘(isolated) spherically-symmetric body is exactly the
Schwarzschild (exterior) solutign, with the same mass. The symmetric/singular ‘S’ part of the
particle’s field depends only on thelocal geometry, and so it is the same in the two spacetimes
for a particle held at the same radius; hence taking the difference of the fields eliminates the
singular part, effectively regularizingsthe field. In this work, we compute self-forces both with
direct methods (i.e. with a mode-sum regularization step) and with this method of differences,
arriving at self-consistent resultss'Intriguingly, we find that the difference method can also be
applied inside the star, a mon-vacuum region where Birkhoff’s theorem does not apply.

In principle, the SF can be used to distinguish the presence of a compact body from that of
a BH of the same mass. An interesting subtlety is that the force on a charge that is far from
the BH or compact hody has a universal character at leading order. More precisely, the SF
for minimally-coupled (but not conformally-coupled) scalar fields, and electromagnetic fields,
is agnostig“to the spacetime topology and mass distribution at leading order in the M/rg
expansion, [I3-H15]. At higher orders, one finds structure-dependent factors (for example,
coeffigients sensitive to M /R, where R is the body’s radius) which distinguish the respective
forces outside compact objects and BHs of the same mass. In short, despite universality at
leading order, the global spacetime structure can be probed using the SF.
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In this paper, we obtain new results for the self-force of a charge held at fixed position in
the vicinity of a Schwarzschild star of radius R (i.e. a matter distribution of constant density)
in three forms. First, as series expansions, in the far-field (r > R), and near the centre of the
star; second, as an approximation near the surface of the star that encapsulates alogarithmic
divergence; and, third, as numerical data and plots.

This paper is organised as follows. In Sec.[[T A] we review methods feticalculating self-force
for (static, conformally-coupled) scalar fields on spherically-symmetric spacetimes via regu-
larized mode expansions. In Sec. [[TB], we show that the Schwarzsehild star interior geometry
is conformal to a three-sphere geometry, which leads to simpletelosed-form expressions for
mode solutions. In Sec. [[TC| we review the formulation of thé electromagnetic self force, and
in Sec. we describe a method for obtaining exact results from ¢ertain regularized mode
sums. The results section (Sec. includes the verification of thettwo regularization methods
(Sec. [[IT A); series expansions for the SF in the far-field and near the star’s centre (Sec. [[ILB));
a closer look at the divergence of the SF in the approach to,the star’s surface (Sec. [ILC)); and
finally plots of the self-force across the full domain ini (Sec. [[IID]). We conclude in Sec.
with a discussion of the key results. A Mathematica notebook with codes to generate plots
and compute the SF can be found in [16].

II. FORMULATION
A. Scalar fields: Self force; mode expansions and regularization
1. Spherically-symmetricispacetimes

We will work withistatic, Spherically symmetric spacetimes whose line elements can be
written in the form
1

ds® = —A(r)dt* + B0

dr® +r2dQ* (2)

where d? is the metric on a unit 2-sphere. We use a metric signature with the “mostly
positive? signeonvention (— + ++), and geometric units such that G = ¢ = 4mweg = 1. We
will work with the Schwarzschild exterior and interior spacetimes, with the latter modelling

the interior of a (neutral, transparent) ‘star’ of constant density.

4
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2. Scalar field equations

A scalar charge ¢ interacting with a scalar field ® that is non-minimall§coupled to gravity
with coupling £ is modelled with the action

S =58r+Sp+ S (3>
- _% / V=g d'z {g"'V,0V,® + ERDP?} — mo/dT + q/ V—gud'z ®(x) 6 (x, x0) dr

vy
(4)

where Sy is defined with reference to a particle worldline 4 =il (7)7 Here, R is the Ricci
scalar and my is the bare mass of the particle. The three terms in are the field action, the
particle action and the interaction term, respectively. The dynamical equation for the scalar

field is
O-R)®=—trp,  p=g| Ma(r) dr (5)

Y

where 6*(z, 2o(7)) is the Dirac distribution. The source term can be evaluated by performing

the integral over ¢ to obtain
q 8’ —p)
P = t s ) (6)
(Ve

where u' = dt/dr is the Lorentz factor for the static particle.

3. Mode expansions

One can expand the field @ in spherical harmonics by exploiting the spherical symmetry
in the problem, with the/following decomposition:

lm
The Dirac distsibution can also be expanded in spherical harmonics, as

53(xi—$6) B Bo(r —rg) %
T

Without loss of generality, one can assume that the static charge is on the z axis at 5 = 0
and thusmuse Yy, (0, ) = 1/ 2E6,, 0 and hence ¢y, (1) = Ye(r)dm 0.
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Through this separation of variables and mode sum, the PDE is reducedsto, (a set
of) ODEs in the radial variable r. After introducing a tortoise coordinate 7y defined by
dr/dr, = v/ AB, the radial equation becomes

d*u 20+1
W; —V(rju, = —47r—\/ —5 (r*—mry) 9)
with ug(r) = (1), Ag = A(rg), By = B(ro) and the effective potential
A'B+ AB 0(0+1
Vi) = 225 4 (—( - ) gR) , (10)

where the prime ’ indicates a derivative with respect to r.

4. Radial solutions and self-force

To proceed further with standard methods, one needs hemogeneous solutions to the ODE
that satisfy the physical boundary conditions. For nowylet ‘us assume that we have two such
homogeneous linearly independent solutions.»T'he solution that satisfies the physical boundary
conditions at the horizon (in the case of a BH) orat r < r( is termed the “in” solution while
the solution that satisfies the boundary conditions at infinity is termed the “up” solution,
and we denote these by 1(r) for /<y and@pP(r) for r > ro, with u)/"(r) = rei/" ().

The radial equation (9)) implies that u,(F)is continous at ro and that there is a discontinuity
in its first derivative. Hence weradopt the standard ansatz

(11)

where Ny is a constant to bé determined. Integrating over the source in Eq. @ yields the

junction condition

. du, du, 20 —|— 1
1 — = —4Ar—
it (dm ar.|,,. ) 7,V -
ro+e€ TO—€
from which it follows\that
4 2041 1
Ny= L& [ (13)

N A R
where W), is'the Wronskian for the v, solutions, given by W, = i (¢,* ) — 0 ( }Z“)/. As

before, the prime indicates derivatives with respect to r and hence the Wronskian W, is

between'the in/up solutions, defined with respect to 7.

6
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5. Self-force: £-modes

The ‘bare’ f-modes of the radial SF before reqularization may be obtained through a/limit
F = qY0(0) lim 9,4(ro + €). (14)
e—0*%

However, as noted in Eq. , the radial derivative of the £ modes is nét continuous at r = rq,
and so F'* # F*=. For our purposes, it is convenient to work with the average, given by

1 B q 2 (2£ _|_ 1) dwin ) dwup
Fﬁ,bare = _ F€+ Ff N £, /up in L 15
r 2 ( r + r ) o 2Wg\/§0 dT ¢€ + W d?” 9 ( )

where all quantities are now evaluated at the source point ry:

Regularization of the self-force can be achieved through two approaches, namely, direct

regularization and difference regularization, which we now deseribe.

6. Direct regularization

The canonical method of regularising the SF, as formalised by Detweiler and Whiting [17],
involves decomposing the Green’s functions for the relevant field equations into singular (S)
and regular (R) parts in a unique way. “Lhese S and R Green’s functions are then used to
define S and R fields, such that we have a split ®,.; = ®5+ Pr. The S field g is symmetric
around the charge, and has the same singularity structure as @, at the particle’s position.
The S field, which has an entirely local'@enstruction, does not contribute to the self force. The
R field is the difference between the retarded and S fields (Pp = P, — Pg); it is a solution
to the source-free equations of/motion (i.e. d®x = 0) and it is wholly responsible for the SF:

F,u = qu(I)R- (16)

The Detweiler-Whiting regularisation method is general; it is not restricted to the case of
static or spherically symmetric spacetimes [I8-21]. However, in the static scenario, only the
radial componeént, of the force is non-zero, due to the symmetry of the setup.

Given a mode-sum decomposition for the SF, a practical approach to regularisation is to
subtract from each ‘bare’ /-mode a corresponding contribution that arises from a multipole
decomposition of the gradient of the S field in the vicinity of the charge. The (regularized)
self-force is

F,=) Fy (17)

14
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where
~ 1\ = C D
Frf,reg:Ffj[—qz{Ai (€+—)+B+ + +} : (18)
2 (t+3)  ((=3)(+3)
and gi,g,é,ﬁ, ... are known as regularisation parameters [3, 22]. Theyvalues that the

parameters take depends on the the motion of the pointlike charge, the"background spacetime
and the nature of the field under consideration.

For static minimally coupled scalar fields in static, spherically’symmetric spacetimes, the
regularisation parameters were calculated by Casals, Poisson and™Vega in Ref. [23] (see also
[22, 24] for earlier work) to be

~ 1 - 1 9
+ _ ~1/2 _ 9
AT =558 /2, B——2—T2(1+r\If’), C =0, (19)
~ 1
D= T [(1+ 7)) — (14 r0' + 37207 £ 730 —6-°0" — 20°0") B+ (20)
r
(14 4rV,+ 3r20" ) #BA (1 +r0')1*B"] | (21)
where A(r) = ¥ and B = B(r) are the metrie,functions in Eq. (2)), and B'(r) = 4€ etc.
Since AT = —A~, it is convenient to regularize the averaged bare modes, as follows:
~N C D
Fhres = phbare 20 By + o 22
D T -

For static conformally coupled fields (€omsidered here), the gi, B and C terms are identical

to the above, but the D term differs in/non-vacuum regions (i.e. in the interior of the star).

7. Difference regularization

The second approach we use is the difference method pioneered by Drivas and Gralla [13],
and developed and applied by Isoyama and Poisson [14]. In its standard form, it relies on
Birkhoff’s theorem, and so it has only been used to evaluate the self-force at a point in a
vacuum region sinder the assumption of spherical symmetry. Since the S-field has a local
construction, the S-field in the vacuum exterior of the star is equal to the S-field in the BH
Schwarzschild spacetime at the same radius ro. Thus, the difference in the retarded fields
must equal the difference in the R fields, and hence one can compute the SF difference with
solutions in 'the two spacetimes. Additionally, in the case of the static scalar fields the BH
SF wanishes [11], and so the difference is equal to the full SF.

8
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Applying the discussion in the previous section to the case of the SchwarzschildsBH; for
which A(r) =1 —2M/r = B(r), one has the exterior homogeneous solutions ingterms of the
Legendre functions, i.e. ¥*(r) = Py(z) and ¢,"(r) = Q.(z), where we have_introduced the

harmonic coordinate

z=r/M—1. (23)

The Wronskian for the Legendre polynomials is simply W, = —(2? —1)~!. For the black hole
case, the bare modes of the force (see Eq. (15)) are then

(Ff)BH = % <%>2 zz :L i (20 + 1) { Py (20)Qe(20) +Q0(%0) Pu(20)} (24)

where here the ' denotes differentiation with respect toftherargument z.

For a field in the exterior spacetime outside a star,/one,can modify Eq. ) to write down

ext

a general solution 1;**(z) that is compatible with the,(outer) boundary condition, viz.,

ZXt(Z) _ Ag Pg(Z) N Bg Qg(Z), < z< 20 , (25>
Cy Qe(z), zZ> 2,

where Z = R/M — 1 is the position of the star surface and zy = r9/M — 1 is the location
of the charge in the harmonic/¢eordinate, and A,, By, C; are coefficients to be determined.
Furthermore, suppose we have anssolution in the interior of the star which satisfies the bound-
ary condition at r = 0, that we can write as D,®*(r) for some coefficient D,. The interior
solution and its normal derivative must be matched at the boundary of the star (at r = R)
with the external solution in Eq. . In addition, at r = ry the /-mode of the field should be
continuous across the seurce and it should satisfy the junction condition in Eq. . These
four conditions are sufficientito determine the four coefficients Ay, B, Cy, and D, uniquely, in
principle, for each /.

Since matching conditions are applied at two points in the domain, z = Z and z = z,

it is worthwhile to make some re-definitions, following Ref. [14]. Let oy = A¢Pi(20),8e =
BeQ(20) and .= CiQ(zy). Further, let §, = D, P (Z) and

dIn Qi
dlnr | _p°

ne = (26)

Carryingrout the matching, the constants are determined to be & = «FPy(Z)/Pi(z0) +

9
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BeQe(Z)/Qu(20) and v, = oy + 3, where

ag= (20— 1) (20 + 1) Po(20)Qe(20) I , (27)

Be=— (20— 1) (20 + 1) Se [Qu(20)]* T , (28)

g4 20+1 1 | (29)
LMY Vo 1)z +1)°

S, = (Z+ 1) P)(Z) —nePu(Z) (30)

(Z+1)QUZ) —mQu(Z)

Here, Sy is a structure factor that only depends on the stax’s properties, and not on the
position and properties of the charge [I3] [14]. The solution,in the exterior is now determined
uniquely. Evaluating the derivative at the particle position yields/the bare modes of the self
force in the star spacetime, given by

(F)™ =5 (1) V20 20+ DRiQe QP ~ 25,0103} (31)

with all Legendre functions evaluated at z'= zp. From comparing the above with Eq. ,
one observes that /-modes of the self-force on,a starspacetime are equal to those for the self
force on a black hole spacetime, plas amradditional ‘difference’ piece. The final step is to
regularize the self-force and to sum over-modes, as in Sec. [[TA6] to obtain

Frstar — FPH + AFﬁtar 7 (32>

where

1 q 2 /z0—1 ZOO / / T
star 2 — 1 § /
AF" g (%) \ 2 +1 ¢ P DS Gl .

Here AF%" is the selfyforce difference, in the form obtained by Isoyama & Poisson [14] but
with an appropriately-modified structure factor S, for the Schwarzschild star. The rescaled

regularization parameter in Eq. is

~ [20+ 1 ~ d 1
by = 2M*? B =— | —— 35
4 Zo—]. ¢ dZ()( Zg_1>7 ( )

with By'as given in Eq. (L9).

10
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The regularized mode sum in Eq. is precisely zero, consistent with a vanishing BH
self-force FPY for a static scalar particle derived in Ref. [I1]; we examine this point iore
closely in Sec. . Hence the self-force is given by the difference mode-sum in Eq. , and
this sum is exponentially convergent with ¢ everywhere in the domain except at the stat’s
surface at r = R (this point is examined in Sec. [[ITC]).

B. The Schwarzschild star and the Maxwell fisheye lens

To make further progress, we require mode solutions on the“interior spacetime that are
regular at the star’s centre (i.e. at 7 = 0). Below we describé the intérior spacetime in more
detail, and we rewrite it in terms of isotropic coordinates/25]. This highlights a connection
between the interior Schwarzschild metric and the Maxwell fisheye lens (see also Ref. [26]),
and a link to the three-sphere geometry. This leads us to clesed-form expressions for mode

functions of (conformally-coupled) fields in the interior region.

1. The Schwarzschild exterior

The solution of Einstein’s field equations under the assumptions of spherical symmetry
and vacuum is well-known: it is the Sehwarzschild exterior solution, described by the line
element of Eq. with A(r) = B(r) =1 —2M/r, where M is the mass in the spacetime. It
is also well-known that, after introducing a new radial coordinate p, the line element can be
written in isotropic form as [27]

ds¥=6”(p) [—dt* + n*(p) (dp* + p*dQ%)], (36)
with
— b MJ(2p) _ (L M/(2p))°
a(p) = TH M/ (2p) n(p) == M(2p) (37)
where

rzp(l—i—%)Q, (38)
o p:%(r—M+\/<r—M>2—M2) (39)

Here a(p)iis a conformal factor, and n(p) is the effective refractive index of the spacetime.

11
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2.  The Schwarzschild interior

The Schwarzschild interior solution of Einstein’s equations [28] is souteed by the energy-
momentum tensor of a body of constant density o with a radially-varying pressuce p(r),such
that p(R) = 0 at the star’s surface. In standard (Schwarzschild) coordinates, the interior
Schwarzschild spacetime has a line element of the form (2)) with [29]

A(r) = }1 (3VB(R) - \/B(r)>2 and  B(r) =1~ 2]‘;;2 | (40)

The geometry is well-defined for stars of radius R greater than the Buchdahl radius of R, =

9M /4. In the limit R — Rpyen, & curvature singularity arises inithe céntre of the star [30].

The Schwarzschild interior solution is known to be conformally flat [31]; that is, the Weyl
tensor is zero inside the Schwarzschild star. This implies that, locally, the spacetime is
conformally-related to flat (Minkowski) spacetime, aswell asto’other conformally-flat space-
times. Indeed, Buchdahl [3I] found an explicit, but loeal, coordinate transformation that
renders the line element in the form (see (IL.1) in' Ref:"[31))

ds? = exp[24(p, 7)] (—d%2 +dp? + ﬁQdQZ) , (41)

where §¢(p, 7) is a function of the new/coordinates p and 7. Buchdahl noted the local character
of the transformation: “no particular p, Fasystem will cover the domain of interest 0 < r < R,
—00 < t < o0”. In particular, the new coordimates cover only a limited domain in coordinate
time ¢ (see (II.11) in Ref. [31])." This.deficiency leads us to seek new coordinates that relate the
Schwarzschild interior spacetime to an alternative conformally-flat spacetime, namely, that of
a three-sphere, in order to obtain a globally-defined covering.

As a first step, the interior geometry can be re-expressed in isotropic coordinates. To
transform the line element into the form , it follows that we must have

n(pydp= —F———, n(p)p = : (42)

After taking a ratio andsintegrating, one obtains

dr
p = exp </W) (43)

In cerpta@in cases, the integral can be obtained in closed form, leading to expressions for p(r),
n(r)tand, ifithe inversion is straightforward, r(p) and n(p). The Schwarzschild star is one

such case.

12
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By integrating Eq. (43), the isotropic coordinate is

y r
== 44
P=3 1+ +/B(r) (44)
where v arises from the constant of integration. This can be inverted to obtain
4
r= P (45)

v +p2/5%)
where 8 = v1/R3/8M. To determine the constant -, one can impese that« is continuous at
the surface of the star (i.e. that the isotropic coordinate in the exteriormatches the isotropic
coordinate in the interior at » = R). Inserting B(R) = 1 — 20 /R, Eg. and r = R into
Eq. yields
1 3

v=5(1+VI—2M/B) . (46)
Furthermore, the functions A(r) and B(r) in Eq. can be're-expressed in terms of the
isotropic coordinate p as

VAR = & (3VBE) 1) o e (47)

L+p2/6%°
1—p*/P%
B(p) = ——t—, 43
0= 1 (49
where
3\/ B R -1 R - R uc
plensgﬁ'#:}z' 1 Z h’ (49>
9B(R) — 1 1+3y/B(R) M
Hence, by Eq. (42), the effectivé refractiye index is n(p) = Ri(p) where
2
o , 50
V=13 P*/ Piens 0)
R = (51)

4
Y (3VBR) 1)

In summary, we have arranged the line element into the isotropic form of Eq. , with
a(p) = /A(p)given byrEq. ([47). It is straightforward to check that the refractive index of
the exterior and/interior match at r = R, as expected.

3. The Mazwell fisheye lens and the three-sphere

The refractive index n(p) in Eq. is precisely that of a Mazwell fisheye lens: a spherical

lens that'perfectly focusses the rays emanating from a point source placed on the rim of the

13
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lens at p = piens at the antipodal point on the rim [32]. This perfect-focussing property arises
because the spatial part of the line element is conformal to a space of constant,positive cur-
vature: a three-sphere. This property can be made explicit through applying the eoordinate

transformation
P = Plens tan(X/Q)a (52>

where y is a new coordinate representing an angle on a unit three-sphiere. The line element

becomes
ds* = @°(x) (—dT* + dx* + sin® xdQ),, (53)

where a2(x) = M(x), dT = dt/+/X and

(3v/T—2M/R - 1)

A oo ) oy
- 5 (T BTRRAE, (55)

52 2 _ R4
A =R Pions = LM (R Rgnr) (56)

and (4 = Prens/S-
One can directly show that (a region of) the star spacetime is also conformally equivalent
to Minkowski spacetime. Starting with Eq. , we introduce new coordinates
sinl’ sin
- £y )\ S (57)
cosd’ + cos'y cos 1"+ cos x
which are well-defined coordinates only in a local region of the star spacetime, interior to
T € (—m,m). Then the line element is

ds® = a%(cos T + cos ) (—d%? + dR? + R2dQ?) . (58)

(This is most easily ehecked by starting with the flat metric, inverting the definitions and
verifying that enerecovers the three-sphere.) This result is consistent with that of Buchdahl
[31]: the conformal-to-Minkowski coordinate system only covers a patch of the full spacetime,
and thus is"of limited utility for our purposes. By contrast, the conformal-to-a-three-sphere
line element in covers the entirety of the Schwarzschild interior spacetime, and this is
what s shall use in the following.

In summary, the Schwarzschild interior spacetime is conformal to a region (0 < x < xo)

of the spacetime of a unit three-sphere. On the surface of the star, r = R, the corresponding

14
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angle on the three-sphere x( is given by

- 1 R—3M o AM (R — Rpuch)
Xo = COS < R(R—QM)>_SIH (\/ R(R—ZM) > (59>

Hence a compact star of radius equal to the light-ring radius, R = 3M, encempasses exactly

half of the conformal sphere (xo = 7/2); and as R approaches the Buchidahl bound, the whole
sphere is captured (i.e. xo — 7).

4. Mode solutions

To compute the self-force outside a star via Eq. one needs structure factors S, which
in turn depend on the coefficients 7, defined in Eq. initerms of the interior solution ®*.
Moreover, to compute the SF inside the star one requires two linearly-independent solutions
in the interior. Here we obtain these solutions in aselosed form.

To solve the wave equation in the interiorsspacetime weswork with the metric and make
use of the conformal symmetry to first find selutions‘on‘a geometry dfsz with ds? = (/)5\2()()62‘32.
Since we work with a conformally-coupled scalar field, the structure of the dynamical equation

remains the same in the new (conformal) manifold/as well [33] given by,
(ﬁ-gﬁ)%:o, (60)

for the conformal coupling £ = 1/6.3Here the tilded variables are objects in the conformally-
related spacetime. In four spacetime dimensions, we have the relation & = ®/a, that is,

T = /M) P . (61)

In the conformal three-sphere geometry, the Ricci scalar is simply R=6. Separating variables
as usual and using thesspherical harmonics, one obtains the following “radial” equation in the
(conformally) transformed wvariable x,

% (sin2 Xd_):> — (sinQX + 00+ 1)) CT)E(X) =0. (62)

A pair of (homogeneous) solutions on the physical spacetime are

() P:ll/;l/? (cos x) (1) plj}f (cos x) (63)
r) = , r)=———,
b AA(r) sin o V/AA(r) sin x

15
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with x related to r by

and inversely,

R 2sin y | R — Rpuch (65)
(3y/B(R) + cos x) M

The p,(r) function is regular at the origin (r = 0), whereas the ¢, (r)function is not.
If the charge is placed outside the star, we need only one of the above solutions to compute

the self-force. For the analysis in the previous section, we use

o — () < R! )/ Payy  (eob(x) ;.
¢ =Dplr) = _ ; 2 tan2 '
IM(R — Risuen) sin() (St — 3y/1- %)
This leads to a closed-form expression for 7, (defined mEq. (26)), viz.,
L—1)2
M = (C R P (cos xo) (67)
v — — )
1-2M/R P:f/_;/z(cos X0)

where cos xo was defined in Eq. . This can then be used to compute the structure factor
in Eq. and the self-force difference in Eqg .

5. Interior self force

When the charge is plaged dnside the star, we need both solutions in Eq. to perform
a matching procedureyassin Sec. [UC 4] The physical field sourced by a particle at r = r( (see
(9) has mode solutions

A, L) r<m
wl) =1y H e o (63)
C5e(ro) + Eéde(ro) r=To,
The matching procedure yields Ay = Kk + €, with
Pe(ro) dr 2041 q pe(r0)Ge(ro0)
Kp.= —€,0p= , € = — — , 69
4 ¢ qu(rg) ¢ VB 4 13 Wo(ro) (69)
Rq,(R) — 17 (R dl
o qﬂ( ) Te QE( ) T = 0g Q((Z) (7())

~ R (R) — 7 pe(R) dlogr

16
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The ‘bare’ averaged modes of the SF can then be computed as a mode-sum as before:

are 1 q 2 20+1 . A oA
Frbve = — ( ) \/B W ————— {Pde + Gupe — 20004De} (71)
0oWWe

where it is understood that the Wronskian is taken with respect to r.

6. Difference regularization in the interior

By analogy With Eq (32)), the mode sum for the (regularized)"Self-force can be split into
two parts, F, = FO 4 AF,, where

> 1 20+1 4

FO =g { ———— (Ppde P Gype) — Be} : (72)
s 273 VBoWs Z

AF:q2 = 204+1 . (73)

- 5 TePePe s
rs = VBoW;

where B is the regularization parameter in Eq. . Remarkably, the first sum Jais

is found to
vanish and hence the self-force can be_calculated from the difference piece AF,. only; we return
to this point in Sec. [I D] Hence o,/plays the role of a structure factor for the Schwarzschild

interior.

C. Electromagnetic self force

Overall, the analysis of the static EM self-force closely follows that of the scalar field [14].
We comment here on the main differences in the analysis and in the results. The dynamical

equation for the EM field.is given by
VoF = —dngt = —47Tq/u“ §*(z, 2(7)) dr . (74)

For static EM fields, the gange potential (in Lorenz gauge) takes the form A, = (®(x), 0,0, 0).
Of the four Maxwell equations, only the temporal equation is nontrivial. One performs a
similar mode-sum decomposition as in ([7]) and for the field and the source respectively, to
obtain theradial differential equation,

2
d Uy
2
dr?

20+ 10(r — r40)
47 To ’

—V(r)uy = 4mq

17
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where

V(T):g[l(fn;rBl)Jr%(AB’A—BA’BH |

From here on, we proceed as in the scalar case to solve for the homogeneous,solutions. to
the above ODE and use them to build an ansatz for the EM potential. In the exterior
Schwarzschild spacetime the mode functions are given by,

~ 1 9 l - 0 5
De = (75)
(r—2M)PUz), 140,

Ge = (r —2M)Qy(=) , (76)

with z = r/M — 1 as before, and ' denoting a derivative with.xéspect to r, such that the
Wronskian of the two solutions is simply Wy = £(¢ + 1) M /#? for ¢ > 0 and W, = M /r? for
(=0.

To compute the mode functions in the interior; we,use the fact that Maxwell’s equations
are conformally invariant [33]. That is, if ﬁw/ is"a [solution to Maxwell’s equations on the
(conformal) spacetime ds? then F),, = l:;u,, is a.solution on the (physical) spacetime ds®> =
&*(z)ds?. Thus, we can use the solutions of theMaxwell equations on the three-sphere
geometry, i.e., using the line element insidethe parentheses in . This approach yields the

mode functions

Lbe_1/2
. _ Pl / (cos x)

) =

where the relation between r.and yuis'stated in Eq. .

) Py, (cos y) -
? -
4/SIn Y

1. Eaterior self force

The ‘bare’ SF is,then defined as F), = ¢F,, ", where 2" denotes the particle’s four-velocity.
In the exterior, the “bare’.averaged modes of the radial component are given by

1/q\> 20+1
Firoe= — (2 ) S — {ped) + @by — 280Ged)} 78
! 5 <To) Wi T Pede + ey 0Gedy} (78)

where the EM structure factor is [14]

(E+D)P(Z) = (A +m)(Z = 1)P(Z)
((E+1)Qu(Z) — (L +m0)(Z — 1)Qy(Z)

Si(2) = (79)

18
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The logarithmic derivative is 7, = dIny/dInr|,_, and has the closed form expression

o (R - 3M> (42 Pyy ' (cosxo) )
¢ = )
R—2M 1-2M/R Pl/g Y2 (cos xo)

where cos xg is given in Eq. .

2. Interior self force

The calculation of the interior EM SF closely follows thé ‘amalysis'in Sec. [[IB5| Here,
we present only the results. The averaged ‘bare’ modes before regularisation are given by a

mode-sum,

1 2 2+1
Flbare _ ~ ( q ) —B:Wz {miyne +Hagine — 20, g} (81)

where I'; is the structure factor analogous to oy in the scalar case, given by

Riy(R) =00 fu(R)

Ty= = . 82
7 Riny(R) — oy 1u(R) (82)

) B d log gy L L+ 1)Qu2Z)
Mo = e, T 251 QU2 (83)

3. Direct regularisation

The splitting of the (retarded) field into the R and S fields is a general framework for
regularising SFs and applies to EM fields as well. In a similar fashion to that in the scalar
case, one has the following regularisation parameters for an expansion of the EM S field in
the vicinity of the charge.nFor a static EM field, defining e*¥ = A(r), the regularisation
parameters at a point r =9 + A (with A — 0) are given by [23]

A=A (A), B= (-0, C=0 (84)
7, ’ 2r2 ’
~ 1
D
1612

[(1—rT)— (1 —r¥ + 320 — r?U% + 6r°0" + 20°0") B+
(1—4rV —3r9") rB + (1 — r¥') r*B"] . (85)

(N.B. The signs of these terms are opposite to those given in Ref. [23] due to our convention

in Eq. (18))).
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4. Difference regularisation

The method of difference regularisation carries over to the EM fieldfease in anstraight-
forward way. However, the interpretation of the difference is now slightly modified. Firstly,
unlike in the conformal scalar case, the monopole (¢ = 0) solutions for theyradial ODE for the
EM field in the BH and star spacetime are identical. Hence, when computing, the difference
the monopole terms cancel, and thus the series start with the dipolé¢ (¢ = 1).” More impor-
tantly, the SF difference is not equal to the full SF because the electromagnetic self force for
a static particle on Schwarzschild spacetime is [9]

@M
r3y/1 — 2M/7‘0'

The SF for the Schwarzschild star is F, = FBH + AFS% “swhere

AR — (%)2 //Zz_: g (20+1)S, (Qe(zo) - é;—;;@@@@) Qy(20) - (87)

Again, the structure factor Sy in Eq. is'a function of R, the radius of the star, but it does
not depend on g, the position of the charge. "All othér functions in Eq. are evaluated at
the position of the particle, and are/independent of R.

FP = (86)

Remarkably, in the interior region (rgh< R), one can also calculate the self-force from a
difference sum only. Starting with the bare modes in Eq. , and following the prescription
in Sec. |[I B 6], one splits the regularized mode sum into two parts. The first part vanishes, as

is shown in the next section.

D. Mode sum identities

For static self-forces, it'issapparent that some regularized mode sums turn out to be equal
to zero, and other mode sums can be expressed in closed form in a simple way. In this section
we give this phenomenon some further consideration.

1. FExterior

A first resultds that the following regularized mode sum is zero:
S0 =) {Soe =)} =0, See=(20+1)P(2)Qu(2), (88)
=0

20
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where 7o(z) = (22 — 1)~'/2. This result is proved in Appendix [B| to follow as a comsequernce
of Christoffel’s formula.
Taking a derivative with respect to z, and moving the derivative inside the sum; we.arrive
at -
= {0+ 1) (P(2)Qu(2) + Pu(2)Qi(2)) — 75(2)} 20 (89)
=0
By comparison with Eq. and , we conclude that the self-force on a static charge
outside a black hole is precisely equal to zero. This is the result of Wiseman [11], but here
derived directly from the mode sum expression.
Turning to the electromagnetic case in the Schwarzschild exterior, we can use the result
above to prove the next identity, which is:

1)—2{5 e —11(2) } E o), (90)

for z > 1, where

arn 1z — DB (@ 1)Qi(=)}, >0,

Saye = (91)
(z = D@o(2), t=0,
and v;(z) and o1(z) functions to be/derived below. To establish this, first we observe that
1 d
Z-1)d: ((z+1)2Say) = (264 1) {P/(2)Qu(2) + Pu(2)Q(2)} (92)
where here we have used the Legéndre differential equation,
d
7 (E=DP(2) = U+ 1) P(2). (93)
Next, subtract v{(z), take the sum, and apply Eq. to obtain
=~ [d
> {E ((z F1)?Say) — (2° — 1)76(2)} = (2" =1) (7 — Sy) - (94)

/=1

with the ¢ = 0 term moved across to the right-hand side. Now we can integrate and rearrange
to obtain Eq. with

1 9 e 22 —1
71(2) = (Z + 1)2 /(z - 1)70dz - (Z + 1)2 (95)
7)== g [ &~ DSl = T (96)

The validity of Egs. , and has been checked numerically for z > 1.
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2. Interior

In the interior, for the EM case we can make use of the result that @nother regularized

mode sum vanishes: SE‘S = 0, where

1nt Z {Slnt 1nt : (97>

and

int. V2 Y/
Sty = 20+ 1)(=1)' Py (@) Py () (98)

and " = 2 /7. This is shown by first establishing the following resultAfor the partial sum:

ZSH&— E (=) P )0 (@) = Mg 2) Py S ()0 Pl }
(99)

where N = n+1/2. In Appendix |C| this is shown t0 follow as a consequence of the recurrence
relation DLMF 14.10.1 [34]. Next, by considering'the large-n asymptotics of the right-hand
side, one extracts the regularization function 442 and the limit of the infinite sum (zero).

A similar result holds in the scalar-field case, simce one can show by the same methods

that a partial sum is

Z&S;é(@ = _% + (1= 2?33 (1) {P__ﬁg( )0s PN1J/F21( z) — (n+1)*P 1]\/[21( )0y P 1/2( )}
(100)

where
int. /0N L —(0+1/2 (+1/2
Sy = @0+ (=1 P () PL P (@), (101)
By considering large-mpasymptotics of the right-hand side, it follows that

Siy = Z{Smt W ()} =0, (102)

where ™ = 2 /@ Thesetesults, along with their derivatives, show why the interior self-force
can be found by/evaluating the difference terms only.

3. Numerics

To support the arguments above, we have also evaluated the regularized mode sums nu-

merically. Figure [1| demonstrates that the partial sums converge towards zero as n — oo.

22
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Part-sums
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oNOYTULT D WN =

10 A 2
11 = 1
12 D o Y (+112)
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FIG. 1. This figure shows the behaviour of the partial mode-sum as we increase the value of £ where
21 we truncate the sum. The data 3;, ¢ = 1,2, 3 denote the BHssealar sum , the scalar interior sum
and the EM interior mode-sum respectively. In all cases, we see that the partial sums decrease
24 according to a power law as we truncate the mode-sums, at higher values of {y .y, implying that the
25 infinite sum must vanish, in accordance with the results in Seé¢s. [TD 1] and [ITD 2|

29 III. RESULTS

In this section, we obtain new results for theself-force in the vicinity of a Schwarzschild star
34 (i.e. a matter distribution of constant density) in three forms. First, as a series expansion in
35 the far-field (r > R) and near the centre.of the star; second, as a leading-order approximation
37 for the self-force near the surfacerof the star; and, third, as numerical data across the whole
38 domain. As a first step, we/examine the f-modes of the self-force and we verify that the two
regularization approaches produce consistent results.

A. Regularization and validation

50 The bare modes of the SF can be straightforwardly computed, for a particle in the exterior
51 or thednterior of the star, by using Eq. and Eq. , respectively. The SF difference in
the exterior/is given in Eq. . As described in Sections [[I A 6 [II A 7| and [[I D, we have the

54 option of regularising with two different methods.
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1. Euxterior scalar self force

For the exterior Schwarzschild scalar SF using the direct method we@btain f~modes for
the force as shown in Fig[2Db] To test the regularisation procedure, we make the,definitions

(F)q = ™™ = B, (103)

D
(0—1/2)(£+3/2)

L __ are 5]
(F)fy = Fibe — B - (104)
We verified that the (averaged) ‘bare’ modes asymptote to the/constamt Bas/l — oo; and
the regularised modes (FT)fl) and (5)?2) fall off as (¢ + 1/2)2.and (£ +1/2)7*, respectively,
in this limit. Subtracting only the B parameters from the ‘bare™averaged modes in Eq.
is sufficient to ensure convergence of the series; however, subtracting additional parameters
lead to faster convergence, in line with the faster decay of the modes, and greater numerical

accuracy of the sum.

| F)
r
o 1074 o (Fbarel
\ - ()l
) T B /(1)
1074¢ N T— I(F)e)
1051} .
R B
S 10713} e D] 12
10 ~ \\\‘\\ 77777 « I—4
107
1 5 10 50 100 ! 1 5 10 50 100
(a) Regularising scalar SF inside the (b) Regularising scalar SF outside the Schwarzschild star

Schwarzschild star

FIG. 2. Modes of the self foree £ on a log-log scale showing the expected polynomial decay after
subtracting regularization terms in the interior (left) and the exterior (right). For the above plots
we choose a star of radius R/= 11M with the charge placed at ro = 6M (left) and ro = 16 M (right)
in [2a] and [2b| respectively. Tmall figures units such that M = ¢ = 1 are adopted.

We also'examined the (-modes of the SF' difference. We verified that the /-modes in Eq.
fall off ezponentially with ¢, as previously noted in [14]. We elaborate on this exponential
convergence in later sections (see Figs. 4 and .

To compute the total self-force one must evaluate the mode sum numerically. As is stan-

dard, we'sum modes up to a suitably-large ¢;,,x value, which (at minimum) must lie in the

24
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ro/M|F./(q/M)? (scalar) F:/(¢/M)* (EM)

6.1 |5.200896(6) x 1073 1.604917(2) x 1072
5.2008963(3) x 1073 [1.6049174(1) x 102
6.5 [2.71508989(1) x 103 |8.67227486(1) x 1073
2.71508989852 x 1073 |8.67227486152 x 103
7 1.712197896(4) x 1073 |5.64183966(1) x 1073
1.71219789621 x 10~3 |5.64183966893 x 1073
8 8.93714041(2) x 107*  |3.080427341(2) ¥ 1073
8.93714041480 x 10~* |3.08042734138 x 107>
10 |3.627255060(4) x 10~* |1.3213072171(6)wx 1073
3.62725506014 x 10~ |1.32130721711 x 1073
15 [8.743329274(3) x 1077 |3.3892349544(5) x 10~*
8.74332927466 x 107° |3.38923495442 x 104
25 [1.6863404917(1) x 107°|6:8103725730(2) x 1075
1.68634049176 x ¥10~° |6.81037257301 x 10~°

TABLE 1. Sample results for the self-force F) ¢aleulated by direct regularization (upper row), and
by difference regularization (lower row), outside a,Schwarzschild star of radius R = 6 M. The mode-
sum is truncated at {max = 200 (with the.remainder of the modes fitted by a power-law) in all cases
except at ro/M = 6.1, for which we use the héuristic {nax = 27 R/Ar ~ 440. For the EM case (right
column), the BH SF is added to the difference calculation so as to compare with the direct method.
The numeral in parentheses shows an estimate of the numerical error in the last quoted digit; where
absent, the result should be correct in all digits stated. This error estimate was derived from the

‘large-£ tail’ fit.

regime in which the regularization parameters provide a good fit. For direct regularization,
we then estimate the ‘large-¢ tail’ remainder by fitting the modes to a polynomial in powers
of (¢ +1/2)7, and then computing the sum of this polynomial from /. + 1 to infinity. For

difference regularization, thelarge-¢ tail’ is modelled as an exponentially-converging sum.

Numerjeal results for F, obtained via the two regularization methods are given in Tablel]
The data'shows agreement at least 6 decimal places close to the surface of the star, and the
level offagreement increases with » — R. The accuracy can be further improved by modifying
internal parameters at the expense of run-time (e.g. by increasing £pay). It is likely that the

results from the difference method are more accurate than the direct method.
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2. Interior scalar self force

In the interior (rqg < R) we regularise directly by using the parameters in Egs. and
Egs. (which are reproduced from Ref. [23]) with the metric functions A(r)rand B(r) of
the Schwarzschild interior solution. The ¢-modes of the SF before and after regularisation are
shown in Fig. [2a]

In the interior we cannot apply the D regularization terms from Reéf. [23],\because this was
calculated for a minimally-coupled scalar field, and we are here considering a conformally-
coupled field. Conversely, in the exterior the parameter D can He applied, because the Ricci
scalar vanishes in the vacuum region and consequently thereds no difference in the (locally-
defined) S field between the two cases.

B. Asymptotics and series expansions

We obtain series expansions for the self;force by /inserting asymptotic expansions of the
mode functions into the mode sums for the self-force difference, such as Eq. . The low-/¢
modes provide good approximations both near the star’s centre, and in the far field.

1. Scalar self force: far-field

In the far-field region where 73 R and r > M, the scalar self-force has an asymptotic

expansion

fT:q2M (<1+¥+23M2+...>§0(§)+(2—RQ+...)§1(<)+...) (105)

3r3 672 5r2

where §g(§ ) denote normalised structure factors with ( = M/R; for the monopole (¢ = 0)
and dipole (¢ = 1) terms we obtain

_ S 67 . 368 . 3580 . 92235496
] (A (28 4 _ 5 6 1
$o(c) 597 105¢ " 3158 " 1025° ~ Grsers o T O (106)
\ 39 158 . 0472 . 208996
= 1 - _ 2 _ 3 _ 4 5 ) 1
51(6) 218 T 3158 " 73S~ ammosst T O (©) (107)

Withrexpansions such as Eq. (105]), one can check against numerical data order-by-order in
M /7., We introduce the following notation where the calligraphic F (@) represents the difference
between'the numerically-calculated force F,. and the the series expansion in (105]) truncated
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ro/M|F,/(q/M)?* (scalar)

F/(g/M)* (EM)

0.5 |1.9534(6) x 10~*

5.1807268554 x 10~*

1.95342961682 x 10~4|5.1807268554 x 10~4

1 3.9219(2) x 1074

1.0432023863 x 103

3.92187625293 x 10~4(1.0432023863 x 103

2 7.9789(1) x 1074

2.1477348199 x 1073

7.97886997930 x 10~4|2.1477348199 x 1073

3 1.24040(6) x 1073

3.4067324914 x 1073

1.24040470355 x 1073|3.4067324914 x 1073

5 2.60490(1) x 1073
2.60486(5) x 1073

7.642467(7) % 1053
7.64248884062 x 1073

5.9 [5.482220(7) x 1073
5.4822155(1) x 1073

1.667817961(1) x 10~2
1.66781796376 x 102

TABLE II. Sample results for the self-force F). calculated by direct regularization (upper row), and

by difference regularization (lower row), insidesa Schwarzschild star of radius R = 6M. The direct

mode-sum is truncated at fiax = 1200 (fyax =.3000), for the scalar (EM) case, with the remainder

of the modes fitted by a power-law. The difference mode-sum is truncated at £pax—25 (fmax=50 for

the scalar (EM) case. We note that/the secalar force is direct regularised with the B parameter

only, while the EM force has both the B and“the D parameters available. This explains the better

agreement between the direct and the difference results for the EM case. The numeral in parentheses

shows an estimate of the numerical’error in the last quoted digit. This error estimate was derived

from the ‘large-¢ tail’ fit. For the 'direct regularised scalar force, the error estimate is derived from

0.1% of the fitted tail.

at the ¢th order. That is,

-;r(o)—Fra
M ~
(1 7(0 2 M
,,S) 7g) q3T3SO(R) )
2M? ~
(2 (1 2 M
7() ﬁ) q 34 O(R)

(108)

(109)

(110)

Figure {3ajshows these quantities across a range of r/M, verifying the expected behaviour.
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(a) Far field expansions vs numerics: Sc
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(b) Far ons vs numerics: Electromagnetic SF

FIG. 3. A comparison of the numeri¢al SF data obtained by evaluating the mode-sum results [solid]
for the scalar and electro etic SF's, with the series expansions [dashed] in Eq. (105)) and Eq. (115
respectively, for a sta; di =50M.

2. Sc se e: centre of the star
e can obtain expansions near the centre of the star in a similar way. To do so, we exploit
the ap ility of difference regularisation in the interior and use large- R expansions for the

YW .
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mode functions. For R > M and r < R,

o @Mr (. M_ 12 [2. M [29_ 3. M? (123 . 4510 46
Fr = 3R4 Ul—EUO—f—ﬁ 502+§ 1—00'1+ZO'2 +ﬁ 6—40'2+1—601—1—50'0 +

o2}, Y,

where the 0y = 04(() are (normalised) structure factors for the exterior defined in with

¢ = M/R as before. The force at the centre of the star is exactly zeros due to spherical

symmetry, and the leading term in the force arises from the dipole rather than the monopole.
The monopole, dipole and quadrupole structure factors have the series expansions

4 31 208 122771 207683
-~ -1 = e T S Gty 1)) 6 112
0(¢) 36 126 T ¢ — e ¢+ O(C) (112)
79 151 89099 6125213 533398271
() =14 —C+ —(? 3 ( S+ Ot 113
71(¢) +30C+ 36 CH 9450 ¢+ 283500 ¢+ 10692000 ¢+ 0(C) (113)
2553 109251 882841 2780229721
i =1— — 2_ W 14005). 114
72(¢) 280 ¢ 22400 ¢ 18816000C 77271040000C +0(¢) (114)

It is notable in Fig. [7] that the self-force onva particle held at r» = r near the centre of the
star scales in linear proportion to rg, at leading order. A similar linear scaling with ry was
found in the case of (the interior of ) asmass shellin Ref. [35]. There is one important difference
with the shell case, however. For the S¢hwarzschild star, the force is positive (i.e. directed
away from the centre) across the entire domaini, whereas for the shell case it repels from the
shell (i.e. it changes sign at " =pR). For the shell case, there is Simple Harmonic Motion
around the centre at r = 0; for the star, this is not the case, due to the sign difference.

3. Electromagnetic self force: far-field

For the EM case, we have a similar far-field series expansion with minor differences. In
the EM case, the monopele structure factor vanishes identically, because the monopole con-
tribution to the SE in the, BH and the star spacetime coincide (and this would also be the
case for a minimally coupled scalar field). This is just a restatement of the fact that at the
monopole level, the SF is universal between stellar and BH spacetimes (with a minimally
coupled scalar) [I8J¢" Thus, we start with expansions of the dipole term in the SF difference
mode sum in (87)).

2q2M R? TM  91M? ~ 9R? ~
afEm 42 F(<1+2_r+10r2+"' SO0+ (gt )&+ )
(115)
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where the normalised dipole and quadrupole structure factors 3’1 (%) and 3\2 (%) have the
expansions (with ¢ = M/R as before):

. 8 61 472
I 2 3
S1(¢) 7C 105C 825C

s 184 10152
-1 2
(0 15" 1025 ¢

392507 _, ;
st T O (F16)

4496896 ., 566696
2627625 1299375

¢* 20 () (117)

Once again, these expansions offer a way to compare the analytic expressions with our

numerical data, so we define the notation (as before)

(AJ—_;{EM)(U) — AFEM (118)
2 2 RQ >

(AFEN® = (AF) Y — SRS, | (119)
2. p2

(AFEM)® _ (p )i [T & (120)

Figure [3bl compares the numerical data with these farfield expansions, and we obtain similar
agreement as in the scalar field case.

4. Electromagnetic self force:ieentre of the star

As before, we can look at series expansions near the centre of the star for the EM SF
using large R expansions andedifferemce regularisation. However, the monopole contribution
to the difference mode-sum ig'identically zero. This is because the monopole mode function
in the interior myg is a‘eonstantzSince the interior difference term in is oc 1/, this term

is identically zero. Thus, the series expansions only start with the dipole terms.

in Mo 2 /24 M (23~ 3= M? (39~ 123~
(FEMy = 4 T{F1+T—(—F2+—(—Fl—l——Fg)+—<—F1+—F2>)—|—..}

R R%2\5 R \ 10 4 R? \ 16 64
(121)
where the normalised structure factors fg have the expansions,
=~ 13 11 1089 75193 4374767
Pi=1+—C+—¢ 3 4 5 6 122
! +10<+4C+175<+525O(+132000<+O(C) (122)
-~ 1881 5379 1675847 11981145639
[h=1- — 2 5 L+ 0(¢). 123
? 280 22400 * 18816000 * 77271040000 +0(S) (123)
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F,/
10_5 B ‘ R
o Direct regularisation —
-9 L
10 Difference regularisation
Asymptotics
1 10 100 1000

FIG. 4. Numerical data for the f-modes of the SF (dots) on a log-log plot, for a particle close to
the star surface at R = 3M, with Ar = 79 — R =0.005M:The expected exponential ((I +1/2)72)
behaviour for the difference (direct) regularised modesonly starts after an initial regime with a slower
decay. The slow-decay behaviour is comparedswith the green dashed guideline, which is proportional
to (I +1/2)7! and with a coefficient taken from Eq. (124).

C. Approach to the boundary
1. Scalar self force

It is interesting to examineshoew the self-force behaves as the charge (at r = 1) approaches
the surface of the star (at ;= R), from either the interior or exterior direction. Naively, one
can take the expressions for the /-modes in Eqgs. , and and plot them for various
values of Ar = rq/=R. The behaviour of the f-modes is shown in Fig. [d] and Fig. o]

In the case of the directly regularised modes, the plots show that there exists an interme-
diate regime £y, in which the modes fall as approximately (¢ +1/2)7!, in addition to the
asymptotieTegime £ 2 (., in which the regularized modes show the expected (¢ +1/2)72 fall
off. Moreover, the value of /.., scales in inverse proportion to Ar, such that ¢,.; — oo in the
limit A» — 0. Figure |5c| (lower plot) also shows the situation for difference regularization.
Again, therg is an intermediate regime with an approximate (£+1/2)7! scaling (for £ < l,eq),

and then'the exponential decay takes over (for ¢ 2 lie,).
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(c) Difference regularisation near the star boundary

FIG. 5. The modes of the SF calculated via direct regularisation (upper) and via the difference
method (lower) for a particleat' ro = R + Ar, near the surface of a Schwarzschild star of radius
R = 3M. Plots (a) and (b) show that, as the particle gets closer to the surface of the star, the number
of £ modes required to reach/a regime where the bare modes show the expected (¢ + 1/2) 2 fall off (in
plots (a) and (b))Ancreases limearly with 1/|Ar|. Plot (c) shows the difference-regularized ¢-modes,
for a range of AraThe dashed lines show the large-¢ asymptotic approximation in Eq. . The
exponent {? in that approximation approaches zero as Ar — 0, and thus the total self-force diverges

as Ar — 0 imagdogarithmic manner.
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One can put forward a somewhat intuitive explanation for the scaling of /.., observediin
Fig. [}l The S field, used for regularization, has a local definition and it is well-¢haracterised
by regularization parameters in either the Schwarzschild exterior or interior spacetimeregions,
but not across the star boundary. Near the surface of the star, we assume/that, the S field
is only properly defined by the regularization parameters in an open balltaround the charge,
in one of these two spacetime regions. That ball is of radius no larger,than approximately
Ar. The parameter £ may be considered as a measure of angular resglutionon the sphere at
fixed r, with A@ ~ 7/(¢ + 1/2) for large ¢. The closer the field pointiis t0 the the surface,
the larger the ¢ value necessary to resolve the (small) open ball, andithe consequently the
larger the value of /es. From Ar ~ RA6 we obtain the estimate e, o #R/Ar. This suggests
that /s diverges in the limit Ar — 0, as observed in the numeri¢ss Thus, for Ar — 0, one
has an infinite number of modes which fall as (¢ + 1/2)!',“and thus the self-force itself is
(logarithmically) divergent in the approach to the surface.

To understand this phenomenon more precisely, onéscan employ asymptotic expansions
for the Legendre polynomials and Legendre functions,used in the calculation of the SF [34]
through difference regularization. Performing su¢h an expansion for large ¢ (see Appendix
for details), we obtain the following expansion for the modes of the SF difference in the

exterior:

Fl o ploo = 7 (Z—|—5+1)—3/2 e—2(20+1)
T T AMPNZ - OVZ 61 L+ 12
ZH0+\(Z+6)2 -1
O 1og (20 V2 D) . (125)
Z+NZ? -1

In the above expression we takeithe charge to be at zp = Z + 0 (for arbitrary § = Ar/M),

(124)

where we continue to use thé"harmonic coordinate z defined in (23]).

The asymptotic approximation in Eq. exhibits the behavior described above, and
seen in Fig. [fl For £+ 12 < 2/, the modes fall off as (¢ + 1/2)~!. Exponential decay takes
over once £+ 1/2 2> 2/Q. Close to the surface (§ < 1) the exponent is Q ~ §/v/Z2 — 1, and
thus we recover the essentials of the scaling of /., observed in Fig. [

To derive a first approximation to the self-force near the surface of the star, we sum the
modes F*° infthe asympteti¢ approximation Eq. to get

- 2 (Z+641)732
e _ N peee - 0| In (coth(©/2)) . 126
=Y R = g ) (126)

This fermula makes it clear that the self-force diverges logarithmically as ¢ — 0.

Figure [6] shows the divergence of the self-force in the approach to the boundary of the star.

For the'sealar-field case, Fig. [6a] compares the numerical results from performing the mode
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sum with regularization, with the asymptotic result obtained in Eq. . The comparison
in Fig. |6¢| verifies that the divergence is of a logarithmic form for Ar — 0.

In the interior, one can also insert large-¢ asymptotics for the mode funetions intothe self-
force difference formulae in Eq. . Following the procedure above, we find aslogarithmic
divergence of a similar form to the above as the star’s surface is approached from the interior.

The expressions are rather long and are omitted here.

Fr FM
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ya | ‘ _ & T | e
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(a) Scalar SF across the full domain (b)yElectromagnetic SF across the full domain
F,
0.10r
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L L L LO =4
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(¢) Verifying the logarithmic scaling of the SF with Ar

FIG. 6. In Fig. [6al and Fig! [6b] we compare the scalar and the EM SF over the full radial domain.
The solid lines represent a sum of the numerically-calculated ¢-modes, while the orange (green)
dashed lines represent the approximation near the surface (near the centre and in the far field). A
key difference between the two sums is the contribution of the monopole term in the scalar field
sum which israbsent in the EM case. Fig. [6c| compares the numerical sum with the approximations,
again, but with a logarithmic scale for the x-axis. This confirms that the SF diverges in proportion

to log (A#/M) in the approach to the surface. All plots are for a star of radius R = 4M.
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2. Electromagnetic self force

The electromagnetic SF is given by the SF difference mode-sum (Eq. ) and an,additive
non-zero SF coming from the BH contribution (Eq. ) which is independentyof the star’s
radius. To understand the behaviour of the SF as one approaches the boundary of the star, it
is sufficient to examine the former term. Looking at the large ¢ asymptotics of the Legendre
functions once again, one has an asymptotic expansion for the EM SF difference. We write
down the modes in the EM case in terms of the modes from the scalarcase’in Eq.

(AFEMY' ~ 3Ff (127)

However, in this case one must consider the sum starting awith thesdipole term, since there
is no monopole contribution in the EM SF difference. Thus, while there still exists a closed
form expression for this infinite sum, it is not identical to that, of the scalar field. The EM
SF difference is given by FEM swrf — gpsurf _ 30 orimore éxplicitly,

2 3(VIZHP =1+ Z+6)banh @ 0) - 3 (V2T -1+ 2)

EM surf __
F! =L

M2 9z £ VWO + Z —1(0% 2k 1) (5+ JOT 271 +Z> '

The approximation above is comparédwith,numerical sums for the SF in Fig. [6b]

(128)

In the interior, we can also use the difference term to find an approximation for the force
near the star’s surface. In the harmonic coordinates Z = R/M — 1 with the separation given

in terms of 6 = Z — zy > 0, we have the asymptotic expression:

(AFPM int)z B ¢ (2> + (5=62Z)log* (VZ2 -1+ 2) — 1) o Qe+1/2)
r 8M2 _1\/1_2( 5ZJ;Z1)+31 ( S+ 7 + )210g2(m+2) €_|_1/2
(129)
where
3/2 _2(Z-6+1)2
Q =x2log (Z+1) ( L (Z+1)3 1) (130)
(WZ-1-VZ+1)(Z-6+1)
For small 0,

(-2 (1)
9%2(Z+1)(\/Z27——Z)6' (131)

Appreaching the surface from the interior, we find that 2 — 0 as 6 — 0, much like in the

exterior. Hence the force diverges in proportion to the logarithm of |r — R|, whether one

approaches the surface from the interior or the exterior of the star.
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D. Across the radial domain

Figure [7| shows the scalar SF across the entire domain, i.e. for r € (0yR) U (Ryec0)./ The
SF at the star boundary r = R is undefined; the dashed lines show the approximation ({126
that captures the logarithmic divergence in the approach to the boundary.. We note that the

SF decreases with an increase in stellar radius.

IV. DISCUSSION AND CONCLUSIONS

In the preceding sections we have computed the self-forcé actingwen a pointlike particle
endowed with a (electromagnetic or conformal-scalar) charge ¢, thatiis held in position in the
vicinity of a Schwarzschild star (i.e. a transparent sphere of constant density). We used two
complementary methods for regularization, and we leyeragedithe fact that the Schwarzschild
interior geometry is conformal to a three-sphere geometry, which in turn implies that dense
Schwarzschild stars (R < 3M) can produce perfect focussing, a la Maxwell’s fisheye lens. Via
the means of a conformal transformation we ebtained mode functions in closed form. The key
results comprise: series expansions in the largespyregime in Egs. (105)—(107) and (115)—(117)
and the small-r regime in Egs. and ; approximations that describe the logarithmic
divergence in the self-force at the star’s boundary, Eq. and ; and numerical data
for the self-force across the full radial domain, as shown in Fig. [7]

We have also extended the self-force difference method of Refs. [13] [14] to evaluate the self-
force on a particle in the non-vacuum interior of the star, as well as in the vacuum exterior.
This extension relies on the vanishing of certain regularized mode sums, given in Sec. [ID]
This suggests that the self-foree difference method of Drivas and Gralla [I3] may have validity
to a wider range of circumstances than previously expected.

The electromagnetiesself-foree near a Schwarzschild star was previously considered in
Ref. [15] (see the “insulating star” case in that work). There, particular attention was given
to a very compact star at,exactly the Buchdahl radius, R = Ry, = 9M /4, and it was re-
ported that “as we move the charge close to the star,  — 4/9 [where x = M/R], F, becomes
orders of magnitude greater than F°%”. Here we have expanded on that observation, showing
that the self-force diverges'in logarithmic fashion as r — R for Schwarzschild stars of any
radius R. /An’other words, the divergence in the self-force is not some special feature of the
Buchdahl limit. /As in Ref. [I5], we used a conformal transformation (though of a different
kind)t@'simplify the calculation of mode functions. The approach we took has the conceptual
advantage of relating the interior Schwarzschild geometry to that of a three-sphere of constant

curvature, but the practical disadvantage that our conformal transformation (unlike that in
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FIG. 7. Self force across the domain in r. We compare the force across different stellar radii and
show sghe agreement between the approximate sums [dashed] with the numerical sums [solid] near

the surface of the star. We see that the force tends to zero at the stellar centre and also as r — oo.
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Ref. [15]) breaks down at the Buchdahl limit.

We have shown that the self-force for a Schwarzschild star is repulsive (from the star
centre) across the entire domain in r (i.e. F. > 0), in both the interior ‘of the starsand the
Schwarzschild exterior. This suggests that, for a (loose) electrostatic analogyy.one should
consider the repelling force on a charge near an insulating (rather than gonducting) surface
(i.e. a surface boundary condition n- VV(r)|,—g = 0).

It is interesting to compare our results for the self-force near a Schwarzschild star with
another case that has been studied in the literature: the self-force omzan electromagnetic
charge held fixed inside a spherical shell of mass M at r = R (this wasstudied in Refs. [35], [36]
and discussed in Ref. [37]). At leading in order in M/R,

M r/R 1 b—1/R
Faten = _gRrQ (1 - 7/02/1%2 ol (1 ¥ r?R)) g (182)
This force exhibits a 1/Ar divergence in the approach,to the'shell’s surface, and the charge is

repelled from the shell. This is in contrast to the (weaker) logarithmic divergence found for
the Schwarzschild star. Near the centre of the mass-shell there is a restoring force of Fge ~
—rq*M/(3R*) that generates Simple Harmonic Motion. By comparison, in the Schwarzschild
star the force is also proportional to r in magnitude (see Fig. E], and Egs. and ),
but the force is in the opposite direction (i.ejrepelling the particle from the centre) and so
SHM does not arise.

Another scenario where a comparison ean be drawn is to the self-force on a particle in a
spacetime constructed by glueing together two Minkowski spacetimes along a spherical seam
[37]. The Riemann tensor is zero-everywhere except at the seam, where is proportional to a
delta-distribution. In this scenario, a I /Ar divergence in the self-force arises in the approach
to the seam.

It seems that divergences in the self-force are rather typical wherever there is a boundary,
or a non-smooth featute/©f theygedmetry or refractive index. One may arrange such examples
into a hierarchy of divergemees) based on the scaling of the force with Ar in the approach to
the boundary. In familiar electrostatic examples, the force on a charge typically diverges as
1/(Ar)% For example, near a conducting (or insulating) plate or sphere; or at a boundary
where there is & jump inthe, refractive index (e.g. outside or inside a dielectric sphere). In
the curved-spacetime example of a mass shell (Eq. (132))) [35] 36], or of glued-Minkowski [37],
the divergence instead scales as 1/(Ar), i.e., it is one power weaker. In the Schwarzschild-star
case, we found a logarithmic divergence only, which can be regarded as one power weaker
againy

[t is natural to seek to relate the form of the divergence to the smoothness of the geometry.

Let us examine this idea in a little more detail. For the Schwarzschild star geometry, the metric
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functions A(r) and B(r) are continuous at r = R. More precisely, A(r) is C! (continueus and
once-differentiable) and B(r) is C°. One point of comparison is the force on a pointlike charge
outside a dielectric sphere in electrostatics. Here, there is a discontinuity in the refractive
index at r = R (i.e. it is not C°) which leads, via the method of images, to a (Ar)32 divergence
in the force. For the Schwarzschild star, the effective refractive index is @ at the boundary,
that is, two orders smoother than for a dielectric sphere. It seems plausible thatithe divergence
in the self-force, with log |Ar|, is two orders weaker than in the dielectric casg simply because

the (effective) refractive index is two orders more differentiable.

Due to the divergence at the star surface, the self-forceson a pointlike particle near a
Schwarzschild star has no upper bound; it can be arbitrarily large. "Fhe divergence is likely to
be an artifact of the point-particle assumption. For an extended body, one would expect the

force to remain bounded, because a logarithmic divergénce is, weak enough to be integrable.

In the static scenario considered here, the self;foree is entirely conservative (i.e. symmet-
ric under time reversal). In Ref. [13] it was posited thatthe dissipative (radiation-reaction)
part of self-force (i.e. the part that drives the loss of energy /angular momentum to radiation
in dynamical situations) should have a [ocal character, whereas the conservative part of the
self-force is sensitive to boundary conditions,and the global structure of the spacetime. Con-
sequently, the latter can become large while the former remains small (or zero). Our results
are consistent with this hypothesis, since we have shown that the conservative (point particle)
self-force is unbounded in the approach to a boundary where the metric itself is continuous
and the Ricci tensor is bounded:

ACKNOWELEEDGMENTS

S.Ditacknowledges financial support from the Science and Technology Facilities Council
(STEC) under Grant No. ST/X000621/1 and Grant No. ST/W006294/1. A. N. S is supported
by an EPSRC Ph.D studentship.

39



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - CQG-113170.R1

Appendix A: Large ¢ expansions

We want to perform large ¢ asymptotics for the following Legendre fun€tions: Py(a), @¢(z)

when x > 1 and P;f/_;/z(x) when —1 < z < 1. From Sec. 14.15 in [34] and_[B8hwe have:
1/2 P A0 (2 p—1 B(£2
Py(cosh &) ~ (sifh{) {IO (L) Z SL(2§ ) + %1_1 (L) $L(2§ )} (A1)
s=0 s=0
1/2 P A0 (2 p—1 BO.(£2
Qu(cosh €) ~ (mfhg) {KO (LE) Lgf ) _ %Kl (L¢) L(f )} , (A2)
s=0 s=0

where L = ¢+ 1/2 and Iy, I_1, Ko, K_; are modified Bessel funétions of the first and second
kind with degree 0, —1 respectively. For our purposes the stmmations in both expansions can
be truncated at order s = 0 with the leading coefficientsigiven by A = 1 and

1 1
By (%) = = th& — =)
R (CO y 5)
The Bessel functions have large argument @xpansions given by [34],

L) ~ S 0 O\ TRy (1) e

k 9. k
(2mx) k=0 z 22 —o

with ag(v) = 1 and,
(z-v),E+v),
(—2)kk!

Finally, the Legendre functions, whichygo into the field solutions in the interior have the

k> 1.

a, (V)=
expansion for —1 <z <1,

oo = (R oo (7)o (im0

J=0

where the non-negative integer J denotes the order of expansion. In all the above expansions,
(y), are the Pochhammer gymbols. We use these expansions to see how the modes of the SF
difference behave at large./ and the most interesting aspect of this comes from the structure
factor Sy(Z). At'leading order in the large ¢ expansions the ¢ behaviour of the modes entirely
depends on'the ¢Behaviour of S;(Z). We recall from the SF difference now rewritten for

convenience,
N AR VN / (2 +1) 3z ~ 02 || Pu2) A5
(M) 20+ 1 ;< + )QE(ZO)QAZO) (Z n Q%(Z) QZ(Z) ( )
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with the explicit structure factor in the braces. For the two terms in the numerator of the
structure factor, we arrive at the following asymptotic expansions from above:

oNOYTULT D WN =

5 (ZH)P;(Z) L(Z+1) Z_ 1 N +0<1)
10 Py(Z) 72 —1 2-2Z L(8—8Z)WZ2—1 G4L2(Z—-1)2Z+1) L3
11 (Aﬁ)
13 LA Z2 47 — 5

14 e Z—1"2-22 "8L(Z - 1)p3/Z +1

16 +(42—5)(2(\/22— —92)—2\/22—1+9)+0 1

17 64L2(Z _ 1)5/2(2 + 1)3/2 I3 )

(A7)

We can now see that the terms in the structure factor atiorder L' and L° cancel, causing
21 the SF difference to vanish at these orders. Thus, it isfonly at order L~! that we expect a
22 non-zero contribution to the structure factor.

26 Appendix B: A vanishing mode sum

Proposition: The following infinite sumiis zero:
32 > A0+ )PU)Qu(=) = 0(2)} =0, (B1)
=0

35 where Py(z) and @Qy(z) are Legendresfunctions (z > 1), and the regularization function is

37 Yo(z) = \/%7
38 Proof: The starting point is Christoffel’s second formula (14.18.7 in DLMF [34]), which

39 is an identity for a partial sum from 0 to n € N, viz.,

41 n

42 (z=9) Y 20+ DP) Qi) = (n+1) (Poy1(2)Qn(y) — Pa(2)Qnia(y) — 1 = Fulz,9) ,
44 =0 (BQ)

46 (This can be established by using the recurrence relations for Legendre functions and proof
47 by induction).\8ince the partial sum on the left-hand side is finite, it is clear that the limit
of F,(z,y)/(z —y)as y — z must be well-defined and finite. We evaluate this limit with
50 I’Hopital’s,rule to establish that

52 n

53 Y20+ 1) P(2)Qu(2) = (n+1) (P2 (2)Qn(2) = Po(2)Qnia(2)) - (B3)

54 1=0
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Using the asymptotics of the previous section, one can then establish that, in the,large=n

regime,

n2

Plr(5)Qn(2) — PA)Qui (2) = 70(2) + O ( ! ) , (B4)

where 7o(z) was defined above. Now subtracting (n + 1)7o(z) from both sides of (B3) gives

D A2+ 1) Pi2)Qul2) = 70(2)} = (1 +1) (Pri1(2)Qn(2) = Pr(2) @i (2) ="0(2)) . (BS)

Finally, taking the limit n — oo and using the asymptotic result ((B4)sproves the proposition.

Appendix C: The partial sum Eq.

In this section we show that Eq. follows as a consequence of the recurrence relation
(DLMF 14.10.1 [34])

X

Pr2() + 2(u+ 1) gP* () + (v — p)(w + o+ 1 PEGE) = 0, )] = ——. C1
42 a) + 24 DI ) 4 - o+ oy PR =0, 9= ()
A similar proof can be constructed for Eq. (B3))-and Eq. (99).
First, let us assume that the partial sum iny\Eq. ((99))) will take the form
Z Sii(@)= Gn(@) + Fo(z), (C2)

where S (1) is defined in Eq. (98)), Ey(z) = S — &, and we posit that &, (z) takes a form
(1) (1)
inspired by (B3):

Sulx) = Ay [P )05 P (@) = an P A~ (2)0; Paa)) (C3)

where N = n + 1/2, andwa,, and (3, are to be determined below. From Eq. (C1]) it follows
that

P (x) + (2n+ 3)§ P (x) — n(n + 2) Pi)y(z) = 0, (C4)
Py () =@ +3)gP ) (@) = (n+ 1)(n +3) Py *(x) = 0 (C5)
Using and the derivative of in , one can show that
& @)= B Py [ (20 + 3)§0; PN3 + n(n +2)0; Py — (2 + 3) P
Brs10n+1 N+1 N-1
BT et —Cn+ 3P+ P (C6)
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Now we choose a1 = (n + 1)(n + 3) so that a pair of terms cancel. After this canecellation:
Spi1(7) = Bupa [an-i-lPl_/Q o, P, 1/2 1/]2V8 Pf\/fsrl — Bns1(2n + 3)P1/]2V 1Pf\/];l- (C7)

After comparing with (C3)), we may choose 3,11 = (—1)" so that
Sri1(2) = Gn(2) + Sy (). (C8)

Hence the result for the partial sum (C2)) is established, and consideration of the base case
(n = 0) yields Fy(z) = —x /7. The result in Eq. then follows afterewriting the derivative
using the chain rule: 9; = (1 — 22)%20,.
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