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Self-force and the Schwarzschild star

Abhinove N. Seenivasan∗ and Sam R. Dolan†

Consortium for Fundamental Physics,

School of Mathematical and Physical Sciences,

University of Sheffield, Hicks Building,

Hounsfield Road, Sheffield S3 7RH, United Kingdom.

Abstract
We consider the self-force acting on a pointlike (electromagnetic or conformal-scalar) charge

held fixed on a spacetime with a spherically-symmetric mass distribution of constant density (the

Schwarzschild star). The Schwarzschild interior is shown to be conformal to a three-sphere geometry;

we use this conformal symmetry to obtain closed-form expressions for mode solutions. We calculate

the self-force with two complementary regularization methods, direct and difference regularization,

showing agreement. For the first time, we show that difference regularization can be applied in the

non-vacuum interior region, due to the vanishing of certain regularized mode sums. The new results

for the self-force come in three forms: series expansions for the self-force near the centre of the star

and in the far field; a new approximation that describes the divergence in the self-force near the

star’s boundary; and numerical data presented in a selection of plots. We conclude with a discussion

of the logarithmic divergence in the self-force in the approach to the star’s surface, and the effect of

boundaries.
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† s.dolan@sheffield.ac.uk (Corresponding author)
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I. INTRODUCTION

An electric charge interacts with electromagnetic fields in its vicinity. Since an electric

charge is also the source for an electromagnetic field, one cannot avoid the question of self-

interactions, even in classical field theory. For example, it is well-known that an accelerated

charge generates radiation. This is accompanied by a radiation reaction force on the parti-

cle which ensures that energy is properly conserved. The earliest such inquiries led to the

Abraham-Lorentz-Dirac force law [1], and this has been an active field of enquiry ever since.

The presence of spacetime curvature arising in General Relativity (GR) adds to the subtlety

of the self-interaction problem. Even in the simple case of a static electric charge, the field lines

are not completely isotropic in the vicinity of a pointlike particle, due to the interplay between

the electromagnetic field and the background curvature. In other words, one cannot avoid the

notion of a self force (SF) [2] even in elementary scenarios. The theoretical arguments that

lead to the requirement of a self-force hold equally well for gravitational fields generated by

masses, as well as for scalar fields generated by scalar charges. The latter, being the simplest

case of all, typically serves as an instructive model for understanding general aspects of the

theory. The calculation of the SF for scalar, electric and massive particles has been the focus

of the community for over three decades and reviews of the subject can be found in [3] and

[4].

The gravitational self-force is of particular importance because it is used to model the

orbital evolution of binary systems with a small mass ratio [5–7], that are radiating energy in

the form of gravitational waves (GW). The scalar and EM self-forces are not of such immediate

experimental relevance, it would appear, but nevertheless they are interesting in their own

right, and they serve to clarify aspects that are more opaque in the former case (for example,

unlike the gravitational self-force, the scalar and EM self-forces are not gauge-dependent).

We focus on the latter cases here.

The electromagnetic self-force of charged particles has been explored since the work of

Copson [8] in the 1920s. In the 1980s, Smith and Will [9] showed that a pointlike particle

of electromagnetic charge q held fixed at r = r0 outside a Schwarzschild black hole (BH) of

massM , experiences a self-force that is repulsive, and equal in magnitude to q2M/r30 (see also

Ref. [10]). Here we have adopted units such that G = c = 4πϵ0 = 1.

For scalar fields, a key result, due to Wiseman [11], is that the SF on a scalar charge held

stationary outside a Schwarzschild black hole (BH) is precisely zero. Conversely, outside a

Newtonian star (i.e. a dilute star with R ≫ M), Poisson and Pfenning [12] showed that a

scalar charge held static at radius r experiences a self-force of Fr = 2ξq2M/r3, where ξ is

the coupling to the Ricci scalar (with ξ = 1/6 for conformal coupling and ξ = 0 for minimal
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coupling). Taken together, these results indicate that the self-force depends on the global

structure of the spacetime, and not just on its local geometry.

Calculations of the self-force for pointlike particles, such as those above, typically involve

regularization, whereby a symmetric (i.e. isotropic around the particle) but formally singular

part of the field is removed to leave a regular remainder. Regularization is necessary (but

straightforward) even in flat spacetime, when dealing with pointlike particles. In the simple

example of a pointlike charge q held at z = d above a grounded conducting plate at z = 0,

the electric potential is (by the method of image charges) given by V = VS + VR where

VS ≡ q√
x2 + y2 + (z − d)2

, VR ≡ − q√
x2 + y2 + (z + d)2

. (1)

Before one can compute the force on the pointlike charge at z = d it is necessary to regularize

by removing the term VS. The force on the particle is then given by F = −q∇VR = − q2

4d2
ẑ.

In this example it is notable that this (self) force is attractive, proportional to q2, and clearly

dependent on boundary conditions. Moreover, this force diverges as d→ 0. In this work, we

shall show that the self-force in curved spacetime also diverges, albeit in weaker fashion, at

the boundary of a Schwarzschild star.

In vacuum regions of spacetimes of spherical symmetry, one can circumvent the need for

removing the S field directly by calculating self-force differences, following the prescription of

Drivas & Gralla [13] (see also Isoyama & Poisson [14]). As known from Birkhoff’s theorem, the

spacetime in the vacuum region outside an (isolated) spherically-symmetric body is exactly the

Schwarzschild (exterior) solution with the same mass. The symmetric/singular ‘S’ part of the

particle’s field depends only on the local geometry, and so it is the same in the two spacetimes

for a particle held at the same radius; hence taking the difference of the fields eliminates the

singular part, effectively regularizing the field. In this work, we compute self-forces both with

direct methods (i.e. with a mode-sum regularization step) and with this method of differences,

arriving at self-consistent results. Intriguingly, we find that the difference method can also be

applied inside the star, a non-vacuum region where Birkhoff’s theorem does not apply.

In principle, the SF can be used to distinguish the presence of a compact body from that of

a BH of the same mass. An interesting subtlety is that the force on a charge that is far from

the BH or compact body has a universal character at leading order. More precisely, the SF

for minimally-coupled (but not conformally-coupled) scalar fields, and electromagnetic fields,

is agnostic to the spacetime topology and mass distribution at leading order in the M/r0
expansion [13–15]. At higher orders, one finds structure-dependent factors (for example,

coefficients sensitive to M/R, where R is the body’s radius) which distinguish the respective

forces outside compact objects and BHs of the same mass. In short, despite universality at

leading order, the global spacetime structure can be probed using the SF.
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In this paper, we obtain new results for the self-force of a charge held at fixed position in

the vicinity of a Schwarzschild star of radius R (i.e. a matter distribution of constant density)

in three forms. First, as series expansions, in the far-field (r ≫ R), and near the centre of the

star; second, as an approximation near the surface of the star that encapsulates a logarithmic

divergence; and, third, as numerical data and plots.

This paper is organised as follows. In Sec. IIA, we review methods for calculating self-force

for (static, conformally-coupled) scalar fields on spherically-symmetric spacetimes via regu-

larized mode expansions. In Sec. II B, we show that the Schwarzschild star interior geometry

is conformal to a three-sphere geometry, which leads to simple closed-form expressions for

mode solutions. In Sec. II C, we review the formulation of the electromagnetic self force, and

in Sec. IID we describe a method for obtaining exact results from certain regularized mode

sums. The results section (Sec. III) includes the verification of the two regularization methods

(Sec. III A); series expansions for the SF in the far-field and near the star’s centre (Sec. III B);

a closer look at the divergence of the SF in the approach to the star’s surface (Sec. III C); and

finally plots of the self-force across the full domain in r (Sec. IIID). We conclude in Sec. IV

with a discussion of the key results. A Mathematica notebook with codes to generate plots

and compute the SF can be found in [16].

II. FORMULATION

A. Scalar fields: Self force, mode expansions and regularization

1. Spherically-symmetric spacetimes

We will work with static, spherically symmetric spacetimes whose line elements can be

written in the form

ds2 = −A(r)dt2 + 1

B(r)
dr2 + r2dΩ2 , (2)

where dΩ2 is the metric on a unit 2-sphere. We use a metric signature with the “mostly

positive” sign convention (− + ++), and geometric units such that G = c = 4πϵ0 = 1. We

will work with the Schwarzschild exterior and interior spacetimes, with the latter modelling

the interior of a (neutral, transparent) ‘star’ of constant density.

4
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2. Scalar field equations

A scalar charge q interacting with a scalar field Φ that is non-minimally coupled to gravity

with coupling ξ is modelled with the action

S = SF + SP + SInt , (3)

= − 1

8π

∫ √−g d4x
{
gµν∇µΦ∇νΦ + ξRΦ2

}
−m0

∫
dτ + q

∫

γ

√−g d4x Φ(x) δ4(x, x0) dτ ,

(4)

where SInt is defined with reference to a particle worldline γ : xµ0(τ). Here, R is the Ricci

scalar and m0 is the bare mass of the particle. The three terms in (3) are the field action, the

particle action and the interaction term, respectively. The dynamical equation for the scalar

field is

(□− ξR) Φ = −4πρ, ρ ≡ q

∫

γ

δ4(x, x0(τ)) dτ , (5)

where δ4(x, x0(τ)) is the Dirac distribution. The source term can be evaluated by performing

the integral over t to obtain

ρ =
q

ut
δ3(xi − xi0)√−g , (6)

where ut = dt/dτ is the Lorentz factor for the static particle.

3. Mode expansions

One can expand the field Φ in spherical harmonics by exploiting the spherical symmetry

in the problem, with the following decomposition:

Φ =
∑

ℓ,m

ψℓm(r)Yℓm(θ, ϕ). (7)

The Dirac distribution can also be expanded in spherical harmonics, as

δ3(xi − xi0)√−g =

√
B

A

δ(r − r0)

r2

∑

ℓ,m

Yℓm(θ, ϕ)Y
∗
ℓm(θ0, ϕ0) . (8)

Without loss of generality, one can assume that the static charge is on the z axis at θ0 = 0

and thus use Yℓm(0, ϕ) =
√

2ℓ+1
4π
δm,0 and hence ψℓm(r) = ψℓ(r)δm,0.
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Through this separation of variables and mode sum, the PDE (5) is reduced to (a set

of) ODEs in the radial variable r. After introducing a tortoise coordinate r∗ defined by

dr/dr∗ =
√
AB, the radial equation becomes

d2uℓ
dr2∗

− V (r)uℓ = −4π
q

r0

√
A0

√
2ℓ+ 1

4π
δ (r∗ − r∗0) , (9)

with uℓ(r) ≡ rψℓ(r), A0 ≡ A(r0), B0 ≡ B(r0) and the effective potential

V (r) =
A′B + AB′

2r
+ A

(
ℓ(ℓ+ 1)

r2
+ ξR

)
, (10)

where the prime ′ indicates a derivative with respect to r.

4. Radial solutions and self-force

To proceed further with standard methods, one needs homogeneous solutions to the ODE

that satisfy the physical boundary conditions. For now, let us assume that we have two such

homogeneous linearly independent solutions. The solution that satisfies the physical boundary

conditions at the horizon (in the case of a BH) or at r ≤ r0 is termed the “in” solution while

the solution that satisfies the boundary conditions at infinity is termed the “up” solution,

and we denote these by ψin
ℓ (r) for r ≤ r0 and ψup

ℓ (r) for r ≥ r0, with u
in/up
ℓ (r) ≡ rψ

in/up
ℓ0 (r).

The radial equation (9) implies that uℓ(r) is continous at r0 and that there is a discontinuity

in its first derivative. Hence we adopt the standard ansatz

uℓ(r) = Nℓ




uinℓ (r)u

up
ℓ (r0) , r ≤ r0 ,

uinℓ (r0)u
up
ℓ (r) , r ≥ r0 ,

(11)

where Nℓ is a constant to be determined. Integrating over the source in Eq. (9) yields the

junction condition

lim
ϵ→0+

(
duℓ
dr∗

∣∣∣∣
r0+ϵ

− duℓ
dr∗

∣∣∣∣
r0−ϵ

)
= −4π

q

r0

√
A0

√
2ℓ+ 1

4π
, (12)

from which it follows that

Nℓ = − 4π√
B0

q

r30

√
2ℓ+ 1

4π

1

Wℓ

, (13)

where Wℓ is the Wronskian for the ψℓ solutions, given by Wℓ = ψin
ℓ (ψup

ℓ )′ − ψup
ℓ

(
ψin
ℓ

)′
. As

before, the prime indicates derivatives with respect to r and hence the Wronskian Wℓ is

between the in/up solutions, defined with respect to r.
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5. Self-force: ℓ-modes

The ‘bare’ ℓ-modes of the radial SF before regularization may be obtained through a limit

F ℓ±
r = qYℓ0(0) lim

ϵ→0±
∂rψℓ(r0 + ϵ). (14)

However, as noted in Eq. (12), the radial derivative of the ℓ modes is not continuous at r = r0,

and so F ℓ+
r ̸= F ℓ−

r . For our purposes, it is convenient to work with the average, given by

F ℓ,bare
r ≡ 1

2

(
F ℓ+
r + F ℓ−

r

)
= −

(
q

r0

)2
(2ℓ+ 1)

2Wℓ

√
B0

{
dψin

ℓ

dr
ψup
ℓ + ψin

ℓ

dψup
ℓ

dr

}
, (15)

where all quantities are now evaluated at the source point r0.

Regularization of the self-force can be achieved through two approaches, namely, direct

regularization and difference regularization, which we now describe.

6. Direct regularization

The canonical method of regularising the SF, as formalised by Detweiler and Whiting [17],

involves decomposing the Green’s functions for the relevant field equations into singular (S)

and regular (R) parts in a unique way. These S and R Green’s functions are then used to

define S and R fields, such that we have a split Φret = ΦS +ΦR. The S field ΦS is symmetric

around the charge, and has the same singularity structure as Φret at the particle’s position.

The S field, which has an entirely local construction, does not contribute to the self force. The

R field is the difference between the retarded and S fields (ΦR = Φret − ΦS); it is a solution

to the source-free equations of motion (i.e. □ΦR = 0) and it is wholly responsible for the SF:

Fµ = q∇µΦR. (16)

The Detweiler-Whiting regularisation method is general; it is not restricted to the case of

static or spherically symmetric spacetimes [18–21]. However, in the static scenario, only the

radial component of the force is non-zero, due to the symmetry of the setup.

Given a mode-sum decomposition for the SF, a practical approach to regularisation is to

subtract from each ‘bare’ ℓ-mode a corresponding contribution that arises from a multipole

decomposition of the gradient of the S field in the vicinity of the charge. The (regularized)

self-force is

Fµ =
∑

ℓ

F ℓ,reg
µ (17)

7
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where

F ℓ,reg
r = F ℓ±

r − q2

{
Ã±
(
ℓ+

1

2

)
+ B̃ +

C̃(
ℓ+ 1

2

) + D̃(
ℓ− 1

2

) (
ℓ+ 3

2

) + . . .

}
, (18)

and Ã±, B̃, C̃, D̃, . . . are known as regularisation parameters [3, 22]. The values that the

parameters take depends on the the motion of the pointlike charge, the background spacetime

and the nature of the field under consideration.

For static minimally coupled scalar fields in static, spherically symmetric spacetimes, the

regularisation parameters were calculated by Casals, Poisson and Vega in Ref. [23] (see also

[22, 24] for earlier work) to be

Ã± = ∓ 1

r2
B−1/2, B̃ = − 1

2r2
(1 + rΨ′) , C̃ = 0, (19)

D̃ = − 1

16r2
[(1 + rΨ′)−

(
1 + rΨ′ + 3r2Ψ′2 + r3Ψ′3 − 6r2Ψ′′ − 2r3Ψ′′′)B+ (20)
(
1 + 4rΨ′ + 3r2Ψ′′) rB′ + (1 + rΨ′) r2B′′] , (21)

where A(r) = e2Ψ and B = B(r) are the metric functions in Eq. (2), and B′(r) = dB
dr
, etc.

Since Ã+ = −Ã−, it is convenient to regularize the averaged bare modes, as follows:

F ℓ,reg
r = F ℓ,bare

r − q2

{
B̃ +

C̃(
ℓ+ 1

2

) + D̃(
ℓ− 1

2

) (
ℓ+ 3

2

) + . . .

}
. (22)

For static conformally coupled fields (considered here), the Ã±, B̃ and C̃ terms are identical

to the above, but the D̃ term differs in non-vacuum regions (i.e. in the interior of the star).

7. Difference regularization

The second approach we use is the difference method pioneered by Drivas and Gralla [13],

and developed and applied by Isoyama and Poisson [14]. In its standard form, it relies on

Birkhoff’s theorem, and so it has only been used to evaluate the self-force at a point in a

vacuum region under the assumption of spherical symmetry. Since the S-field has a local

construction, the S-field in the vacuum exterior of the star is equal to the S-field in the BH

Schwarzschild spacetime at the same radius r0. Thus, the difference in the retarded fields

must equal the difference in the R fields, and hence one can compute the SF difference with

solutions in the two spacetimes. Additionally, in the case of the static scalar fields the BH

SF vanishes [11], and so the difference is equal to the full SF.
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Applying the discussion in the previous section to the case of the Schwarzschild BH, for

which A(r) = 1− 2M/r = B(r), one has the exterior homogeneous solutions in terms of the

Legendre functions, i.e. ψin
ℓ (r) = Pℓ(z) and ψup

ℓ (r) = Qℓ(z), where we have introduced the

harmonic coordinate

z = r/M − 1. (23)

The Wronskian for the Legendre polynomials is simply Wℓ = −(z2 − 1)−1. For the black hole

case, the bare modes of the force (see Eq. (15)) are then

(
F l
r

)BH
=

1

2

( q
M

)2√z0 − 1

z0 + 1
(2ℓ+ 1) {P ′

ℓ(z0)Qℓ(z0) +Q′
ℓ(z0)Pℓ(z0)} , (24)

where here the ′ denotes differentiation with respect to the argument z.

For a field in the exterior spacetime outside a star, one can modify Eq. (11)) to write down

a general solution ψext
ℓ (z) that is compatible with the (outer) boundary condition, viz.,

ψext
ℓ (z) =




Aℓ Pℓ(z) + Bℓ Qℓ(z), Z < z < z0 ,

Cℓ Qℓ(z), z > z0 ,
(25)

where Z = R/M − 1 is the position of the star surface and z0 = r0/M − 1 is the location

of the charge in the harmonic coordinate, and Aℓ, Bℓ, Cℓ are coefficients to be determined.

Furthermore, suppose we have an solution in the interior of the star which satisfies the bound-

ary condition at r = 0, that we can write as DℓΦ
int
ℓ (r) for some coefficient Dℓ. The interior

solution and its normal derivative must be matched at the boundary of the star (at r = R)

with the external solution in Eq. (25). In addition, at r = r0 the ℓ-mode of the field should be

continuous across the source and it should satisfy the junction condition in Eq. (12). These

four conditions are sufficient to determine the four coefficients Aℓ, Bℓ, Cℓ and Dℓ uniquely, in

principle, for each ℓ.

Since matching conditions are applied at two points in the domain, z = Z and z = z0,

it is worthwhile to make some re-definitions, following Ref. [14]. Let αℓ = AℓPℓ(z0), βℓ =

BℓQℓ(z0) and γℓ = CℓQℓ(z0). Further, let δℓ = DℓΦ
int
ℓ (Z) and

ηℓ ≡
d ln Φint

ℓ

d ln r

∣∣∣∣
r=R

. (26)

Carrying out the matching, the constants are determined to be δℓ = αℓPℓ(Z)/Pℓ(z0) +

9
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βℓQℓ(Z)/Qℓ(z0) and γℓ = αℓ + βℓ where

αℓ = (z0 − 1) (z0 + 1)Pℓ(z0)Qℓ(z0)Jℓ , (27)

βℓ = − (z0 − 1) (z0 + 1)Sℓ [Qℓ(z0)]
2 Jℓ , (28)

Jℓ = 4π
q

M

√
2ℓ+ 1

4π

1√
(z0 − 1) (z0 + 1)3

, (29)

Sℓ =
(Z + 1)P ′

ℓ(Z)− ηℓPℓ(Z)

(Z + 1)Q′
ℓ(Z)− ηℓQℓ(Z)

. (30)

Here, Sℓ is a structure factor that only depends on the star’s properties, and not on the

position and properties of the charge [13, 14]. The solution in the exterior is now determined

uniquely. Evaluating the derivative at the particle position yields the bare modes of the self

force in the star spacetime, given by

(
F ℓ
r

)star
=

1

2

( q
M

)2√z0 − 1

z0 + 1
(2ℓ+ 1) {P ′

ℓQℓ +Q′
ℓPℓ − 2SℓQℓQ

′
ℓ} , (31)

with all Legendre functions evaluated at z = z0. From comparing the above with Eq. (24),

one observes that ℓ-modes of the self-force on a star spacetime are equal to those for the self

force on a black hole spacetime, plus an additional ‘difference’ piece. The final step is to

regularize the self-force and to sum over ℓ-modes, as in Sec. IIA 6, to obtain

F star
r = FBH

r +∆F star
r , (32)

where

FBH
r =

1

2

( q
M

)2√z0 − 1

z0 + 1

∞∑

ℓ=0

(
(2ℓ+ 1) {P ′

ℓQℓ +Q′
ℓPℓ} − b̃l

)
, (33)

∆F star
r = −

( q
M

)2√z0 − 1

z0 + 1

∑

ℓ

(2ℓ+ 1)SℓQℓ(z0)Q
′
ℓ(z0) . (34)

Here ∆F star
r is the self force difference, in the form obtained by Isoyama & Poisson [14] but

with an appropriately-modified structure factor Sℓ for the Schwarzschild star. The rescaled

regularization parameter in Eq. (33) is

b̃ℓ ≡ 2M2

√
z0 + 1

z0 − 1
B̃ℓ =

d

dz0

(
1√
z20 − 1

)
, (35)

with B̃ℓ as given in Eq. (19).
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The regularized mode sum in Eq. (33) is precisely zero, consistent with a vanishing BH

self-force FBH
r for a static scalar particle derived in Ref. [11]; we examine this point more

closely in Sec. IID. Hence the self-force is given by the difference mode-sum in Eq. (34), and

this sum is exponentially convergent with ℓ everywhere in the domain except at the star’s

surface at r = R (this point is examined in Sec. III C).

B. The Schwarzschild star and the Maxwell fisheye lens

To make further progress, we require mode solutions on the interior spacetime that are

regular at the star’s centre (i.e. at r = 0). Below we describe the interior spacetime in more

detail, and we rewrite it in terms of isotropic coordinates [25]. This highlights a connection

between the interior Schwarzschild metric and the Maxwell fisheye lens (see also Ref. [26]),

and a link to the three-sphere geometry. This leads us to closed-form expressions for mode

functions of (conformally-coupled) fields in the interior region.

1. The Schwarzschild exterior

The solution of Einstein’s field equations under the assumptions of spherical symmetry

and vacuum is well-known: it is the Schwarzschild exterior solution, described by the line

element of Eq. (2) with A(r) = B(r) = 1− 2M/r, where M is the mass in the spacetime. It

is also well-known that, after introducing a new radial coordinate ρ, the line element can be

written in isotropic form as [27]

ds2 = α2(ρ)
[
−dt2 + n2(ρ)

(
dρ2 + ρ2dΩ2

)]
, (36)

with

α(ρ) =
1−M/(2ρ)

1 +M/(2ρ)
, n(ρ) =

(1 +M/(2ρ))3

1−M/(2ρ)
, (37)

where

r = ρ

(
1 +

M

2ρ

)2

, (38)

⇔ ρ =
1

2

(
r −M +

√
(r −M)2 −M2

)
. (39)

Here α(ρ) is a conformal factor, and n(ρ) is the effective refractive index of the spacetime.

11

Page 11 of 46 AUTHOR SUBMITTED MANUSCRIPT - CQG-113170.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



2. The Schwarzschild interior

The Schwarzschild interior solution of Einstein’s equations [28] is sourced by the energy-

momentum tensor of a body of constant density σ with a radially-varying pressure p(r), such

that p(R) = 0 at the star’s surface. In standard (Schwarzschild) coordinates, the interior

Schwarzschild spacetime has a line element of the form (2) with [29]

A(r) =
1

4

(
3
√
B(R)−

√
B(r)

)2
and B(r) = 1− 2Mr2

R3
. (40)

The geometry is well-defined for stars of radius R greater than the Buchdahl radius of RBuch ≡
9M/4. In the limit R → RBuch, a curvature singularity arises in the centre of the star [30].

The Schwarzschild interior solution is known to be conformally flat [31]; that is, the Weyl

tensor is zero inside the Schwarzschild star. This implies that, locally, the spacetime is

conformally-related to flat (Minkowski) spacetime, as well as to other conformally-flat space-

times. Indeed, Buchdahl [31] found an explicit, but local, coordinate transformation that

renders the line element in the form (see (II.1) in Ref. [31])

ds2 = exp[2q̂(ρ̃, τ̃)]
(
−dτ̃ 2 + dρ̃2 + ρ̃2dΩ̃2

)
, (41)

where q̃(ρ̃, τ̃) is a function of the new coordinates ρ̃ and τ̃ . Buchdahl noted the local character

of the transformation: “no particular ρ̃, τ̃ system will cover the domain of interest 0 ≤ r ≤ R,

−∞ < t <∞”. In particular, the new coordinates cover only a limited domain in coordinate

time t (see (II.11) in Ref. [31]). This deficiency leads us to seek new coordinates that relate the

Schwarzschild interior spacetime to an alternative conformally-flat spacetime, namely, that of

a three-sphere, in order to obtain a globally-defined covering.

As a first step, the interior geometry can be re-expressed in isotropic coordinates. To

transform the line element (2) into the form (36), it follows that we must have

n(ρ)dρ =
dr√

A(r)B(r)
, n(ρ)ρ =

r√
A(r)

. (42)

After taking a ratio and integrating, one obtains

ρ = exp

(∫
dr

r
√
B(r)

)
. (43)

In certain cases, the integral can be obtained in closed form, leading to expressions for ρ(r),

n(r) and, if the inversion is straightforward, r(ρ) and n(ρ). The Schwarzschild star is one

such case.
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By integrating Eq. (43), the isotropic coordinate is

ρ =
γ

2
· r

1 +
√
B(r)

. (44)

where γ arises from the constant of integration. This can be inverted to obtain

r =
4ρ

γ(1 + ρ2/β2)
, (45)

where β ≡ γ
√
R3/8M . To determine the constant γ, one can impose that ρ is continuous at

the surface of the star (i.e. that the isotropic coordinate in the exterior matches the isotropic

coordinate in the interior at r = R). Inserting B(R) = 1 − 2M/R, Eq. (39) and r = R into

Eq. (44) yields

γ =
1

2

(
1 +

√
1− 2M/R

)3
. (46)

Furthermore, the functions A(r) and B(r) in Eq. (40) can be re-expressed in terms of the

isotropic coordinate ρ as

√
A(ρ) =

1

2

(
3
√
B(R)− 1

)
· 1 + ρ2/ρ2lens
1 + ρ2/β2

, (47)

√
B(ρ) =

1− ρ2/β2

1 + ρ2/β2
, (48)

where

ρlens ≡ β · 3
√
B(R)− 1√
9B(R)− 1

= R · γ

1 + 3
√
B(R)

√
R−RBuch

M
. (49)

Hence, by Eq. (42), the effective refractive index is n(ρ) = R̃n̂(ρ) where

n̂(ρ) =
2

1 + ρ2/ρ2lens
, (50)

R̃ =
4

γ
(
3
√
B(R)− 1

) . (51)

In summary, we have arranged the line element into the isotropic form of Eq. (36), with

α(ρ) =
√
A(ρ) given by Eq. (47). It is straightforward to check that the refractive index of

the exterior and interior match at r = R, as expected.

3. The Maxwell fisheye lens and the three-sphere

The refractive index n̂(ρ) in Eq. (50) is precisely that of a Maxwell fisheye lens : a spherical

lens that perfectly focusses the rays emanating from a point source placed on the rim of the

13

Page 13 of 46 AUTHOR SUBMITTED MANUSCRIPT - CQG-113170.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



lens at ρ = ρlens at the antipodal point on the rim [32]. This perfect-focussing property arises

because the spatial part of the line element is conformal to a space of constant positive cur-

vature: a three-sphere. This property can be made explicit through applying the coordinate

transformation

ρ = ρlens tan(χ/2), (52)

where χ is a new coordinate representing an angle on a unit three-sphere. The line element

becomes

ds2 = α̂2(χ)
(
−dT 2 + dχ2 + sin2 χdΩ2

)
, (53)

where α̂2(χ) = λA(χ), dT = dt/
√
λ and

√
A(χ) =

(
3
√

1− 2M/R− 1
)

2
(
cos2(χ/2) + µ2 sin2(χ/2)

) , (54)

=
1

2

(
3
√

1− 2M/R− 1− µ2 tan2 χ/2

1 + µ2 tan2 χ/2

)
, (55)

λ ≡ R̃2ρ2lens =
R4

4M(R−RBuch)
, (56)

and µ ≡ ρlens/β.

One can directly show that (a region of) the star spacetime is also conformally equivalent

to Minkowski spacetime. Starting with Eq. (53), we introduce new coordinates

T =
sinT

cosT + cosχ
, R =

sinχ

cosT + cosχ
, (57)

which are well-defined coordinates only in a local region of the star spacetime, interior to

T ∈ (−π, π). Then the line element is

ds2 = α̂2 (cosT + cosχ)−2 (−dT2 + dR2 +R
2dΩ2

)
. (58)

(This is most easily checked by starting with the flat metric, inverting the definitions (57) and

verifying that one recovers the three-sphere.) This result is consistent with that of Buchdahl

[31]: the conformal-to-Minkowski coordinate system only covers a patch of the full spacetime,

and thus is of limited utility for our purposes. By contrast, the conformal-to-a-three-sphere

line element in (53) covers the entirety of the Schwarzschild interior spacetime, and this is

what we shall use in the following.

In summary, the Schwarzschild interior spacetime is conformal to a region (0 ≤ χ ≤ χ0)

of the spacetime of a unit three-sphere. On the surface of the star, r = R, the corresponding
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angle on the three-sphere χ0 is given by

χ0 = cos−1

(
R− 3M√
R(R− 2M)

)
= sin−1

(√
4M(R−RBuch)

R(R− 2M)

)
. (59)

Hence a compact star of radius equal to the light-ring radius, R = 3M , encompasses exactly

half of the conformal sphere (χ0 = π/2); and as R approaches the Buchdahl bound, the whole

sphere is captured (i.e. χ0 → π).

4. Mode solutions

To compute the self-force outside a star via Eq. (32) one needs structure factors Sℓ which

in turn depend on the coefficients ηℓ defined in Eq. (26) in terms of the interior solution Φint
ℓ .

Moreover, to compute the SF inside the star one requires two linearly-independent solutions

in the interior. Here we obtain these solutions in a closed form.

To solve the wave equation in the interior spacetime we work with the metric (53) and make

use of the conformal symmetry to first find solutions on a geometry d̃s
2
with ds2 = α̂2(χ)d̃s

2
.

Since we work with a conformally-coupled scalar field, the structure of the dynamical equation

remains the same in the new (conformal) manifold as well [33] given by,

(
□̃− ξR̃

)
Φ̃ = 0 , (60)

for the conformal coupling ξ = 1/6. Here the tilded variables are objects in the conformally-

related spacetime. In four spacetime dimensions, we have the relation Φ = Φ̃/α̂, that is,

Φ̃ =
√
λA(χ) Φ . (61)

In the conformal three-sphere geometry, the Ricci scalar is simply R̃ = 6. Separating variables

as usual and using the spherical harmonics, one obtains the following “radial” equation in the

(conformally) transformed variable χ,

d

dχ

(
sin2 χ

dΦ̃ℓ

dχ

)
−
(
sin2 χ+ ℓ(ℓ+ 1)

)
Φ̃ℓ(χ) = 0 . (62)

A pair of (homogeneous) solutions on the physical spacetime are

p̂ℓ(r) =
P

−l−1/2
−1/2 (cosχ)
√
λA(r) sinχ

, q̂ℓ(r) =
P

l+1/2
−1/2 (cosχ)
√
λA(r) sinχ

, (63)
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with χ related to r by

tanχ/2 =
1

µ

√
R3

2M

1

r

[
1−

√
B(r)

]
. (64)

and inversely,

r = R
2 sinχ

(3
√
B(R) + cosχ)

√
R−RBuch

M
(65)

The p̂ℓ(r) function is regular at the origin (r = 0), whereas the q̂ℓ(r) function is not.

If the charge is placed outside the star, we need only one of the above solutions to compute

the self-force. For the analysis in the previous section, we use

Φint
ℓ = p̂ℓ(r) =

(
R4

4M(R−RBuch)

)−1/2 P
−ℓ−1/2
−1/2 (cos(χ))

√
sin(χ)

(
1
2
1−µ2 tan2 χ/2
1+µ2 tan2 χ/2

− 3
2

√
1− 2M

R

) . (66)

This leads to a closed-form expression for ηℓ (defined in Eq. (26)), viz.,

ηℓ = −1 +
(ℓ+ 1)√
1− 2M/R

P
−ℓ−1/2
+1/2 (cosχ0)

P
−ℓ−1/2
−1/2 (cosχ0)

, (67)

where cosχ0 was defined in Eq. (59). This can then be used to compute the structure factor

in Eq. (30) and the self-force difference in Eq. (32).

5. Interior self force

When the charge is placed inside the star, we need both solutions in Eq. (63) to perform

a matching procedure as in Sec. II C 4. The physical field sourced by a particle at r = r0 (see

(9)) has mode solutions

uℓ(r) = r




Λℓ

p̂ℓ(r)
p̂ℓ(r0)

r ≤ r0

κℓ
p̂ℓ(r)
p̂ℓ(r0)

+ ϵℓ
q̂ℓ(r)
q̂ℓ(r0)

r ≥ r0 ,
(68)

The matching procedure yields Λℓ = κℓ + ϵℓ with

κℓ = −ϵℓσℓ
p̂ℓ(r0)

q̂ℓ(r0)
, ϵℓ = − 4π√

B0

√
2ℓ+ 1

4π

q

r20

p̂ℓ(r0)q̂ℓ(r0)

Wℓ(r0)
, (69)

σℓ =
Rq̂′ℓ(R)− τℓ q̂ℓ(R)

Rp̂′ℓ(R)− τℓ p̂ℓ(R)
, τℓ =

d logQℓ(z)

d log r
. (70)
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The ‘bare’ averaged modes of the SF can then be computed as a mode-sum as before:

F ℓ,bare
r = −1

2

(
q

r0

)2
2ℓ+ 1√
B0Wℓ

{p̂′ℓq̂ℓ + q̂′ℓp̂ℓ − 2σℓp̂
′
ℓp̂ℓ} , (71)

where it is understood that the Wronskian is taken with respect to r.

6. Difference regularization in the interior

By analogy with Eq (32), the mode sum for the (regularized) self-force can be split into

two parts, Fr = F
(0)
r +∆Fr, where

F (0)
r = q2

∞∑

ℓ=0

{
− 1

2r20

2ℓ+ 1√
B0Wℓ

(p̂′ℓq̂ℓ + q̂′ℓp̂ℓ)− B̃ℓ

}
, (72)

∆Fr =
q2

r20

∞∑

ℓ=0

2ℓ+ 1√
B0Wℓ

σℓp̂
′
ℓp̂ℓ , (73)

where B̃ is the regularization parameter in Eq. (19). Remarkably, the first sum F
(0)
r is found to

vanish and hence the self-force can be calculated from the difference piece ∆Fr only; we return

to this point in Sec. IID. Hence σℓ plays the role of a structure factor for the Schwarzschild

interior.

C. Electromagnetic self force

Overall, the analysis of the static EM self-force closely follows that of the scalar field [14].

We comment here on the main differences in the analysis and in the results. The dynamical

equation for the EM field is given by

∇νFνµ = −4πjµ = −4πq

∫

c

uµ δ4(x, z(τ)) dτ . (74)

For static EM fields, the gauge potential (in Lorenz gauge) takes the form Aµ = (Φ(x), 0, 0, 0).

Of the four Maxwell equations, only the temporal equation is nontrivial. One performs a

similar mode-sum decomposition as in (7) and (8) for the field and the source respectively, to

obtain the radial differential equation,

d2uℓ
dr2∗

− V (r)uℓ = 4πq

√
2l + 1

4π

δ(r∗ − r∗0)

r0
,
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where

V (r) =
B

A

[
l(l + 1)

r2B
+

1

2r

(
AB′ − A′B

AB

)]
.

From here on, we proceed as in the scalar case to solve for the homogeneous solutions to

the above ODE and use them to build an ansatz for the EM potential. In the exterior

Schwarzschild spacetime the mode functions are given by,

p̂ℓ =




1 , l = 0 ,

(r − 2M)P ′
ℓ(z) , l ̸= 0 ,

(75)

q̂ℓ = (r − 2M)Q′
ℓ(z) , (76)

with z = r/M − 1 as before, and ′ denoting a derivative with respect to r, such that the

Wronskian of the two solutions is simply Wℓ = ℓ(ℓ + 1)M/r2 for ℓ > 0 and Wℓ = M/r2 for

ℓ = 0.

To compute the mode functions in the interior, we use the fact that Maxwell’s equations

are conformally invariant [33]. That is, if F̃µν is a solution to Maxwell’s equations on the

(conformal) spacetime ds̃2 then Fµν ≡ F̃µν is a solution on the (physical) spacetime ds2 =

α̂2(x)ds̃2. Thus, we can use the solutions of the Maxwell equations on the three-sphere

geometry, i.e., using the line element inside the parentheses in (53). This approach yields the

mode functions

m̂ℓ(r) =
P

−ℓ−1/2
1/2 (cosχ)

√
sinχ

, n̂ℓ(r) =
P

ℓ+1/2
1/2 (cosχ)
√
sinχ

, (77)

where the relation between r and χ is stated in Eq. (64).

1. Exterior self force

The ‘bare’ SF is then defined as Fµ = qFµν ẋ
ν , where ẋν denotes the particle’s four-velocity.

In the exterior, the ‘bare’ averaged modes of the radial component are given by

F ℓ,bare
r =

1

2

(
q

r0

)2
2ℓ+ 1

Wℓ

√
B0

{p̂ℓq̂′ℓ + q̂ℓp̂
′
ℓ − 2Sℓq̂ℓq̂

′
ℓ} , (78)

where the EM structure factor is [14]

Sℓ(Z) =
ℓ(ℓ+ 1)Pℓ(Z)− (1 + ηℓ)(Z − 1)P ′

ℓ(Z)

ℓ(ℓ+ 1)Qℓ(Z)− (1 + ηℓ)(Z − 1)Q′
ℓ(Z)

. (79)
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The logarithmic derivative is ηℓ ≡ d ln m̂ℓ/d ln r|r=R and has the closed form expression

ηℓ = 2

(
R− 3M

R− 2M

)
+

ℓ+ 2√
1− 2M/R

P
−ℓ−1/2
3/2 (cosχ0)

P
−ℓ−1/2
1/2 (cosχ0)

, (80)

where cosχ0 is given in Eq. (59).

2. Interior self force

The calculation of the interior EM SF closely follows the analysis in Sec. II B 5. Here,

we present only the results. The averaged ‘bare’ modes before regularisation are given by a

mode-sum,

F ℓ,bare
r =

1

2

(
q

r0

)2
2ℓ+ 1√
B0Wℓ

{m̂′
ℓn̂ℓ + n̂′

ℓm̂ℓ − 2Γℓ m̂
′
ℓm̂ℓ} , (81)

where Γℓ is the structure factor analogous to σℓ (69) in the scalar case, given by

Γℓ =
Rn̂′

ℓ(R)− ϱℓ n̂ℓ(R)

Rm̂′
ℓ(R)− ϱℓ m̂ℓ(R)

(82)

with ϱℓ =
d log q̂ℓ
d log r

∣∣∣∣
r=R

= −1 +
ℓ(ℓ+ 1)

Z + 1

Qℓ(Z)

Q′
ℓ(Z)

. (83)

3. Direct regularisation

The splitting of the (retarded) field into the R and S fields is a general framework for

regularising SFs and applies to EM fields as well. In a similar fashion to that in the scalar

case, one has the following regularisation parameters for an expansion of the EM S field in

the vicinity of the charge. For a static EM field, defining e2Ψ ≡ A(r), the regularisation

parameters at a point r = r0 +∆ (with ∆ → 0) are given by [23]

Ã =
1

r2
B−1/2sign (∆) , B̃ =

1

2r2
(1− rΨ′) , C̃ = 0, (84)

D̃ =
1

16r2
[(1− rΨ′)−

(
1− rΨ′ + 3r2Ψ′2 − r3Ψ′3 + 6r2Ψ′′ + 2r3Ψ′′′)B+
(
1− 4rΨ′ − 3r2Ψ′′) rB′ + (1− rΨ′) r2B′′] . (85)

(N.B. The signs of these terms are opposite to those given in Ref. [23] due to our convention

in Eq. (18)).
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4. Difference regularisation

The method of difference regularisation carries over to the EM field case in a straight-

forward way. However, the interpretation of the difference is now slightly modified. Firstly,

unlike in the conformal scalar case, the monopole (ℓ = 0) solutions for the radial ODE for the

EM field in the BH and star spacetime are identical. Hence, when computing the difference

the monopole terms cancel, and thus the series start with the dipole (ℓ = 1). More impor-

tantly, the SF difference is not equal to the full SF because the electromagnetic self force for

a static particle on Schwarzschild spacetime is [9]

FBH
r =

q2M

r3
√

1− 2M/r0
. (86)

The SF for the Schwarzschild star is Fr = FBH
r +∆F star

r , where

∆F star
r = −

( q
M

)2√z0 − 1

z0 + 1

∞∑

ℓ=1

(2ℓ+ 1)Sℓ

(
Qℓ(z0)−

z0 − 1

ℓ(ℓ+ 1)
Q′

ℓ(z0)

)
Q′

ℓ(z0) . (87)

Again, the structure factor Sℓ in Eq. (79) is a function of R, the radius of the star, but it does

not depend on r0, the position of the charge. All other functions in Eq. (87) are evaluated at

the position of the particle, and are independent of R.

Remarkably, in the interior region (r0 < R), one can also calculate the self-force from a

difference sum only. Starting with the bare modes in Eq. (81), and following the prescription

in Sec. II B 6, one splits the regularized mode sum into two parts. The first part vanishes, as

is shown in the next section.

D. Mode sum identities

For static self-forces, it is apparent that some regularized mode sums turn out to be equal

to zero, and other mode sums can be expressed in closed form in a simple way. In this section

we give this phenomenon some further consideration.

1. Exterior

A first result is that the following regularized mode sum is zero:

S(0) ≡
∞∑

ℓ=0

{
S(0)ℓ − γ0(z)

}
= 0, S(0)ℓ ≡ (2ℓ+ 1)Pℓ(z)Qℓ(z), (88)
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where γ0(z) ≡ (z2 − 1)−1/2. This result is proved in Appendix B to follow as a consequence

of Christoffel’s formula.

Taking a derivative with respect to z, and moving the derivative inside the sum, we arrive

at

S ′
(0) =

∞∑

ℓ=0

{(2ℓ+ 1) (P ′
ℓ(z)Qℓ(z) + Pℓ(z)Q

′
ℓ(z))− γ′0(z)} = 0. (89)

By comparison with Eq. (33) and (35), we conclude that the self-force on a static charge

outside a black hole is precisely equal to zero. This is the result of Wiseman [11], but here

derived directly from the mode sum expression.

Turning to the electromagnetic case in the Schwarzschild exterior, we can use the result

above to prove the next identity, which is:

S(1) ≡
∞∑

ℓ=1

{
S(1)ℓ − γ1(z)

}
= σ1(z), (90)

for z > 1, where

S(1)ℓ ≡





2ℓ+1
ℓ(ℓ+1)

{(z − 1)P ′
ℓ(z)} {(z − 1)Q′

ℓ(z)} , ℓ > 0,

(z − 1)Q′
0(z), ℓ = 0,

(91)

and γ1(z) and σ1(z) functions to be derived below. To establish this, first we observe that

1

(z2 − 1)

d

dz

(
(z + 1)2S(1)ℓ

)
= (2ℓ+ 1) {P ′

ℓ(z)Qℓ(z) + Pℓ(z)Q
′
ℓ(z)} , (92)

where here we have used the Legendre differential equation,

d

dz

(
(z2 − 1)Pℓ(z)

)
= ℓ(ℓ+ 1)Pℓ(z). (93)

Next, subtract γ′0(z), take the sum, and apply Eq. (89) to obtain

∞∑

ℓ=1

{
d

dz

(
(z + 1)2S(1)ℓ

)
− (z2 − 1)γ′0(z)

}
= (z2 − 1)

(
γ′0 − S ′

(1)0

)
, (94)

with the ℓ = 0 term moved across to the right-hand side. Now we can integrate and rearrange

to obtain Eq. (91) with

γ1(z) =
1

(z + 1)2

∫
(z2 − 1)γ′0dz = −

√
z2 − 1

(z + 1)2
(95)

σ1(z) = γ1 −
1

(z + 1)2

∫
(z2 − 1)S ′

(1)0(z)dz =
z −

√
z2 − 1

(z + 1)2
. (96)

The validity of Eqs. (90), (95) and (96) has been checked numerically for z > 1.
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2. Interior

In the interior, for the EM case we can make use of the result that another regularized

mode sum vanishes: S int.
(1) = 0, where

S int.
(1) =

∞∑

ℓ=0

{
S int.
(1)ℓ − γint.1

}
, (97)

and

S int.
(1)ℓ ≡ (2ℓ+ 1)(−1)ℓP

+(ℓ+1/2)
1/2 (x)P

−(ℓ+1/2)
1/2 (x), (98)

and γint.1 ≡ 2/π. This is shown by first establishing the following result for the partial sum:

n∑

ℓ=0

S int.
(1)ℓ = −x

π
+ (1− x2)3/2(−1)n+1

{
P−N
1/2 (x)∂xP

N+1
1/2 (x)− n(n+ 2)P

−(N+1)
1/2 (x)∂xP

N
1/2(x)

}
,

(99)

where N ≡ n+1/2. In Appendix C this is shown to follow as a consequence of the recurrence

relation DLMF 14.10.1 [34]. Next, by considering the large-n asymptotics of the right-hand

side, one extracts the regularization function γint1 and the limit of the infinite sum (zero).

A similar result holds in the scalar-field case, since one can show by the same methods

that a partial sum is

n∑

ℓ=0

S int.
(0)ℓ(x) = −x

π
+ (1− x2)3/2(−1)n+1

{
P−N
−1/2(x)∂xP

N+1
−1/2(x)− (n+ 1)2P−N−1

−1/2 (x)∂xP
N
−1/2(x)

}

(100)

where

S int.
(0)ℓ(x) ≡ (2ℓ+ 1)(−1)ℓP

−(ℓ+1/2)
−1/2 (x)P

ℓ+1/2
−1/2 (x). (101)

By considering large-n asymptotics of the right-hand side, it follows that

S int.
(0) ≡

∞∑

ℓ=0

{
S int.
(0)ℓ − γint.0 (z)

}
= 0, (102)

where γint.0 ≡ 2/π. These results, along with their derivatives, show why the interior self-force

can be found by evaluating the difference terms only.

3. Numerics

To support the arguments above, we have also evaluated the regularized mode sums nu-

merically. Figure 1 demonstrates that the partial sums converge towards zero as n→ ∞.
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400 600 800 1000
ℓmax

10
-11

10
-7

Part-sums Σ1∝ 1

(ℓ+1/2)3Σ2∝ 1

(ℓ+1/2)Σ3∝ 1

(ℓ+1/2)3

FIG. 1. This figure shows the behaviour of the partial mode-sum as we increase the value of ℓ where

we truncate the sum. The data Σi, i = 1, 2, 3 denote the BH scalar sum (33), the scalar interior sum

(72) and the EM interior mode-sum respectively. In all cases, we see that the partial sums decrease

according to a power law as we truncate the mode-sums at higher values of ℓmax, implying that the

infinite sum must vanish, in accordance with the results in Secs. IID 1 and IID 2.

III. RESULTS

In this section, we obtain new results for the self-force in the vicinity of a Schwarzschild star

(i.e. a matter distribution of constant density) in three forms. First, as a series expansion in

the far-field (r ≫ R) and near the centre of the star; second, as a leading-order approximation

for the self-force near the surface of the star; and, third, as numerical data across the whole

domain. As a first step, we examine the ℓ-modes of the self-force and we verify that the two

regularization approaches produce consistent results.

A. Regularization and validation

The bare modes of the SF can be straightforwardly computed, for a particle in the exterior

or the interior of the star, by using Eq. (31) and Eq. (71), respectively. The SF difference in

the exterior is given in Eq. (32). As described in Sections IIA 6, IIA 7 and IID, we have the

option of regularising with two different methods.
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1. Exterior scalar self force

For the exterior Schwarzschild scalar SF using the direct method we obtain ℓ-modes for

the force as shown in Fig 2b. To test the regularisation procedure, we make the definitions

(Fr)
ℓ
(1) ≡ F ℓ,bare

r − B̃, (103)

(Fr)
ℓ
(2) ≡ F ℓ,bare

r − B̃ − D̃

(ℓ− 1/2) (ℓ+ 3/2)
. (104)

We verified that the (averaged) ‘bare’ modes asymptote to the constant B̃ as ℓ → ∞; and

the regularised modes (Fr)
ℓ
(1) and (Fr)

ℓ
(2) fall off as (ℓ+ 1/2)−2 and (ℓ+ 1/2)−4, respectively,

in this limit. Subtracting only the B̃ parameters from the ‘bare’ averaged modes in Eq. (15)

is sufficient to ensure convergence of the series; however, subtracting additional parameters

lead to faster convergence, in line with the faster decay of the modes, and greater numerical

accuracy of the sum.

1 5 10 50 100
l

10
-7

10
-4

|Fr
l|

(a) Regularising scalar SF inside the

Schwarzschild star

1 5 10 50 100
l

10
-16

10
-13

10
-10

10
-7

10
-4

|Fr
l|

|(Fr
l)bare|

|(Fr
l)(1)|

|(Fr
l)(2)|

B

|D

| l-2∝ l-4

(b) Regularising scalar SF outside the Schwarzschild star

FIG. 2. Modes of the self force F ℓ
r on a log-log scale showing the expected polynomial decay after

subtracting regularization terms in the interior (left) and the exterior (right). For the above plots

we choose a star of radius R = 11M with the charge placed at r0 = 6M (left) and r0 = 16M (right)

in 2a and 2b respectively. In all figures units such that M = q = 1 are adopted.

We also examined the ℓ-modes of the SF difference. We verified that the ℓ-modes in Eq. (31)

fall off exponentially with ℓ, as previously noted in [14]. We elaborate on this exponential

convergence in later sections (see Figs. 4 and 5).

To compute the total self-force one must evaluate the mode sum numerically. As is stan-

dard, we sum modes up to a suitably-large ℓmax value, which (at minimum) must lie in the
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r0/M Fr/(q/M)2 (scalar) Fr/(q/M)2 (EM)

6.1 5.200896(6)× 10−3 1.604917(2)× 10−2

5.2008963(3)× 10−3 1.6049174(1)× 10−2

6.5 2.71508989(1)× 10−3 8.67227486(1)× 10−3

2.71508989852× 10−3 8.67227486152× 10−3

7 1.712197896(4)× 10−3 5.64183966(1)× 10−3

1.71219789621× 10−3 5.64183966893× 10−3

8 8.93714041(2)× 10−4 3.080427341(2)× 10−3

8.93714041480× 10−4 3.08042734138× 10−3

10 3.627255060(4)× 10−4 1.3213072171(6)× 10−3

3.62725506014× 10−4 1.32130721711× 10−3

15 8.743329274(3)× 10−5 3.3892349544(5)× 10−4

8.74332927466× 10−5 3.38923495442× 10−4

25 1.6863404917(1)× 10−5 6.8103725730(2)× 10−5

1.68634049176× 10−5 6.81037257301× 10−5

TABLE I. Sample results for the self-force Fr calculated by direct regularization (upper row), and

by difference regularization (lower row), outside a Schwarzschild star of radius R = 6M . The mode-

sum is truncated at ℓmax = 200 (with the remainder of the modes fitted by a power-law) in all cases

except at r0/M = 6.1, for which we use the heuristic ℓmax = 2πR/∆r ∼ 440. For the EM case (right

column), the BH SF is added to the difference calculation so as to compare with the direct method.

The numeral in parentheses shows an estimate of the numerical error in the last quoted digit; where

absent, the result should be correct in all digits stated. This error estimate was derived from the

‘large-ℓ tail’ fit.

regime in which the regularization parameters provide a good fit. For direct regularization,

we then estimate the ‘large-ℓ tail’ remainder by fitting the modes to a polynomial in powers

of (ℓ+ 1/2)−4, and then computing the sum of this polynomial from ℓmax + 1 to infinity. For

difference regularization, the ‘large-ℓ tail’ is modelled as an exponentially-converging sum.

Numerical results for Fr obtained via the two regularization methods are given in Table I.

The data shows agreement at least 6 decimal places close to the surface of the star, and the

level of agreement increases with r−R. The accuracy can be further improved by modifying

internal parameters at the expense of run-time (e.g. by increasing ℓmax). It is likely that the

results from the difference method are more accurate than the direct method.

25

Page 25 of 46 AUTHOR SUBMITTED MANUSCRIPT - CQG-113170.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



2. Interior scalar self force

In the interior (r0 < R) we regularise directly by using the parameters in Eqs. (19) and

Eqs. (84) (which are reproduced from Ref. [23]) with the metric functions A(r) and B(r) of

the Schwarzschild interior solution. The ℓ-modes of the SF before and after regularisation are

shown in Fig. 2a.

In the interior we cannot apply the D̃ regularization terms from Ref. [23], because this was

calculated for a minimally-coupled scalar field, and we are here considering a conformally-

coupled field. Conversely, in the exterior the parameter D̃ can be applied, because the Ricci

scalar vanishes in the vacuum region and consequently there is no difference in the (locally-

defined) S field between the two cases.

B. Asymptotics and series expansions

We obtain series expansions for the self-force by inserting asymptotic expansions of the

mode functions into the mode sums for the self-force difference, such as Eq. (34). The low-ℓ

modes provide good approximations both near the star’s centre, and in the far field.

1. Scalar self force: far-field

In the far-field region where r ≫ R and r ≫ M , the scalar self-force has an asymptotic

expansion

Fr =
q2M

3r3

((
1 +

2M

r
+

23M2

6r2
+ . . .

)
Ŝ0 (ζ) +

(
2R2

5r2
+ . . .

)
Ŝ1 (ζ) + . . .

)
(105)

where Ŝℓ(ζ) denote normalised structure factors with ζ ≡ M/R; for the monopole (ℓ = 0)

and dipole (ℓ = 1) terms we obtain

Ŝ0(ζ) = 1− 8

5
ζ − 67

105
ζ2 − 368

315
ζ3 − 3589

1925
ζ4 − 2235496

675675
ζ5 +O(ζ6), (106)

Ŝ1(ζ) = 1− 32

21
ζ +

158

315
ζ2 − 9472

7425
ζ3 − 298996

257985
ζ4 +O

(
ζ5
)
. (107)

With expansions such as Eq. (105), one can check against numerical data order-by-order in

M/r. We introduce the following notation where the calligraphic F (i) represents the difference

between the numerically-calculated force Fr and the the series expansion in (105) truncated
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r0/M Fr/(q/M)2 (scalar) Fr/(q/M)2 (EM)

0.5 1.9534(6)× 10−4 5.1807268554× 10−4

1.95342961682× 10−4 5.1807268554× 10−4

1 3.9219(2)× 10−4 1.0432023863× 10−3

3.92187625293× 10−4 1.0432023863× 10−3

2 7.9789(1)× 10−4 2.1477348199× 10−3

7.97886997930× 10−4 2.1477348199× 10−3

3 1.24040(6)× 10−3 3.4067324914× 10−3

1.24040470355× 10−3 3.4067324914× 10−3

5 2.60490(1)× 10−3 7.642467(7)× 10−3

2.60486(5)× 10−3 7.64248884062× 10−3

5.9 5.482220(7)× 10−3 1.667817961(1)× 10−2

5.4822155(1)× 10−3 1.66781796376× 10−2

TABLE II. Sample results for the self-force Fr calculated by direct regularization (upper row), and

by difference regularization (lower row), inside a Schwarzschild star of radius R = 6M . The direct

mode-sum is truncated at ℓmax = 1200 (ℓmax = 3000) for the scalar (EM) case, with the remainder

of the modes fitted by a power-law. The difference mode-sum is truncated at ℓmax=25 (ℓmax=50 for

the scalar (EM) case. We note that the scalar force is direct regularised with the B̃ parameter

only, while the EM force has both the B̃ and the D̃ parameters available. This explains the better

agreement between the direct and the difference results for the EM case. The numeral in parentheses

shows an estimate of the numerical error in the last quoted digit. This error estimate was derived

from the ‘large-ℓ tail’ fit. For the direct regularised scalar force, the error estimate is derived from

0.1% of the fitted tail.

at the ith order. That is,

F (0)
r = Fr , (108)

F (1)
r = F (0)

r − q2
M

3r3
Ŝ0

(
M
R

)
, (109)

F (2)
r = F (1)

r − q2
2M2

3r4
Ŝ0

(
M
R

)
. (110)

Figure 3a shows these quantities across a range of r/M , verifying the expected behaviour.
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(1)

2

3
q2

M
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(2)
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
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(a) Far field expansions vs numerics: Scalar SF
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r0

M

1
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(i)

r5 Fr
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2
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q2R2M S


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
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2 (
91

5
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7
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
2)

(b) Far field expansions vs numerics: Electromagnetic SF

FIG. 3. A comparison of the numerical SF data obtained by evaluating the mode-sum results [solid]

for the scalar and electromagnetic SFs, with the series expansions [dashed] in Eq. (105) and Eq. (115)

respectively, for a star of radius R = 50M .

2. Scalar self force: centre of the star

One can obtain expansions near the centre of the star in a similar way. To do so, we exploit

the applicability of difference regularisation in the interior and use large-R expansions for the
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mode functions. For R ≫M and r ≪ R,

F int
r =

q2Mr

3R4

{
σ̂1 −

M

R
σ̂0 +

r2

R2

[
2

5
σ̂2 +

M

R

(
29

10
σ̂1 +

3

4
σ̂2

)
+
M2

R2

(
123

64
σ̂2 +

45

16
σ̂1 −

46

15
σ̂0

)]
+

+O
(
r4

R4

)}
, (111)

where the σ̂ℓ ≡ σ̂ℓ(ζ) are (normalised) structure factors for the exterior defined in (69) with

ζ ≡ M/R as before. The force at the centre of the star is exactly zero, due to spherical

symmetry, and the leading term in the force arises from the dipole rather than the monopole.

The monopole, dipole and quadrupole structure factors have the series expansions

σ̂0(ζ) = 1− 4

3
ζ − 31

12
ζ2 − 298

45
ζ3 − 122771

7560
ζ4 − 297683

7560
ζ5 +O(ζ6) (112)

σ̂1(ζ) = 1 +
79

30
ζ +

151

36
ζ2 +

89099

9450
ζ3 +

6125213

283500
ζ4 +

533398271

10692000
ζ5 +O(ζ6) (113)

σ̂2(ζ) = 1− 2553

280
ζ − 109251

22400
ζ2 − 882841

18816000
ζ3 − 2780229721

77271040000
ζ4 +O(ζ5). (114)

It is notable in Fig. 7 that the self-force on a particle held at r = r0 near the centre of the

star scales in linear proportion to r0, at leading order. A similar linear scaling with r0 was

found in the case of (the interior of) a mass shell in Ref. [35]. There is one important difference

with the shell case, however. For the Schwarzschild star, the force is positive (i.e. directed

away from the centre) across the entire domain, whereas for the shell case it repels from the

shell (i.e. it changes sign at r = R). For the shell case, there is Simple Harmonic Motion

around the centre at r = 0; for the star, this is not the case, due to the sign difference.

3. Electromagnetic self force: far-field

For the EM case, we have a similar far-field series expansion with minor differences. In

the EM case, the monopole structure factor vanishes identically, because the monopole con-

tribution to the SF in the BH and the star spacetime coincide (and this would also be the

case for a minimally coupled scalar field). This is just a restatement of the fact that at the

monopole level, the SF is universal between stellar and BH spacetimes (with a minimally

coupled scalar) [13]. Thus, we start with expansions of the dipole term in the SF difference

mode sum in (87).

∆FEM
r =

2q2M

5

R2

r5

((
1 +

7M

2r
+

91M2

10r2
+ . . .

)
Ŝ1(

M
R
) +

(
9R2

14r2
+ . . .

)
Ŝ2

(
M
R

)
+ . . .

)
,

(115)
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where the normalised dipole and quadrupole structure factors Ŝ1

(
M
R

)
and Ŝ2

(
M
R

)
have the

expansions (with ζ =M/R as before):

Ŝ1(ζ) = 1− 8

7
ζ − 61

105
ζ2 − 472

825
ζ3 − 392507

525525
ζ4 +O

(
ζ5
)
, (116)

Ŝ2(ζ) = 1− 184

45
ζ +

10152

1925
ζ2 − 4496896

2627625
ζ3 − 566696

1299375
ζ4 +O

(
ζ5
)
. (117)

Once again, these expansions offer a way to compare the analytic expressions with our

numerical data, so we define the notation (as before)

(
∆FEM

r

)(0)
= ∆FEM

r , (118)

(
∆FEM

r

)(1)
=
(
∆FEM

r

)(0) − 2q2

5M2

R2

r5
Ŝ1 , (119)

(
∆FEM

r

)(2)
=
(
∆FEM

r

)(1) − 7q2

5M

R2

r6
Ŝ1 . (120)

Figure 3b compares the numerical data with these far field expansions, and we obtain similar

agreement as in the scalar field case.

4. Electromagnetic self force: centre of the star

As before, we can look at series expansions near the centre of the star for the EM SF

using large R expansions and difference regularisation. However, the monopole contribution

to the difference mode-sum is identically zero. This is because the monopole mode function

in the interior m̂0 is a constant. Since the interior difference term in (81) is ∝ m̂′, this term

is identically zero. Thus, the series expansions only start with the dipole terms.

(
FEM

r

)int
=
q2Mr

R4

[
Γ̂1 +

r2

R2

(
2

5
Γ̂2 +

M

R

(
23

10
Γ̂1 +

3

4
Γ̂2

)
+
M2

R2

(
39

16
Γ̂1 +

123

64
Γ̂2

))
+ . . .

]

(121)

where the normalised structure factors Γ̂ℓ have the expansions,

Γ̂1 = 1 +
13

10
ζ +

11

4
ζ2 +

1089

175
ζ3 +

75193

5250
ζ4 +

4374767

132000
ζ5 +O(ζ6) (122)

Γ̂2 = 1− 1881

280
ζ − 5379

22400
ζ2 +

1675847

18816000
ζ3 +

11981145639

77271040000
ζ4 +O(ζ5). (123)
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Direct regularisation

Difference regularisation

Asymptotics

1 10 100 1000
l

10-9

10-5

Fr
l

FIG. 4. Numerical data for the ℓ-modes of the SF (dots) on a log-log plot, for a particle close to

the star surface at R = 3M , with ∆r = r0 − R = 0.005M . The expected exponential ((l + 1/2)−2)

behaviour for the difference (direct) regularised modes only starts after an initial regime with a slower

decay. The slow-decay behaviour is compared with the green dashed guideline, which is proportional

to (l + 1/2)−1 and with a coefficient taken from Eq. (124).

C. Approach to the boundary

1. Scalar self force

It is interesting to examine how the self-force behaves as the charge (at r = r0) approaches

the surface of the star (at r = R), from either the interior or exterior direction. Naively, one

can take the expressions for the ℓ-modes in Eqs. (31), (19) and (71) and plot them for various

values of ∆r = r0 −R. The behaviour of the ℓ-modes is shown in Fig. 4 and Fig. 5.

In the case of the directly regularised modes, the plots show that there exists an interme-

diate regime ℓ ≲ ℓreg in which the modes fall as approximately (ℓ+1/2)−1, in addition to the

asymptotic regime ℓ ≳ ℓreg in which the regularized modes show the expected (ℓ+1/2)−2 fall

off. Moreover, the value of ℓreg scales in inverse proportion to ∆r, such that ℓreg → ∞ in the

limit ∆r → 0. Figure 5c (lower plot) also shows the situation for difference regularization.

Again, there is an intermediate regime with an approximate (ℓ+1/2)−1 scaling (for ℓ ≲ ℓreg),

and then the exponential decay takes over (for ℓ ≳ ℓreg).
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Δr = 0.25M
Δr = 0.1M
Δr = 0.05M
Δr = 0.025M
∝ l-1
∝ l-2

1 5 10 50 100 500 1000
l

10
-9

10
-7

10
-5

0.001

Fr
(l)

(a) Direct regularisation near the star boundary from

the exterior

Δr = 0.25M
Δr = 0.01M
Δr = 0.05M
Δr = 0.025M
l
-1

l
-2

1 5 10 50 100
l

10
-7

10
-6

10
-5

10
-4

0.001

0.010

Fr
(l)

(b) Direct regularisation near the star boundary from

the interior

Δr = 0.5M
Δr = 0.05M
Δr = 0.005M

5 10 15 20 25 30
l

10
-8

10
-4

ΔFr

(c) Difference regularisation near the star boundary

FIG. 5. The modes of the SF calculated via direct regularisation (upper) and via the difference

method (lower) for a particle at r0 = R + ∆r, near the surface of a Schwarzschild star of radius

R = 3M . Plots (a) and (b) show that, as the particle gets closer to the surface of the star, the number

of ℓ modes required to reach a regime where the bare modes show the expected (ℓ+ 1/2)−2 fall off (in

plots (a) and (b)) increases linearly with 1/|∆r|. Plot (c) shows the difference-regularized ℓ-modes,

for a range of ∆r. The dashed lines show the large-ℓ asymptotic approximation in Eq. (124). The

exponent Ω in that approximation approaches zero as ∆r → 0, and thus the total self-force diverges

as ∆r → 0 in a logarithmic manner.
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One can put forward a somewhat intuitive explanation for the scaling of ℓreg observed in

Fig. 5. The S field, used for regularization, has a local definition and it is well-characterised

by regularization parameters in either the Schwarzschild exterior or interior spacetime regions,

but not across the star boundary. Near the surface of the star, we assume that the S field

is only properly defined by the regularization parameters in an open ball around the charge,

in one of these two spacetime regions. That ball is of radius no larger than approximately

∆r. The parameter ℓ may be considered as a measure of angular resolution on the sphere at

fixed r, with ∆θ ∼ π/(ℓ + 1/2) for large ℓ. The closer the field point is to the the surface,

the larger the ℓ value necessary to resolve the (small) open ball, and the consequently the

larger the value of ℓreg. From ∆r ∼ R∆θ we obtain the estimate ℓreg ∼ πR/∆r. This suggests

that ℓreg diverges in the limit ∆r → 0, as observed in the numerics. Thus, for ∆r → 0, one

has an infinite number of modes which fall as (ℓ + 1/2)−1, and thus the self-force itself is

(logarithmically) divergent in the approach to the surface.

To understand this phenomenon more precisely, one can employ asymptotic expansions

for the Legendre polynomials and Legendre functions used in the calculation of the SF [34]

through difference regularization. Performing such an expansion for large ℓ (see Appendix

A for details), we obtain the following expansion for the modes of the SF difference in the

exterior:

F ℓ
r ∼ F ℓ∞

r ≡ q2

4M2

(Z + δ + 1)−3/2

(Z + 1)
√
Z + δ − 1

e−Ω(2ℓ+1)

ℓ+ 1/2
, (124)

Ω ≡ log

(
Z + δ +

√
(Z + δ)2 − 1

Z +
√
Z2 − 1

)
. (125)

In the above expression we take the charge to be at z0 = Z + δ (for arbitrary δ = ∆r/M),

where we continue to use the harmonic coordinate z defined in (23).

The asymptotic approximation in Eq. (124) exhibits the behavior described above, and

seen in Fig. 5. For ℓ+1/2 ≪ 2/Ω, the modes fall off as (ℓ+1/2)−1. Exponential decay takes

over once ℓ + 1/2 ≳ 2/Ω. Close to the surface (δ ≪ 1) the exponent is Ω ≈ δ/
√
Z2 − 1, and

thus we recover the essentials of the scaling of ℓreg observed in Fig. 5.

To derive a first approximation to the self-force near the surface of the star, we sum the

modes F ℓ∞
r in the asymptotic approximation Eq. (124) to get

F surf

r ≡
∞∑

ℓ=0

F ℓ∞
r =

q2

4M2

(Z + δ + 1)−3/2

(Z + 1)
√
Z + δ − 1

ln (coth(Ω/2)) . (126)

This formula makes it clear that the self-force diverges logarithmically as δ → 0.

Figure 6 shows the divergence of the self-force in the approach to the boundary of the star.

For the scalar-field case, Fig. 6a compares the numerical results from performing the mode
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sum with regularization, with the asymptotic result obtained in Eq. (126). The comparison

in Fig. 6c verifies that the divergence is of a logarithmic form for ∆r → 0.

In the interior, one can also insert large-ℓ asymptotics for the mode functions into the self-

force difference formulae in Eq. (73). Following the procedure above, we find a logarithmic

divergence of a similar form to the above as the star’s surface is approached from the interior.

The expressions are rather long and are omitted here.

2 4 6 8 10
r

0.005

0.010

0.015

0.020

0.025

Fr

(a) Scalar SF across the full domain

2 4 6 8 10
r

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
EM

(b) Electromagnetic SF across the full domain

0.01 0.05 0.10
Log(

Δr
M
)

0.02

0.04

0.06

0.08

0.10

Fr

Fr
scalar

Fr
surf

Fr
EM

Fr
EMsurf

(c) Verifying the logarithmic scaling of the SF with ∆r

FIG. 6. In Fig. 6a and Fig. 6b, we compare the scalar and the EM SF over the full radial domain.

The solid lines represent a sum of the numerically-calculated ℓ-modes, while the orange (green)

dashed lines represent the approximation near the surface (near the centre and in the far field). A

key difference between the two sums is the contribution of the monopole term in the scalar field

sum which is absent in the EM case. Fig. 6c compares the numerical sum with the approximations,

again, but with a logarithmic scale for the x-axis. This confirms that the SF diverges in proportion

to log (∆r/M) in the approach to the surface. All plots are for a star of radius R = 4M .
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2. Electromagnetic self force

The electromagnetic SF is given by the SF difference mode-sum (Eq. (87)) and an additive

non-zero SF coming from the BH contribution (Eq. (86)) which is independent of the star’s

radius. To understand the behaviour of the SF as one approaches the boundary of the star, it

is sufficient to examine the former term. Looking at the large ℓ asymptotics of the Legendre

functions once again, one has an asymptotic expansion for the EM SF difference. We write

down the modes in the EM case in terms of the modes from the scalar case in Eq. (124)

(
∆FEM

r

)ℓ ∼ 3F ℓ∞
r . (127)

However, in this case one must consider the sum starting with the dipole term, since there

is no monopole contribution in the EM SF difference. Thus, while there still exists a closed

form expression for this infinite sum, it is not identical to that of the scalar field. The EM

SF difference is given by FEM surf

r = 3F surf

r − 3F 0∞
r , or more explicitly,

FEM surf

r =
q2

M2

3
(√

(Z + δ)2 − 1) + Z + δ
)
tanh−1

(
e−Ω
)
− 3

(√
Z2 − 1 + Z

)

2(Z + 1)
√
δ + Z − 1(δ + Z + 1)3/2

(
δ +

√
(δ + Z)2 − 1 + Z

) . (128)

The approximation above is compared with numerical sums for the SF in Fig. 6b.

In the interior, we can also use the difference term to find an approximation for the force

near the star’s surface. In the harmonic coordinates Z = R/M − 1 with the separation given

in terms of δ = Z − z0 ≥ 0, we have the asymptotic expression:

(
∆FEM int

r

)ℓ
= − q2

(
Z2 + (5− 6Z) log2

(√
Z2 − 1 + Z

)
− 1
)

8M2 (Z2 − 1)
√
1− 2(−δ+Z+1)2

(Z+1)3
(−δ + Z + 1)2 log2

(√
Z2 − 1 + Z

)
e−Ω(ℓ+1/2)

ℓ+ 1/2

(129)

where

Ω = −2 log



(Z + 1)3/2

(√
1− 2(Z−δ+1)2

(Z+1)3
− 1
)

(√
Z − 1−

√
Z + 1

)
(Z − δ + 1)


 . (130)

For small δ,

Ω ≈ 2

(
1− Z

(√
Z+1
Z−1

− 1
))

(Z + 1)
(√

Z2 − 1− Z
)δ. (131)

Approaching the surface from the interior, we find that Ω → 0 as δ → 0, much like in the

exterior. Hence the force diverges in proportion to the logarithm of |r − R|, whether one

approaches the surface from the interior or the exterior of the star.
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D. Across the radial domain

Figure 7 shows the scalar SF across the entire domain, i.e. for r ∈ (0, R) ∪ (R,∞). The

SF at the star boundary r = R is undefined; the dashed lines show the approximation (126)

that captures the logarithmic divergence in the approach to the boundary. We note that the

SF decreases with an increase in stellar radius.

IV. DISCUSSION AND CONCLUSIONS

In the preceding sections we have computed the self-force acting on a pointlike particle

endowed with a (electromagnetic or conformal-scalar) charge q, that is held in position in the

vicinity of a Schwarzschild star (i.e. a transparent sphere of constant density). We used two

complementary methods for regularization, and we leveraged the fact that the Schwarzschild

interior geometry is conformal to a three-sphere geometry, which in turn implies that dense

Schwarzschild stars (R ≤ 3M) can produce perfect focussing, a la Maxwell’s fisheye lens. Via

the means of a conformal transformation we obtained mode functions in closed form. The key

results comprise: series expansions in the large-r regime in Eqs. (105)–(107) and (115)–(117)

and the small-r regime in Eqs. (111) and (121); approximations that describe the logarithmic

divergence in the self-force at the star’s boundary, Eq. (126) and (128); and numerical data

for the self-force across the full radial domain, as shown in Fig. 7.

We have also extended the self-force difference method of Refs. [13, 14] to evaluate the self-

force on a particle in the non-vacuum interior of the star, as well as in the vacuum exterior.

This extension relies on the vanishing of certain regularized mode sums, given in Sec. IID.

This suggests that the self-force difference method of Drivas and Gralla [13] may have validity

to a wider range of circumstances than previously expected.

The electromagnetic self-force near a Schwarzschild star was previously considered in

Ref. [15] (see the “insulating star” case in that work). There, particular attention was given

to a very compact star at exactly the Buchdahl radius, R = RBuch = 9M/4, and it was re-

ported that “as we move the charge close to the star, x→ 4/9 [where x =M/R], Fr becomes

orders of magnitude greater than FBH
r ”. Here we have expanded on that observation, showing

that the self-force diverges in logarithmic fashion as r → R for Schwarzschild stars of any

radius R. In other words, the divergence in the self-force is not some special feature of the

Buchdahl limit. As in Ref. [15], we used a conformal transformation (though of a different

kind) to simplify the calculation of mode functions. The approach we took has the conceptual

advantage of relating the interior Schwarzschild geometry to that of a three-sphere of constant

curvature, but the practical disadvantage that our conformal transformation (unlike that in
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(a) Scalar SF
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(b) Electromagnetic SF

FIG. 7. Self force across the domain in r. We compare the force across different stellar radii and

show the agreement between the approximate sums [dashed] with the numerical sums [solid] near

the surface of the star. We see that the force tends to zero at the stellar centre and also as r → ∞.
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Ref. [15]) breaks down at the Buchdahl limit.

We have shown that the self-force for a Schwarzschild star is repulsive (from the star

centre) across the entire domain in r (i.e. Fr > 0), in both the interior of the star and the

Schwarzschild exterior. This suggests that, for a (loose) electrostatic analogy, one should

consider the repelling force on a charge near an insulating (rather than conducting) surface

(i.e. a surface boundary condition n ·∇V (r)|r=R = 0).

It is interesting to compare our results for the self-force near a Schwarzschild star with

another case that has been studied in the literature: the self-force on an electromagnetic

charge held fixed inside a spherical shell of massM at r = R (this was studied in Refs. [35, 36]

and discussed in Ref. [37]). At leading in order in M/R,

Fshell ≈ − q2M

2Rr2

(
r/R

1− r2/R2
+

1

2
ln

(
1− r/R

1 + r/R

))
r̂ (132)

This force exhibits a 1/∆r divergence in the approach to the shell’s surface, and the charge is

repelled from the shell. This is in contrast to the (weaker) logarithmic divergence found for

the Schwarzschild star. Near the centre of the mass-shell there is a restoring force of Fshell ≈
−rq2M/(3R4) that generates Simple Harmonic Motion. By comparison, in the Schwarzschild

star the force is also proportional to r in magnitude (see Fig. 7, and Eqs. (111) and (121)),

but the force is in the opposite direction (i.e. repelling the particle from the centre) and so

SHM does not arise.

Another scenario where a comparison can be drawn is to the self-force on a particle in a

spacetime constructed by glueing together two Minkowski spacetimes along a spherical seam

[37]. The Riemann tensor is zero everywhere except at the seam, where is proportional to a

delta-distribution. In this scenario, a 1/∆r divergence in the self-force arises in the approach

to the seam.

It seems that divergences in the self-force are rather typical wherever there is a boundary,

or a non-smooth feature of the geometry or refractive index. One may arrange such examples

into a hierarchy of divergences, based on the scaling of the force with ∆r in the approach to

the boundary. In familiar electrostatic examples, the force on a charge typically diverges as

1/(∆r)2. For example, near a conducting (or insulating) plate or sphere; or at a boundary

where there is a jump in the refractive index (e.g. outside or inside a dielectric sphere). In

the curved-spacetime example of a mass shell (Eq. (132)) [35, 36], or of glued-Minkowski [37],

the divergence instead scales as 1/(∆r), i.e., it is one power weaker. In the Schwarzschild-star

case, we found a logarithmic divergence only, which can be regarded as one power weaker

again.

It is natural to seek to relate the form of the divergence to the smoothness of the geometry.

Let us examine this idea in a little more detail. For the Schwarzschild star geometry, the metric
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functions A(r) and B(r) are continuous at r = R. More precisely, A(r) is C1 (continuous and

once-differentiable) and B(r) is C0. One point of comparison is the force on a pointlike charge

outside a dielectric sphere in electrostatics. Here, there is a discontinuity in the refractive

index at r = R (i.e. it is not C0) which leads, via the method of images, to a (∆r)−2 divergence

in the force. For the Schwarzschild star, the effective refractive index is C1 at the boundary,

that is, two orders smoother than for a dielectric sphere. It seems plausible that the divergence

in the self-force, with log |∆r|, is two orders weaker than in the dielectric case simply because

the (effective) refractive index is two orders more differentiable.

Due to the divergence at the star surface, the self-force on a pointlike particle near a

Schwarzschild star has no upper bound; it can be arbitrarily large. The divergence is likely to

be an artifact of the point-particle assumption. For an extended body, one would expect the

force to remain bounded, because a logarithmic divergence is weak enough to be integrable.

In the static scenario considered here, the self-force is entirely conservative (i.e. symmet-

ric under time reversal). In Ref. [13] it was posited that the dissipative (radiation-reaction)

part of self-force (i.e. the part that drives the loss of energy/angular momentum to radiation

in dynamical situations) should have a local character, whereas the conservative part of the

self-force is sensitive to boundary conditions and the global structure of the spacetime. Con-

sequently, the latter can become large while the former remains small (or zero). Our results

are consistent with this hypothesis, since we have shown that the conservative (point particle)

self-force is unbounded in the approach to a boundary where the metric itself is continuous

and the Ricci tensor is bounded.
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Appendix A: Large ℓ expansions

We want to perform large ℓ asymptotics for the following Legendre functions: Pℓ(x), Qℓ(x)

when x > 1 and P
−ℓ−1/2
±1/2 (x) when −1 ≤ x ≤ 1. From Sec. 14.15 in [34] and [38] we have:

Pℓ(cosh ξ) ∼
(

ξ

sinh ξ

)1/2
{
I0 (Lξ)

p∑

s=0

A0
s (ξ

2)

L2s
+
ξ

L
I−1 (Lξ)

p−1∑

s=0

B0
s (ξ

2)

L2s

}
(A1)

Qℓ(cosh ξ) ∼
(

ξ

sinh ξ

)1/2
{
K0 (Lξ)

p∑

s=0

A0
s (ξ

2)

L2s
− ξ

L
K1 (Lξ)

p−1∑

s=0

B0
s (ξ

2)

L2s

}
|, (A2)

where L = ℓ + 1/2 and I0, I−1, K0, K−1 are modified Bessel functions of the first and second

kind with degree 0,−1 respectively. For our purposes the summations in both expansions can

be truncated at order s = 0 with the leading coefficients given by A0
0 = 1 and

B0
0

(
ξ2
)
=

1

8ξ

(
coth ξ − 1

ξ

)
.

The Bessel functions have large argument expansions given by [34],

Iν(x) ∼
ex

(2πx)1/2

∞∑

k=0

(−1)k
ak (ν)

xk
, Kν(x) ∼

( π
2x

)1/2
e−x

∞∑

k=0

ak (ν)

xk
, (A3)

with a0(ν) = 1 and,

ak(ν) =

(
1
2
− ν
)
k

(
1
2
+ ν
)
k

(−2)kk!
k ≥ 1.

Finally, the Legendre functions, which go into the field solutions in the interior have the

expansion for −1 ≤ x ≤ 1,

P−µ
ν (x) =

(
1− x

1 + x

)µ/2
{

J−1∑

j=0

(ν + 1)j (−ν)j
j!Γ (j + 1 + µ)

(
1− x

2

)j

+O
(

1

Γ (J + 1 + µ)

)}
. (A4)

where the non-negative integer J denotes the order of expansion. In all the above expansions,

(y)k are the Pochhammer symbols. We use these expansions to see how the modes of the SF

difference behave at large ℓ and the most interesting aspect of this comes from the structure

factor Sℓ(Z). At leading order in the large ℓ expansions the ℓ behaviour of the modes entirely

depends on the ℓ behaviour of Sℓ(Z). We recall from (32) the SF difference now rewritten for

convenience,

∆F ℓ
r = −

( q
M

)2√z0 − 1

z0 + 1

∑

ℓ

(2ℓ+ 1)Qℓ(z0)Q
′
ℓ(z0)





(Z + 1)
P ′
ℓ
(Z)

Pℓ(Z)
− ηℓ(Z)

(Z + 1)
Q′

ℓ
(Z)

Qℓ(Z)
− ηℓ(Z)




Pℓ(Z)

Qℓ(Z)
(A5)
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with the explicit structure factor in the braces. For the two terms in the numerator of the

structure factor, we arrive at the following asymptotic expansions from above:

(Z + 1)
P ′
ℓ(Z)

Pℓ(Z)
∼ L(Z + 1)√

Z2 − 1
+

Z

2− 2Z
+

1

L(8− 8Z)
√
Z2 − 1

+
Z

64L2(Z − 1)2(Z + 1)
+O

(
1

L3

)

(A6)

ηℓ ∼ L

√
Z + 1

Z − 1
+

Z

2− 2Z
+

4Z − 5

8L(Z − 1)3/2
√
Z + 1

+
(4Z − 5)

(
Z
(√

Z2 − 1− 9Z
)
− 2

√
Z2 − 1 + 9

)

64L2(Z − 1)5/2(Z + 1)3/2
+O

(
1

L3

)
. (A7)

We can now see that the terms in the structure factor at order L1 and L0 cancel, causing

the SF difference to vanish at these orders. Thus, it is only at order L−1 that we expect a

non-zero contribution to the structure factor.

Appendix B: A vanishing mode sum

Proposition: The following infinite sum is zero:

∞∑

ℓ=0

{(2ℓ+ 1)Pℓ(z)Qℓ(z)− γ0(z)} = 0, (B1)

where Pℓ(z) and Qℓ(z) are Legendre functions (z > 1), and the regularization function is

γ0(z) ≡ 1√
z2−1

,

Proof: The starting point is Christoffel’s second formula (14.18.7 in DLMF [34]), which

is an identity for a partial sum from 0 to n ∈ N, viz.,

(z − y)
n∑

l=0

(2ℓ+ 1)Pℓ(z)Qℓ(y) = (n+ 1) (Pn+1(z)Qn(y)− Pn(z)Qn+1(y))− 1 ≡ Fn(z, y) ,

(B2)

(This can be established by using the recurrence relations for Legendre functions and proof

by induction). Since the partial sum on the left-hand side is finite, it is clear that the limit

of Fn(z, y)/(z − y) as y → z must be well-defined and finite. We evaluate this limit with

l’Hôpital’s rule to establish that

n∑

l=0

(2ℓ+ 1)Pℓ(z)Qℓ(z) = (n+ 1)
(
P ′
n+1(z)Qn(z)− P ′

n(z)Qn+1(z)
)
. (B3)
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Using the asymptotics of the previous section, one can then establish that, in the large-n

regime,

P ′
n+1(z)Qn(z)− P ′

n(z)Qn+1(z) = γ0(z) +O
(

1

n2

)
, (B4)

where γ0(z) was defined above. Now subtracting (n+ 1)γ0(z) from both sides of (B3) gives

n∑

l=0

{(2ℓ+ 1)Pℓ(z)Qℓ(z)− γ0(z)} = (n+ 1)
(
P ′
n+1(z)Qn(z)− P ′

n(z)Qn+1(z)− γ0(x)
)
. (B5)

Finally, taking the limit n→ ∞ and using the asymptotic result (B4) proves the proposition.

Appendix C: The partial sum Eq. (99)

In this section we show that Eq. (99) follows as a consequence of the recurrence relation

(DLMF 14.10.1 [34])

P µ+2
ν (x) + 2(µ+ 1)ŷP µ+1

ν (x) + (ν − µ)(ν + µ+ 1)P µ
ν (x) = 0, ŷ ≡ x√

1− x2
. (C1)

A similar proof can be constructed for Eq. (B3) and Eq. (99).

First, let us assume that the partial sum in Eq. ((99)) will take the form

n∑

ℓ=0

S int.
(1)ℓ(x) = Sn(x) + F0(x), (C2)

where S int.
(1)ℓ(x) is defined in Eq. (98), F0(x) ≡ S int.

(1)ℓ−S0 and we posit that Sn(x) takes a form

inspired by (B3):

Sn(x) = βn

(
P−N
1/2 (x)∂ŷP

N+1
1/2 (x)− αnP

−N−1
1/2 (x)∂ŷP

N
1/2(x)

)
, (C3)

where N = n + 1/2, and αn and βn are to be determined below. From Eq. (C1) it follows

that

PN+2
1/2 (x) + (2n+ 3)ŷPN+1

1/2 (x)− n(n+ 2)PN
1/2(x) = 0, (C4)

P−N
1/2 (x)− (2n+ 3)ŷP−N−1

1/2 (x)− (n+ 1)(n+ 3)P−N−2
1/2 (x) = 0. (C5)

Using (C5) and the derivative of (C4) in (C3), one can show that

Sn+1(x) = βn+1P
−N−1
1/2

[
−(2n+ 3)ŷ∂ŷP

N+1
1/2 + n(n+ 2)∂ŷP

N
1/2 − (2n+ 3)PN+1

1/2

]

− βn+1αn+1

(n+ 1)(n+ 3)
∂ŷP

N+1
1/2

[
−(2n+ 3)ŷP−N−1

1/2 + P−N
1/2

]
. (C6)
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Now we choose αn+1 = (n+ 1)(n+ 3) so that a pair of terms cancel. After this cancellation,

Sn+1(x) = βn+1

[
αn+1P

−N−1
1/2 ∂ŷP

N
1/2 − P−N

1/2 ∂ŷP
N+1
1/2

]
− βn+1(2n+ 3)P−N−1

1/2 PN+1
1/2 . (C7)

After comparing (C7) with (C3), we may choose βn+1 = (−1)n so that

Sn+1(x) = Sn(x) + S int.
(1)n+1(x). (C8)

Hence the result for the partial sum (C2) is established, and consideration of the base case

(n = 0) yields F0(x) = −x/π. The result in Eq. (99) then follows after rewriting the derivative

using the chain rule: ∂ŷ = (1− x2)3/2∂x.
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