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ABSTRACT
α-RuCl3, a narrow-band Mott insulator with a large work function, offers intriguing potential as a quantum material or as a charge acceptor
for electrical contacts in van der Waals devices. In this work, we perform a systematic study of the optical reflection contrast of α-RuCl3
nanoflakes on oxidized silicon wafers and estimate the accuracy of this imaging technique to assess the crystal thickness. Via spectroscopic
micro-ellipsometry measurements, we characterize the wavelength-dependent complex refractive index of α-RuCl3 nanoflakes of varying
thickness in the visible and near-infrared. Building on these results, we simulate the optical contrast of α-RuCl3 nanoflakes with thicknesses
below 100 nm on SiO2/Si substrates under different illumination conditions. We compare the simulated optical contrast with experimental
values extracted from optical microscopy images and obtain good agreement. Finally, we show that optical contrast imaging allows us to
retrieve the thickness of the RuCl3 nanoflakes exfoliated on an oxidized silicon substrate with a mean deviation of −0.2 nm for thicknesses
below 100 nm with a standard deviation of only 1 nm. Our results demonstrate that optical contrast can be used as a non-invasive, fast, and
reliable technique to estimate the α-RuCl3 thickness.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0212132

I. INTRODUCTION

van der Waals materials offer an unprecedented possibil-
ity to design and fabricate two-dimensional (2D) heterostructure
devices due to the presence of a broad palette of atomically
thin crystals with unique optical, electric, and magnetic prop-
erties. Among the different van der Waals layered crystals, the
narrow-band Mott insulator α-RuCl3 has emerged as a new build-
ing block for achieving local charge control in 2D van der Waals
heterostructures. Its narrow electronic bands and large work func-
tion make α-RuCl3 (hereafter RuCl3) an excellent atomic crys-
talline charge acceptor, enabling modulation doping of several
atomically thin crystals even when just a single RuCl3 layer is
employed.1 Recently, RuCl3 has been used to demonstrate low-
resistance Ohmic contact for p-type WSe2 at low temperatures
and low carrier densities,2,3 overcoming the well-known chal-
lenges associated with achieving low-resistance electrical contacts in

monolayer transition-metal dichalcogenide semiconductors.4,5 Fur-
thermore, the unique electronic structure of RuCl3 itself has
attracted a lot of attention due to its complex magnetic interactions,
including access to a Kitaev quantum spin liquid phase.6–9 Com-
bined, these properties position 2D RuCl3 as a versatile building
block in the van der Waals platform, with the potential to incorpo-
rate novel magnetic states10 and the resulting topological excitations
into 2D devices.1

Similar to other 2D materials, high quality RuCl3 nanoflakes
are usually obtained by mechanical exfoliation from bulk crystals
on oxidized silicon wafers,11 which typically results in stochastic
nanoflakes with randomly varying thicknesses, lateral dimensions,
and spatial locations on the substrate. In this context, an experi-
mental technique that allows a fast, non-destructive, and accurate
estimation of the thickness of the RuCl3 nanoflakes would represent
a valuable asset in the fabrication of 2D heterostructures incorporat-
ing this material. Although optical microscopy is routinely employed
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as an initial step in the thickness estimation of mechanically exfoli-
ated RuCl3,3,12 to our knowledge, a systematic study of the optical
reflection contrast of RuCl3 nanoflakes on oxidized silicon wafers is
still missing.

Here, we perform spectroscopic ellipsometry measurements
at room temperature on mechanically exfoliated RuCl3 nanoflakes
of different thicknesses for photon wavelengths in the visible
and near infrared range. Our measurements allow us to esti-
mate the wavelength-dependent complex refractive index of RuCl3
nanoflakes in this spectral range, confirming their thickness-
independent optical properties. Building on these results, we exploit
the estimated complex refractive index to calculate the optical con-
trast of RuCl3 nanoflakes between ∼2 and 100 nm on SiO2/Si
substrates under different illumination conditions. We compare
the calculated optical contrast with the thickness-dependent exper-
imental optical contrast extracted from optical microscopy images,
showing good agreement between the simulated and experimental
values. The good agreement between the calculated and experimen-
tal optical contrast allows us to predict the monochromatic illumi-
nation wavelengths that maximize the optical contrast response of
RuCl3 nanoflakes below 10 nm for two standard thicknesses (90 and
295 nm) of the SiO2 layer on a Si substrate. Finally, we show that
for RuCl3 nanoflakes in the range 2–100 nm imaged with our cali-
brated standard optical microscope, the crystal thickness estimated
exclusively from the optical contrast analysis shows only a mean
deviation of −0.2 nm from the value measured by a combination
of atomic force microscopy (AFM) and spectroscopic ellipsome-
try, with a standard deviation close to the thickness of a single
RuCl3 monolayer. Our results provide valuable information about
the optical properties of 2D RuCl3 flakes in the visible and near
infrared, which are crucial in exploiting this material in 2D nan-
odevices. Moreover, we show that optical contrast can be used as
a non-invasive, fast, and reliable technique to estimate RuCl3 crystal
thicknesses.

II. COMPLEX REFRACTIVE INDEX OF RuCl3
IN THE VISIBLE AND NEAR-INFRARED

We begin by performing spectroscopic micro-ellipsometry
measurements at room temperature on RuCl3 nanoflakes with thick-
nesses between ∼3 and 40 nm for photon wavelengths in the vis-
ible and near infrared (∼1.4–3.1 eV). The RuCl3 nanoflakes were
obtained by mechanical exfoliation from bulk crystals directly on Si
substrates with a top SiO2 layer with a nominal thickness of 295 nm.
The thickness of each nanoflake was measured by AFM. The spec-
troscopic micro-ellipsometry measurements were carried out using
an Accurion EP4 imaging ellipsometer with a spatial resolution of
∼1 μm. Figure 1(a) shows a sketch of the experimental measurement
setup. The ellipsometric Δ and Ψ angles of the multilayer system
(RuCl3/SiO2/Si) were measured as a function of the energy and
the angle of incidence (AOI) of the illumination light. Figure 1(b)
shows the Δ (red) and Ψ (blue) angles measured under AOIs of
45○ (filled circles) and 50○ (empty circles) for RuCl3 nanoflakes
with thicknesses of 2.9, 6.9, and 36.5 nm. We note that these mea-
surements were repeated for different in-plane rotations of the
RuCl3 samples, leading to imperceptible differences in the measured
Δ and Ψ angles, as expected from the in-plane isotropic optical
response of the material. Moreover, with the aim of minimizing

substrate-induced uncertainties in the determination of the refrac-
tive index of RuCl3 nanoflakes, ellipsometric angles from the bare
SiO2/Si substrate were also measured simultaneously on spatial posi-
tions a few micrometers away from each RuCl3 nanoflake using the
same experimental conditions.

For a quantitative analysis of the optical properties of the
RuCl3 nanoflakes, it is necessary to fit the measured ellipsometry
angles with simulated data from an optical model of the corre-
sponding multilayer sample. To build the optical model of the
sample, we use the analysis software of the Accurion EP4 ellipsome-
ter (EP4Model), which calculates the normalized Mueller matrix
describing the polarizing properties for reflection and transmission
of layered thin-film samples.13–15 In the first step of our analysis, we
fit the experimental ellipsometry data measured on the bare sub-
strate to a multilayer model consisting of a SiO2 layer on top of a
semi-infinite silicon substrate using the reported refractive indices
for Si and SiO2.16 The Levenberg–Marquardt-algorithm fit engine
of the EP4Model software yields a thickness of 295 ± 0.2 nm for the
SiO2 layer. In the next step of our analysis, we build a new multilayer
model consisting of a RuCl3 layer of unknown complex refractive
index on top of a 295-nm-thick SiO2 layer above a semi-infinite
silicon substrate and use it to fit simultaneously the experimental
Δ and Ψ angles for different crystal thicknesses and angles of inci-
dence shown in Fig. 1(b). Figure 1(c) shows the estimated complex
refractive index of RuCl3 obtained from the simultaneous fit of the
six experimental datasets in Fig. 1(b). The solid lines in Fig. 1(b)
show the modeled ellipsometric Δ and Ψ angles obtained using
the refractive index shown in Fig. 1(c). As can be observed, the
calculated Δ and Ψ angles agree very well with the experimental
data obtained from flakes with thicknesses of 2.9, 6.9, and 36.5 nm,
confirming the thickness-independent optical properties of this
material.

Furthermore, we observe a very good agreement between the
estimated refractive index of the nanoflakes and the optical prop-
erties reported for bulk RuCl3 crystals in previous studies.17–20

As shown in Fig. 1(c), the imaginary part of the refractive index
(κ) shows a clear absorption peak at ∼2.05 eV, in good agreement
with the β resonance reported in the imaginary part of the dielec-
tric constant19 and the real part of the optical conductivity of bulk
RuCl3 crystals.20 The observed increase of κ toward the edges of
our measurement range also agrees well with the reported exis-
tence of stronger α and γ absorption resonances at ∼1.2 and 3.2 eV,
respectively.19,20

III. OPTICAL CONTRAST ANALYSIS OF RuCl3
Next, we employ the measured complex refractive index

of RuCl3 to calculate its thickness-dependent optical contrast
when deposited on top of SiO2/Si substrates and imaged with
an optical microscope in an epi-illumination configuration. In
our simulations, we adopt the following definition for the opti-
cal contrast between the nanoflake and the substrate:21,22 OC(λ)
= (R(λ) − R0(λ))/(R(λ) + R0(λ)), where R(λ) and R0(λ) represent
the wavelength-dependent intensities of the light reflected by the
whole heterostack (RuCl3/SiO2/Si) and the bare substrate (SiO2/Si),
respectively. To calculate R(λ) and R0(λ), we employ the transfer
matrix method, in which the forward- and backward-propagating
plane waves form the basis into which the optical electric field
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FIG. 1. (a) Schematic representation of the experimental spectroscopic ellipsometry setup. (b) Δ (red) and Ψ (blue) ellipsometric angles measured under AOIs of 45○ (filled
circles) and 50○ (empty circles) for RuCl3 nanoflakes with thicknesses of 2.9 (bottom), 6.9 (middle), and 36.5 nm (top). The solid lines represent the fit of the experimental
data using a Mueller matrix formalism. (c) Estimated complex refractive index of RuCl3 obtained from a simultaneous fitting of the Δ and Ψ angles shown in (b) for different
crystal thicknesses.

in each layer is decomposed.23 In our simulations, we include
the wavelength-dependent refractive indices of SiO2 and Si16 and
assume a normal incidence of illumination for simplicity. Although
the angular spread of incident angles given by the numerical aper-
ture (NA) of the illumination objective lens can play a significant
role in the perceived optical contrast for thick crystals and/or 2D lay-
ers with anisotropic optical constants,24,25 the relatively thin flakes
(<100 nm), the low NA of the objective lens (0.42), and the measured
isotropic refractive index of RuCl3 justify our assumption.

A. Thickness-dependent optical contrast of RuCl3
in the sRGB color space

In this section, we explore experimentally and numerically
the thickness-dependent optical contrast of RuCl3 on SiO2/Si sub-
strates in the standard RGB (sRGB) color space under broadband
white illumination. Figure 2(a) shows an optical microscope image
in the sRGB color space of RuCl3 flakes with thicknesses in the

range ∼2–100 nm mechanically exfoliated on a SiO2/Si substrate
with a SiO2 thickness of 295 nm, as confirmed by spectroscopic
ellipsometry. The red, green, and blue dots in Fig. 2(b) represent
the experimental optical contrast values in the different channels
(R, G, and B, respectively) extracted from the optical microscope
image shown in Fig. 2(a) and a second spot nearby on the same sub-
strate. The thicknesses of the layers indicated in Fig. 2 were estimated
by a combination of AFM and spectroscopic ellipsometry measure-
ments, while the optical contrast values and corresponding error
bars represent the optical contrast value and associated uncertainty
calculated from the measured R(λ) and R0(λ) in each flake and a
nearby spot in the substrate, respectively. The experimental values
and uncertainties of R(λ) and R0(λ) for all the measured flakes were
obtained from the median and standard deviation, respectively, of
100 pixels.

In order to compare the experimental contrast values in the
sRGB color space with the calculated optical contrast, we follow
the approach described in previous studies.16,26–29 In this approach,
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FIG. 2. (a) Optical microscope image, acquired in the standard RGB (sRGB) color
space, of exfoliated RuCl3 flakes with thicknesses ranging from ∼2 to 100 nm.
Scale bar: 50 μm. (b) Comparison of the experimental (dots) and calculated
(dashed lines) optical contrast in the sRGB color space corresponding to the red
(R), green (G), and blue (B) channels. The colorscale bar shows the calculated
color of RuCl3 as a function of flake thickness when deposited on top of a SiO2/Si
substrate with a SiO2 thickness of 295.5 nm.

the simulated wavelength-dependent reflected intensities of the flake
and bare substrate (R(λ) and R0(λ)) are used to calculate CIEXYZ
color values, which simulate the color perceived by the human eye.
Such transformation involves integration over wavelengths, includ-
ing the light source spectrum (Thorlabs, Inc., product MCWHLP1)
and the CIE color-matching functions to calculate the XYZ tris-
timulus components.16,26,27 Finally, the calculated XYZ values are
converted to the sRGB color space using a standard transformation,
which takes into account the chromaticity coordinates of the sRGB
color space and the reference white of the light source.16,30

The dashed lines in Fig. 2(b) show sRGB optical contrast values
for the R, G, and B channels as a function of flake thickness calcu-
lated following the approach described above. We note that in order
to get a good agreement with the experimental values, the simulated
optical contrast response of the three channels must be scaled by
a normalization factor f (with f < 1). We justify the use of such a
normalization factor by the need to account for the reduced spatial
and temporal coherence of the illumination light in our experimen-
tal setup (which we assume to be perfect in the simulations), which
is known to result in reduced visibility of the interference fringes
in the reflected signals while preserving the thickness-dependent
positions of the interference maxima and minima.31 We find that
a normalization factor f = 0.68 effectively reproduces the observed
optical contrast in all three RGB channels for all measured RuCl3
thicknesses. Notably, the best agreement is found using the G and

B channels, showing goodness-of-fit parameters (GoF) >0.98, as
compared to a value of ≈0.92 obtained for the R channel, where
GoF = 1 − RMSE, with RMSE being the root-mean-square error.

The good agreement between the experimental and simulated
optical contrast allows us to calculate the apparent color of RuCl3
on a SiO2(295 nm)/Si substrate as a function of flake thickness. The
colorbar on the top side of Fig. 2(b) shows the calculated apparent
colors of the substrate (outer region) and the RuCl3 (inner region) as
a function of thickness. Overall, we find a good agreement between
the measured and calculated apparent color of RuCl3, which can
be used as a fast method for assessing flake thicknesses, as shown
previously for other different 2D materials.27,29,32,33

B. Thickness-dependent optical contrast of RuCl3
under narrow-band illumination

Next, we explore the effects that the inclusion of narrow optical
bandpass filters in the illumination path has on the optical contrast
characterization of RuCl3. This approach has previously been shown
to reproduce, to a good extent, the optical contrast simulated under
monochromatic illumination in other 2D crystals.22,34–36 The blue
and red dots in Fig. 3(a) represent the experimental contrast values
measured for the same RuCl3 flakes shown in Fig. 2 when filtering
the illumination spectrum with 10-nm-bandwidth filters centered at
450 and 600 nm, respectively. The blue and red dashed lines indicate
the simulated thickness-dependent evolution of the optical contrast

FIG. 3. (a) Comparison of the experimental (dots) and calculated (dashed lines)
optical contrast of RuCl3 with thicknesses ∼2–100 nm measured using bandpass
filters at 450 nm (blue) and 600 nm (red) with a 10-nm bandwidth. The shaded
areas represent the calculated optical contrast at the corresponding central wave-
length of the filter, ±5 nm. (b) Calculated optical contrast under the monochromatic
excitation wavelengths that maximize the positive and negative optical contrast of
RuCl3 with thicknesses in the range ∼0–10 nm for SiO2 thicknesses of 90 nm
(dashed lines) and 295 nm (solid lines).

APL Mater. 12, 071114 (2024); doi: 10.1063/5.0212132 12, 071114-4

© Author(s) 2024

 29 August 2025 11:39:43

https://pubs.aip.org/aip/apm


APL Materials ARTICLE pubs.aip.org/aip/apm

assuming monochromatic excitation at 450 and 600 nm, respec-
tively. The blue and red shaded areas show the simulated optical
contrast for monochromatic illumination in the ranges of 450 ± 5
and 600 ± 5 nm, respectively. Similar to the results under broad-
band illumination, we observe that the simulated optical contrast
agrees well with the experimental values across the whole thick-
ness range. Again, we find a better agreement between simulated
and experimental values for the shorter illumination wavelength,
with GoF values of 0.99 and 0.98 for the 450 and 600 nm filters,
respectively.

Once more, the good agreement between the optical con-
trast measured with bandpass filters and the simulated optical
contrast under monochromatic illumination allows us to explore
the monochromatic wavelengths that enhance the optical contrast
response of RuCl3 with thicknesses below 10 nm on top of Si sub-
strates with thermally grown SiO2 layers. Note that an enhanced
optical contrast response arises from a combination of large absolute
optical contrast with the underlying substrate and a linear depen-
dence on RuCl3 thickness. Figure 3(b) summarizes the results of
our analysis for two standard SiO2 thicknesses of 90 and 295 nm.
Our results suggest that monochromatic illumination wavelengths
of ∼730 and ∼650 nm yield the largest optical contrast values for
90 and 295-nm-thick SiO2 layers, respectively, while showing an
almost linear dependence with RuCl3 thickness in the explored
range. We note that in both cases, the optimized monochromatic
illumination wavelengths result in a negative optical contrast, i.e.,
the RuCl3 crystal appears darker than the substrate. We find that
monochromatic illumination wavelengths of ∼460 and ∼550 nm
give rise to the opposite case (i.e., RuCl3 appears brighter than the
substrate) for 90 and 295-nm-thick SiO2 layers, respectively, at the
expense of a slightly lower absolute optical contrast.

C. RuCl3 thickness estimation from optical
contrast measurements

Finally, in this section, we benchmark the performance of
the optical contrast technique to estimate the thickness of RuCl3
nanoflakes using our calibrated optical microscope and the exper-
imental optical contrast dataset shown in Figs. 2 and 3. In order to
do so, we employ an algorithm that estimates the value of the RuCl3
thickness (d) and minimizes the following quantity:

RMSEtotal(d) =
¿
ÁÁÀ N

∑
i

[OCi
exp −OCi

sim(d)]2

N
, (1)

with N representing the total number of experimental and simulated
optical contrast illumination/detection modes i considered for the
minimization algorithm (i.e., sRGB detection for white illumination
or bandpass illumination). In our algorithm, we follow a two-step
approach. We start by considering only the two optical contrast
configurations that show the best overall agreement between exper-
imental and simulated values (G and B channel detection under
broadband illumination) and estimate the crystal thickness (d) that
minimizes Eq. (1). In the second step, if the value of d returned
by the initial minimization of Eq. (1) for the G and B channels
falls outside the range 3.5 ≤ d ≤ 55 nm (i.e., where the R channel
shows a good agreement between experiment and simulations), we
minimize again Eq. (1) with the addition of the R channel. This

FIG. 4. Bottom panel: RuCl3 thickness estimated from the experimental optical
contrast obtained by a combination of sRGB and monochromatic detection as a
function of the thickness determined by independent AFM and/or spectroscopic
ellipsometry measurements. The horizontal error bars represent the uncertainty
associated with the independent thickness estimation. The vertical error bars rep-
resent the uncertainty resulting from our thickness estimation approach, which we
define as the thickness range for which the RMSEtotal defined by Eq. (1) is less
than or equal to two times the RMSEtotal corresponding to the estimated thickness.
The red line represents the ideal case, where the thickness inferred from the opti-
cal contrast equals the measured thickness. Top panel: difference between the
estimated thickness inferred from the optical contrast and the measured RuCl3
thickness (Δd). The green and purple shaded areas represent Δd intervals of
±1 and ±2 RuCl3 monolayers, respectively. The histogram in the top-right panel
identifies the statistics using monolayer thickness binning.

two-step minimization procedure results in an estimated thickness
with a mean deviation Δd = −0.2 nm from the crystal thickness esti-
mated by AFM/ellipsometry in the range d < 100 nm with a standard
deviation of 1.2 nm.

Finally, we note that the inclusion of an additional measure-
ment mode (450 nm band-pass detection) in the second stage of the
two-step minimization algorithm leads to a slight improvement in
the thickness estimation performance. The bottom panel of Fig. 4
shows the RuCl3 thickness estimated from the experimental opti-
cal contrast as a function of the thickness determined by AFM and
spectroscopic ellipsometry measurements. The red line represents
the ideal case, where the thickness inferred from the optical contrast
equals the measured thickness. The top panel shows the difference
between the estimated thickness inferred from the optical contrast
and the measured RuCl3 thickness (Δd), with the green and purple
shaded areas representing Δd intervals of ±1 and ±2 RuCl3 mono-
layers, respectively. Finally, the top right panel shows a histogram of
the corresponding Δd values, which yields a Δd = −0.2 nm for the
whole thickness range with a standard deviation of 1 nm, i.e., close
to the thickness of a single RuCl3 monolayer (0.8 nm37,38).

IV. CONCLUSIONS
In summary, we report the complex refractive index of

α-RuCl3 nanoflakes with thicknesses below 40 nm in the visible

APL Mater. 12, 071114 (2024); doi: 10.1063/5.0212132 12, 071114-5

© Author(s) 2024

 29 August 2025 11:39:43

https://pubs.aip.org/aip/apm


APL Materials ARTICLE pubs.aip.org/aip/apm

and near-infrared wavelength ranges. Our results show that the
optical properties of the nanoflakes are independent of the crys-
tal thickness and agree well with the optical constants reported
for bulk samples.17–20 Compared to other 2D crystals such as
transition-metal dichalcogenide semiconductors,39 group III–VI
metal chalcogenide semiconductors such as InSe,40 or hybrid
perovskites,41 which show strong modulation of their dielectric
response with the thickness for few-layer crystals, the thickness-
independent optical response of RuCl3 enables a straightforward
and reliable comparison between the experimental and simulated
optical reflectance contrast as a function of crystal thickness. In
this context, we show that transfer-matrix based simulations of the
thickness-dependent optical contrast of RuCl3 on oxidized silicon
substrates reproduce with good agreement the experimental optical
contrast obtained under different illumination/detection configu-
rations, including sRGB color-space detection for broadband and
narrow-band illumination. Finally, we show that optical contrast
imaging allows us to retrieve the thickness of the RuCl3 nanoflakes
exfoliated on an oxidized silicon substrate with a mean deviation
of −0.2 nm for thicknesses below 100 nm and a standard devia-
tion of only 1 nm across the whole thickness range. These results
demonstrate the potential of optical contrast analysis as a non-
invasive, fast, and reliable technique to estimate the thickness of
RuCl3 nanoflakes.
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